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Millions of people willingly expose their lives via Internet technologies every day, and 
even the very few ones who refrain from the use of the Internet find themselves exposed 
through data breaches. Billions of private information records are exposed through the 
Internet. Marketers gather personal preferences to influence shopping behavior. Providers 
gather personal information to deliver enhanced services, and underground hacker 
networks contain repositories of immense data sets. Few users of Internet technologies 
have considered where their information is going or who has access to it. Even fewer are 
aware of how decisions made in their own lives expose significant pieces of information, 
which can be used by cyber hackers to harm the very organizations with whom they are 
affiliated. While this threat can affect any person holding any position at an organization, 
upper management poses a significantly higher risk due to their level of access to critical 
data and finances targeted by cybercrime. 
 
The goal of this research was to develop and validate a Social Engineering eXposure 
Index (SEXI)™ using Open-Source Personal Information (OSPI) to assist in identifying 
and classifying social engineering vulnerabilities. This study combined an expert panel 
using the Delphi method, developmental research, and quantitative data collection. The 
expert panel categorized and assessed information privacy components into three 
identifiability groups, subsequently used to develop an algorithm that formed the basis 
for a SEXI. Validation of the algorithm used open-source personal information found on 
the Internet for 50 executives of Fortune 500 organizations and 50 Hollywood celebrities. 
The exposure of each executive and persona was quantified and the collected data were 
evaluated, analyzed, and presented in an anonymous aggregated form. 
 
Phase 1 of this study developed and evaluated the SEXI benchmarking instrument via an 
expert panel using the Delphi expert methodology. During the first round, 3,531 data 
points were collected with 1,530 having to do with the demographics, qualifications, 
experience, and working environments of the panel members as well as 2,001 attributing 
levels of exposure to personal information. The second Delphi round presented the panel 
members with the feedback of the first-round tasking them with categorizing personal 
information, resulting in 1,816 data points. Phase 2 of this study used the composition, 
weights, and categories of personal information from Phase 1 in the development of a 
preliminary SEXI benchmarking instrument comprised of 105 personal information 
items. Simulated data was used to validate the instrument prior to the data collection. 
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Before initiating Phase 3, the preliminary SEXI benchmarking instrument was fully 
tested to verify the accuracy of recorded data. Phase 3 began with discovering, 
evaluating, and validating repositories of publicly available data sources of personal 
information. Approximately two dozen sources were used to collect 11,800 data points 
with the SEXI benchmarking index. Upon completion of Phase 3, data analysis of the 
Fortune 500 executives and Hollywood personas used to validate the SEXI benchmarking 
index. 
 
Data analysis was conducted in Phase 3 by one-way Analysis of Variance (ANOVA). The 
results of the ANOVA data analysis from Phase 3 revealed that age, gender, marital 
status, and military/police experience were not significant in showing SEXI differences. 
Additionally, income, estimated worth, industry, organization position, philanthropic 
contributions are significant, showing differences in SEXI. The most significant 
differences in SEXI in this research study were found with writers and chief information 
officers. A t-test was performed to compare the Fortune 500 executives and the 
Hollywood personas. The results of the t-test data analysis showed a significant 
difference between the two groups in that Hollywood Personas had a higher SEXI than 
the Fortune 500 Executives suggesting increased exposure due to OSPI. 
 
The results of this research study established, categorized, and validated a quantifiable 
measurement of personal information. Moreover, the results of this research study 
validated that the SEXI benchmarking index could be used to assess an individual’s 
exposure to social engineering due to publicly available personal information. As 
organizations and public figures rely on Internet technologies understanding the level of 
personal information exposure is critical is protecting against social engineering attacks. 
Furthermore, assessing personal information exposure could provide an organization 
insight into exposed personal information facilitating further mitigation of threats or 
potential social engineering attack vectors. Discussions and implications for future 
research are provided. 
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Chapter 1 

Introduction 

 

Background 

Cybersecurity issues are as ubiquitous as the Internet itself and can be observed in 

social engineering victims ranging from a child targeted by pedophiles to the Director of 

the U.S. Central Intelligence Agency (CIA) (Federal Bureau of Investigation, 2015b; 

Franceschi-Bicchierai, 2015). Cyber attackers can be anyone from teenagers to foreign 

government actors (Federal Bureau of Investigation, 2016; Kopan, 2015). Objectives are 

as diverse as embarrassment to murder, but usually takes the form of fraud with the loss 

for United States (U.S.) organizations averaging over $100,000 per incident in 2013 

(Federal Bureau of Investigation, 2015a; Mouton et al., 2016). 

Open-source is defined herein as “publicly available print and digital/electronic data 

from unclassified, non-secret, and ‘grey literature’ sources,” not requiring credentials or 

special access, including data available through breaches, leaks, etc. (Fleisher, 2008, p. 

853). Marketing (Culnan & Bies, 2003; Moon, 2000), personalization (Chellappa & Sin, 

2005; Culnan, 1993; Kim & Pan, 2006), e-commerce (Dinev & Hart, 2006; Feijóo et al., 

2014), self-surveillance (Kang et al., 2011), surveys, contests, order forms, registrations 

(Federal Trade Commission, 2000), and social media (Acquisti et al., 2015; Karaduman, 

2013; Peer & Acquisti, 2016) are just a few ubiquitous open-source repositories. 

Additionally, grey literature is typically comprised of less-than-formal publications such 

as Websites and unpublished papers (Fleisher, 2008). 
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The exponential growth of personal information available online via open-source 

technologies has exposed unsuspecting users for social engineers to attack relentlessly 

(Acquisti et al., 2015; Mitnick & Simon, 2002). The Open-Source Personal Information 

(OSPI) provided by social media and other platforms facilitate many successful SE 

attacks on potential victims (Krishnamurthy & Wills, 2009; Maynard et al., 2015). E-mail 

is another tool used to gain OSPI by disguising its origin and purpose, usually to appear 

as a trusted entity known by the intended victim (Almomani et al., 2013; Federal Bureau 

of Investigation, 2015a; Mouton et al., 2016). The increased availability of OSPI 

furnishes social engineers with a larger number of victims, with no end in sight (Acquisti 

et al., 2015; Mitnick & Simon, 2002). 

 

Problem Statement 

The research problem that this study addressed was the proliferation of Social 

Engineering (SE) attacks due to publicly available OSPI (Heartfield & Loukas, 2015; 

Maynard et al., 2015; Mitnick & Simon, 2002). SE “is a combination of techniques used 

to manipulate victims into divulging confidential information or performing actions that 

compromise security” (Luo et al., 2013, p. 2; Mitnick & Simon, 2002). Social engineers 

use deception and often use roleplaying to represent someone to whom their intended 

targets are more susceptible  (Orgill et al., 2004). Additionally, the use of pretense and 

persuasion is often noted in successful SE attacks (Heartfield & Loukas, 2015; Mitnick & 

Simon, 2002). This behavior is consistent with the Theory of Mind (TOM) where an actor 

attempts to persuade another individual through pretense and deception, while remaining 

within the confines of the representation held by the other individual. TOM is defined as 
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“the individual imputes mental states to himself and to others” (Premack & Woodruff, 

1978, p. 515). A help desk may hold a representation of aiding those who request it. 

Several employees may hold a representation that an auditor is part of the Information 

Technology (IT) department, if they are observing someone dressed in a manner 

acceptable for the role and who is appearing to perform functions that represent the 

expected activity (Krombholz et al., 2013; Orgill et al., 2004). Social engineers are able 

to pretend and persuade even experts into behaving favorably for the attacker, even when 

they suspect something is wrong and are mandated as well as trained to take appropriate 

defensive action (Allen, 2006; Heartfield & Loukas, 2015). 

Prior research has shown the information being used to execute SE attacks typically 

originates at the target or those closely associated with them (Heartfield & Loukas, 2015; 

Junger et al., 2017; Luo et al., 2013). Studies have also shown a significant increase of 

personal information exposed on social networking sites and the overall willingness to 

provide personal content by Americans (Acquisti et al., 2015; Boyd & Ellison, 2007; 

Hong & Thong, 2013). Olmstead and Smith (2017) stated that 64% of Americans had 

been exposed via a data breach. 

According to Solove (2006), “Exposure involves the exposing to others of certain 

physical and emotional attributes about a person” (p. 533). Some studies suggested that 

people willingly expose private information in exchange for content gratification, even 

after adjusting their settings for what they perceived as increased privacy (Sutanto et al., 

2013). Ku et al. (2013) found that a positive association exists between the gratification 

of using social networking sites and the intention for continued usage. The availability of 

OSPI has grown substantially over recent years and looks to have exponential growth as 



      4 

 

 

more people gain access to the Web and service providers continually introduce 

innovative, and arguably predatory, mechanisms for self-disclosure (Acquisti et al., 

2015). 

When Facebook, a social network site, first went public, it targeted the needs of 

business users to facilitate professional relationships and was later expanded to provide 

any user the ability to share far more personal information (Acquisti et al., 2015). 

Initially, the majority of information posted by Facebook users was related to business 

efforts providing very few self-identifying descriptive items, while also restricting the 

scope of people having access to the shared information (Acquisti et al., 2015; Pew 

Research Center, 2019). By 2014, the basic and extended profiles of a user’s Personally 

Identifiable Information (PII) were potentially shareable to anyone on the Internet with 

access to the original Facebook postings (Acquisti et al., 2015). Examples of PII may 

include name, email, postal address, phone or fax number (Federal Trade Commission, 

2000). This availability of OSPI allows potential hackers to glean necessary information 

to successfully social engineer an exposed target via a myriad of attack vectors 

(Heartfield & Loukas, 2015; Luo et al., 2013). Acquisti et al. (2015) found that the 

number of Facebook categories of exposure increased from three (networks, genders, & 

names) to eight (networks, genders, names, friends, basic profile, extended profile, likes, 

& pictures) between 2005 and 2014 beginning with text and progressively expanding to 

including live video content. Twitter microdata is another source of OSPI allowing 

indirect access to a user’s identity (Singh et al., 2014). 

The literature typically describes PII as including any content that has the potential to 

identify an individual (McCallister et al., 2010). Schwartz and Solove (2011) suggested 
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another category of information, named herein as Personally Distinguishable Information 

(PDI). They argue that PDI will definitively identify someone, whereas most PII only has 

the potential of identifying a specific individual (Schwartz & Solove, 2011). Additionally, 

a third category of PII is suggested, named herein as Personally Unidentifiable 

Information (PUI), which has no chance to identify an individual on its own (McCallister 

et al., 2010; Schwartz & Solove, 2011). OSPI provides access to PDI, PII, and PUI 

making up the three primary categories of personal information, with PDI having the 

highest level of exposure, PII exhibiting the potential of exposure, and PUI offering no 

exposure by itself, however, combined with the prior two categories can add to the 

overall exposure of an individual (McCallister et al., 2010; Schwartz & Solove, 2011). 

PDI is any information which specifically distinguishes the individual on its own, slightly 

differing from PII in that the potential of exposure is absolute (Chellappa & Sin, 2005; 

Schwartz & Solove, 2011). PDI may include a digital photograph, video, social security 

number, Global Positioning System (GPS), passport number, credit card number, security 

clearance, bank account number, biometric data, date with the place of birth, mother’s 

maiden name, criminal background, medical record, financial record, and educational 

transcript (42 U.S.C. § 200.82). PUI is any information which cannot solely be used to 

identify an individual (Chellappa & Sin, 2005; Schwartz & Solove, 2011). PUI may 

include age, date of birth, gender, education, hobby, income, interest, the name of the 

software used, occupation, type of hardware in configuration, and Zip Code (Chellappa & 

Sin, 2005; Federal Trade Commission, 2000). 

The threat to organizations with leaders having their PDI, PII, and PUI available via 

OSPI is easily translated into risk assessments. According to the U.S. Federal Bureau of 
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Investigation (FBI) (2015a), Business Email Compromise (BEC) affected over 7000 

organizations within the U.S. approached $800 million in losses between October 2013 

and August 2015. A substantial increase of over 270% in the number of BEC cases 

occurred during the opening months of 2015 indicating SE attacks are dramatically on the 

rise (Federal Bureau of Investigation, 2015a). 

Phishing is another attack vector of SE, whereby the target is baited with a fake copy 

of a Web page or Website to solicit sensitive information or to inject malware onto the 

victim’s computer or mobile devices. OSPI provides attackers the information to craft 

specific bait to spear-phish a group or induvial, whereas whaling attacks attempt to 

specifically target the most valuable among them (Heartfield & Loukas, 2015). Neupane 

et al. (2015) conducted phishing research and found that the longer an individual looked 

at the content on a fake Web page, during each 10-second trial, the more likely they 

would accept it as being authentic. They also discovered the possibility of a successful 

phishing event significantly increased if the participant was distracted or sleep-deprived 

(Neupane et al., 2015). The growing availability of OSPI is providing the content used 

for successful SE attacks, and in the creation of effective spear-phishing campaigns 

(Heartfield & Loukas, 2015; Neupane et al., 2015). 

In 1994, a French social engineer called the FBI in Washington, D.C. and successfully 

persuaded someone to expose the information required to make phone calls at the 

agency’s expense (Allen, 2006; Schneier, 2000). In another example, the FBI described 

how the practices of a company facilitated a $737,000 transfer to an unauthorized 

recipient in China (Federal Bureau of Investigation, 2015a). In 2016, state-sponsored 

Iranians performed Distributed Denial of Service (DDoS) attacks on U.S. financial 
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institutions blocking hundreds of thousands of customers from accessing their bank 

accounts using IP Address information registered at the domain names (Federal Bureau of 

Investigation, 2016). In 2018, nine Iranians were indicted for the theft of over “31 

terabytes of documents and data from more than 140 American universities, 30 American 

companies, five American government agencies”, as well as “compromised 

approximately 8,000 professor email accounts across 144 U.S.-based universities” (U.S. 

Department of Justice, 2018, pp. 1,2). Acquisti and Gross (2009) described the simplicity 

of predicting Social Security Numbers and the dangers of mass identity theft due to 

weaknesses in the U.S. identifier system.  

To illustrate the effectiveness of SE against organizations, Orgill et al. (2004) 

described an unannounced security audit where 19 out of 32 people gave their password 

to an unknown person walking through the facility with a name badge retrieved from a 

desk where an employee left it. While seven people supplied the username and password 

for another person’s account with access elevated beyond their own, only four of the 32 

employees asked for the auditor’s identification (Orgill et al., 2004). Two days later the 

auditor returned and was able to find multiple company credit cards and a master key to 

the building within 30 seconds of beginning a general search near an executive’s office 

(Orgill et al., 2004). Orgill et al. (2004) found that even organizations with a high 

awareness of data security and requirements to follow privacy standards are vulnerable to 

SE due to exposure. 

The October 2015 BEC attack on the Director of the CIA provides an example where 

OSPI was used to gain access to a private email account. Teenagers were able to gather 

data from OSPI located across multiple online accounts belonging to the CIA Director, 



      8 

 

 

and use the information to pretext, another SE attack vector, customer service 

representatives via telephonic communication into exposing additional personal details 

(Franceschi-Bicchierai, 2015). Figure 1 represents the SE attack used on the CIA Director 

that may have been repeatable as the perpetrators had possession of the personal 

information of agents, contractors, and government personnel stored within the 

compromised e-mail account. The collected information could also be used in any 

number of other SE attacks as well. 

Figure 1 

SE attack used against the CIA Director in 2015 
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Using the combined data, the attackers obtained the necessary information to access 

the personal email account of the CIA Director. Subsequently, the attackers released the 

PII of many of the CIA Director’s associates and subordinates to WikiLeaks (Franceschi-

Bicchierai, 2015; Kopan, 2015). The availability of OSPI allowed the successful targeting 

of the CIA Director by a group of high school students having no formal information 

security training (Franceschi-Bicchierai, 2015). 

Heartfield and Loukas (2015) found that familiarity with content, such as a logo, 

provides a substantial increase in employees mistaking a SE attack for an official request. 

Additionally, Acquisti et al. (2015) found that OSPI is readily accessible and increasingly 

available. According to the FBI, BEC attacks and the financial loss associated with them 

have significantly increased (Federal Bureau of Investigation, 2015a). The growth of 

BEC, SE, and OSPI indicate the current cybersecurity defense methodologies may not be 

sufficient to protect individuals or organizations from SE attacks (Tetri & Vuorinen, 

2013). Thus, it appears additional research is warranted to assess and classify social 

engineering exposure of individuals, especially top executives of large organizations and 

key strategic personnel. 

Dissertation Goal 

The goal of this research was to develop and validate a Social Engineering eXposure 

Index (SEXI) using Open-source Personal Information (OSPI) to assist in identifying and 

classifying SE vulnerabilities. The index was validated on 50 executives of Fortune 500 

companies and 50 Hollywood personas. SEXI provided a rating of the exposure to SE 

due to OSPI. The need for this research was demonstrated by the work of Mitnick and 

Simon (2002), Tetri and Vuorinen (2013), Heartfield and Loukas (2015), as well as 
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Mouton et al. (2016) that acknowledged the progressive expansion of SE attack vectors, 

the lack of a predictive threat system, the availability of OSPI which circumvent 

organizational cybersecurity technologies, and the dearth of data on information 

gathering techniques for the successful execution of prior SE attacks.  

Mouton et al. (2016) described the difficulty in performing SE research due to the 

lack of information provided in news articles, especially the method of attack and where 

the information was gathered to prosecute the intended target. Despite proposed SE attack 

templates, the effect of OSPI on target exposure is not a well-understood phenomenon, 

making it a viable and challenging research problem (Mouton et al., 2016). Mouton et al. 

(2016) reinforced the sentiment found by Mitnick and Simon (2002) that the human 

component is the weakest link for organizational security, as it serves both as a bypass to 

security technologies and as the fountain of information by which SE attacks occur. 

Additionally, Mouton et al. (2016) suggested that SE research is still in its infancy despite 

the rapid growth of information security research. 

Heartfield and Loukas (2015) described the ineffectiveness of studying “semantic 

attacks” as it occurs after the damage is done and may be limited by a lens focused on a 

singular attack vector (p. 31). Of significance, for this dissertation study, is the call for a 

prediction mechanism by Heartfield and Loukas (2015) for determining exposure in real 

time that is automatically updated with a rapid response window. The availability of 

OSPI used for SE attacks can also serve to determine SE exposure (Heartfield & Loukas, 

2015; Tetri & Vuorinen, 2013). Armed with a SE prediction mechanism, executives can 

take an offensive stance in organizational security risk mitigation and likewise monitor 
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the overall exposure of the organization in real-time by evaluating the availability of 

OSPI of key personnel – including themselves (Mouton et al., 2016).  

This study built on previous research by Bélanger and Crossler (2011), Tetri and 

Vuorinen (2013), Acquisti et al. (2015), as well as Heartfield and Loukas (2015). 

Bélanger and Crossler (2011) called for “the development of more (and easier to use) 

privacy protection tools for individuals, groups, organizations, and society” (p. 1035). 

Acquisti et al. (2015) described the exponential increase of OSPI via social networking 

sites while Tetri and Vuorinen (2013) found that its availability enabled as well as 

facilitated SE attackers across a broad spectrum of attack vectors. Current research and 

defense mechanisms tend to focus on a single attack vector or technique, thereby 

drastically limiting their actual benefit or significance to the security strategy (Tetri & 

Vuorinen, 2013). Specifically, Tetri and Vuorinen (2013) suggested that research might 

include an evaluation of where the information was obtained by attackers as well as how 

the SE attack vectors were possible in the first place (p. 1020). Heartfield and Loukas 

(2015) called for the development of a formal framework that could profile the exposure 

of users to SE attacks. Schwartz and Solove (2011) argued that privacy must move 

beyond an ineffective legal system split between standard and rule towards an 

understanding of “identification in terms of risk level (p. 1979)” and realize “a standards-

based approach can be made operational and predictable” (p. 1884). Ohm (2010) views 

the entire PII concept as broken and believes almost any information can be traced as 

well as used to identify an individual. This study developed and validated, using Subject 

Matter Experts (SMEs), an instrument tool to aid organizations in SE mitigation and an 
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index of exposure to SE due to the availability of OSPI for 100 individuals and corporate 

executives. 

While there have been many discussions in the literature concerning personal 

information, there is very little in the quantification and grouping of the components. The 

first specific goal of this research study was to gather the SME-approved components for 

an index of SE exposure by eliciting quantitative feedback on personal information. The 

second specific goal of this research study was to assign categories to personal 

information components based on exposure. The third specific goal of this research study 

was to develop and validate, using SMEs, the components and hierarchical weights for 

SEXI via a Delphi method. The fourth specific goal of this research study was to apply 

the SEXI method to measure the OSPI exposure of 50 executives of Fortune 500 

organizations and 50 Hollywood celebrities. The fifth specific goal of this research study 

was to assess and statistically test for significant mean differences of the SEXI of 100 

individuals based on demographical indicators of age, gender, income, marital status, 

estimated worth, industry, organizational position, philanthropic contributions, and prior 

military/police experience. The sixth specific goal of this research study was to compare 

the SEXI results from the set of US executives to those of Hollywood personas in an 

effort to uncover which group is more vulnerable to SE attack from an OSPI exposure 

perspective. 

Research Questions 

The main Research Question (RQ) that this study addressed was: What are the expert-

approved required components comprising an index of exposure to SE attacks due to 

OSPI? The specific research questions that this study addressed were: 
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RQ1: What are the specific SME-panel approved set of personal information 

components for an index of SE exposure? 

RQ2: What are the specific SME-panel approved categories for the identified 

set of personal information components? 

RQ3: What are the specific SME-panel identified weights of the personal 

information components and categories that enable a validated hierarchical 

aggregation to the Social Engineering eXposure Index (SEXI) benchmarking 

index? 

RQ4: How are 100 individuals assessed and classified by SEXI using OSPI? 

RQ5: Are there any statistically significant mean differences of SEXI based 

on demographical indicators of age, gender, income, marital status, estimated 

worth, industry, organizational position, philanthropic contributions, and prior 

military/police experience? 

RQ6: Do SEXI results from the set of US executives and Hollywood 

personas indicate one group being more vulnerable to SE attack from their 

OSPI exposure perspective? 

SE attacks are on the rise, and the OSPI used to perpetrate these crimes is far too 

readily available (Acquisti et al., 2015; Federal Bureau of Investigation, 2015a). Tetri and 

Vuorinen (2013) conducted a literature review of 40 journal articles and found them 

primarily explorative and descriptive with very few SE studies being empirical, thereby 

validating a knowledge gap in the literature.  

The merit of developing an exposure index is that it can assist in the prediction of the 

SE exposure of targets, the content of potential attacks, and possible attack vectors which 
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current security structures may fail to detect or provide (Heartfield & Loukas, 2015; 

Mouton et al., 2016). Prior research indicated that people readily expose themselves 

online (Acquisti et al., 2015; Pew Research Center, 2019; Smith, 2015) and that 

organizations can end up paying for their executives’ OSPI exposure in a myriad of ways 

(Federal Bureau of Investigation, 2015a; Mouton et al., 2016). 

Relevance and Significance 

Relevance 

The privacy chain, defined as the flow of PII communication between two endpoints 

(Wilkerson et al., 2017), appears to have no lack of supply (Mitnick & Simon, 2002; Tetri 

& Vuorinen, 2013) or demand (Federal Bureau of Investigation, 2012; Jasper, 2017). 

People continue to freely share PII even though they are aware of the consequences of 

doing so (Acquisti et al., 2015; Olmstead & Smith, 2017). Figure 2 provides the number 

of breaches and the number of records from 2005-2017.  

Figure 2 

Reported data breaches from 2005-2019 
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The literature provides troubling insight into the primary creator of PII, the subjects 

themselves. People continue self-disclosure even though 64% of Americans have 

experienced data breaches (Olmstead & Smith, 2017). Since 2015, the number of 

Facebook users has increased by 7%, bringing the total to 79% of Internet users using the 

service – 68% of American adults (Greenwood et al., 2016).  

Note: Adapted from “Data Breaches,” by the Privacy Rights Clearing House, 2021. Used 

with the permission of the Privacy Rights Clearinghouse, under a Creative Commons 

Attribution NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0). 

The alarming rate of PII released and subsequently available via OSPI is a continual 

threat to organizations (Mouton et al., 2016). Case in point, the successful attack on the 

Director of the CIA demonstrates how OSPI provided attackers access to a private email 

account of a key figure, which contained and provided PII of many CIA agents 

(Franceschi-Bicchierai, 2015; Kopan, 2015). It should be noted that no correlation exists 

as to the number of data breaches and the number of records. A single data breach can 

exceed billions of records (Green, 2017), while others may contain no records at all 

(Privacy Rights Clearinghouse, 2018). 

The literature indicated that SE success often depends on the availability of PII 

(Junger et al., 2017). Combined with the exponential growth of PII available via open-

source technologies, an onslaught of effective SE attacks continues to plague 

organizations with a snowballing relentlessness (Acquisti et al., 2015; Bélanger & 

Crossler, 2011). In response, prior literature has assuaged the demand for security 

policies, training, and awareness efforts, but has shown limited effectiveness in curbing 

the crushing weight of potential PII-related threats (Mitnick & Simon, 2002; Mouton et 
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al., 2016; Tetri & Vuorinen, 2013). Junger et al. (2017) found that people are typically ill 

prepared to make PII-related decisions, even with training and warnings. Additionally, 

research has shown that a direct connection and potential threat exists with the way 

people perceive the significance of PII between virtual and physical worlds (Junger et al., 

2017).  

SE attacks on organizations occur without the benefit of knowing what PII is 

available or from where the attack will come (Tetri & Vuorinen, 2013). In effect, 

organizations are largely ineffective in staving off SE attacks due to current security 

structures failing to predict PII exposure of organizational targets, the content of potential 

attacks, or possible attack vectors (Heartfield & Loukas, 2015). Given the documented 

exponential increase of the availability of PII, the relevance of this study is considerable. 

Significance 

The significance of this study is highlighted by the dramatic increase in the 

availability of OSPI due to the willingness of people to share on social networks and 

other media as well as billions of records compromised via data breaches. The existence 

of hacker undergrounds where personal information and SE attack vectors are shared 

increases the exposure. Prior literature has documented the existence of OSPI as the 

precursor for many successful social engineering attacks (Heartfield & Loukas, 2015). 

The significant problem identified in this study is addressed by the development and 

validation of a SEXI using OSPI to assist in identifying and classifying SE exposure. 

Since privacy is highly subjective (Acquisti et al., 2015; Acquisti et al., 2016; Moon, 

2000) and traditionally understood through context (Heurix et al., 2015; Hong & Thong, 

2013) prior literature has called for a tool to serve as a predictor and determinant for 
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potential SE attacks (Heartfield & Loukas, 2015; Mohaisen et al., 2017) seeking the 

specificity of available information (Tetri & Vuorinen, 2013). The security training and 

policies implemented by organizations rely heavily on people (Mouton et al., 2016; Tetri 

& Vuorinen, 2013), which the literature indicates is the weakest defense point (Mitnick & 

Simon, 2002), the easiest to compromise (Neupane et al., 2015), and who superimpose 

their virtual openness to the current environment as evidenced by a willingness to share 

information (Junger et al., 2017).  

Figure 3 

Unintended exposures contrasted with all reported data breaches 2005-2019  

 

Note: Unintended disclosures accounted for nearly half of 2017’s data breaches and most 

of the exposed records. Adapted from “Data Breaches,” by the Privacy Rights Clearing 

House, 2021. Used with the permission of the Privacy Rights Clearinghouse, under a 

Creative Commons Attribution NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0). 
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While organizations implement security policies and training (Mouton et al., 2016), 

research has found that warnings issued to users may actually increase exposure of 

personal information (Junger et al., 2017). Zhang et al. (2014) found that even though 

users perceived a heightened online security threat, they tended to expose even more 

personal information. Figure 3 provides the significance of unintended disclosures of 

datasets, which has grown during recent years. 

Research indicates that the majority of users do not read or understand privacy 

policies in their lives, because they appear unwilling to put forth any significant effort in 

managing the privacy they value (Acquisti et al., 2015; Hong & Thong, 2013). These 

same people make up the cyber defense of the organizations (Mouton et al., 2016). 

During late 2016, Yahoo announced one billion customer records had been stolen (Green, 

2017). The Privacy Rights Clearinghouse (2018) has logged almost 10 billion breached 

data records since 2005, with 18% (1.8 billion) occurring in the first 10 months of 2017. 

According to Jasper (2017), often data from breaches are shared on the hacker 

underground marketplace (i.e. Dark Web) within 72 hours, facilitating further successful 

attacks using the information. Public releases of stolen information are not uncommon, as 

is the case with the WikiLeaks release of CIA personnel PII instantly transforming the PII 

into OSPI (Franceschi-Bicchierai, 2015; Kopan, 2015). Public release of protected 

information serves as the foundation for SE attackers to mount attacks through unknown 

vectors using a massive amount of accurate data to orchestrate a cacophony of SE attacks 

(Mouton et al., 2016; Tetri & Vuorinen, 2013). Given the documented increase in PII 

exposed via data breaches and the continual avalanche of successful SE attacks using 
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OSPI, the significance of this study was substantial. Armed with a SE prediction 

mechanism, executives can take an offensive stance in organizational security risk 

mitigation and likewise monitor the overall exposure of the organization in real-time by 

evaluating the availability of OSPI of key personnel – including themselves (Mouton et 

al., 2016). 

Barriers and Issues 

Limited discernable empirical literature appears to exist regarding exposure, personal 

information, and social engineering. In addition, it appears that there is limited literature 

with regards to exposure related to open-source personal information. Hence, limited 

predictive literature indicates how to measure the exposure of individuals due to the 

availability of open-source personal information. To resolve this, a new instrument is to 

be developed using Schwartz and Solove (2011)’s privacy categories as well as 

McCallister et al. (2010)’s privacy-related descriptions and definitions used to protect the 

confidentiality of PII. Reliability for the internal consistency of intercorrelated items of 

the SEXI instrument is one of the barriers that requires overcoming. 

One potential barrier for this study was obtaining permission to measure TOM of the 

SMEs. IRB approval was needed to use the SMEs as participants. Additionally, the SEXI 

instrument derived from the SMEs indicated the existence of personal information and 

inadvertently created PII or PDI of the 50 executives of Fortune 500 organizations and 50 

Hollywood celebrities. This study did not collect or retain any personal information. IRB 

approval was obtained prior to the formation of the SMEs and data collection. 

Exposure of the executives and their respective organizations was an issue in this 

study. This issue was addressed by randomizing the list of fortune 500 companies and 
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subsequently assigning each organization a nondescript identifier (F001, F002, etc.). 

Additionally, the executive position titles (e.g. CEO, CIO, CFO, etc.) were randomized 

and given a title designation (e.g. C01, C02, C03, etc.), which did not directly indicate the 

position nor the executive. Efforts were made to maintain the confidentiality of all 

Fortune 500 organizations and associated executives. A unique identifier was applied to 

each executive, i.e. F023-C06, thereby obfuscating the organization and executives. The 

original designations were be stored in a separate system. 

Exposure of the Hollywood personas is also an issue in this study. This was addressed 

by randomizing a list of the 500 top grossing films of all time, filtered to exclude titles 

released before 1980, and assigning each movie a nondescript identifier (e.g. M001, 

M002, etc.). Hollywood personas were randomly selected from the top 10 cast positions 

from each feature presentation according to the IMDB. Each persona was obfuscated via 

a nondescript identifier (e.g. H01, H02, etc.). A unique identifier was applied to each 

Hollywood persona, i.e. M081-H03 to maintain their confidentiality. The original 

designations were stored in a separate system. 

Another barrier that this research study had to overcome was the requirement of 

validity. To address this barrier, a close-ended Delphi was used with a pre-defined stop 

criterion. Content validity was addressed by providing the findings of each Delphi round 

to the SMEs in aggregate form for them to evaluate (Linstone & Turoff, 1975). The 

responses of the SMEs solicited for participation in this study required consensus or 

constructiveness, thereby posing another issue. Therefore, to address this concern, each 

item was individually assessed through multiple rounds. Items that did not reach 
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consensus were presented to the SEMs in a subsequent round for re-evaluation (von der 

Gracht, 2012). 

TOM, the imputation of mental states to oneself and to others (Premack & Woodruff, 

1978), within the SMEs is expected to be an issue due to their respective understanding 

of  privacy. Mitnick and Simon (2002), McCallister et al. (2010), Schwartz and Solove 

(2011), Pavlou (2011), Junger et al. (2017) discussed the issue of privacy being 

contextual and thereby idiosyncratic. Therefore, to address this concern, the SMEs were 

asked to answer a survey to understand better their respective experiences and 

conceptualization associated with privacy to provide a richer understanding of the panel 

composition and to ensure they met the requirements. The survey also presented 

questions on organizational privacy policy and practices, as these may not necessarily be 

synonymous.  

Using the Delphi method is a potential barrier vis-à-vis over-simplification, 

suppression of uncertainty, and bias (Linstone & Turoff, 1975). This issue was addressed 

by seeking SMEs from multiple industries having extensive professional privacy 

experience. Additionally, items of consensus and those discarded were made available 

and discussed. 

Assumptions, Limitations, and Delimitations 

Assumptions 

It was assumed that SMEs were able to provide the required components and 

hierarchical weights as well as reach consensus required to develop the SEXI instrument. 

Additionally, it was assumed that the SMEs would provide honest and truthful responses 
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as to their experience and expert opinion. An assumption was made as to the availability 

and accessibility of personal information via open-source.  

Limitations 

This research study developed a new benchmarking instrument, the SEXI 

benchmarking index, based on the foundational literature, as well as the feedback, 

validation, and adjustments needed from the SMEs via the Delphi method. SMEs were 

asked to provide feedback on the SE exposure candidate components found in the 

literature and provide additional relevant components that were not previously in the 

literature. The second limitation was the set of measures combined to form SEXI. Given 

that cyber attacks and SE attacks, in particular, are changing over time, the SEXI 

benchmarking index was based on the current SE threat vectors, techniques, or 

approaches. The SEXI instrument was envisioned to require more adjustments in the 

future in response to trends in SE, changes in social media security and privacy settings, 

as well as innovations that evolve the means by which identity theft occurs. The third 

limitation was the reliance on an American group of experts for the SME panel to 

establish the instrument. International participation of SMEs may represent broader 

population of SMEs, while providing more generalizability to the relative weights, 

criteria, and measures (Wilkerson et al., 2017). The fourth limitation was the group of 

executives from Fortune 500 companies as well as the Hollywood personas. Therefore, 

the results may not be generalizable to other populations.  

The potential sixth limitation of this study was response bias. The SMEs were asked 

to describe their privacy experiences and organizational practices. A potential exists for 

response bias, acquiescence bias, or social desirability bias. To mitigate this limitation, 
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the SMEs were informed that their responses will not be attributable and will be reported 

anonymously (with quotes sanitized, if necessary) or else reported in the aggregate. 

The sample represented a random selection of executives from U.S. organizations and 

Hollywood personas. The results were not representative of all similar positions within 

U.S. organizations, entertainment industries, or those found in other countries. This 

research study was performed on a fixed set of U.S. executives and Hollywood personas. 

To get a cross-section of executives, the sample included individuals spread across 

randomly selected U.S. based organizations and positions from the list of Fortune 500 

companies as of 2018. To get a cross-section of Hollywood personas, the sample included 

individuals spread across the top 500 grossing films of all time, filtered to exclude titles 

before 1980. 

Delimitations 

First, a delimitation of this research study was the convenience sampling of the 

experts recruited for the panel. Sekaran and Bougie (2013) defined convenience sampling 

as “the collection of information from members of the population who are conveniently 

available to provide it” (p. 252).  The experts were solicited from multiple professional 

associations. 

The second delimitation was that each source was validated to ensure that it correctly 

associates with the executive or Hollywood persona. A possibility exists for the returned 

data to be associated with another individual having the same identifier, such as name. 

Specific details were not collected. 

Data collection in this study comprised a third delimitation, as it depended on the 

existence of information at the point of the survey. The availability of personal 
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information was unpredictable as well as subject to technology implementation and 

limitations. The information may or may not exist when queried or on subsequent 

queries. The source of data may also change. To address this issue, each query was 

timestamped, logged, and archived for analysis. A fourth delimitation was that data were 

collected during a specific period for the study. A fifth delimitation was that all 

information items were coded as either located (1) or not found (0), while the actual data 

was not captured as it is not required for analysis or construction of the SEXI score. The 

sixth delimitation of this study was the restriction of the scope of this study to validate the 

SEXI instrument on only 50 executives of Fortune 500 companies and 50 Hollywood 

personas. 

 

Definition of Terms 

The following represent terms and definitions.  

Anonymous – “implies that the data cannot be manipulated or linked to identify an 

individual” (Sweeney, 1997, p. 100). 

Anonymous information – “is defined as previously identifiable information that has 

been de-identified and for which a code or other association for re-identification no 

longer exists” (McCallister et al., 2010 p. 4-5). 

Biometric – “A measurable, physical characteristic or personal behavioral trait used to 

recognize the identity, or verify the claimed identity, of an applicant. Facial images, 

fingerprints, and iris image samples are all examples of biometrics” (Ferraiolo et al., 

2013, p. 64). 
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Business email compromise – “the scammer skillfully impersonates a trusted entity, 

typically a colleague or vendor, asking the would-be victim to help perform a task… 

sending information or money” (Jakobsson, 2016, p. xiv). 

Cognitive privacy link - the surmised private connection between an actor and a 

provider (Acquisti & Grossklags, 2005; Bandura, 2001). 

Confidentiality – “preserving authorized restrictions on access and disclosure, including 

means for protecting personal privacy and proprietary information” (44 U.S.C. § 3552, p. 

1). 

Content validity – “the extent to which the questions on the instrument and the scores 

from the questions are representative of all the possible questions that could be asked 

about the content or skills” (Creswell, 2012, p. 618). 

Convenience sampling –“the collection of information from members of the population 

who are conveniently available to provide it” (Sekaran & Bougie, 2013, p. 252). 

Deception – “manipulation of another person's thoughts—making someone believe 

something false” (Baron-Cohen, 1992, p. 1142). 

Deidentified data – “all explicit identifiers, such as SSN, name, address, and telephone 

number, are removed, generalized, or replaced with a made-up alternative … does not 

guarantee that the result is anonymous” (Sweeney, 1997, p. 100). 

Deidentified information – “is used to describe records that have had enough PII 

removed or obscured, also referred to as masked or obfuscated, such that the remaining 

information does not identify an individual and there is no reasonable basis to believe that 

the information can be used to identify an individual, [which] can be reidentified” 

(McCallister et al., 2010 p. 4-4). 
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Delphi method – “ a method for structuring a group communication process so that the 

process is effective in allowing a group of individuals, as a whole, to deal with a complex 

problem” (Linstone & Turoff, 1975, p. 3). 

Descriptive study – “often designed to collect data that describe the characteristics of 

persons, events, or situations (Sekaran & Bougie, 2013, p. 97). 

Developmental research – “(i) supporting the development of prototypical products 

(including providing empirical evidence for their effectiveness), and (ii) generating 

methodological directions for the design and evaluation of such products” (Van den 

Akker et al., 2012, p. 4). 

Distinguish – “is to identify an individual” (McCallister et al., 2010, p. 2-1). 

Exploratory study – “used when not much is known about the situation at hand, or no 

information is available on how similar problems or research issues have been solved in 

the past” (Sekaran & Bougie, 2013, p. 96) 

Exposure – “a measure of how well an object … can be observed … over a period of 

time” (Meguerdichian et al., 2001, p. 139). 

Grey literature – “is published material that is not indexed and often lacks data about the 

publisher” (Fleisher, 2008, p. 853). 

Harm – “any adverse effects that would be experienced by an individual whose PII was 

the subject of a loss of confidentiality, as well as any adverse effects experienced by the 

organization that maintains the PII” (McCallister et al., 2010, p. ES-1). 

Highly restricted personal information – “means an individual’s photograph or image, 

social security number, medical or disability information” (18 U.S.C. § 2725, p. 601). 



      27 

 

 

Information – “Any communication or representation of knowledge such as facts, data, 

or opinions in any medium or form, including textual, numerical, graphic, cartographic, 

narrative, or audiovisual” (Ross et al., 2016, p. 22). 

Information privacy – “the ability of the individual to personally control information 

about one's self” (Stone et al., 1983, p. 460). 

Information security – “protecting information and information systems from 

unauthorized access, use, disclosure, disruption, modification, or destruction”(44 U.S.C. 

§ 3552, p. 1). 

Information type – “A specific category of information (e.g., privacy, medical, 

proprietary, financial, investigative, contractor sensitive, security management), defined 

by an organization, or in some instances, by a specific law, Executive Order, directive, 

policy, or regulation” (FIPS 199, 2004). 

Intimate self-disclosure – “are … those that contain high-risk (as opposed to low-risk) 

information that makes the discloser feel vulnerable in some way” (Moon, 2000, p. 323). 

Intimate information exchanges – “as those involving risky, evaluative disclosures – 

tend to lead to resilient long-term relationships in which both parties experience strong 

feelings of commitment and loyalty” (Moon, 2000, p. 331). 

Linkable information – “is information about or related to an individual for which there 

is a possibility of logical association with other information about the individual” 

(McCallister et al., 2010, p. 2-1). 

Linked information – “is information about or related to an individual that is logically 

associated with other information about the individual” (McCallister et al., 2010, p. 2-1). 
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Measurement of the self – “a recording of an observation about the self, which may 

include the environment to which the self is exposed” (Kang et al., 2011, p. 814). 

Mental states – “purpose or intention, as well as knowledge, belief, thinking, doubt, 

guessing, pretending, liking, and so forth” (Premack & Woodruff, 1978, p. 515). 

Monetization – “often means parsing … data for behavioral targeting and advertising, in 

ways that the average user is unaware” (Kang et al., 2011, p. 824). 

Obscured Data – “Data that has been distorted by cryptographic or other means to hide 

information. It is also referred to as being masked or obfuscated” (McCallister et al., 

2010 p. E-1). 

Open-source – “publicly available print and digital/electronic data from unclassified, 

non-secret, and ‘grey literature’ sources,” not requiring credentials or special access, 

including data available through breaches, leaks, etc. (Fleisher, 2008, p. 853). 

Open-source personal information – personal information that is available openly to 

everyone who has access to the Internet (Fleisher, 2008) 

Personal branding – “the process whereby people and their careers are marked as 

brands and it differs from reputation management and impression management with its 

purpose” (Karaduman, 2013, p. 465). 

Personal information – “means information that identifies an individual, including an 

individual’s photograph, social security number, driver identification number, name, 

address (but not the 5-digit zip code), telephone number, and medical or disability 

information…” (18 U.S.C. § 2725, p. 601). 

Personally distinguishable information – “any information about an individual 

maintained by an agency … that can be used to distinguish or trace an individual’s 
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identity … and is linked or linkable to an individual” (McCallister et al., 2010, Section 

2.1). 

Personally identifiable information – “refers to information that can be used to identify 

or locate an individual” (Chellappa & Sin, 2005, p. 188). 

Personally unidentifiable information – “information that, taken alone, cannot be used 

to identify or locate an individual” (Federal Trade Commission, 2000, p. 46). 

Persuasion – “changing persons' mental states, usually as precursors to behavioral 

change” (O'keefe, 2002, p. 32). 

Phishing – “is a criminal trick of stealing victims’ personal information by sending them 

spoofed emails urging them to visit a forged webpage that looks like a true one” (Wenyin 

et al., 2005, p. 1060). 

Pretending – “of ‘acting as if’ something is the case when it is not” (Leslie, 1987, p. 

413). 

Pretense – “deliberately distort reality” (Leslie, 1987, p. 412). 

Pretext – “an imposter creates a setting designed to influence an intended victim to 

release sensitive information, pay money, or perform actions that compromise the 

confidentiality of information”  (Workman, 2008, p. 3). 

Privacy – “the degree to which an individual can control the collection, disclosure, and 

use of personal data” (Kang et al., 2011, p. 820). 

Privacy Chain – “the flow of  PUI/PII/PDI [personal information] communication 

between two endpoints” (Wilkerson et al., 2017, p. 3). 
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Privacy Web – the extent PUI/PII/PDI [personal information] is gathered and transferred 

in relation to an individual to heterogeneous systems (Acquisti et al., 2015; Braun et al., 

2001; McCallister et al., 2010). 

Publicly available information – “Information that has been published or broadcast for 

public consumption, is available on request to the public, is accessible on-line or 

otherwise to the public, is available to the public by subscription or purchase, could 

lawfully be seen or heard by any casual observer, is made available at a meeting open to 

the public, or is obtained by visiting any place or attending any vent that is open to the 

public” (Defense Intelligence Agency, 2011 p. GL-144). 

Record – “means any item, collection, or grouping of information about an individual 

that is maintained by an agency [of the U.S. Federal Government], including, but not 

limited to, his education, financial transactions, medical history, and criminal or 

employment history and that contains his name, or the identifying number, symbol, or 

other identifying particular assigned to the individual, such as a finger or voice print or a 

photograph” (5 U.S.C. § 552a, p. 317). 

Reidentification – “combines datasets that were meant to be kept apart, and in doing so, 

gains power through accretion: Every successful reidentification, even one that reveals 

seemingly nonsensitive data like movie ratings, abets future reidentification” (Ohm, 

2010, p. 1705). 

Representation – “to represent aspects of the world in an accurate, faithful, and literal 

way, in so far as this is possible for a given organism” (Leslie, 1987, p. 414). 

Risk – “refers to uncertainty about and severity of the events and consequences (or 
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outcomes) of an activity with respect to something that humans value” (Aven & Renn, 

2009, p. 6). 

Sanitization – “Process to remove information from media such that information 

recovery is not possible. It includes removing all labels, markings, and activity logs” 

(Ross et al., 2006, p. 8). 

Self –"a list of terms or features that have been derived from a lifetime of experience 

with personal data” (Rogers et al., 1977, p. 677). 

Self-disclosure – “the act of revealing personal and sensitive information about oneself” 

(Moon, 2000; Peer & Acquisti, 2016, p. 429). 

Self-surveillance – “a practice that measures, collects, and stores self-surveillance data” 

(Kang et al., 2011, p. 814). 

Self-surveillance data – “are measurements of the individual self, initiated by the self, 

using sensors that are in one's control, for the primary purpose of measuring the self” 

(Kang et al., 2011, p. 814). 

Semantic attack – “The manipulation of user-computer interfacing with the purpose 

to breach a computer system’s information security through user deception” (Heartfield 

& Loukas, 2015, p. 0:1). 

Semantics – “the study of meaning and symbolization” (Heartfield & Loukas, 2015, p. 

0:1).  

SEXI – The social engineering exposure index is a logical and repeatable quantitative 

measure that indicates the level of personal exposure for an individual. It is also a data 

aggregation that provides a means for classifying personal information. 
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Social network sites – “web-based services that allow individuals to (1) construct a 

public or semi-public profile within a bounded system, (2) articulate a list of other users 

with whom they share a connection, and (3) view and traverse their list of connections 

and those made by others within the system” (Boyd & Ellison, 2007, p. 211). 

Social engineering – “is a combination of techniques used to manipulate victims into 

divulging confidential information or performing actions that compromise security” (Luo 

et al., 2013, p. 2). 

Spear-Phishing – “is the targeted version of phishing, where a carefully crafted phishing 

email is directed to a specific individual or organization” (Heartfield & Loukas, 2015). 

Subject matter experts – “define the curriculum universe which we then designate as 

the "content domain"” (Lawshe, 1975, p. 565). 

Theory of mind – “the individual imputes mental states to himself and to others (either 

to conspecifics or to other species as well)” (Premack & Woodruff, 1978, p. 515). 

Trace – “is to process sufficient information to make a determination about a specific 

aspect of an individual‘s activities or status” (McCallister et al., 2010, p. 2-1). 

Whaling – “spear phishing (especially valuable targets)” (Orman, 2013). 

List of Acronyms 

API – Application Program Interface 

BEC – Business Email Compromise 

CEO – Chief Executive Officer 

CFO – Chief Finance Officer 

CIA – Central Intelligence Agency 

CIO – Chief Information Officer 
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CSO – Chief Security Officer 

CVR -- Content Validity Ratio 

DDoS-- Distributed Denial of Service 

DNA – Does Not Apply 

FBI – Federal Bureau of Investigation 

FIPs – Fair Information Practices 

GPS – Global Positioning System 

IRB – Institutional Review Board 

IS – Information Systems 

IT – Information Technology 

OSPI – Open-source Personal Information 

PDI – Personally Distinguishable Information 

PDIM – The measurement of personally distinguishable information 

PICC – Personal Information Candidate Component 

PII – Personally Identifiable Information 

PIIM – The measurement of personally identifiable information 

PUI – Personally Unidentifiable Information 

PUIM – The measurement of personally unidentifiable information 

SE – Social Engineering 

SEXI – Social Engineering eXposure Index 

TOM – Theory of Mind 

U.S. – United States 

UNF – Unfamiliar (used during phase 1 of Delphi method) 
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Summary 

The purpose of this section was to introduce the research study as well as to identify 

the research problem, barriers and issues, assumptions, limitations, and delimitations. A 

theoretical justification for the research study was also presented. The research problem 

that this study addressed was the proliferation of SE attacks due to OSPI, which is 

increasing despite warnings, media exposure, laws, and data breaches. Supporting 

literature corroborates the research problem and the need for this study.  

The literature demonstrates the exponential growth of personal information via open-

source repositories (Acquisti et al., 2015). Cybercrimes are also on the increase with little 

information as to where the SE attacks will come from or the composition used (Federal 

Bureau of Investigation, 2012; Mouton et al., 2016; Tetri & Vuorinen, 2013). 

Consequently, the need to determine the availability of personal information as well as 

predicting potential SE attack vectors is significant to personal and organizational 

security (Mouton et al., 2016). The need for this work was demonstrated by the literature 

that acknowledged the progressive expansion of SE attack vectors (Mitnick & Simon, 

2002), the lack of a predictive threat system (Tetri & Vuorinen, 2013), the availability of 

OSPI which circumvent organizational cybersecurity technologies (Heartfield & Loukas, 

2015), and the dearth of data on information gathering techniques for the successful 

execution of prior SE attacks (Mouton et al., 2016). 

The goal of this research was to develop and validate a SEXI using OSPI to assist in 

identifying and classifying SE vulnerabilities. The literature provided grounding for this 

research with the concept of categories of PII introduced by Schwartz and Solove (2011) 
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and described by McCallister et al. (2010). The newly developed benchmarking index 

was validated by measuring the SEXI of 50 Fortune 500 executives and 50 Hollywood 

personas. The collected data were analyzed to assess and statistically test for significant 

mean differences of the SEXI of 100 individuals and reported. 

Multiple barriers were overcome and met the requirements of this dissertation 

research. Given that limited discernible empirical literature appears to exist regarding 

how exposure of personal information to social engineering should be measured, rated, or 

summarized, an expert panel was tasked with this purpose. The IRB process addressed 

two associated issues in this study: the use of the SMEs to measure TOM, and the 

collection of publicly available personal information of 50 executives of Fortune 500 

companies and 50 Hollywood personas. The SMEs were informed that their responses 

were not attributable and were reported anonymously (with quotes sanitized, if necessary) 

or else reported in the aggregate. The specific OSPI of the executives and Hollywood 

personas were codified in a “found” / “not found” dichotomous scale to maintain 

confidentiality. IRB approval was obtained before the Delphi method and data collection 

began. Each Hollywood persona as well as executive and their respective organization 

were coded into a concatenated identification label consisting of two strings – the first 

denoted the organization or feature film with the remaining portion made up of a random 

identifier. 

Another barrier that this research study overcame is the requirement of validity in the 

weights, groupings, and rankings of the exposure of OSPI. To address this barrier, the 

SMEs must reach a consensus based on the literature. The resulting SEXI instrument was 

used to assess the exposure of 50 Fortune 500 executives and 50 Hollywood personas. 
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The data were analyzed and subsequently reported. The literature served as the 

foundation for the benchmarking index development. The use of open-ended questions, 

Likert scales, and binary response were used to facilitate the successful development of 

the SEXI benchmarking instrument. While the literature discussed taxonomies of SE 

attacks (Heartfield & Loukas, 2015), described SE (Mitnick & Simon, 2002), established 

privacy standards (McCallister et al., 2010), discussed privacy (Schwartz & Solove, 

2011; Solove, 2006), and critiqued security policies (Wolff, 2016), the effort thus far 

appears to have fallen short. Mouton et al. (2016), Tetri and Vuorinen (2013), as well as 

Bélanger and Crossler (2011) called for a predictive tool that can potentially facilitate 

organizational cybersecurity by providing insight into possible SE attack vectors as well 

as potential personal information used in their execution. Therefore, this research 

developed and validated the SEXI benchmarking index to measure the level of exposure 

of executives to SE due to OSPI. 
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Chapter 2 

Review of Literature 

 

 

Introduction 

In this chapter, an overview of relevant literature is offered. Bhattacherjee (2012) 

described a three-fold purpose for literature review: survey, grounding, and gap 

identification. Hart (1998) described the obligation for researchers to have an exhaustive 

grasp of the literature in their area of interest, to provide a foundation for contribution. 

Ellis and Levy (2006) correlated significance and quality with the accuracy of the review 

of the literature. This interdisciplinary study involves an overview of the information 

systems (IS) literature using several databases from multiple fields: IS, psychology, law, 

and business.  

Exposure 

Meguerdichian et al. (2001) defined exposure as “a measure of how well an object … 

can be observed … over a period of time” (p. 139). In application, photographers 

manipulate exposure to control composition and context. Raskar et al. (2006) described 

how exposure could be manipulated to provide clarity – even to the most obscured 

subject by adjusting the amount of time it is viewed. The literature has discussed 

exposure in the areas of big data (Martin, 2015; Rosenbaum, 2015), biology (Kennedy et 

al., 2001b; Maeterlinck, 1930), bring your own device (Garba et al., 2015), information 

privacy (Acquisti et al., 2016; Smith et al., 2011), law (Schwartz & Solove, 2011; Solove, 
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2006), mindfulness (Orlikowski & Baroudi, 1991; Shapiro et al., 2006), persuasion 

(Johnston et al., 2015; Perloff, 2010), posttraumatic stress disorder (Keane et al., 1989; 

Youssef et al., 2013), SE (Conteh & Schmick, 2016; Mamonova & Koufaris, 2016), self-

disclosure (Bélanger & Crossler, 2011; Culnan & Bies, 2003; Moon, 2000), smartphone 

(Boyd, 2014; Enck et al., 2014; Xu et al., 2011), and social network sites (Boyd & 

Ellison, 2007; Choo, 2011; Minkus et al., 2015).   

There are many venues where people choose to expose their personal information, 

including social media, personalization, online forms, and smartphones (Acquisti et al., 

2015; Falaki et al., 2010; Lee et al., 2011). Research suggests that people may be giving 

up on having privacy (Mamonova & Koufaris, 2016). Junger et al. (2017) found that in 

certain situations a warning may substantially increase disclosure – not always in 

accordance with assumptions of less personal information disclosed. Similarly, Wolff 

(2016) introduced a framework which included a measure to understand how and why 

humans unpredictably interact with technology in the context of information security. 

Zhang et al. (2014) found that even though users perceived a heightened online security 

threat, they tended to expose even more personal information.  

The literature also indicates that news announcements of government privacy 

invasion, cyber threat warnings, and the number of Americans personally experiencing a 

data breach seem to adversely affect how participants control, protect, and even value 

their PII (Junger et al., 2017; Mamonova & Koufaris, 2016; Olmstead & Smith, 2017). 

Johnston et al. (2015) indicated that 40% of data breaches are due to organizational 

insiders. Acquisti et al. (2015) described research that found when people are given 

enhanced control over their privacy they tend to increase the information shared – despite 
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assumptions of researchers to the contrary. Chang et al. (2016) found that the views and 

behaviors of people to share personal information become increasingly favorable after 

viewing images of scantily clad people. Exposure is of interest as the literature has shown 

that SE attacks usually comprise personal information originating at the target or from 

peripheral sources (Heartfield & Loukas, 2015; Junger et al., 2017; Luo et al., 2013). 

Little is known as to what personal information is available via OSPI or how it is 

specifically used in various SE attack vectors (Mouton et al., 2016; Tetri & Vuorinen, 

2013).  

McCallister et al. (2010) viewed exposure from the lens of the harm to individuals 

and organizations associated with the release of confidential information. Geletkanycz 

and Hambrick (1997) investigated the relations top executives have with external entities 

and how they are exposed to information as well as alternative understandings. Executive 

exposure has been the norm for top-level organizational leaders for many industries as a 

means to do business (Geletkanycz & Hambrick, 1997). This executive exposure was 

intended to facilitate daily operations and organizational stability (Coleman, 2000; 

Geletkanycz & Hambrick, 1997). This exposure has led to multiple SE attacks such as the 

one enacted by a penetration testing team hired by a company that used the voice and 

travel itinerary of a Chief Finance Officer (CFO) to access key systems (Granger, 2001). 

Executive exposure can occur in many forms, from shoulder surfing to dumpster diving 

(Granger, 2001; Mitnick & Simon, 2002). SE attacks via on-line technologies may 

intertwine email, postal mail, and other sources of readily available information each 

providing inroads into the world of the executive via their personal information (Granger, 

2001; Heartfield & Loukas, 2015; Luo et al., 2013; Mitnick & Simon, 2002; Mouton et 
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al., 2016; Peltier, 2006). Just as photographers control the exposure of objects to gain 

clarity (Raskar et al., 2006), social engineers specialize in the collection of sensitive 

information and in the refactoring of exposed data into a treatise on potential executives, 

organizations, or other SE targets (Mitnick & Simon, 2002). 

The 2015 BEC attack on the CIA Director illustrated how a single piece of 

information facilitated the exposure of the personal information of many people. 

Discovering the ISP of the CIA Director lead to a sequence of SE attacks on multiple 

organizations, each exposing additional personal information based on the prior 

discovered data. Eventually, the attackers were able to gain access to a personal email of 

the CIA Director, which in turn contained the personal information of agents and 

contractors (Franceschi-Bicchierai, 2015). Orgill et al. (2004) described the hazards of 

allowing extended exposure to the physical environment and employees of an 

organization resulting in the collection of usernames, passwords, and corporate credit 

cards. Tetri and Vuorinen (2013) stated, “Contrary to what the literature suggests, we 

believe that social engineers should get more credit for spotting organisational [sic] 

weaknesses from the outside rather than being celebrated as great persuaders” (p. 1019). 

Allen (2006) described how these outsiders expose weaknesses via SE by “gathering 

information, developing relationships, exploitation, and execution” – repeating the 

process with newly discovered information (p. 5). According to Mitnick and Simon 

(2002), exposure is the craft of SE, while organizations and key personnel form the 

playground.  

Personal information exposure comes in many forms from voluntary disclosure 

(Bélanger & Crossler, 2011) to big data (Martin, 2015). For photographers, exposure 
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facilitates composition and context (Raskar et al., 2006). For personal information, its 

exposure affects composition and context to third-parties, which RQ1 and RQ2 

quantitatively assessed (McCallister et al., 2010; Schwartz & Solove, 2011). A summary 

appears in Table 1 of the literature referenced in this section. 

Table 1 

Summary of Exposure Literature 

Study Methodology Sample Instruments or 
Constructs 

Main Finding or 
Contribution 

Acquisti et al. 
(2015) 

 

 

 

Review  Literature 
streams: 

Context-
Dependence 

Malleability 
and Influence 

Uncertainty 

 

 

“Norms and 
behaviors 
regarding private 
and public realms 
greatly differ 
across cultures, 
within cultures, 
while varying 
dramatically for 
the same 
individual, and for 
societies, over 
time” (p. 513). 

Acquisti et al. 
(2016) 

 

Comprehensiv
e Survey of 
Literature 

 Literature 
Streams:  

Consumers 
Unaware of 
Privacy threats 

Economic 
Theory  

Empirical 
Analysis of 
Privacy 
Exposure in 

Varying 
Scenarios 

Unifying 
Economic 

“One of the 
themes emerging 
from this review 
is that both the 
sharing and the 
protecting of 
personal data can 
have positive and 
negative 
consequences at 
both the 
individual and 
societal levels” (p. 
483). 
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Theory of 
Privacy 

Allen (2006) Descriptive 

 

 

 The Cycle: 

 Information  
 Gathering 

Developing       
Relationship 

Exploitation     
Execution 

“[T]here will 
always be the 
possibility of the 
'human factor' 
being influenced 
by a social, 
political and/or 
cultural event” (p. 
9). 

Bélanger and 
Crossler 
(2011) 

 

Review 500 Articles 

142 Journal 
Articles 

102 
Conference 
Proceedings 

Framework of 
Theory 
Classifications 

Information 
Privacy 

Structural 
View of 
Information 
Privacy 

Many topics 

Research focused 
largely on 
explaining and 
predicting 

Research is 
largely confined 
to the U.S. and 
student contexts 

Boyd and 
Ellison (2007) 

 

Descriptive  Historical 
overview 

Serves as 
introduction 
of  

7 Articles for 
a special issue 

Exposure 

Signaling 
Theory 

 

 

A formal 
definition of 
“social network 
sites” (p. 211). 

Overview of 
Social Network 
Sites and 
underlying 
methodology such 
as “friending”. 

Boyd (2014) 

 

 

Survey  166 Formal, 
semistructure
d interviews 
of teens over 
three years 

Audience 

Media 

Public 

Insight into the 
minds of youth 
and their use of 
privacy-related 
technologies 

Chang et al. 
(2016) 

Experiment Main study: 
387 Turk 
Workers (105 
female / 200 
male) 

Study 2: 

Less 
Provocative 
Images 

Provocative 
Images 

“Empirically 
identifying a key 
mechanism by 
which norm-
shaping designs 
can change beliefs 
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82 (38 female 
/ 44 male) 

 

 

and subsequent 
disclosure 
behaviors” (p. 
587). 

Choo (2011) 

 

Descriptive  Routine 

Activity 
Theory 

 

The authors 
“explain how the 
Routine Activity 
Theory can help 
to inform and 
enhance cyber 
crime prevention 
strategies” 
(p.720). 

Coleman 
(2000) 

 

Longitudinal 
Study 

4000 Students 
from public 
schools 

Human Capital 

Social Capital 

 

 

Demonstrated 
“the effect of 
social capital in 
the family and in 
the community in 
aiding the 
formation of 
human capital” (p. 
S118). 

Conteh and 
Schmick 
(2016) 

 

Review   “[W]hile 
technology has a 
role to play in 
reducing the 
impact of social 
engineering 
attacks, the 
vulnerability 
resides with 
human behaviour 
[sic], human 
impulses and 
psychological 
predispositions 
that can be 
influenced 
through 
education” (p. 
37). 
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Culnan and 
Bies (2003) 

 

Review  Fair 
Information 
Practices 

Justice theory 

Trust-gap 

 

“[S]uggests new 
privacy rules are 
needed” (p. 335). 

“[S]elf regulation 
is unlikely to 
work 100% of the 
time as there will 
always be bad 
actors or 
organizations who 
have implemented 
the formal 
trappings but not 
the substance of 
fair information 
practices creating 
a need for 
baseline privacy 
legislation” (p. 
338). 

Enck et al. 
(2014) 

 

Descriptive  Taintdroid “We have 
presented 
TaintDroid, an 
efficient, system-
wide information-
flow tracking tool 
that can 
simultaneously 
track multiple 
sources of 
sensitive data” (p. 
5:25). 

Falaki et al. 
(2010) 

 

Field Study Dataset 1: 33 
Android users 
(16 high 
school 
students; 17 
knowledge 
workers) 

Dataset 2: 222 
Windows 
Mobile users 
(116 U.S.; 

Business 
Power User 

Life Power 
User 

Organizer 
Practical 

Social 
Communicator 

 

“[W]e 
comprehensively 
characterized user 
activities and their 
impact on 
network and 
battery [and] 
quantify many 
hitherto unknown 
aspects of 
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106 United 
Kingdom) 

smartphone 
usage” (p. 193). 

Franceschi-
Bicchierai 
(2015) 

News Article   Describes the SE 
attack on CIA 
Director by 
teenagers. 

Garba et al. 
(2015) 

 

Review  Bring Your 
Own Device 
(BYOD) 

Information 
Security 

Mobile 
Computing 

Organizational 
Practices 

Privacy 

 

“[A]ny attempt 
for organizations 
to adopt or 
implement BYOD 
without adequate 
attention to the 
security and 
privacy issues or 
challenges … 
may increase their 
risk of 
confidential 
information loss” 
(p. 52). 

Geletkanycz 
and Hambrick 
(1997) 

 

Descriptive 30 large 
publicly-
traded firms 
in two 
industries: 
branded 
foods, 
computer 

Performance 

Strategic 
conformity 

 

“[G]reater 
understanding of 
interorganizationa
l [sic] relations 
and the 
implications of 
external tie” (p. 
673). 

Granger 
(2001) 

Descriptive   Provides real-
world examples 
of SE. 

Heartfield and 
Loukas (2015) 

 

Taxonomy Discusses 
research with 
1900 
malicious 
URLs, 308 
users, and 
other  

Deception 

Exploitation 

Execution 

Orchestration  

Vector 

“It introduces a 
structured 
baseline for 
classifying 
semantic attacks 
by breaking them 
down into their 
components” (p. 
0:31). 

Keane et al. 
(1989) 

Survey 362 male 
Vietnam-era 

Combat 
Exposure 

“[T]he three 
studies presented 
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 veterans 
across three 
studies 

Scale 

 

 

here confirms that 
the CES merits 
consideration for 
further use by 
clinicians and 
researchers” (p. 
54). 

Kennedy et al. 
(2001b) 

 

 

Simulation 
using the De 
Jong Test Suit 

P=20 or 100 

N=20 or 100 

(p. 306) 

Emergent 
behavior (self-
organization)  

Particles 

Swarm Theory 

 

 

 

 

Interpretation and 
computer 
programs in 
relation to 
I. Minds are 
social. II. Particle 
swarms are a 
useful 
computational 
intelligence (soft 
computing) 
methodology (p. 
395, 396). 

Johnston et al. 
(2015) 

 

 

Experiment 559 insiders 
of a Finland 
city 
government 

Compliance 
Intention 

Formal 
Sanction 
Certainty 

Formal 
Sanction 
Severity 

Informal 
Sanction 
Certainty 

Informal 
Sanction 
Severity 

Intention to 
comply with 
recommended 
protective 
strategies  

“This study 
develops and tests 
an enhanced fear 
appeal rhetorical 
framework that 
accounts for the 
distinction 
between threats to 
information assets 
and threats to 
human assets” (p. 
130). 
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Protection 
motivation 
theory 

Sanction 
Celerity 

Self-Efficacy 

Threat 
Severity 

Threat 
Susceptibility 

Junger et al. 
(2017) 

 

Experiment 278 
participants 

Age 

Age Square 

Goals System 
Theory 

Priming 

Total Risk 

Warning 

“This study found 
relatively high 
disclosure rates… 
Neither priming 
nor a warning 
influenced the 
degree of 
disclosure.” (p. 
85). 

Lee et al. 
(2011) 

 

 

Field Study 2 Firms 2 Price 
measures 

3 consumer 
measures 

3 consumer 
group 
measures for 
willingness to 
share personal 
information 

4 Cost 
measures 

Personalizatio
n Scope 

Game theory 

Privacy 
calculus 

Profit 

“[S]trategic 
choices of privacy 
protection can 
work as a 
competition-
mitigating 
mechanism in 
personalization…. 
A firm’s privacy 
protection 
strategy under 
competition 
should be based 
on the investment 
cost of protection 
and the size of the 
personalization 
scope” (pp. 440-
441). 
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Luo et al. 
(2013) 

 

Descriptive  Defenses 

Personality 
Traits 

Psychological 
Aspects 

Social 
Engineering 

Techniques 

“in addition to 
advanced 
technologies 
counterattacking 
various security 
intrusions, human 
factors must be 
equally accounted 
for” (p. 7). 

Maeterlinck 
(1930) 

 

Exploratory  Ants 

Precursor to 
Swarm Theory 

Various other 
Swarming 
Species 

One of the earliest 
swarm behavior 
references in the 
literature.  

Mamonova 
and Koufaris 
(2016) 

 

Experiment Group 1: 222 
technology 
users 

Group 2: 220 
technology 
users 

 

Government 
Intrusion 
Concerns 

Password 
Strength 

Privacy 
Concern 

Privacy Self-
Efficacy 

“[T]he exposure 
to government 
surveillance news 
led to the use of 
weaker 
passwords, 
suggesting that 
the exposure to 
government 
surveillance may 
trigger 
helplessness in 
relation to 
protecting 
privacy” (p. 64). 

Martin (2015) 

 

Exploratory  Aggregation 

Destructive 
Demand 

Downstream 
Uses 

Information 
Supply Chain 

Negative 
Externality os 
Surveillance 

“[I]dentified the 
Big Data Industry 
as having both 
economic and 
ethical issues at 
the individual 

firm, supply chain 
and general 
industry level and 
has suggested 
associated 
solutions to 
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Potential for 
Secondary 
Market 

Upstream 
Supplier 

Use of 
Consumer-
Level Data 

preserve 
sustainable 
industry 
practices” (p.85). 

 

McCallister et 
al. (2010) 

 

Descriptive  

 

 Defines key 
terms 
associated 
with privacy 
and personal 
information. 

NIST 800-122 
(Guide to 
Protecting the 
Confidentiality of 
Personally 
Identifiable 
Information (PII)) 

Meguerdichia
n et al. (2001) 

 

Simulation and 
case studies 

Two to eight 
Sensors 

Exposure 

Exposure- 

Based 
Coverage 
Model 

 

 

 

“[W]e presented 
an efficient and 
effective 
algorithm for 
minimal exposure 
paths for any 
given distribution 
and characteristics 
of sensor 
networks” (p. 
148). 

Minkus et al. 
(2015) 

 

Descriptive 2,383 Adult 
Facebook 
Users via 
shallow data 
mine limited 
to public 
posts 

Survey of 357 
Adult 
Facebook 
Users 

1,089 
Instagram 
Users 

Birthday 

Face 

Name 

Location 

Matched to 
Voter’s 
registration for 
demographics 

 

 

 

“We can therefore 
conclude that 
although a 
substantial 
percentage of 
parents are 
compromising the 
privacy of their 
children in their 
public Facebook 
pages, 
significantly more 
are doing so 
among Facebook 
friends” (p. 782). 
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Mitnick and 
Simon (2002) 

 

 

Descriptive   Brought social 
engineering into 
the mainstream. 

Social 
engineering attack 
cycle 

Moon (2000) 

 

Experiment via 
interview using 
a computer as 
interviewer 

30 
participants 

Reciprocity 

Self-disclosure 

Theory of 
social response 

 

 

The wording and 
sequence of 
questions can 
successfully 
solicit intimate 
details from users 
via computer. 

Explicit reward is 
not required to 
solicit personal 
information from 
a user 
successfully. 

Mouton et al. 
(2016) 

 

Descriptive  Theory of 
Group 
Conformity 

SE attack  

-Compliance 
Principles  

-Goal 

-Medium 

-Social    
Engineer 

-Target 

-Techniques 

SE Framework 

- Attack 
Formation 

-Debrief 

-Develop 
Relationship 

Neither the 
literature or news 
media provide all 
the information 
concerning an 
attack. 

Usually little, if 
any, information 
is known about a 
potential attack. 

Little is known as 
to where the 
information is 
obtained for a SE 
attack. 

Little is known as 
to what 
information is 
available for a SE 
attack. 

 



      51 

 

 

-Exploit 
Relationship 

-Preparation 

Information 
Gathering 

Olmstead and 
Smith (2017) 

 

Survey 

 

 

1,014 adult-
aged U.S. 
citizens 

Demographics 64% of 
Americans have 
experienced a 
data breach. 

12% use 
password 
management 
software. 

Orgill et al. 
(2004) 

Questionnaire 32 
participants 

-26 gave their 
username 

-19 gave their 
password 

-7 gave login 
credential 
information 
above their 
own access 

-4 asked for a 
name badge 
or 
identification  

Department 

Number 
Surveyed 

Password 

Username 

 

 

 

“This study 
demonstrated that 
even in a 
company where 
security is a 
concern, these 
human traits [trust 
others, assist 
others, gain favor] 
can be ill-used if 
proper 
preventative 
measures are not 
taken … This 
study also shows 
the importance of 
assessing security 
effectiveness 
through means 
such as audits.… 
In order for an 
audit to be 
effective, the 
auditor has to be 
at least as 
thorough, through 
preliminary 
studying, 
planning, and 
execution as a 
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potential social 
engineer would 
be” (p. 181). 

Some departments 
had more training 
and resisted the 
social engineer 
better. 

Orlikowski 
and Baroudi 
(1991) 

 

Review 155 
Information 
systems 
articles 

 

Epistemology 

Frequency 

Journal 

“[R]esearchers 
should ensure that 
they adopt a 
perspective that is 
compatible with 
their own research 
interests and 
predispositions, 
while remaining 
open to the 
possibility of 
other assumptions 
and interests” (p. 
24). 

Peltier (2006) 

 

Review   Magazine article 
describing SE to 
readers. 

Perloff (2010) 

 

Exploratory  Persuasion Extensive 
discussion on 
persuasion, which 
is used in many 
SE attack vectors. 

Raskar et al. 
(2006) 
 

Descriptive 3 Cases Coded blur 

Chops 

Flat blur 

 

Demonstrated 
how manipulation 
of exposure 
increased clarity 
of the subject.  

Rosenbaum 
(2015) 

 

Survey 

*Dissertation 

53 SMEs Privacy 
Violation 
Scale 

“[E]vidence 
strongly 
suggested that 
some practitioners 
were less willing 
to commit privacy 
violations than 
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were other 
practitioners; this 
is based upon 
some practitioners 
identifications 
with various 
moral and 
computing 
Hallmark 
Features” (p. 
115). 

Schwartz and 
Solove (2011) 

 

Exploratory  “Information 
can be about 
an (1) 
identified, (2) 
identifiable, or 
(3) non-
identifiable 
person” (p. 
1877). 

“PII 2.0 protects 
information that 
relates either to an 
identified 

or identifiable 
person, and 
associates 
different legal 
interests with 
each category” (p. 
1894). 

Shapiro et al. 
(2006) 

 

Exploratory  Attention 

Attitude 

Exposure 

Intention 

Mindfulness 

 

“We have 
attempted to 
provide a first 
formulation of a 
model to describe 
how mindfulness 
might be fostering 
transformation 
and change” (pp. 
384-385). 

Smith et al. 
(2011) 

 

Exploratory Four decades 
of literature: 

320 Privacy 
Articles 

128 Books 
and Book 
Sections 

Antecedents 

Outcomes 

Privacy 
Concerns 

 

 

“[T]he overall 
[privacy] research 
stream has been 
suboptimized [sic] 
because of its 
disjointed nature” 
(p. 1008). 

Solove (2006) 

 

Exploratory  Information 
Collection 

“I have attempted 
to provide a 
clearer and more 
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Information 
Dissemination 

Information 
Processing 

Invasion 

 

robust account of 
privacy—one that 
provides us with a 
framework for 
understanding 
privacy problems” 
(p. 558). 

Tetri and 
Vuorinen 
(2013) 

 

Descriptive  Actor-
Network 
Theory 

 

 

Describes issues 
in SE research 
and suggests the 
theories from the 
psychology 
literature should 
only be applied to 
the persuasion 
component of SE. 

Wolff (2016) Exploratory  Classification 
of perverse 
effects 

Duality of 
technology 

Technology-
Interaction 
perverse 
effects 

Theory of 
unintended 
consequences 

User-
Interaction 
perverse 
effects 

 

“This 
classification 
scheme is 
intended as a step 
beyond simply 
warning defenders 
that they have to 
be careful when 
adding new 
security controls 
by giving them a 
framework for 
analyzing the 
different possible 
mechanisms by 
which those 
controls may 
interact with the 
system and its 
users to introduce 
new 
vulnerabilities and 
produce perverse 
effects” (p. 615). 

Xu et al. 
(2011) 

Exploratory  Covert vs. 
Overt 

“[T]he findings of 
this research have 
provided 
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 Exchange 
Theory 

Interpersonal 
Differences 

Personalizatio
n 

Privacy 
Calculus 

Purchase 
Intention 

Willingness to 
Share Personal 
Information in 
Location-
Aware 
Marketing 

preliminary 
empirical 
evidence about 
how users strike a 
balance between 
value and risk” (p. 
50). 

Youssef et al. 
(2013) 

Cross-
Sectional Field 
Study 

1,488 military 
personnel and 
veterans 
serving after 
September 
2001 

Beck 
Depression 
Inventory-
Second 
Edition 

Beck Scale for 
Suicide 
Ideation 

Combat 
Exposure 
Scale 
Connor-
Davidson 
Resilience 

Scale 

Davidson 
Trauma Scale 

Traumatic Life 

Events 
Questionnaire 

“The study 
findings suggest 
that 
comprehensive 
assessment of 
both childhood 
trauma and 
resilience among 
military personnel 
and veterans can 
contribute to the 
understanding of 
their clinical 
status in terms of 
depression and 
suicidal ideation, 
and ultimately 
their clinical care” 
(p. 116). 

Zhang et al. 
(2014) 

Experiment 220 online 
U.S. resident 
adults 

Attitude “[T] he security 
cue heightens 
perceived threat 
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Behavioral 
Intention 

Instant 
Gratification 
cue 

Security cue 

Threat 

Trust 

but also 
encourages 
greater disclosure 
of one’s account 
and network 
strength on social 
media” (P. 113). 

 

Personal Information 

The term OSPI is sparingly used in the literature, though it is described extensively 

throughout the privacy literature as any personal information belonging to an individual 

extended to include any being publicly available (Federal Trade Commission, 2000; 

Schwartz & Solove, 2011). Rogers et al. (1977) fully integrated personal information 

with the definition of self, “as a list of terms or features that have been derived from a 

lifetime of experience with personal data” (p. 677). Furthermore, the literature appears to 

infer that the tendency of people to share information may be more of an attempt to 

process one’s respective life than an intentional self-disclosure (Rogers et al., 1977). 

Mitnick and Simon (2002) described open-source information as “SEC filings and annual 

reports, marketing brochures, patent applications, press clippings, industry magazines, 

Web site content, and also dumpster diving” (p. 310). Maynard et al. (2015) described the 

accessibility of PII due to content associated with a social media service and Application 

Program Interface (API), such as Twitter hashtags and posts. Oltmann (2010) described a 

continual degradation of the privacy of Facebook users sharing photos, data, and 

preferences. Sanders (2012) discussed the advent of credit reporting agencies using 

information collected from social networking sites. The Privacy Act of 1974 provides a 
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broad understanding of personal information, when defining a record to include personal, 

medical, criminal, education, employment histories, etc., (5 U.S.C. § 552a). The literature 

also discusses the existence of underground hacker markets where attack vectors, targets, 

and compromised PII are shared (Benjamin & Chen, 2012; Coleman & Golub, 2008; 

Jasper, 2017). 

 Following Schwartz and Solove (2011), OSPI is comprised of PUI (information 

which does not identify an individual), PII (information which can be used for 

identification), and PDI (information which explicitly identifies an individual). The 

primary source of OSPI is from people themselves (Acquisti et al., 2015), the 

organizations they work for (Federal Bureau of Investigation, 2015a), and social network 

sites (Acquisti et al., 2015; Federal Bureau of Investigation, 2012). Additional sources of 

OSPI such as data mining technologies can be used from command prompts on personal 

computers of any modern operating system (Russell, 2013), while credit reports and 

background checks can easily be requested even without consent (Sanders, 2012). Simple 

friend requests on social networks may reveal extreme amounts of PII and PDI (Boyd & 

Ellison, 2007; Maar, 2013; Mouton et al., 2016). The literature describes OSPI as 

personal information that is available openly to everyone who has access to the Internet 

(Fleisher, 2008). 

The literature also discusses personalization, another exposure threat to privacy which 

may directly feed OSPI (Chellappa & Sin, 2005; Lee et al., 2011; Sutanto et al., 2013; Xu 

et al., 2011). Data brokers have formed entire supply chains (termed herein as privacy 

chains) of PDI, PII, and PUI pooled from a variety of sources and compiled into datasets, 

which are then repackaged and made available (Anthes, 2014; Kang et al., 2011). 
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Similarly, FIPS 199 (2004) provided precedence for information categories including 

privacy, medical, financial, etc. Additionally, research has indicated that people are 

sharing an increasing amount of PII on social networks and continue to do so despite 

being warned against it (Acquisti et al., 2015; Olmstead & Smith, 2017). Acquisti and 

Grossklags (2005) concluded “preliminary data show that privacy attitudes and behavior 

are complex but are also compatible with the explanation that time inconsistencies in 

discounting could lead to under-protection and overrelease [sic] of personal information” 

(p. 32). Krishnamurthy and Wills (2009) described the risk associated with exposure 

where specific identification of an American can be accomplished with only their date of 

birth, gender, and postal zip code. However, little is known in the literature about the role 

that OSPI play in SE attacks or even how much personal information is required for a 

successful attack (Krishnamurthy & Wills, 2009; Mouton et al., 2016; Tetri & Vuorinen, 

2013).  

Personal information is essentially the existence of an individual relegated to data 

points (Rogers et al., 1977). The literature described personal information as contextual 

(Culnan, 1993), having three levels of harm (McCallister et al., 2010), and three levels of 

exposure (Schwartz & Solove, 2011), which is the foundation of RQ1, RQ2, as well as 

RQ3. A summary appears in Table 2 of the literature referenced in this section. 

Table 2 

Summary of Personal Information Literature 

Study Methodology Sample Instruments or 
Constructs 

Main Finding or 
Contribution 

5 U.S.C. § 
552a  

Standard  Record Defines various 
components of 
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personal 
information, 
including medical, 
education, 
employment, 
criminal, and other 
histories. 

Acquisti and 
Grossklags 
(2005) 

Survey 119 
Students 

19–54 years 
old 

 

General Privacy 
Concern 

Offline Identity 

Online Identity 

Personal Profile 

Professional 
Profile 

Sexual and 
Political Identity 

 

 

“The evidence 
points to an 
alternation of 
awareness and 
unawareness from 
one scenario to the 
other” (p. 29). 

“Although 
respondents realize 
the risks 
associated with 
links between 
different pieces of 
personal data, they 
are not fully aware 
of how powerful 
those links are” (p. 
30). 

“Even if 
individuals have 
access to complete 
information about 
their privacy risks 
and modes of 
protection, they 
might not be able 
to process vast 
amounts of data to 
formulate a 
rational privacy-
sensitive decision” 
(p. 30). 

Acquisti et al. 
(2015) 

Literature 
review 

 Self-Disclosure 

Social Penetration 
Theory  

“Norms and 
behaviors 
regarding private 
and public realms 



      60 

 

 

 

 

greatly differ 
across cultures, 
within cultures, 
while varying 
dramatically for 
the same 
individual, and for 
societies, over 
time” (p. 513). 

Anthes (2014) Review 

 

  “Asking 
consumers to ‘opt 
out’ of data 
collection at 
myriad companies 
they have never 
heard of is 
unrealistic, and the 
existing online 
“notice and 
consent” forms—
in which users 
“agree” to the 
collection and use 
of personal data—
are ineffective 
because they are 
mostly ignored by 
consumers” (P. 
30). 

Benjamin and 
Chen (2012) 

Exploratory 28,537 
hackers  

723,555 
forum posts 

Average Message 
Length 

Control Theory 

Number of 
Replies 

Number of 
Threads Involved 

Reputation 

Tenure 

Sum of 
Attachments 

Total Messages 

“Hackers that 
contributed to 
cognitive advance 
of their 
community or 
were considerably 
active had the 
highest 
reputations” (p. 6). 
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Boyd and 
Ellison (2007) 

 

Descriptive  Historical 
overview 

Serves as an 
introduction 
of seven 
Articles for 
a special 
issue 

Exposure 

Signaling Theory 

 

 

A formal 
definition of 
“social network 
sites” (p. 211). 

Overview of 
Social Network 
Sites and 
underlying 
methodology such 
as “friending”. 

Chellappa and 
Sin (2005) 

 

 

Empirical 
study 

243 
Consumers 

Consumer Concern 
for Privacy 

Likelihood of 
Using 
Personalization 
Services 

Value of Online 
Personalization 

“the consumers’ 
value for 
personalization is 
almost two times 
(0.59 vs. −0.34) 
more influential 
than the 
consumers’ 
concern for 
privacy in 
determining usage 
of personalization 
services” (p. 197). 

Coleman and 
Golub (2008) 

 

 

Descriptive  Liberalism, 
Anarchism, 

Hacker Ethics 

Political Theory 

 

 

“hacker practice 
makes visible 
socially relevant 
questions to those 
interested in the 
legal politics of 
information 
access” (p. 271). 

Federal Trade 
Commission 
(2000) 

Descriptive  Access 

Choice 

Notice 

Privacy 

Privacy Seal 

Security 

Self-regulation 

 

FIPS (Privacy 
Online: Fair 
Information 
Practices in the 
Electronic 
Marketplace) 

“Because self-
regulatory 
initiatives to date 
fall far short of 
broad-based 
implementation of 
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self-regulatory 
programs, the 
Commission has 
concluded that 
such efforts alone 
cannot ensure that 
the online 
marketplace as a 
whole will follow 
the standards 
adopted by 
industry leaders” 
(p. ii). 

FIPS 199 
(2004) 

Descriptive  Information Type 

Potential Impact 

 

FIPS Publication 
199 Standards for 
Security 
Categorization of 
Federal 
Information and 
Information 
Systems 

Jasper (2017) Review   Discusses Cyber 
Threat Intelligence 
Integration Center. 

“Therefore, the 
timely sharing of 
relevant and 
actionable cyber 
threat intelligence, 
in the context of 
cyber threat 
information and 
indicators, is 
imperative to 
reducing the 
impact of attacks” 
(p. 62). 

Kang et al. 
(2011) 

Descriptive  Personal Data 
Stream 

 

Personal Data 
Vault 

“Instead of direct 
behavioral 
regulation or blind 
faith in the market, 
our strategy is to 
modify indirectly 
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Privacy Rights 
Management 

the information 
ecosystem by 
introducing a new 
species, the 
[Personal Data 
Guardian]” (p. 
847). 

Krishnamurthy 
and Wills 
(2009) 

Longitudinal 
Study 

127 test 
data set 
sites 

81 Web 
sites across 
nine 
categories 

 

 

Company 
Acquisitions 

Cookies 

First-Party 
Content 

JavaScript 

Root Domain 

Subdomain 

Third-Party 
Content 

“… users are being 
tracked by 
multiple entities 
when accessing a 
first-party site… 
[and] existing 
privacy protection 
techniques have 
limitations in 
preventing privacy 
diffusion” (p. 15). 

 

Lee et al. 
(2011) 

Field Study Two Firms Two Price 
measures 

Three consumer 
measures 

Three consumer 
group measures 
for willingness to 
share personal 
information 

Four Cost 
measures 

Personalization 
Scope 

Game theory 

Privacy calculus 

Profit  

“[S]trategic 
choices of privacy 
protection can 
work as a 
competition-
mitigating 
mechanism in 
personalization…. 
A firm’s privacy 
protection strategy 
under competition 
should be based on 
the investment 
cost of protection 
and the size of the 
personalization 
scope” (pp. 440-
441). 

Maar (2013) Survey 49 
professional 
users of 
social 

Benefit 

Deception Risks 

Ease of Use 

“The study 
appears to indicate 
that the three 
concerns of 
privacy, deception, 
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networking 
sites 

Habit 

Linkage 

Ownership 

Permeability 

Personal Norm 

Privacy Risks 

Response 
Efficacy 

Security Risks 

Self-Efficacy 

Trust 

 

and security drive 
the three factors of 
information 
protection, 
boundary 
permeability, 
linkage, and 
ownership 
respectively” (p. 
268). 

“This study has 
found that 
perceived benefits 
of online social 
network may 
motivate users to 
commit personally 
to protecting its 
integrity, but may 
induce users to 
relax their 
vigilance and 
develop poor 
online habits” (pp. 
268-269). 

Martin (2015) Exploratory  Aggregation 

Downstream Uses 

Information 
Supply Chain 

Negative 
Externality 

Potential for 
Secondary 
Market 
Destructive 
DemandUpstream 
Supplier 

Use of Consumer-
Level Data 

“[I]dentified the 
Big Data Industry 
as having both 
economic and 
ethical issues at 
the individual 
firm, supply chain 
and general 
industry level and 
has suggested 
associated 
solutions to 
preserve 
sustainable 
industry practices” 
(p.85). 

Maynard et al. 
(2015) 

Descriptive 1.8 million 
tweets, 42 

 Describes open-
source data mining 
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political 
themes, 20 
topics 

(GATE) involving 
social networks. 

Mitnick and 
Simon (2002) 

Descriptive   Brought social 
engineering into 
the mainstream. 

Social engineering 
attack cycle 

Mouton et al. 
(2016) 

Descriptive  Theory of Group 
Conformity 

SE attack  

-Compliance 
Principles  

-Goal 

-Medium 

-Social    
Engineer 

-Target 

-Techniques 

SE Framework 

- Attack 
Formation 

-Debrief 

-Develop 
Relationship 

-Exploit 
Relationship 

-Preparation 

Information 
Gathering 

Neither the 
literature or news 
media provide all 
the information 
concerning an 
attack. 

Usually little, if 
any, information is 
known about a 
potential attack. 

Little is known as 
to where the 
information is 
obtained for a SE 
attack. 

Little is known as 
to what 
information is 
available for a SE 
attack. 

 

Olmstead and 
Smith (2017) 

Survey 1,014 adult-
aged US 
citizens 

Demographics 64% of Americans 
have experienced a 
data breach. 

12% use 
password 
management 

ft
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Oltmann 
(2010) 

Exploratory   “If more users 
could be 
convinced to 
adjust their 
privacy settings, 
that could help 
preserve online 
privacy, which in 
turn might protect 
some of society’s 
expectations for 
privacy in the 
broader offline 
world… 
[otherwise] our 
overall privacy 
will decrease” (p. 
4). 

Rogers et al. 
(1977) 

Experiment 32 students 

- 16 Female 

-16 Male 

40 
adjectives 

 

 

Self 

Self-reference 

“In the realm of 
human information 
processing it is 
difficult to 
conceive of an 
encoding device 
that carries more 
potential for the 
rich embellishment 
of stimulus input 
than does self-
reference” (p. 
687). 

Russell (2013)    A book providing 
tools and 
instructions for 
data mining 
popular social 
networking sites 
and online 
technologies. 

Sanders (2012) Descriptive 

Non-peer-
reviewed, 
non-journal 

  Discusses the use 
of Social Media by 
credit reporting 
agencies 
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Schwartz and 
Solove (2011) 

Exploratory  Identifiable 
Personal 
Information 

Identified 
Personal 
Information 

Unidentifiable 
Personal 
Information 

“PII 2.0 protects 
information that 
relates either to an 
identified or 
identifiable 
person, and 
associates different 
legal interests with 
each category” (p. 
1894). 

Sutanto et al. 
(2013) 

Field 
experiment 

193 
participants 

Information 
Boundary Theory 

User Gratification 
Theory 

Users assume 
marketers are 
using their 
information, 
amidst 
advertisements,  

Tetri and 
Vuorinen 
(2013) 

Descriptive  Actor-Network 
Theory 

 

 

Describes issues in 
SE research and 
suggests the 
theories from the 
psychology 
literature should 
only be applied to 
the persuasion 
component of SE. 

Xu et al. 
(2011) 

Exploratory  Covert vs. Overt 

Exchange Theory 

Interpersonal 
Differences 

Personalization 

Privacy Calculus 

Willingness to 
share personal 
information in 
location-aware 
marketing 

Purchase 
Intention 

“[T]he findings of 
this research have 
provided 
preliminary 
empirical evidence 
about how users 
strike a balance 
between value and 
risk” (p. 50). 
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Personally Distinguishable Information 

According to the literature, that not all personal information holds the same 

significance (Heurix et al., 2015; Hong & Thong, 2013; McCallister et al., 2010; Mitnick 

& Simon, 2002; Schwartz & Solove, 2011). Schwartz and Solove (2011) declared, “All 

current legal models for this concept are flawed” (p. 1835), while discussing the lack of 

consensus within the U.S. to define privacy legally and precisely. Additionally, Schwartz 

and Solove (2011) believed that there is no merit to whether data are identifiable to a 

specific person when focusing on whether or not information is PII versus non-PII. 

McCallister et al. (2010) discussed the concept of impact levels due to exposure, while 

describing confidentiality breaches. 

McCallister et al. (2010) referred to the information used to identify an individual as 

being distinguishable, providing a subset of PII to separate ultimate exposure leading to 

definite identification from a generic catchall of potential exposure. Safety guides also 

warn users not to post GPS, social security number, security clearance, or information 

that can be used to answer security questions on Websites, on social media, etc. (Federal 

Bureau of Investigation, 2012, 2015b). PDI is defined as “any information about an 

individual maintained by an agency … that can be used to distinguish or trace an 

individual’s identity … and is linked or linkable to an individual” (McCallister et al., 

2010, Section 2.1). The primary difference between PII and PDI is the specificity of the 

information being directly connected to an individual’s identity (e.g. a photograph or 

social security number) rather than only having the potential of identification (e.g. gender 

or zip code) (McCallister et al., 2010).  
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McCallister et al. (2010) integrated risk nomenclature to personal information, stating 

that some PII can prove “hazardous to both individuals and organizations” (p. ES-1) and 

that “unauthorized access, use, or disclosure of PII can seriously harm both individuals, by 

contributing to identity theft, blackmail, or embarrassment, and the organization, by reducing 

public trust in the organization or creating legal liability” (p. 2-1). (Schwartz & Solove, 2011) 

argued “that the continuum of risk is different for these categories. The result is that the 

necessary legal protections should generally be different for identified and identifiable 

data” (p. 1818). The literature clearly makes the distinction that the exposure of specific 

personal information that makes an individual distinguishable is a higher risk and should 

be treated as such. In following the literature, the SMEs will be asked to categorize items 

as PDI and to provide a weight to the PDI category. A summary appears in Table 3 of the 

literature referenced in this section. 

Table 3 

Summary of Personally Distinguishable Information Literature 

Study Methodology Sample Instruments or 
Constructs 

Main Finding or 
Contribution 

Federal 
Bureau of 
Investigation 
(2012) 

Editorial   Provides the users of 
social media tips on 
how to mitigate the use 
of personal information 
in SE threats. 

Federal 
Bureau of 
Investigation 
(2015b) 

Editorial   Informs parents on how 
to discuss social media 
and its dangers with 
children. 

Heurix et al. 
(2015) 

Descriptive 

 

 Anonymity  

Behavior 

Cardinality 

“[W]e have presented a 
taxonomy which covers 
common aspects of 
[privacy-enhancing 
technologies] across 
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Content 

Directionality 

Foundation 

Holder 

Identity 

Pseudonymity 

 

 

 

 

different application 
areas and demonstrated 
its applicability by 
applying it on several 
well-known approaches 
with different aims, 
including handling 
privacy issues with 
data-at-rest, data-in-
motion, and 
cryptography-based 
approaches with diverse 
properties and 
purposes” (p. 14). 

Hong and 
Thong (2013) 

 

 

Empirical 4,000 
Internet 
users 

Awareness 

Control 

Information 
Management 

Interaction 
Management 

Internet Privacy 
Concerns 

Inter-Web-
Personal 

Multidimensional 

Development 
Theory 

Four theoretical IPC 
frameworks, six 
dimensions of measure, 
clarification of control 
in IPC, validation of a 
third-order factor 
structure, study of the 
effects of inconsistent 
wording in instruments 

 

McCallister 
et al. (2010) 

Descriptive  

 

  NIST 800-122 

Mitnick and 
Simon (2002) 

Descriptive   Brought social 
engineering into the 
mainstream. 

Social engineering 
attack cycle 

Schwartz and 
Solove 
(2011) 

Exploratory  Identifiable 
Personal 
Information 

“PII 2.0 protects 
information that relates 
either to an identified or 
identifiable person, and 
associates different legal 
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Identified 
Personal 
Information 

Unidentifiable 
Personal 
Information 

interests with each 
category” (p. 1894). 

 

 

Personally Identifiable Information 

Prosch (2008) described the use of accounting principles for protecting PII. The credit 

card industry self-regulates standards for the handling of PII for financial transactions 

(PCI Security Standards Council, 2016). Section 5131 of the Information Technology 

Management Reform Act of 1996 (Public Law 104-106) and the Federal Information 

Security Management Act of 2002 (Public Law 107-347) provided the foundation for the 

Federal Information Processing Standards for handling PII and other data: verification of 

personal identity of employees and contractors (Ferraiolo et al., 2013), requirements of 

using cryptology for non-classified information (Dworkin et al., 2001), classification of 

all information and information systems (FIPS 199, 2004), minimum security for 

information and information systems (Ross et al., 2006), digital signatures (Barker, 

2013), secure hash standard (Dang, 2015), and a standard for the use of SHA-3 (Dworkin, 

2015).  

Ohm (2010) described PII as “an ever-expanding category” (p. 1742). Green (2017) 

stated, “Humanity produces 2.5 quintillion bytes of data daily” (p. 289). Schwartz and 

Solove (2011) described current PII definitions within privacy law to be inconsistent and 

insufficient. PII “refers to information that can be used to identify or locate an individual” 

(Chellappa & Sin, 2005, p. 188). Regulators, lawmakers, and organizational 
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policymakers typically view PII as the centroid of privacy issues (Schwartz & Solove, 

2011). Peer and Acquisti (2016) discussed the extreme difficulty, if not an impossibility, 

of reversing the release of PII. The literature indicates that people feel an inability to 

control their PII (Culnan, 1993; Green, 2017; Palen & Dourish, 2003; Peer & Acquisti, 

2016). Simpson (2016) reported that a large number of data breaches occurred, therein 

containing over a billion PII via 4,600 data breaches. Privacy Rights Clearinghouse 

(2018) indicated over 1.9 billion records had been exposed in 7,300 data breaches as of 

November 1, 2017. These studies appear to infer that eight billion records were released 

in a single year. Though the literature provides details as to the type of breach and the 

number of affected records, little is known as to what information was released or what 

specific personal information has been exposed.  

PII is the catch-all nomenclature for personal information in much of the literature, 

regulation, and U.S. law, giving little regard to levels exposure (Schwartz & Solove, 

2011). McCallister et al. (2010) associated personal information to measures of risk and 

harm, thereby indicated that a one-size-fits-all understanding of PII may be ineffective. 

The elicited feedback from the SMEs for RQ1 and RQ2, should help quantify PII as well 

as categorize it to produce a benchmarking instrument for measuring exposure for RQ3. 

A summary appears in Table 4 of the personal information literature referenced in this 

section. 

Table 4 

Summary of Personally Identifiable Information Literature 

Study Methodology Sample Instruments or 
Constructs 

Main Finding or 
Contribution 
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Barker (2013) Descriptive  Digital 
Signature 
Algorithm 
RSA Digital 
Signature 
Elliptic Curve 
Digital 
Signature 
Algorithm 

Digital Signature 
Standard (DSS) 
(FIPS 186-4) 
 

Culnan (1993) Survey 126 
undergraduate 
students  
 

Attitudes 
Toward Direct 
Mail Marketing 
Attitudes 
Toward 
Secondary 
Information Use 
Concern for 
Privacy 
Demographics 
 

“60 percent or 
more of the 
participants 
hold negative 
attitudes toward 
…  
practices 
[involving] one or 
more of the 
following: 
acquisition and 
use of third-party 
information, use 
of financial 
information, 
profiling, and/or 
making 
inferences that 
some participants 
viewed as 
unwarranted 
or inappropriate” 
(p. 358). 

Dang (2015) Descriptive  SHA-1 
SHA-224 
SHA-56 
SHA-384 
SHA-512 
SHA-512/224 
SHA-512/256 

Secure Hash 
Standard (SHS) 
(FIPS PUB 180-4) 
 

Dworkin 
(2015) 

Descriptive   SHA-3 Standard: 
Permutation-
Based Hash and 
Extendable-
Output Functions 
(FIPS PUB 202) 
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Ferraiolo et al. 
(2013) 

Descriptive  Personal 
Identity 
Verification 
 
 

FIPS PUB 201-2: 
Personal Identity 
Verification (PIV) 
of Federal 
Employees and 
Contractors 

Green (2017) Exploratory 
 

Class Action 
Data Breach 
Standing 
 

“Consumer data 
breach cases 
appear to satisfy 
both of these 
elements [injuries 
that are non-
economic and 
non-physical], 
because the harm 
is broadly diffused 
throughout the 
economy and 
some of the 
injuries alleged 
are non-economic 
and non-physical” 
(p.316). 

Ohm (2010) Exploratory  Anonymization 
 
Deanonymize 
 
Reidentification 
 

“Easy 
reidentification … 
undermines 
decades of 
assumptions about 
robust 
anonymization, 
assumptions that 
have charted the 
course for 
business 
relationships, 
individual choices, 
and government 
regulations…. 
This Article 
offers the difficult 
but necessary way 
forward: 
Regulators must 
use the factors 
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provided to assess 
the risks of 
reidentification 
and carefully 
balance these risks 
against 
countervailing 
values” (p. 1776). 
 

Palen and 
Dourish 
(2003) 

Case studies  Disclosure 
Identity 
Privacy 
Publicity 
Temporality / 
Time 
 
 

“In offering both a 
framework and a 
vocabulary for 
talking about 
privacy and 
technology, our 
goal is to foster 
discussion 
between 
technology users, 
designers and 
analysts, and to 
encourage a more 
nuanced 
understanding of 
the impacts of 
technology on 
practice” (p. 8). 
 

PCI Security 
Standards 
Council 
(2016) 

Descriptive  Account Data 
Cardholder 
Data 
- Cardholder 

Name 
- Service 

Code 
- Expiration 

Date 
Sensitive 
Authentication 
Data 
- Full Track 

Data 
- CAV2, 

CVC2, 
CVV2, CID 

Payment Card 
Industry Data 
Security Standard 
(PCI DSS) 
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- Pin / Pin 
Block 

Peer and 
Acquisti 
(2016) 

 
716 adults 
from Amazon 
Mechanical 
Turk and a 
university 
pool 

Perceived 
Intrusiveness 
Self-Disclosure 
Reversibility 
Irreversible  

 

Participants 
disclose more 
when they are not 
warned. 
Perceived 
intrusiveness 
increased with the 
prior declaration 
of reversibility or 
irreversibility. 
Perceived 
intrusiveness rated 
differently before 
vs after answering. 
 

Privacy Rights 
Clearinghouse 
(2018) 

Descriptive  Breach year 
Eight types of 
breaches 
Seven types of 
organization 
breached 
 

Tracks and 
categorizes data 
breaches 

Prosch (2008) Descriptive  Access 
Choice and 
consent 
Collection 
Disclosure to 
third-parties 
Management 
Monitoring and 
enforcement 
Notice 
Privacy 
Lifecycle 
Maturity Model 
Quality 
Security 
Use and 
retention 

AICPA Generally 
Accepted Privacy 
Principles 
[adapted from 
accounting] 
 

Ross et al. 
(2006) 

Descriptive    FIPS Publication 
200: Minimum 
Security 
Requirements for 
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Federal 
Information and 
Information 
Systems 
 

Schwartz and 
Solove (2011) 

Exploratory 
 

Identifiable 
Personal 
Information 
Identified 
Personal 
Information 
Unidentifiable 
Personal 
Information 

 

“PII 2.0 protects 
information that 
relates either to an 
identified or 
identifiable 
person, and 
associates 
different legal 
interests with each 
category” (p. 
1894). 

Simpson 
(2016) 

Exploratory  Common Law 
of Torts 
Data Breach 
Elements of 
Personally 
Identifiable 
Data 
Importing EU 
Data Protection 
into American 
Law 
Regulatory Law 
Statutory Rights 

“By adopting 
an improved 
definition of 
personally 
identifiable data, 
creating 
a new definition of 
data controllers 
and processors, 
and reforming 
statutory liability 
for data breaches, 
Americans can 
be protected, and 
protect 
themselves, from 
the serious risks 
posed by 
consumer data 
breaches both now 
and in the future” 
(p. 709). 

 

Personally Unidentifiable Information 

PUI is defined as “information that, taken alone, cannot be used to identify or locate 

an individual” (Chellappa & Sin, 2005, p. 188; Federal Trade Commission, 2000, p. 46). 
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Schwartz and Solove (2011) warned that modern technologies make it increasingly 

difficult to keep PUI as deidentified information. Acquisti and Gross (2009) described an 

algorithm for predicting social security numbers as well as associated PUI. Additionally, 

four random pieces of deidentified data from credit card metadata were shown to 

reidentify 90% of people, with women being easier than men (de Montjoye et al., 2015). 

Kang et al. (2011) described the dangers of modern technologies that people use to 

surveil portions of their lives or the lives of others.  

The majority of PUI is intended to provide demographic and nonidentifying 

information (Schwartz & Solove, 2011). Sweeney (1997) demonstrated the ease of 

reidentification using only Zip Code, birth date, gender, and race – with only birth date 

and full ZIP Code required to identify 97% of voters. Benitez and Malin (2010) estimated 

the difficulty of reidentification when anonymized, classified as public-use, Health 

Insurance Portability and Accountability Act (HIPAA) Privacy Rule protected data when 

combined with voter registration lists. Ohm (2010) declared anonymization and the 

concept of PUI a failure due to the literature showing adeptness in re-identifying 

individuals even using PUI as a starting point.  

Though PUI is typically considered anonymous or deidentified information (Schwartz 

& Solove, 2011), the literature describes several methodologies for the reidentification of 

an individual based on only a few pieces of demographic data (Sweeney, 1997). Rather 

than sidelining PUI as supposedly anonymous information, SMEs were asked to assign 

weights to reflect the level of exposure each has in and of itself. A summary appears in 

Table 5 of the literature referenced in this section. 
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Table 5 

Summary of Personally Unidentifiable Information 

Study Methodology Sample Instruments or 
Constructs 

Main Finding or 
Contribution 

Benitez and 
Malin 
(2010) 

Mixed 
Methods 

-Survey of 
State’s 
Elections 
Office 

-Quantitative 
Analysis 

State 
populations 
segmented by 
combinations 
of County of 
Residence, 
Gender, Date 
of Birth, Race, 
and Birth Year 

Estimated 
Proportion of a 
Population in a 
Group 

Expected 
number of Re-
Identification 

General 
Attacker 

Monetary Cost 
of Re-
Identification 

Voter Attacker 

“This research 
provided a set of 
approaches for 
estimating the 
likelihood that de-
identified 
information can be 
re-identified in the 
context of data 
sharing policies 
associated with the 
HIPAA Privacy 
Rule” (p. 177). 

Chellappa 
and Sin 
(2005) 

Empirical 
study 

243 
consumers 

value of online 
personalization 

consumer 
concern for 
privacy 

likelihood of 
using 
personalization 
services 

“the consumers’ 
value for 
personalization is 
almost two times 
(0.59 vs. −0.34) 
more influential 
than the consumers’ 
concern for privacy 
in determining 
usage of 
personalization 
services” (p. 197). 

de Montjoye 
et al. (2015) 

Field Study Credit card 
records of 1.1 
million people 
in 10,000 
shops over 
three months. 

Price 
Resolution 

Risk of 
reidentification 

Spatial 
Resolution 

Temporal 
Resolution 

Unicity 

“Our results render 
the concept of PII, 
on which the 
applicability of U.S. 
and European 
Union (EU) privacy 
laws depend, 
inadequate for 
metadata data 
sets…. our findings 
highlight the need to 
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reform our data 
protection 
mechanisms beyond 
PII and anonymity 
and toward a more 
quantitative 
assessment of the 
likelihood of 
reidentification” (p. 
539). 

Federal 
Trade 
Commission 
(2000) 

Descriptive  Access 

Choice 

Notice 

Privacy 

Privacy Seal 

Security 

Self-regulation 

FIPS (Privacy 
Online: Fair 
Information 
Practices in the 
Electronic 
Marketplace) 

“Because self-
regulatory 
initiatives to date 
fall far short of 
broad-based 
implementation of 
self-regulatory 
programs, the 
Commission has 
concluded that such 
efforts alone cannot 
ensure that the 
online marketplace 
as a whole will 
follow the standards 
adopted by industry 
leaders” (p. ii). 

Kang et al. 
(2011) 

Exploratory  Personal Data 
Stream 

Personal Data 
Vault 

Privacy Rights 
Management 

 

 

“Instead of direct 
behavioral 
regulation or blind 
faith in the market, 
our strategy is to 
modify indirectly 
the information 
ecosystem by 
introducing a new 
species, the 



      81 

 

 

 [Personal Data 
Guardian]” (p. 847). 

Ohm (2010) Exploratory  Anonymization 

Deanonymize 

Reidentification 

 

“Easy 
reidentification … 
undermines decades 
of assumptions 
about robust 
anonymization, 
assumptions that 
have charted the 
course for business 
relationships, 
individual choices, 
and government 
regulations…. 

This Article offers 
the difficult but 
necessary way 
forward: Regulators 
must use the factors 
provided to assess 
the risks of 
reidentification and 
carefully balance 
these risks against 
countervailing 
values” (p. 1776). 

Schwartz 
and Solove 
(2011) 

Exploratory  Identifiable 
Personal 
Information 

Identified 
Personal 
Information 

Unidentifiable 
Personal 
Information 

“PII 2.0 protects 
information that 
relates either to an 
identified or 
identifiable person, 
and associates 
different legal 
interests with each 
category” (p. 1894). 

Sweeney 
(1997) 

Descriptive 53,033 Voter 
Records 

µ-Argus System 

Datafly System 

Scrub System 

“What is needed is a 
rational set of 
disclosure 
principles, based on 
comprehensive 
analysis of the 
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fundamental issues, 
which are unlikely 
to evolve from 
piecemeal reactions 
to random 
incidents” (p. 108). 

 

Social Engineering (SE) 

SE “is a combination of techniques used to manipulate victims into divulging 

confidential information or performing actions that compromise security” (Luo et al., 

2013, p. 2). It has been possible to group the SE literature into three main streams: attack 

vectors (Heartfield & Loukas, 2015; Hong, 2012; Jakobsson, 2016), defense (Conteh & 

Schmick, 2016; Mouton et al., 2016; Tetri & Vuorinen, 2013), and the human component 

(Atkins & Huang, 2013; Krombholz et al., 2013; Luo et al., 2013; Mitnick & Simon, 

2002; Workman, 2007). Supporting documentation provides statistics and information as 

to the number of reported events and the average cost to the victims (Federal Bureau of 

Investigation, 2015a, 2016). Occasionally, the details of a specific attack are released via 

the media providing insight into the phenomena (Federal Bureau of Investigation, 2016; 

Franceschi-Bicchierai, 2015), but this is not the norm as organizations are unwilling to 

share specifics (Mouton et al., 2016). 

The literature typically associates persuasion, deception and exploitation with SE 

(Harl, 1997; Workman, 2007). Mitnick and Simon (2002) used the elaboration likelihood 

model to outline SE attack construction, whereas Allen (2006) contrasted the SE attack 

with the software development cycle. Krombholz et al. (2013) introduced a SE taxonomy.  

Mouton et al. (2014) crafted a SE ontology and discussed the composition of a 
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satisfactory definition, though limiting their own contribution to requiring computer 

technology. Mouton et al. (2016) provided templates that facilitate SE mitigation and 

assessment. 

Greening (1996) conducted an experiment by which SE was used to obtain valid 

passwords from many of their 175 student participants. Orgill et al. (2004) used an 

“auditor” to determine the level of effort necessary to retrieve username and password 

information through a SE attack. The auditor did not work at the company, though he 

gained access, dressed similar to their computer department, found a name badge, and 

then collected usernames and passwords via conversations while walking through the 

building (Orgill et al., 2004). Hasle et al. (2005) performed a phishing experiment to 

determine the level of resistance to SE for each of the 120 participants using automation 

via the Web and email.  

Allen (2006) introduced a four-step SE model: information gathering, relationship 

development, exploitation, execution. Peltier (2006) divided SE into two categories: 

technology-based and human-based, as well as applied social psychology to SE in the 

area of persuasion. Peltier (2006) found that gender played a significant role in the SE 

success. Workman (2007) conducted an empirical study of 588 participants using a 

questionnaire and observation grounded in threat assessment theory as well as the 

elaboration likelihood model. Workman (2007) found that trust, friendliness and 

perceived authority were contributing factors for successful SE attacks. Workman (2008) 

used cognitive dissonance theory and reactance theory to find how specific personality 

types can fall prey to SE attacks. Bilge et al. (2009) described the use of automated 

systems for cloning a social network profile from a single social networking site or across 
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multiple services. Bilge et al. (2009) defeated 215 CAPTCHAs and extracted information 

from approximately 6000 Web pages and 40,000 profiles each day – culminating with the 

contact information of five million people as well as the complete profile of 1.2 million 

people. Bilge et al. (2009) opted to stop their crawlers due to far surpassing their 

expectations, though they appear to have been able to continue indefinitely. 

Chitrey et al. (2012) described the typical motivations for SE attacks: access to 

proprietary information (30%), financial gain (23%), competitive advantage (21%), 

enjoyment (11%), revenge (10%), and other (5%). Hong (2012) provided an overview of 

the composition and execution of phishing, an SE attack vector. Almomani et al. (2013) 

provided a literature survey of how detection of phishing emails occurs. Atkins and 

Huang (2013) codified 100 phishing emails and 100 advanced-fee emails into persuasion 

categories as well as triggers. Atkins and Huang (2013) found the primary triggers and 

persuasion techniques used in SE were those that grabbed the attention of target or asked 

them to verify their account credentials. 

Luo et al. (2013) described effective defenses against SE relying heavily on security 

policy as well as presented an argument that a correlation may exist between personality 

types and vulnerability to SE. Tetri and Vuorinen (2013) conducted a literature review of 

40 journal articles, thereby suggested improvements in research quality and found that 

very few SE articles were empirical, while the majority were descriptive. Johnston et al. 

(2015) measured compliance with company policy via an enhanced fear appeal grounded 

on protection motivation theory and found that informal sanctions provide sufficient 

influence to raise awareness of security defensiveness. Neupane et al. (2015) conducted a 

three-dimensional study of phishing detection and warnings. Neupane et al. (2015) found 
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personality types are significant to the success of SE phishing attacks and that people do 

not spend enough time looking at emails, subsequently failing to detect phishing attacks.  

Conteh and Schmick (2016) provided a literature review of phishing research and 

suggested that repetition in training may improve detection of fake emails and Web sites. 

Heartfield and Loukas (2015) discussed semantic SE attacks, intentional manipulation of 

graphical representations to deceive the recipient, and provided a taxonomy to break an 

attack down to its base components to allow for faster defense through policy, training, 

and technology systems. Jakobsson (2016) described the compositing and execution of 

BEC. Mouton et al. (2016) presented attack templates to provide a methodology to apply 

other frameworks to SE research. 

Mitnick and Simon (2002) brought the human component of SE into a mainstream 

discussion between technical experts and decision makers with a collection of examples 

easily understood and communicated by both groups. The idea of the human component 

being the weakest link continues with researchers looking to internal characteristics and 

external influences contrasted against specific SE attack vectors (Fan et al., 2017). 

Heartfield and Loukas (2015) proposed the need for investigating methodologies to 

mitigate risk associated with user weakness as well as provided a mechanism to measure 

user susceptibility to SE, thereby extending the SE attack cycle put forth by Mitnick and 

Simon (2002). Additionally, the literature has found gender and psychological traits to 

have significance in successful SE attacks, which is of particular interest to RQ4 

(Neupane et al., 2015; Peltier, 2006; Workman, 2008). 

The SE literature is primarily explorative and descriptive with very few theoretical or 

empirical works (Tetri & Vuorinen, 2013). Much of the effort thus far, is a narrow after-
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the-fact examination of a specific SE attack vector, which may or may not generalize into 

further research or application (Luo et al., 2013; Mouton et al., 2016; Tetri & Vuorinen, 

2013). The literature describes how the simple act of looking at a phishing email for more 

than a few seconds is enough for the user to accept it as authentic (Neupane et al., 2015; 

Wenyin et al., 2005). Systems such as BLADE, CANTINA+, and JSAND can be used to 

filter the harmful effects of phishing emails and BEC (Heartfield & Loukas, 2015), but 

have little effect on the face-to-face persuasions that the literature indicates people have 

trouble detecting (Perloff, 2010; Workman, 2007, 2008). 

The SE domain has a few noted issues: generalizability (Heartfield & Loukas, 2015; 

Mouton et al., 2016), applicability (Neupane et al., 2015; Tetri & Vuorinen, 2013; Wenyin 

et al., 2005), and polarization (Conteh & Schmick, 2016; Junger et al., 2017; Luo et al., 

2013; Mitnick & Simon, 2002). Generalization is a major issue in the SE literature in that 

little is known on who is conducting the SE attack (Heartfield & Loukas, 2015), where 

exactly the information was obtained (Mouton et al., 2016), or how many times the 

vector and information were successfully used (Jasper, 2017). The entire attack cycle is 

specific to the context defined by the persuasion, vector, and susceptibility of the target 

(Heartfield & Loukas, 2015; Mitnick & Simon, 2002). 

The applicability of SE research may have limited effect between contexts as 

Neupane et al. (2015) noted the significance of personality type has on the success of an 

attack. Additionally, Tetri and Vuorinen (2013) suggested that functional dimensions of 

an SE attack are more important than the vector by which it occurred. Polarization within 

the SE domain is observed when contrasting the literature that stated there is no 

protection from SE (Conteh & Schmick, 2016; Junger et al., 2017) with those providing 
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insight into the phenomena by providing a means to investigate and measure (Heartfield 

& Loukas, 2015; Luo et al., 2013; Mitnick & Simon, 2002; Mouton et al., 2016).  

The literature coalesces on the following assumption: SE attacks are continually 

increasing in number (Federal Bureau of Investigation, 2015a; Heartfield & Loukas, 

2015; Hong, 2012; Tetri & Vuorinen, 2013; Workman, 2008) and the benefit of research 

has been minimal (Jasper, 2017; Junger et al., 2017; Luo et al., 2013; Mouton et al., 

2016). A summary appears in Table 6 of the social engineering literature referenced in 

this section. 

Table 6 

Summary of Social Engineering Literature 

Study Methodology Sample Instruments or 
Constructs 

Main Finding or 
Contribution 

Allen 
(2006) 

Descriptive 

 

 

 The Cycle: 

   Information  
    Gathering 

   Developing  
     Relationship 

   Exploitation 

   Execution 

“[T]here will always be 
the possibility of the 
'human factor' being 
influenced by a social, 
political and/or cultural 
event” (p. 9). 

 

Almomani 
et al. 
(2013) 

Survey  Authentication 
techniques 

Client-side 
tools and filters 

Network-level 
protection 

Server-side 
filters and 
classifiers 

User Education 

“This survey improves 
the understanding of 
the phishing emails 
problem, the current 
solution space, and the 
future scope to filter 
phishing emails” (p. 
2087). 
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Atkins and 
Huang 
(2013) 

 100 
advanced-
fee emails 

100 
phishing 
emails 

 

Incentives 

Persuasion 
techniques 

Triggers  

“[A]lert/warning/attenti
on and account 
verification were the 
two primary triggers 
used to raise the 
attention of e-mail 
recipients…. This study 
also discovered that 
social engineers have 
constructed statements 
in positive and negative 
manners to persuade 
readers to fall victim to 
their scams” (p. 30). 

Bilge et al. 
(2009) 

Descriptive Used 
iCloner to 
clone the 
profiles of 
five 
people. 

The system 
then 
contacted 
705 distinct 
people.  

This 
process 
continued 
until over 
one million 
people had 
their 
profiles 
completely 
exposed. 

Captcha defeat 

iCloner 

Scoring system 
to determine if 
multiple 
accounts on a 
social media 
network belong 
to the same 
person. 

 

 

 

“In this paper, we 
investigate how easy it 
would be for a potential 
attacker to launch 
automated crawling and 
identity theft (i.e., 
cloning) attacks against 
five popular social 
networking sites. We 
present and 
experimentally evaluate 
two identity theft 
attacks” (p. 560). 

A very high percentage 
of those contacted from 
cloned accounts click 
on “friend” requests. 

Chitrey et 
al. (2012) 

Questionnaire 90 
responders 
located in 
India 

 

 

Internet 
Security 
Awareness 
Program and 
Training 

Provides data that 
infers that culturally, 
people in India have an 
elevated weakness level 
to SE attacks. 

New employees, 
customers, and IT 
professionals are the 
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most likely targets of 
SE. 

Conteh and 
Schmick 
(2016) 

Review   “[W]hile technology 
has a role to play in 
reducing the impact of 
social engineering 
attacks, the 
vulnerability resides 
with human behaviour 
[sic], human impulses 
and psychological 
predispositions that can 
be influenced through 
education” (p. 37). 

Fan et al. 
(2017) 

Exploratory  I-E based 
model of 
human 
weakness for 
social 
engineering 
investigation 

Psychological 
states 

“We captured two 
essential levels – 
[fourteen] internal 
characteristics of 
human nature and 
[nine] external 
circumstance influences 
- that shape the human 
weakness for social 
engineering” (p. 10). 

Federal 
Bureau of 
Investigatio
n (2015a) 

Report 7,000 
companies 

business email 
compromise 

“According to IC3, 
since the beginning of 
2015 there has been a 
270 percent increase in 
identified BEC victims” 
(p. 2). 

Federal 
Bureau of 
Investigatio
n (2016) 

Report  State-sponsored 
actors 

State-sponsored cyber 
threats (Iran). 

Franceschi-
Bicchierai 
(2015) 

News Article   Describes the attack on 
CIA Director by 
teenagers. 

Greening 
(1996) 

Simulation of 
a large-scale 
SE attack 

338 
students 
over 16 
days.  

 Students continued to 
respond to the e-mail, 
even after the students 
were given a second 
email and formal 
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175 
responded 
to a 
phishing e-
mail 

138 of the 
responses 
were valid 
passwords 

announcement of the 
phishing exercise. 

Very few [61] people 
attempted to report the 
attack, and the majority 
[49] of those 
complaints were only 
curious. 

Harl (1997) Editorial  Early work 
describing SE 
and the human 
as the weakest 
link. 

 

“Contrary to popular 
belief, it is often easier 
to hack people than 
[S]endmail. But it takes 
far less effort to have 
employees who can 
prevent and detect 
attempts at social 
engineering than it is to 
secure any [U]nix 
system” (p. 5). 

Hasle et al. 
(2005) 

Experiment 120 users 
separated 
into four 
groups of 
30 over 
three days. 

59 people 
were active 
in that they 
completed 
a survey 
[31] or 
were 
presented 
with a 
login box 
[28]. 

Social 
Engineering 
Resistance 
Metric 

 

 

“Our experiment shows 
that it is relatively 
cheap and easy to 
mount a large scale 
[sic] SE attack (or 
experiment) with a high 
success rate” (p. 141). 

Heartfield 
and Loukas 
(2015) 

 

Taxonomy Discusses 
research 
with 1900 
malicious 
URLs, 308 

Deception 
vector 

Exploitation 

Execution 

“It introduces a 
structured baseline for 
classifying semantic 
attacks by breaking 
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12 citations users, and 
other 

Orchestration them down into their 
components” (p. 0:31). 

 

Hong 
(2012) 

Descriptive   “Phishing also causes 
new problems for 
organizations, as they 
blur traditional security 
perimeters. One’s 
lawyers and 
accountants may be 
attacked to 
surreptitiously gain 
access to documents. 

Facebook and other 
social media provide 
more contextual details 

that can be used for 
spear-phishing attacks. 
An employee falling for 
a phish in one context 
may cause a headache 
for your organization 
because of reused 
passwords” (pp. 6-7). 

Jakobsson 
(2016) 

Case-studies 
in chapter 
format 

  “The best way to 
develop and deploy 
ways to identify and 
measure the problem 
and how it changes is to 
identify not only what 
the scammers do, but 
also why….  

Understanding why the 
scammers do what they 
do, we must also 
understand their 
intended victims, what 
they do—and fail to 
do” (p. 126). 
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Jasper 
(2017) 

Review   Discusses Cyber Threat 
Intelligence Integration 
Center. 

“Therefore, the timely 
sharing of relevant and 
actionable cyber threat 
intelligence, in the 
context of cyber threat 
information and 
indicators, is imperative 
to reducing the impact 
of attacks” (p. 62). 

Johnston et 
al. (2015) 

Sequential 
mixed-
methods 

Qualitative 
via interviews 

 

Quantitative 
via 
experimental 

design  

Potential: 
2,475 
insiders 

Complete 
responses 
from 559 
insiders of 
multiple 
organizatio
n within a 
city 
governmen
t 

Four 
organizatio
nal leaders 
were 
interviewe
d. 

 

 

 

Compliance 
intention 

Conventional 
fear appeal 

Perceived threat 
Severity 

Perceived threat 
susceptibility 

Perceived self-
efficacy 

Perceived 
response 
efficacy 

Fear Appears 

Formal sanction 
certainty 

Formal sanction 
severity 

Information 
sanction 
certainty 

Informal 
sanction 
severity 

Protection 
motivation 
theory 

“We argue that the 
reason for these 
disappointing results [in 
fear appeals research in 
information security] 
from the inadequacy of 
the conventional fear 
appeal rhetorical 
framework and the 
misspecification of 
[protection motivation 
theory] within the 
information security 
literature… This study 
develops and tests an 
enhanced fear appeal 
rhetorical framework 
that accounts for the 
distinction between 
threats to information 
assets and threats to 
human assets” (p. 130). 

The enhanced fear 
appeal framework 
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Sanction 
celerity 

Junger et 
al. (2017) 

Experiment 278 
participants 

Age 

Age Square 

Goals System 
Theory 

Priming 

Total Risk 

Warning 

“This study found 
relatively high 
disclosure rates… 
Neither priming nor a 
warning influenced the 
degree of disclosure.” 
(p. 85). 

 

Krombholz 
et al. 
(2013) 

Taxonomy  Channel (How) 

Operator 
(What) 

Social 
Engineering 
Taxonomy 

Type  

“[W]e introduced a 
comprehensive 
taxonomy to classify 
social engineering 
attacks with respect to 
the attack channel, the 
operator, different types 
of social engineering 
and specific attack 
scenarios” (p. 34). 

 

Luo et al. 
(2013) 

Descriptive  Personality 
traits 

Psychological 
aspects 

Social 
engineering 

Techniques 

Defenses 

“in addition to 
advanced technologies 
counterattacking 
various security 
intrusions, human 
factors must be equally 
accounted for” (p. 7). 

Mitnick 
and Simon 
(2002) 

Descriptive   Brought social 
engineering into the 
mainstream. 

Social engineering 
attack cycle 

Mouton et 
al. (2016) 

Descriptive  Theory of 
Group 
Conformity 

SE attack  

Neither the literature or 
news media provide all 
the information 
concerning an attack. 
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Goal 

Medium 

Social engineer 

Target 

Compliance 
principles  

Techniques 

SE framework 

Preparation 

Information 
gathering 

Attack 
formation 

Exploit 
relationship 

Develop 
relationship 

Debrief 

Usually little, if any, 
information is known 
about a potential attack. 

Little is known as to 
where the information 
is obtained for a SE 
attack. 

Little is known as to 
what information is 
available for a SE 
attack. 

Social engineering 
attack detection model 

 

 

Neupane et 
al. (2015) 

Experiment 25 
participants 

Malware 
test 

(20 
randomize
d trials) 

-10 
warning 

-10 non-
warning 

-Phishing 
detection 
(37 
randomize
d trials) 

-13 real 

-12 fake 

Gaze durations 

Number of 
fixations 

“[O]ur results showed 
that users do not spend 
enough time looking at 
key phishing indicators 
and often fail at 
detecting these attacks, 
although they may be 
highly engaged in the 
task and subconsciously 
processing real sites 
differently than fake 
sites” (p. 489). 
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-12 
difficult 
fake 

Orgill et al. 
(2004) 

Questionnaire 32 
participants 

-26 gave 
their 
username 

-19 gave 
their 
password 

-Seven 
gave login 
credential 
informatio
n above 
their own 
access 

-Four 
asked for a 
name 
badge or 
identificati
on  

Department 

Number 
Surveyed 

Password 

Username 

 

 

 

“This study 
demonstrated that even 
in a company where 
security is a concern, 
these human traits [trust 
others, assist others, 
gain favor] can be ill-
used if proper 
preventative measures 
are not taken … This 
study also shows the 
importance of assessing 
security effectiveness 
through means such as 
audits.… In order for an 
audit to be effective, the 
auditor has to be at least 
as thorough, through 
preliminary studying, 
planning, and execution 
as a potential social 
engineer would be” (p. 
181). 

Some departments had 
more training and 
resisted the social 
engineer better. 

Peltier 
(2006) 

Review   Magazine article 
describing SE to 
readers. 

Perloff 
(2010) 

Exploratory  Persuasion Extensive discussion on 
persuasion, which is 
used in many SE attack 
vectors. 

Tetri and 
Vuorinen 
(2013) 

Descriptive  Actor-Network 
Theory 

 

 

Describes issues in SE 
research and suggests 
the theories from the 
psychology literature 
should only be applied 
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to the persuasion 
component of SE. 

Wenyin et 
al. (2005) 

Exploratory Eight 
Phishing 
Web pages 

Six 
Attacked 
true Web 
pages 

320 
authentic 
home 
pages of 
banking 
institutions 

Phishing 

Visual 
Similarity 
Between Two 
Web Pages 

-block level 

-layout 

-overall style 

Web page 
segmentation 

“Preliminary results 
show that our approach 
can successfully detect 
the phishing webpages 
[sic] with few false 
alarms for online use” 
(p. 1061). 

Workman 
(2007) 

Field study 

-
Questionnaire 

- Observation 

588 
participants 
from a 
single 
organizatio
n 

Affective 
Commitment 

Continuance 
Commitment 

Normative 
Commitment 

Obedience 

Reactance 

Subjective 
Behaviors 

Threat Severity 

Trust 

Vulnerability 

 

 

Elaboration likelihood 
model 

Threat assessment 
theory 

“[W]e found that 
people who are high in 
normative commitment 
feel obligated to 
reciprocate social 
engineering gestures 
and favors such as 
receiving free software 
or gift certificates by 
giving up company 
email addresses, 
employee identification 
numbers, financial and 
insurance data, and 
other confidential and 
sensitive information… 
people who are high in 
continuance 
commitment tend to 
provide information to 
escalating requests… 
High affective 
commitment was also 
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found to contribute to 
successful social 
engineering” (pp. 327-
328). 

Everyone is susceptible 
to SE to some degree. 

Workman 
(2008) 

Field Study 588 
participants 
from a 
single U.S. 
organizatio
n 

Control for 
Age, Gender, 
and Education 

 

 

“Our investigation has 
attempted to bridge the 
theory that explains 
how people are 
persuaded through 
peripheral routes with 
the social engineering 
outcomes using an 
empirical field study in 
which we investigated 
whether the factors that 
account for how people 
are persuaded in 
marketing campaigns to 
make purchases may 
apply as well to social 
engineering to give up 
confidential 
information” (p. 10). 

 

Theory of Mind (TOM) 

The theoretical foundation for this research draws on the Theory Of Mind (TOM). 

Herbsleb (2005) called for external theories to be used to bring greater understanding to 

computer science, specifically in software design research. While communicating 

complex concepts, software designers use anthropomorphic examples, which TOM 

research indicates is problematic for autistic people (Herbsleb, 2005). The context of the 

TOM is that an individual “imputes mental states to himself and others” (Premack & 

Woodruff, 1978, p. 515). Baron-Cohen et al. (1985) stated, “The ability to make 

inferences about what other people believe to be the case in a given situation allows one 
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to predict what they will do” (p. 39). Likewise, an individual does not have a TOM when 

he does not recognize the state of mind of another individual he is interacting with 

(Premack & Woodruff, 1978). For example, if two people are standing next to the water 

cooler and one tells a joke, the other person can only have TOM if they perceive the 

exchange as a joke (Baron-Cohen, 1997). TOM has been used to study chimpanzees 

(Premack & Woodruff, 1978), children (Baron-Cohen, 1997), autism (Leslie, 1987), and 

normal adults (Krombholz et al., 2013; Saxe et al., 2006). TOM also offers multiple 

ingresses into this research study: pretense, representation, pretending, and deception 

(Baron-Cohen, 1992; Leslie, 1987). Pretense is the intentional distortion of reality 

(Leslie, 1987), which is used in SE during phishing and other attacks (Mitnick & Simon, 

2002). Representation is how an individual views the world (Leslie, 1987). 

Workman (2007) described how an individual’s representation of an actor might 

provide trust during a SE attack, even though facts do not fit the reality. Pretending 

occurs when someone acts as if one thing is real, when he knows that it isn’t (Leslie, 

1987), which can be observed in many SE attack vectors (Marczak & Paxson, 2017; Tetri 

& Vuorinen, 2013). Deception involves making someone believe an untruth (Baron-

Cohen, 1992) and serves as the primary tool of SE and semantic attacks (Heartfield & 

Loukas, 2015; Mitnick & Simon, 2002).  

Kennedy et al. (2001a) supposed that TOM might have inadvertently crept into 

academia when researchers superimpose their assumptions and abilities to their 

participants. In the literature, TOM is also used to describe an inability to understand the 

anthropomorphic descriptions used by software engineers to communicate complex 

abstract concepts during daily communication, such as a section of code “knowing,” 
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“seeing,” or “dying” (Herbsleb, 2005). Kennedy et al. (2001a) warned that academics 

should not mistakenly assume a TOM with ordinary people, as not everyone has been 

trained to seek out explanations for phenomena methodically nor do they embody the 

expertise of the researcher. Krombholz et al. (2013) noted that the TOM of IS is not 

shared or even valued by SE attackers, while being used as a weapon against the 

knowledge workers themselves (Krombholz et al., 2013).  

TOM literature endeavors to observe the mind with the understanding that mental 

states can allow the explanation and prediction of the behavior of others (Premack & 

Woodruff, 1978). While TOM tends to observe the persuasion (conviction, belief) of a 

subject, much of SE literature describes the use of persuasion (Mitnick & Simon, 2002; 

Mouton et al., 2016; Tetri & Vuorinen, 2013) in the commission of attacks. Both SE and 

TOM literature describe how poorly people detect deception (Krombholz et al., 2015; 

Luo et al., 2013; Mitnick & Simon, 2002; Workman, 2008). For example, Saxe et al. 

(2006) empirically found that participants answering questions concerning a deceptive 

instrument demonstrated a slower response (mean 2.89 seconds) than false belief 

questions (mean 2.63 seconds). 

The relevance of using TOM as a lens for SE research is supported by Luo et al. 

(2013), O'keefe (2002), and Peltier (2006). Luo et al. (2013) called for research to 

investigate how SE attacks can occur due to user participation with OSPI made readily 

available via social networking sites, thereby empowering deception. Peltier (2006) 

described the creation of a TOM so that all employees within an organization understand 

their significance in cyber defense. Keysar et al. (2003) argued that adults fail to associate 

the beliefs of someone and their actual behavior correctly. O'keefe (2002) suggested that 
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research move beyond linguistic persuasion and on to visual instruments, such as an 

instrument that measures exposure to SE, i.e., SEXI, as well as those seen in BEC, 

phishing, and other SE attacks. A summary appears in Table 7 of the literature referenced 

in this section. 

Table 7 

Summary of Theory of Mind Literature 

Study Methodology Sample Instruments or 
Constructs 

Main Finding or 
Contribution 

Baron-
Cohen et 
al. (1985) 

Experiment 61 Children 

-20 Autistic 

-14 Down 
Syndrome 

-27 
Clinically 
normal 

 

Wimmer and 
Perner’s puppet play 
paradigm 

 

 

“The fact that 
every single child 
taking part in the 
experiment 
correctly 
answered the 
control questions 
allows us to 
conclude that 
they all knew 
(and implicitly 
believed) that the 
marble was put 
somewhere else 
after Sally had 
left” (p. 42). 

“We therefore 
conclude that the 
autistic children 
did not 
appreciate the 
difference 
between their 
own and the 
doll’s 
knowledge” (p. 
43). 

The ability to 
know and believe 
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something is 
separate from 
having a TOM. 

Heartfield 
and Loukas 
(2015) 

 

Taxonomy Discusses 
research 
with 1900 
malicious 
URLs, 308 
users, and 
other  

Deception 

Exploitation 

Execution 

Orchestration  

Vector 

“It introduces a 
structured 
baseline for 
classifying 
semantic attacks 
by breaking them 
down into their 
components” (p. 
0:31).  

Herbsleb 
(2005) 

Exploratory  Behavioral Science 

Computer Science 

Interdisciplinary 

Multidisciplinary 

 

 

“As a field we 
have benefited 
enormously from 
our borrowings 
from behavioral 
science…. We 
need to continue 
in this strong 
interdisciplinary 
path, and … 
nurture our own 
theoretical 
tradition” (p. 26). 

Kennedy et 
al. (2001a) 

Review  Gestalt psychology 

Suggest an assumed 
theory of mind 
amongst researchers. 

Provides an 
overview of the 
study of the 
mind. 

Keysar et 
al. (2003) 

Two 
Experiments 

38 College 
students 

40 College 
students (20 
male / 20 
female) 

 

 

False belief 

Hidden object 

Ignorance 

 

 

“[T]he ability to 
take the 
conceptual 
perspective of the 
other is an 
indispensable 
element in the 
fully-developed 
adult theory of 
mind. Our 
findings show 
that adults do not 
reliably consult 
this crucial 
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knowledge about 
what others know 
when they 
interpret what 
others mean” (p. 
37). 

Krombholz 
et al. 
(2013) 

Taxonomy  Social engineering 
taxonomy 

Channel (How) 

Operator (What) 

Type  

 

“[W]e introduced 
a comprehensive 
taxonomy to 
classify social 
engineering 
attacks with 
respect to the 
attack channel, 
the operator, 
different types of 
social 
engineering and 
specific attack 
scenarios” (p. 
34). 

Leslie 
(1987) 

Exploratory  Decoupling model 
of pretense 

Metarepresentational 
theory 

Pretend 

Pretense 

Representation 

 

 

“[T]he view 
advanced here 
offers for the first 
time a principled 
explanation 

for both the 
peculiarities of 
pretense and for 
the existence of 
these 
generalizations” 
(p. 424). 

Luo et al. 
(2013) 

Descriptive  Social engineering 

Psychological 
aspects 

Personality traits 

Techniques 

Defenses 

 

“in addition to 
advanced 
technologies 
counterattacking 
various security 
intrusions, 
human factors 
must be equally 
accounted for” 
(p. 7). 
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Marczak 
and Paxson 
(2017) 

Interviews 30 
participants 
associated 
with the 
Middle East 
and Horn of 
Africa over 
two years 

 

Government 
surveillance 

Perception of Risk 

“Despite the 
availability of 
free online tools 
to check links 
and attachments, 
our subject 
population does 
not appear to 
widely use such 
resources” 
(p.162). 

Mitnick 
and Simon 
(2002) 

Descriptive   Brought social 
engineering into 
the mainstream. 

Social 
engineering 
attack cycle 

Mouton et 
al. (2016) 

Descriptive  Theory of Group 
Conformity 

SE attack  

-Compliance 
Principles  

-Goal 

-Medium 

-Social Engineer 

-Target 

-Techniques 

SE Framework 

- Attack Formation 

-Debrief 

-Develop 
Relationship 

-Exploit 
Relationship 

-Preparation 

Information 
Gathering 

Neither the 
literature or news 
media provide all 
the information 
concerning an 
attack. 

Usually little, if 
any, information 
is known about a 
potential attack. 

Little is known 
as to where the 
information is 
obtained for a SE 
attack. 

Little is known 
as to what 
information is 
available for a 
SE attack. 
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O'keefe 
(2002) 

Review  Attitudes 
Normative 
Considerations 

Self-Efficacy 

 

“Systematic 
thought about 
processes of 
persuasion can be 
traced back to the 
ancient Greeks, 
but as these 
developments 
attest, the study 
of persuasion 
continues to be a 
locus of exciting 
theoretical, 
empirical, and 
methodological 
developments” 
(p. 40). 

Peltier 
(2006) 

Review   Magazine article 
describing SE to 
readers. 

Premack 
and 
Woodruff 
(1978) 

Experiment Chimpanzee Problem 
comprehension 

 

 

“In assuming that 
other individuals 
want, think, 
believe, and the 
like, one infers 
states that are not 
directly 
observable and 
one uses these 
states 
anticipatorily, to 
predict the 
behavior of 
others as well as 
one's own. These 
inferences, which 
amount to a 
theory of mind, 
are, to our 
knowledge, 
universal in 
human adults” 
(p. 525). 
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Saxe et al. 
(2006) 

Experiment 12 
participants 

fMRI brain scans 

Belief > Photo 
Stories (for TOM) 

Incompatible > 
Compatible response 
selection 

Overlap of TOM and 
Response 

“Although they 
were given the 
same physical 
stimuli, and 
made the same 
correct 
responses, when 
subjects 
construed their 
task in terms of 
belief attribution, 

they responded 
faster, and 
selectively 
recruited an 
additional brain 
region than in the 
control task” (p. 
294). 

“We found a 
striking lack of 
overlap in the 
brain regions 
implicated in 
executive control 
(specifically 
response 
selection and 
inhibition) and in 
ToM tasks” (p. 
296). 

TOM (belief 
attribution) uses 
entirely different 
areas of the brain 
than response 
selection. 

Tetri and 
Vuorinen 
(2013) 

Descriptive  Actor-network 
theory 

 

 

Describes issues 
in SE research 
and suggests the 
theories from the 
psychology 
literature should 
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only be applied 
to the persuasion 
component of 
SE. 

Workman 
(2007) 

Field study 

-Questionnaire 

- Observation 

588 
participants 
from a 
single 
organization 

Affective 
Commitment 

Continuance 
Commitment 

Normative 
Commitment 

Obedience 

Reactance 

Subjective 
Behaviors 

Threat Severity 

Trust 

Vulnerability 

 

 

Elaboration 
likelihood model 

Threat 
assessment 
theory 

“[W]e found that 
people who are 
high in normative 
commitment feel 
obligated to 
reciprocate social 
engineering 
gestures and 
favors such as 
receiving free 
software or gift 
certificates by 
giving up 
company email 
addresses, 
employee 
identification 
numbers, 
financial and 
insurance data, 
and other 
confidential and 
sensitive 
information… 
people who are 
high in 
continuance 
commitment tend 
to provide 
information to 
escalating 
requests… High 
affective 
commitment was 
also found to 
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contribute to 
successful social 
engineering” (pp. 
327-328). 

Workman 
(2008) 

Field Study 588 
participants 
from a 
single U.S. 
organization 

Control for age, 
gender, and 
education 

 

 

“Our 
investigation has 
attempted to 
bridge the theory 
that explains how 
people are 
persuaded 
through 
peripheral routes 
with the social 
engineering 
outcomes using 
an empirical field 
study in which 
we investigated 
whether the 
factors that 
account for how 
people are 
persuaded in 
marketing 
campaigns to 
make purchases 
may apply as 
well to social 
engineering to 
give up 
confidential 
information” (p. 
10). 

 

Summary of What is Known and Unknown 

A review of various aspects of SE and personal information was conducted to provide 

a foundation for this study. Through this review of the literature, the constructs of 

exposure, personal information, and TOM were identified as they relate to social 
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engineering. The literature review describes what is known and unknown about the 

constructs in this research study. Research regarding SE extended across fields including 

IS, psychology, law, and business.  

SE continues to plague organizations in increasingly alarming amounts (Acquisti et 

al., 2015; Bélanger & Crossler, 2011). Much of the research into the SE phenomena is 

primarily explorative and descriptive with limited theoretical or empirical works (Tetri & 

Vuorinen, 2013; Workman, 2007, 2008). Researchers described efforts thus far as narrow 

examination of limited details related to a specific SE attack vector, which may or may 

not generalize into further research or application (Luo et al., 2013; Mouton et al., 2016; 

Tetri & Vuorinen, 2013). SE literature has offered taxonomy (Heartfield & Loukas, 

2015),  templates (Mouton et al., 2016), examples of actual attacks (Dadkhah & 

Quliyeva, 2014; Federal Bureau of Investigation, 2015a, 2016; Krombholz et al., 2013) 

and occasional empirical research (Neupane et al., 2015; Workman, 2007, 2008).  

SE and TOM literature describe how poorly people detect deception (Krombholz et 

al., 2015; Luo et al., 2013; Saxe et al., 2006; Workman, 2008). In response, the SE 

literature has called for a mechanism to provide some level of insight into the available 

information, which can be weaponized into a cyber attack (Heartfield & Loukas, 2015; 

Mouton et al., 2016; Peer & Acquisti, 2016; Tetri & Vuorinen, 2013). The privacy 

literature describes the availability of OSPI via social networks (Acquisti et al., 2015; 

Greenwood et al., 2016), credit bureaus (Sanders, 2012), personalization (Chellappa & 

Sin, 2005; Xu et al., 2011), and simple mining programs (Russell, 2013). Similarly, 

Schwartz and Solove (2011) postulated the enhanced definition of PII to differentiate PUI 



      109 

 

 

and PDI would “provide different regimes of regulation for each … standard” (p. 1877) 

“by considering the applicability of FIPs [Fair Information Practices]” (p. 1879). 

TOM is a theory from the psychology literature, which is used to observe the mind 

with the understanding that mental states can allow the explanation and prediction of the 

behavior of others (Leslie, 1987; Premack & Woodruff, 1978). Herbsleb (2005) described 

the unexpected properties of cognitive abilities within computer science where people 

can fumble through simple tasks while easily completing complicated ones. The literature 

also indicates that certain personality types (Workman, 2008) and genders are more 

susceptible to SE (Peltier, 2006). Neupane et al. (2015) found that the possibility of a 

successful phishing event significantly increased if the target was sleep deprived, 

distracted, or simply looked at the instrument too long.  

The literature has called for an understanding of what information is available and 

how it can be weaponized into SE attack vectors (Heartfield & Loukas, 2015; Mouton et 

al., 2016). Disappointingly, the SE literature has not provided the return on the 

investment originally hoped for (Conteh & Schmick, 2016; Heartfield & Loukas, 2015). 

Little is known as to the availability of information used in SE or how said information is 

obtained and weaponized into attack vectors (Luo et al., 2013; Mouton et al., 2016). 

Though researchers discussed security policy at length (Acquisti et al., 2016; Bishop & 

Gates, 2008; Parrish & Nicolas-Rocca, 2012), more research is required to understand the 

effect of organizational security training on the type and amount of OSPI shared by users 

in their personal lives (Anderson & Agarwal, 2010; Boss et al., 2015; Tetri & Vuorinen, 

2013). Additionally, little is known as to the specificity of available OSPI (Heartfield & 

Loukas, 2015; Mouton et al., 2016) and the level of exposure that information poses 
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(Oltmann, 2010). The effects of TOM on the exposure of personal information are also 

largely not understood (Herbsleb, 2005; Tetri & Vuorinen, 2013).  

The constructs of exposure (Keane et al., 1989; Youssef et al., 2013), personal 

information (Schwartz & Solove, 2011), and TOM (Leslie, 1987) were identified as they 

relate to SE. Very limited research has explored these constructs within a single study. 

Therefore, additional research is warranted to examine exposure, personal information, 

and TOM to determine their contribution to SE. 

This research assessed the SE exposure of 100 individuals. The advent of social 

media, personalization and other technologies has facilitated the exponential increase of 

available personal information (Acquisti et al., 2015; Mitnick & Simon, 2002). Social 

engineers have access to OSPI, and a growing concern in SE literature is that the 

information is being weaponized into SE attack vectors (Heartfield & Loukas, 2015; 

Mouton et al., 2016; Tetri & Vuorinen, 2013). Because of this phenomenon, users may be 

exposing themselves and inadvertently the organization that employs them. Therefore, 

assessing the exposure, personal information, and TOM of individuals may provide a 

better understanding of SE. 
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Chapter 3 

Methodology 

Introduction 

The purpose of this chapter is to detail the research methods used in this study. This 

research study was classified as developmental research. Richey and Klein (2005) stated, 

“It is not uncommon for a developmental research project to also utilize multiple research 

methodologies and designs, with different designs again being used for different phases 

of the project” (p. 31). This research study comprised a literature review, expert panel 

feedback via the Delphi method, and quantitative data collection. 

Ellis and Levy (2009) stated, “developmental research attempts to answer the 

question: How can researchers build a ‘thing’ to address the problem? It is especially 

applicable when there is not an adequate solution to even test for efficacy in addressing 

the problem” (p. 328). Salkind (2012) stated that a benefit of developmental research is 

that it can:  

Describe a particular phenomenon in a way that communicates the overall picture 

of whatever is being studied. Although these methods do not allow the luxury of 

implying any cause-and-effect relationship between variables, their use provides 

the tools needed to answer questions that are otherwise unanswerable. (p. 210)  

Richey and Klein (2005) stated, “Developmental research seeks to create knowledge 

grounded in data systematically derived from practice… In addition, it is a way to 

establish new procedures, techniques, and tools based upon a methodical analysis of 

specific cases” (p. 24).  
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According to Ellis and Levy (2009), developmental research involves three 

components: 1) criteria establishment and validation, 2) formal development via accepted 

process, and 3) determination of criteria satisfaction. Richey and Klein (2005) maintained 

that developmental research is comprised of a literature review, a Delphi method, and 

instrument / tool validation. This research study follows the precedence of the body of 

knowledge with a literature review, Delphi method, and instrument validation to satisfy 

the Ellis and Levy (2009) three components of developmental research. Figure 4 

illustrates the design of this research study. 

Figure 4 

The SEXI three phase development research design 

 

Prior research has utilized a literature review to better understand the information 

privacy literature (Pavlou, 2011), privacy in the digital age (Bélanger & Crossler, 2011), 
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and the privacy literature through an interdisciplinary lens (Smith et al., 2011). In this 

research, a literature review was performed to ascertain the candidate components of 

personal information as well as to determine a gap requiring further study. Richey and 

Klein (2005) stated, “In developmental research the conceptual framework for the study 

may be found in literature from actual practice environments (for example, an evaluation 

report) as well as from traditional research literature directed toward theory construction” 

(p. 29). A gap was discovered, in that little is known as to the SE attack composition, 

available personal information, or potential attack vectors (Heartfield & Loukas, 2015; 

Luo et al., 2013; Mouton et al., 2016; Tetri & Vuorinen, 2013).  

For this research study, a literature review provided candidate components of personal 

information for consideration in the SEXI benchmarking instrument, named herein as 

Personal Information Candidate Components (PICCs). Table 8 illustrates the 

contextuality and ambiguity of personal information described previously in the literature 

(Culnan, 1993; Solove, 2006). Table 8 also presents the PICCs categorized as PUI, PII, 

PDI, or generalized in accordance with the respective source and provides the respective 

label that will be used for analysis. The information presented in Table 8 is based on 

source definition and usage. For example, Schwartz and Solove (2011) placed an item in 

multiple categories due to context, while McCallister et al. (2010) designated some items 

as capable of identifying a unique individual and others as not contributing to 

identification – while categorizing all as PII. 
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Table 8  1 

PICCs by Source with Page Numbers 2 

Label Item PUI PII PDI Generalized 

PC001 Acceleration via  
personal tracking 

   
Kang (814) 

PC002 Account numbers 
 

McCallister (ES-1) McCallister (2-2) PCI DSS (7) 
PC003 Activities (daily life) 

 
McCallister (ES-2) 

  

PC004 Age Schwartz (1824) McCallister (A-3) 
  

PC005 Agency seal /  
Organizational logo 

   
FIPS 201 (29)  

PC006 Alias 
 

McCallister (ES-1) 
  

PC007 Area code 
 

McCallister (ES-2) 
  

PC008 Audit log of 
user actions 

 
McCallister (2-1) 

  

PC009 Biometric records (retina,  
iris, voice signature, facial  
geometry, facial recognition) 

 
McCallister (ES-1)  McCallister (2-1) FIPS 201 (44) 

Martin (68)  

PC010 Bluetooth connections 
to other devices 

   
Kang (816) 

PC011 Calorie counting with  
images of food 

   
Kang (815) 

PC012 Cardholder name 
   

PCI DSS (7) 
PC013 Cell phone  

number 

 
McCallister (2-2) 

  

PC014 Cell tower  
location 

   
Kang (816) 

PC015 Credit card  
account number 

 
McCallister (ES-1)  Schwartz (1848) 

McCallister (2-2) 
PCI DSS (7) 
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PC016 Credit card  
CAV2 / CVC2 /  
CVV2 / CID 

   
PCI DSS (7) 

PC017 Card expiration date  
   

FIPS 201 (27) 
PCI DSS (7) 

PC018 Credit card pin 
   

PCI DSS (7) 
PC019 Credit card service code 

   
PCI DSS (7) 

PC020 Credit score McCallister (2-1) 
   

PC021 Criminal history 
 

McCallister (B-1) 
  

PC022 Date of birth Schwartz (1842) McCallister (ES-2) McCallister (2-1) Acquisti (511) 
PC023 Demographics Sweeney (104) 

  
HIPAA (89) 

PC024 Driver's license  
[number] 

 
McCallister (ES-1)  FIPS 201 (9) 

McCallister (2-2) 

 

PC025 Education information 
 

McCallister (2-1) 
Schwartz (1822) 

  

PC026 Electricity usage 
   

Kang (840) 
Martin (68) 

PC027 Electronic facial  
image / Selfie 

 
McCallister (ES-1)  McCallister (2-2) FIPS 201 (39) 

PC028 E-mail address 
 

McCallister (ES-1) 
Schwartz (1857) 

  

PC029 Employee identification 
  

McCallister (A-1) 
 

PC030 Employment history 
 

McCallister (B-1) 
  

PC031 Employment information 
 

McCallister (ES-2) 
  

PC032 Family income Schwartz (1851) 
   

PC033 Favorite movies Schwartz (1851) 
   

PC034 Favorite restaurants Schwartz (1851) 
   

PC035 Favorite television shows Schwartz (1851) 
   

PC036 Financial records / information, 
balances 

 
McCallister (ES-2)  Schwartz (1882) 

 

PC037 Fingerprints 
 

McCallister (ES-1)  
 

FIPS 201 (6)  



      116 

 

 

PC038 Fingerprints of two  
fingers 

   
FIPS 201 (6) 

PC039 Full name 
 

McCallister (ES-1) 
Schwartz (1864) 

McCallister (2-1) 
Schwartz (1848) 

Schwartz (1830)  

PC040 Full set of fingerprints 
   

FIPS 201 (6) 
PC041 Gender Schwartz (1842) McCallister (4-5) 

 
Acquisti (513) 

PC042 Genetic information Schwartz (1845) 
  

Kang (840) 
PC043 Geographical indicators 

(location, i.e., city name, 
latitude, longitude, etc.) 

 
McCallister (ES-2)  

  

PC044 Global Positioning  
Systems (GPS) 

   
Kang (840) 
Martin (68) 

PC045 Handwriting 
 

McCallister (ES-1) 
  

PC046 High school name    Acquisti (511) 
PC047 Holographic images (on  

identification) 

   
FIPS 201 (23)  

PC048 Host-specific persistent  
static identifier (system / host 
name, etc.) 

 
McCallister (2-2) 

  

PC049 IP address (network location  
of a network device; dynamic 
/ fixed) 

Schwartz (1838) McCallister (2-2) 
Schwartz (1839) 

 
PCI DSS (12) 
Schwartz (1818) 

PC050 Laser etches (on  
identification) 

   
FIPS 201 (23)  

PC051 License plate 
   

Martin (68) 
PC052 MAC address (hardware  

ID of network device) 

 
McCallister (2-2) 

  

PC053 Maiden name 
 

McCallister (ES-1) McCallister (2-2) 
 

PC054 Marital status Schwartz (1851) 
   

PC055 Medical history 
 

McCallister (2-2) 
  

PC056 Medical information Schwartz (1845) McCallister (ES-2) 
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PC057 Medical test  
results 

 
McCallister (2-2) 

  

PC058 Mental health Schwartz (1824) 
  

HIPAA (89) 
PC059 Mother's maiden name 

 
McCallister (ES-1) McCallister (2-1) 

 

PC060 Nationality 
 

McCallister (A-3) 
  

PC061 Newsletter subscription 
 

McCallister (ES-3) 
  

PC062 Organization affiliation / 
membership 

Schwartz (1851) 
  

FIPS 201 (27)  

PC063 Owned property 
(Mortgage, vehicle  
Registration, title) 

Schwartz (1851) 
 

Schwartz (1882)  
 

PC064 Parent's middle name 
 

McCallister (3-3) 
  

PC065 Partner(s) Name 
 

McCallister (3-3) 
 

Acquisti (510) 
PC066 Passport number 

 
McCallister (ES-1)  FIPS 201 (9) 

McCallister (2-1) 

 

PC067 Password 
 

McCallister (B-4) 
 

PCI DSS (76) 
PC068 Patient identification  

Number 

  
McCallister (2-2) 

 

PC069 Payment for healthcare 
   

HIPAA (89) 
PC070 Persistent Identifier 

(customer number held in 
cookie, processor serial  
number, alphanumeric  
identifier)  

 Schwartz (1832) Schwartz (1855)  

PC071 Personal heart- 
rate meter 

   
Kang (814)  

PC072 Photographic image 
 

McCallister (2-2) 
 

Acquisti (512) 
PC073 Physical health 

   
HIPAA (89) 

PC074 Place of birth  
 

McCallister (ES-2) McCallister (2-1) 
 

PC075 Place of sensing moment 
   

Kang (814) 
PC076 Political views 

 
McCallister (3-3) 

 
Acquisti (510) 
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PC077 Professional title  McCallister (3-5)   
PC078 Provision of healthcare 

   
HIPAA (89) 

PC079 Race 
 

McCallister (ES-2) 
  

PC080 Rank 
   

FIPS 201 (28) 
PC081 Recent purchases 

 
Kang (825) 
Schwartz (1851) 

 Kang (825) 
Martin (71) 

 

PC082 Religion 
 

McCallister (ES-2) 
  

PC083 Salary information 
 

McCallister (2-2) 
  

PC084 Search engine query 
(miscellaneous to vanity) 

Schwartz (1847) Schwartz (1848) Schwartz (1848) Acquisti (510) 
 

PC085 Sexual fantasy / behavior 
 

McCallister (3-3) 
 

Acquisti (513) 
Moon (336) 

PC086 Sexual orientation 
 

McCallister (3-3) 
 

Acquisti (510) 
PC087 Signature (digital)    FIPS 201 (40) 
PC088 Signature (handwritten) 

   
FIPS 201 (28) 

PC089 Social media profile 
   

Acquisti (509) 
PC090 Social Security Number 

 
McCallister (ES-1) 
Schwartz (1864) 

FIPS 201 (9) 
McCallister (2-1) 
Schwartz (1824) 

 

PC091 Status updates 
 

McCallister (2-1) 
 

Kang (815) 
PC092 Street address 

 
McCallister (ES-1) 

 
Schwartz (1830) 

PC093 Tax records 
 

McCallister (3-3) 
  

PC094 Taxpayer identification  
number 

 
McCallister (ES-1)  McCallister (2-2) 

 

PC095 Telephone number 
 

McCallister (2-2) 
  

PC096 Location / Time of sensing  
moment (self-surveillance via 
smartphone, fitness device) 

   
Kang (814)  

PC097 Timestamp of Web page visit 
 

McCallister (3-3) 
  

PC098 Uniform Resource Locator  
(URL) of last Web page 

 
McCallister (3-6) 
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PC099 Unique health identifier 
   

HIPAA (191) 
PC100 User identification 

 
McCallister (4-8) 

  

PC101 Web browser history Schwartz (1858) 
   

PC102 Weight 
 

McCallister (ES-2) 
  

PC103 Work phone 
 

McCallister (2-2) 
  

PC104 X-Rays  McCallister (2-2)   
PC105 ZIP Code Schwartz (1842) McCallister (ES-3)   

1 
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The Delphi method has been used to bring clarification, definition, and an enhanced 1 

understanding of complex problems, such as the one posed in this research study. The 2 

Delphi method has been used to refine a measure of resistance behavior (Rivard & 3 

Lapointe, 2012) and to identify information and communication technologies research 4 

issues (Lee, 2016). Dalkey and Helmer (1963) provided the following characteristics of 5 

the Delphi method, “Its object is to obtain the most reliable consensus of opinion of a 6 

group of experts. It attempts to achieve this by a series of intensive questionnaires 7 

interspersed with controlled opinion feedback” (p. 458). Delphi research typically 8 

consists of anonymity, iteration, controlled feedback, and an aggregated response (von 9 

der Gracht, 2012). This research followed the literature by soliciting cybersecurity 10 

experts to participate in a Delphi method involving multiple rounds of surveys, thereby 11 

providing feedback. Specifically, this research assessed the feedback of the SMEs for the 12 

purpose of designing the SEXI benchmarking instrument (Ramim & Lichvar, 2014). 13 

For this research, the stop criteria for the Delphi study triggered if over 75% of SME 14 

responses on PICC identification as one of the DNA, PUI, PII, or PDI across all items in 15 

a single round (von der Gracht, 2012). A second stop condition triggered if there is 15% 16 

or less change in the categorization of all the PICCs between two consecutive rounds, 17 

thereby reaching stability (Dajani et al., 1979; von der Gracht, 2012). Consensus for this 18 

Delphi study was defined as 75% for the PICC items presented to the SMEs with a 1 – 10 19 

scale, as shown in Appendix C, and 80% for items presented to SMEs by exposure 20 

category, as shown in Appendix D (Diamond et al., 2014; von der Gracht, 2012). 21 

Following Fitch et al. (2001), “the two-round process is designed to sort” the PICCs into 22 

three categories of exposure (p. 5). Schwartz and Solove (2011) declared, “Despite the 23 
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importance of the concept of PII to privacy law and regulation, there remains a lack of 1 

consensus in the United States about how to define it. All current legal models for this 2 

concept are flawed” (p. 1835). Therefore, this research developed an instrument to 3 

measure exposure due to OSPI. Any PICC placed within the same personal information 4 

category: PDI, PII, or PUI by at least 75% of SMEs were included in the SEXI 5 

benchmarking instrument. Items not reaching consensus were accessed on an individual 6 

basis. 7 

The main RQ that this study addressed was: What are the expert-approved required 8 

components comprising an index of exposure to social engineering attacks due to OSPI? 9 

Richey and Klein (2005) stated: 10 

research questions, rather than hypotheses, commonly serve as the organizing 11 

framework for developmental studies. This tactic is appropriate if there is not a 12 

firm base in the literature that one can use as a basis for formulating a 13 

hypothesis…, especially if the problem focuses on emerging technologies (p. 27).  14 

This research study comprises six RQs, with RQ1, RQ2, and RQ3 seeking the 15 

development of the SEXI benchmarking instrument, while RQ4, RQ5, as well as RQ6 16 

focus on validation. Figure 5 illustrates the primary steps of the Delphi method in this 17 

research. 18 

Figure 5 19 

The Delphi method process culminating in instrument validation 20 
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 1 

Four steps were required to conduct the Delphi portion of this research. The first step 2 

involved a review of the literature to ascertain PICCs that were presented to SMEs for 3 

them to assess the level of exposure for each component. PICCs with the median SME 4 

score of ≤ 1 are designated as not being personal information, those in the 1 – 3 range are 5 

categorized as PUI, those in the 4 – 8 range as PII, and those in the 9 – 10 range as PDI. 6 

Table 9 presents the classifications of each exposure category. 7 

Table 9 8 

Classification of Exposure Categories for SME Round 1 Feedback 9 

Category Exposure Level Low Threshold High Threshold 
DNA Does Not Apply 0 ≤ 1 
PUI Unidentifiable > 1 ≤ 3 
PII Identifiable ≥ 4 ≤ 8 
PDI Identified ≥ 9 ≤10 

 10 

The second step was to facilitate iterations of the Delphi method using Internet 11 

surveys presenting the PICCs to SMEs for assessment and feedback. Survey Monkey 12 

hosted the surveys and functioned as the data collection platform, while providing the 13 

expert panel anonymity. Appendix C presents the first-round survey instrument to be 14 

administered to the panel of experts collecting information concerning the work 15 

environment, demographic information, and SEXI assessments from the SMEs.  16 
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The second survey, presented in Appendix D, provided the results of the first survey 1 

to the SMEs seeking their agreement. This cycle continued until a stop criterion was 2 

triggered, thereby ending the Delphi process and Phase 1 (see Figure 4). Step 3 and Phase 3 

2 began with the construction of the SEXI benchmarking instrument, based on feedback 4 

from the SMEs. The contributions of the SMEs were assessed and reported to address 5 

RQ1, RQ2, and RQ3. 6 

The second phase operationalized a SEXI using OSPI. To answer RQ4, this study 7 

attempted to measure the exposure of 50 Fortune 500 executives and 50 Hollywood 8 

personas to SE due to OSPI. Data collection used the SME prescribed SEXI instrument to 9 

track the existence of each personal information indicator found, while not collecting any 10 

personal information. Appendix E illustrates the data collection instrument that was used 11 

to measure the exposure of the executives and personas. Once all data collection was 12 

completed, the second phase concluded. The final phase involved the analysis and 13 

reporting of the data to answer RQ4, RQ5, and RQ6.  14 

The Delphi method allows this study to perform quantitative assessments of the SEXI 15 

instrument (Creswell, 2012). However, little discernable literature existed at the time of 16 

this research addressing exposure to SE due to OSPI. This study first sought to 17 

understand the phenomena. This study was descriptive in that it endeavors to collect data 18 

that describes characteristics of personal exposure using candidate components of 19 

personal information, placed into three categories defined herein as PUI, PII, or PDI.  20 

Research Methods 21 

This study used a developmental research approach comprising three phases. Van den 22 

Akker et al. (2012) stated, developmental research involves the development of a 23 
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prototypical product and “generating methodological directions for the design and 1 

evaluation of such products” (p. 4). According to Ellis and Levy (2009), developmental 2 

research is “applicable when there is not an adequate solution to even test for efficacy in 3 

addressing the problem and presupposes that researchers don’t even know how to go 4 

about building a solution that can be tested” (p. 328). Ellis and Levy (2009) concluded 5 

that “developmental research attempts to answer the question: How can researchers build 6 

a ‘thing’ to address the problem?” (p. 328). Ellis and Levy (2009) described 7 

developmental research as consisting of three components, with the first, “establishing 8 

and validating criteria the product must meet” (p. 328). Reviewing and establishing the 9 

criteria of SEXI from the literature on this topic met this component. Second, “follow a 10 

formalized, accepted process for developing the product” (Ellis & Levy, 2009, p. 326). 11 

This second component was satisfied by creating a set of criteria from literature to be 12 

used to develop the SEXI benchmarking instrument. The third component is “subjecting 13 

the product to a formalized, accepted process to determine if it satisfies the criteria” (Ellis 14 

& Levy, 2009, p. 326). The third component was satisfied by the expert panel evaluating 15 

SEXI by way of assessing PICCs obtained from literature review and identifying the 16 

significance of each criterion as PDI, PII, or PUI. The relative importance of each 17 

criterion within each measure, along with a relative importance of the measures, were 18 

aggregated to develop the SEXI instrument.  19 

The expert panel was elicited from the official information security groups and 20 

organizations via official social media venues. Cybersecurity experts who took part in the 21 

study were presented with OSPI properties (i.e., last name, social security number, etc.) 22 

and their suggested categories, obtained from the literature review from Acquisti et al. 23 
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(2015), Ferraiolo et al. (2013), “HIPAA” (1996), Kang et al. (2011), Martin (2015), 1 

McCallister et al. (2010), Moon (2000), Schwartz and Solove (2011), as well as Sweeney 2 

(1997) (see Table 8). The first survey began the information privacy iterations by 3 

presenting 105 PICCs from the literature to the SMEs. The expert panel was asked to 4 

assign exposure ratings to each personal information indicator as well as exposure 5 

categories. The second survey asked the SMEs to categorize the SME-suggested personal 6 

information indicators as well as evaluate those items designated during the first survey 7 

as not belonging to personal information. At the conclusion of phase one, phase two 8 

began with the development of the SEXI instrument based on SME feedback (Ellis & 9 

Levy, 2009).  10 

The first phase (see Figure 4) addressed RQ1 and RQ2, with the development and 11 

evaluation of the SEXI benchmarking instrument to be used to assess 50 executives of 12 

Fortune 500 companies and 50 Hollywood personas (a group under constant exposure) 13 

via an expert panel using the Delphi expert methodology. Clayton (1997) maintained that 14 

group size for Delphi panels should be between 15 – 30 for experts if they share a 15 

common discipline and 5 – 10 if they do not necessarily form a statistical population. The 16 

expert panel was elicited from academia and practitioners holding industry certification.  17 

This study used two surveys. The first survey (see Appendix C) facilitated an 18 

understanding of the composition of the panel of experts and presented the initial PICCs 19 

as well as collected work environment, background, demographic information, while 20 

eliciting feedback on the PICCs from the SMEs. The second survey (see Appendix D) 21 

presented the results of the first survey to the SMEs, eliciting their agreement with the 22 

assessments of the panel expert during the first round.  23 
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These surveys ensured the requirements for this study are met. The first requirement 1 

was that each member of the panel of experts shares a TOM. This requirement was met 2 

by evaluating the cybersecurity experience and work environment of the SMEs (see 3 

Appendix C). The second requirement was an extensive background. This requirement 4 

was met by ensuring respondents have experience in information privacy. The third 5 

requirement of this study was that the participants fit within the context of U.S. privacy 6 

considerations. This requirement was met by ensuring each SME has at least one 7 

industry-accepted certification. Responses for any panel member not meeting these 8 

requirements were excluded. 9 

In phase two of this research, RQ3 addressed the development of the instrument 10 

based on the categorization and weight of PICCs feedback of the SME as well as data 11 

collection on a random selection of 50 Fortune 500 executives and 50 Hollywood 12 

personas. The SEXI benchmarking instrument was used to collect data from OSPI 13 

sources on 100 individuals denoting the existence, not specifics, of personal information 14 

in publicly accessible venues (see Appendix E). Table 10 presents the collection of 15 

anonymized data indicating if the specified information was found and an indicator of 16 

where it was found (i.e., FB = Facebook, LN = Linkedin, GS = Google Search). 17 

Table 10 18 

Data Collection Methodology of Personal Information Participant 19 
Source Identifier DOB Home Address Postal Code Picture Gender 

GS F001-C3 0 1 1 0 0 
FB F001-C3 1 0 0 1 1 
LN F007-C1 1 1 0 1 1 
GS F002-C4 1 1 1 0 1 
 20 
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Phase three of this research study included both the pre-analysis data screening and 1 

the data analysis from the data collected using the SEXI benchmarking instrument (see 2 

Figure 4). The results of the data analysis were used to assess 100 individuals and 3 

develop comparison reports addressing RQ4, RQ5, and RQ6. The comparison report 4 

included graphical representation where appropriate, i.e., from the SEXI aggregation, etc. 5 

RQ6 may be of interest as it compares the SEXI of Hollywood persons with the SEXI of 6 

executives of Fortune 500 companies with privacy, risk management, and cybersecurity 7 

implementations. 8 

 Instrument and Measures 9 

Instruments 10 

This research study followed the developmental methodology in pursuit of a SEXI. 11 

This research elicited responses from an expert panel to assess the validity of criteria 12 

content, identify measures, and establish weight allocations based on three sub-measures, 13 

each ranging from 0.0 to 1.0: the Measurement of Personally Distinguishable 14 

Iinformation (PDIM), the Measurement of Personally Identifiable Information (PIIM), 15 

and the Measurement of Personally Unidentifiable Information (PUIM) (McCallister et 16 

al., 2010; Schwartz & Solove, 2011).  17 

Two instruments used in this study are supported by literature via a review that found 18 

an excess of 105 PICCs in articles by Acquisti et al. (2015), Ferraiolo et al. (2013), 19 

“HIPAA” (1996), Kang et al. (2011), Martin (2015), McCallister et al. (2010), Moon 20 

(2000), Schwartz and Solove (2011), as well as Sweeney (1997) (see Table 8). To reduce 21 

the number of items presented to the SMEs, identical measures, i.e., demographics from 22 

any source (Sweeney, 1997) and demographics created by or for a healthcare professional 23 
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(“HIPAA”, 1996), were consolidated as demographics. The set of PICCs offered to the 1 

SMEs totaled 105, which is presented in Table 8. 2 

The first instrument collected the assessments of 105 PICCs from a panel of experts 3 

via a Delphi method eliciting their opinion on the level of exposure of an individual due 4 

to a particular PICC, in and of itself. The respective assessments of each SME identified 5 

each PICC as PDI, PII, PUI, DNA, or UNF. In addition, the SMEs were asked to suggest 6 

items that are currently not represented in the list of 105 PICCs. The aggregate 7 

assessments of the SMEs provided the initial weights and categories of each PICC. 8 

Following Fitch et al. (2001), the SMEs were presented each PICC on a scale of 1 to 10, 9 

where “1” means minimum exposure of an individual due to the item and “10” means 10 

maximum exposure of the individual as the item identifies them. A middle rating of “5” 11 

denotes a potential of identification in the PICC. The 1-10 scales were treated as ordinal 12 

scales, and as such, the median of the responses from the SMEs were used rather than the 13 

mean (von der Gracht, 2012). This is primarily due to the inability to define the distance 14 

between points (Linstone & Turoff, 1975). The SMEs rated the PICCs at least twice via a 15 

Delphi method. Subsequent rounds were added as necessary to reach a consensus on each 16 

PICC. Linstone and Turoff (1975) discussed similar usage of the Delphi method “to 17 

identify and estimate linear weights for those aspects of experience, which they judged to 18 

be important in determining the quality of life or sense of well-being of an individual” (p. 19 

383). This study differs from the Delphi study described by Linstone and Turoff (1975) as 20 

in that study, the initial 200-300 components were based on the feedback of SMEs, while 21 

this research presents 105 PICCs to SMEs from the literature review and elicits additional 22 

PICCs from the panel of experts. Following the Delphi study described by Linstone and 23 
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Turoff (1975), this research sought to cluster a large list of components into those having 1 

a similar trait (i.e., exposure level). The findings from the Delphi study described by 2 

Linstone and Turoff (1975) “indicated that group relative importance ratings produce 3 

reasonable ratio scales, and that the reliability of such judgments across randomly 4 

selected groups is high” (p. 383). 5 

The second instrument presented the aggregate groupings of the first instrument to the 6 

SMEs. The median values were used to assign categories to the PICCs, as shown in Table 7 

9. The items in the second instrument were presented via a nominal scale grouped by 8 

SME-identified categories (e.g., DNA, PDI, PII, PUI), thereby providing a mechanism 9 

for each expert to consider each PICC amongst items in the same category. The SME 10 

suggested items from the first instrument were placed with the PICCs in the category 11 

suggested (e.g., DNA, PDI, PII, PUI) and presented to the SMEs. Appendix D provides 12 

the second instrument. 13 

Measures 14 

The intent of this research was to develop a single index value (SEXI) that is 15 

representative of the exposure to SE due to OSPI, as measured by PUI, PII, PDI. Three 16 

primary measurements were used to identify each, in and of itself, PICC: PDI – 17 

definitively identify someone, PII – the potential of identifying a specific individual, and 18 

PUI – having no chance to identify an individual on its own. Two additional non-19 

instrument measurements were used: the first to designate items the SMEs identify for 20 

removal from the lists collected via literature review as not applying to personal 21 

information (DNA), as well as a second to designate items as not being familiar to the 22 

respective expert panel member (UNF). A 1-10 scale was used to assess the exposure of 23 
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each PICC, where “1” indicated minimum exposure and “10” represented maximum 1 

exposure. A middle rating of “5” indicated the item had the potential to identify an 2 

individual. PICCs with the median SME score of “0” were designated as not being 3 

personal information, those in the 1 – 3 range were categorized as PUI, those in the 4 – 8 4 

range as PII, and those in the 9 – 10 range as PDI (see Table 9). The SME-approved value 5 

for each PICC served to indicate its component weight. The measurement of each 6 

category (i.e. PDIM, PIIM, PUIM) was the total of the sum of its components multiplied 7 

by the SME-identified category weight. Figure 6 illustrates the hierarchical structure from 8 

the three measures. 9 

Figure 6 10 

The SEXI hierarchical structure: index, measures, and categories 11 

 12 

The SME responses were used to assess 50 executives of Fortune 500 companies and 13 

50 Hollywood personas by measuring the criteria established by the expert panel. 14 

Following Eom and Paek (2009), SEXI is calculated with an additive linear model. The 15 
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subsequent equations indicate the computations to be used in the constructs as well as the 1 

summation. 2 

Table 11 presents the PICCs designated as Personally Distinguishable Information 3 

Components (PDIC). Equation 1 presents the PDIM where i = the number of PICCs 4 

categorized as PDI, and PDIM is calculated by multiplying the SME-indicated weight by 5 

the existence of a PDIC.  6 

𝑃𝐷𝐼𝑀 PDI    w PDIC                                                       1  7 

𝑃𝐷𝐼𝑀 w PDIC  8 

 
1

32.528
2.806 ∙ PDIC 2.639 ∙ PDIC 2.639 ∙ PDIC9 

2.639 ∙ PDIC 2.722 ∙ PDIC 2.944 ∙ PDIC  10 

2.694 ∙ PDIC  2.694 ∙ PDIC  2.611 ∙ PDIC  11 

2.639 ∙ PDIC  2.806 ∙ PDIC  2.694 ∙ PDIC  12 

0 𝑃𝐷𝐼𝑀 1 13 

Table 11 14 

Expert Panel Designated Personally Distinguishable Information Components 15 

Identifier Designation Description 
PIC009 PDI001 Biometric records 
PIC015 PDI002 Credit card account number 
PIC021 PDI003 Criminal history 
PIC024 PDI004 Driver's license [number] 
PIC027 PDI005 Electronic facial image / selfie 
PIC040 PDI006 Full set of fingerprints 
PIC042 PDI007 Genetic information 
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PIC066 PDI008 Passport number 
PIC072 PDI009 Photographic image 
PIC087 PDI010 Signature Digital 
PIC090 PDI011 Social Security Number 
PIC093 PDI012 Tax records 

 1 

Table 12 presents the PICCs designated as Personally Identifiable Information 2 

Components (PIIC). Equation 2 presents the PIIM where i = the number of PICCs 3 

categorized as PII and PIIM is calculated by multiplying the SME-indicated weight by 4 

the existence of a PIIC. 5 

𝑃𝐼𝐼𝑀 PII    w PIIC                                                       2  6 

𝑃𝐼𝐼𝑀 w PIIC  7 

 
1

124.45
2.278 ∙ PIIC 1.917 ∙ PIIC 1.917 ∙ PIIC ⋯8 

2.028 ∙ PIIC 1.972 ∙ PIIC 1.806 ∙ PIIC  9 

 10 

0 𝑃𝐼𝐼𝑀 1 11 

Table 12 12 

Expert Panel Designated Personally Identifiable Information Components 13 

Identifier Designation Description 

PIC002 PII001 Account numbers 
PIC003 PII002 Activities 
PIC006 PII003 Alias 
PIC008 PII004 Audit log of user actions 
PIC010 PII005 Bluetooth connections to other devices 
PIC012 PII006 Cardholder name 
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PIC013 PII007 Cell phone number 
PIC014 PII008 Cell tower location 
PIC016 PII009 Credit card CAV2 / CVC2 / CVV2 / CID 
PIC022 PII010 Date of birth 
PIC023 PII011 Demographics 
PIC025 PII012 Education information 
PIC028 PII013 E-mail address 
PIC029 PII014 Employee identification 
PIC030 PII015 Employment history 
PIC031 PII016 Employment information 
PIC036 PII017 Financial records / information, balances 
PIC037 PII018 Fingerprints 
PIC038 PII019 Fingerprints of two fingers 
PIC039 PII020 Full name 
PIC043 PII021 Geographical indicators 
PIC044 PII022 Global Positioning Systems (GPS)  
PIC045 PII023 Handwriting 
PIC047 PII024 Holographic images 
PIC048 PII025 Host-specific persistent static identifier 
PIC049 PII026 IP address 
PIC051 PII027 License plate 
PIC052 PII028 MAC address 
PIC053 PII029 Maiden name 
PIC055 PII030 Medical history 
PIC056 PII031 Medical information 
PIC057 PII032 Medical test results 
PIC058 PII033 Mental health 
PIC059 PII034 Mother's maiden name 
PIC062 PII035 Organization affiliation / membership 
PIC063 PII036 Owned property 
PIC065 PII037 Partner(s) name 
PIC067 PII038 Password 
PIC068 PII039 Patient identification  number 
PIC069 PII040 Payment for health care 
PIC070 PII041 Persistent Identifier 
PIC074 PII042 Place of birth 
PIC077 PII043 Professional title 
PIC081 PII044 Recent purchases 
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PIC084 PII045 Search engine query 
PIC088 PII046 Signature Handwritten 
PIC089 PII047 Social media profile 
PIC092 PII048 Street address 
PIC094 PII049 Taxpayer identification number 
PIC095 PII050 Telephone number 
PIC096 PII051 Location / Time of sensing moment 
PIC099 PII052 Unique health identifier 
PIC100 PII053 User identification 
PIC101 PII054 Web browser history 
PIC103 PII055 Work phone 
PIC104 PII056 X-Rays 
PIC105 PII057 ZIP Code 

 1 

Table 13 presents the PICCs designated as Personally Unidentifiable Information 2 

Components (PUIC). Equation 3 presents the PUIM where i = the number of PICCs 3 

categorized as PUI and PUIM is calculated by multiplying the SME-indicated weight by 4 

the existence of a PICC. 5 

 6 

𝑃𝑈𝐼𝑀 PUI    w PUIC                                                       3  7 

𝑃𝑈𝐼𝑀 w PUIC  8 

 
1

58.33
1.778 ∙ PUIC 1.722 ∙ PUIC 1.694 ∙ PUIC ⋯9 

1.750 ∙ PUIC 1.722 ∙ PUIC 1.583 ∙ PUIC  10 

0 𝑃𝑈𝐼𝑀 1 11 

 12 

 13 



      135 

 

 

Table 13 1 

Expert Panel Designated Personally Unidentifiable Information Components 2 

Identifier Designation Description 
PIC001 PUI001 Acceleration via personal tracking 
PIC004 PUI002 Age 
PIC005 PUI003 Agency seal / Organizational logo 
PIC007 PUI004 Area code 
PIC011 PUI005 Calorie counting with images of food 
PIC017 PUI006 Card expiration date 
PIC018 PUI007 Credit card pin 
PIC019 PUI008 Credit card service code 
PIC020 PUI009 Credit score 
PIC026 PUI010 Electricity usage 
PIC032 PUI011 Family income 
PIC033 PUI012 Favorite movies 
PIC034 PUI013 Favorite restaurants 
PIC035 PUI014 Favorite television shows 
PIC041 PUI015 Gender 
PIC046 PUI016 High school name 
PIC050 PUI017 Laser etches 
PIC054 PUI018 Marital status 
PIC060 PUI019 Nationality 
PIC061 PUI020 Newsletter subscription 
PIC064 PUI021 Parent's middle name 
PIC071 PUI022 Personal heart-rate meter 
PIC073 PUI023 Physical health 
PIC075 PUI024 Place of sensing moment 
PIC076 PUI025 Political views 
PIC078 PUI026 Provision of health care 
PIC079 PUI027 Race 
PIC080 PUI028 Rank 
PIC082 PUI029 Religion 
PIC083 PUI030 Salary information 
PIC085 PUI031 Sexual fantasy / behavior 
PIC086 PUI032 Sexual orientation 
PIC091 PUI033 Status updates 
PIC097 PUI034 Timestamp of Web page visit 
PIC098 PUI035 Uniform Resource Locator (URL) of last Web page 
PIC102 PUI036 Weight 

 3 
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Equation 4 presents a single index value (SEXI) that is representative of the exposure 1 

to SE due to OSPI as measured by the sum of PDIM, PIIM, and PUIM each multiplied by 2 

their respective SME-indicated category weight.  3 

 4 

SEXI  W 𝑃𝐷𝐼𝑀 W 𝑃𝐼𝐼𝑀 W 𝑃𝑈𝐼𝑀                             4  5 

 6 
 7 
SEXI  50.21 ∙ 𝑃𝐷𝐼𝑀 34.47 ∙ 𝑃𝐼𝐼𝑀 15.32 ∙ 𝑃𝑈𝐼𝑀                        8 
 9 
0 𝑆𝐸𝑋𝐼 100 10 

Validity and Reliability 11 

An expert panel evaluated the candidate components of SEXI, following a Delphi 12 

technique, derived from prior pertinent literature that described personal information 13 

where an individual is unidentifiable, identifiable, and identified (McCallister et al., 14 

2010; Schwartz & Solove, 2011). The PICCs were presented to the SMEs in a 10-point 15 

Likert scale, ranging from 1 (PUI) to 10 (PDI). Items identified as not applying to 16 

personal information (DNA) were reported and removed from the SEXI benchmarking 17 

instrument. Feedback from an expert panel using the Delphi expert methodology 18 

provided a weighted value to each item (Ramim & Lichvar, 2014). The instrument used 19 

to evaluate SEXI for each executive utilized nominal scores indicating if exposure was 20 

found with a true or false status (Bhattacherjee, 2012; Cohen, 1960). Finally, the TOM of 21 

the SMEs were assessed using nominal and Likert scales to evaluate the privacy practices 22 

implemented by SMEs to ensure each meets the requirements of this study (Anderson & 23 

Agarwal, 2010; Chellappa & Sin, 2005). 24 
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The recruitment of SMEs was not limited to a single type of industry or government 1 

to avoid expert panel bias associated with the topic of privacy. Privacy has existed in the 2 

literature for centuries (Pavlou, 2011) and preconceptions may have been formed by 3 

organizational policy (Mouton et al., 2016), legal mandates dictating behaviors and 4 

activities of organizations (Culnan & Williams, 2009; FIPS 199, 2004; McCallister et al., 5 

2010; Ross et al., 2006), as well as industry expectations (Barker, 2013; PCI Security 6 

Standards Council, 2016; Ryan & Loeffler, 2010). Tversky and Kahneman (1975) as well 7 

as Lewis (2017) discussed additional bias that may affect expert panels: significance 8 

assumed by familiarity, relative significance, imagined significance, and significance 9 

associated with frequency. To combat these potential expert panel bias, the list of 10 

construct items was combined and alphabetized before their consideration. 11 

Validity and reliability were addressed in this research by eliciting the feedback from 12 

an expert panel to verify and establish weights used for each item in the first instrument 13 

(Ramim & Lichvar, 2014). Mortality is due to participant attrition, subsequently changing 14 

the group composition before the study is completed (Salkind, 2012) and is a threat when 15 

Delphi expert methodology is used, so a minimum of 15 respondents is necessary for 16 

each survey (Clayton, 1997). Testing bias was not a threat as no pre-test was administered 17 

(Salkind, 2012; Sekaran & Bougie, 2013). To establish instrument validity for this study 18 

the content and constructs were evaluated (Sekaran & Bougie, 2013) and feedback from 19 

the panel of experts was solicited for ensuring SEXI is accurately measuring the exposure 20 

to SE (Sekaran & Bougie, 2013; Straub et al., 2004; Straub, 1989). External validity was 21 

addressed in that this study is not using a contrived setting, thereby being increasingly 22 

generalizable (Bhattacherjee, 2012; Sekaran & Bougie, 2013). 23 
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Institutional Review Board (IRB) approval was obtained prior to any data collection 1 

or Delphi iteration. Appendix A presents the IRB approval letter. The SEXI 2 

benchmarking instrument had the potential to acquire PII for each participant via OSPI. 3 

This research did not collect any such information. The purpose of this study was not to 4 

collect personal information, but to evaluate the SEXI for each participant. Any personal 5 

information obtained through this study was destroyed. 6 

Sample 7 

This research sought the consensus of 35 SMEs, which satisfies the requirement of 8 

the literature of 15 – 30 (Clayton, 1997). The resulting instrument was used to assess the 9 

SEXI of 50 top executives of organizations from multiple industries and 50 Hollywood 10 

personas using convenience sampling from information gathered via OSPI. Creswell 11 

(2012) stated, “in convenience sampling the researcher selects participants because they 12 

are willing and available to be studied” (p. 167). Sekaran and Bougie (2013) suggested 13 

for sample sizes to be between 30 and 500 for most research and noted that the sample 14 

size should be at least 10 times the number of variables under investigation. 15 

Pre-analysis Data Screening 16 

Mertler and Reinhart (2013) stated pre-analysis screening is mandatory and should be 17 

conducted before statistical analysis. The survey questions used an online research 18 

medium (see Appendices C & D), while the SEXI benchmarking instrument used 19 

found/not found nomenclature (see Appendix E). The results were examined multiple 20 

times for accuracy via Statistical Package for the Social Sciences (SPSS®) (Mertler & 21 

Reinhart, 2013). The proper actions were taken for outliers, missing data, and other 22 

anomalies (Mertler & Reinhart, 2013). 23 
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Data Analysis 1 

Data analysis was conducted on each data set. Four types of data analysis were 2 

performed: Factorial Analysis of Variance (ANOVA), frequencies and percentages, chi-3 

square tests of independence, as well as t-test between groups (Mertler & Reinhart, 4 

2013). Data aggregation was addressed by providing each participant with a unique 5 

identifier that was used to validate the individual’s entry. Following Linstone and Turoff 6 

(1975), the following sections served to document and report on each Delphi round. 7 

Equation 5 presents the function used to covert the Round 1 personal information 8 

exposure responses to the corresponding personal information category assigned by the 9 

SMEs in Round 2 as defined in Table 9. 10 

10-point scale value ∗ 0.2 1  Exposure Category PDI, PII, or PUI            5  11 

Summary 12 

This chapter provided an overview of the methodology used during this 13 

developmental research. This design science study used an approach involving 14 

quantitative methods to develop and validate a SEXI using OSPI to assist in identifying 15 

and classifying SE vulnerabilities. Internet access was required as it served to interact 16 

with SMEs, conduct surveys, develop the benchmarking instrument, access OSPI, and to 17 

host the secure Website to aggregate as well as assess 50 executives of Fortune 500 18 

companies and 50 Hollywood personas.  19 

Surveys were facilitated by the use of Survey Monkey. The SEXI benchmarking 20 

instrument used in this research was developed in Microsoft Excel. Data analysis was 21 

performed by using Microsoft Excel version 2008 and transferred to IBM SPSS version 22 

26 for analysis.   23 
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Chapter 4 1 

Results 2 

Overview 3 

This chapter presents the results of the developmental study and includes an analysis 4 

of the data collection processes as well as the statistical methodology. First, the expert 5 

panel composition, feedback, consensus, and PICC assignment to the three categories of 6 

personal information (PDI, PII, & PUI) will be presented. This is followed by a 7 

discussion on the SEXI data collection, pre-analysis, and analysis. The chapter concludes 8 

with a summary of the results of the use of the SEXI benchmarking instrument, the 9 

process used for data analysis, and the presentation of the specific findings for each RQ. 10 

 11 

Expert Panel 12 

Appendix C presents the first-round survey instrument administered to the panel of 13 

experts collecting information concerning the work environment, demographic 14 

information, and SEXI assessments from the SMEs. Round 1 commenced August 2018 15 

and concluded in February 2019. Potential Delphi participants were notified of the 16 

extensive size and time requirements to complete the survey and instructed not to begin 17 

the survey unless they could finish it. Appendix D presents the second-round survey 18 

administered to the SMEs. Round 2 commenced in February 2019 and concluded in April 19 

2019. Potential Delphi participants were notified that the second survey, though smaller 20 

than the first survey, required several minutes to complete.  21 
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Data Collection and Analysis 1 

For the Delphi rounds of this study, individuals were approached from personal 2 

contacts, LinkedIn, Reddit closed privacy groups, and closed information security-related 3 

Facebook groups requiring administrative approval for access. The process is 4 

documented in Chapter 3. Round 1 had 19 responses having a completion rate of 100%. 5 

Round 2 had 17 responses having a completion rate of 90%. First, the backgrounds and 6 

biographical composition of SMEs are presented. Second, the work environment privacy 7 

context is described. Finally, the SME elicited weights for the various components are 8 

presented. 9 

Pre-Analysis Data Screening 10 

Responses from the SMEs were collected using online forms via Survey Monkey. All 11 

feedback was exported to Microsoft Excel, tabulated, and reviewed. Responses were 12 

reviewed to ensure each response was recorded, complete, and intelligible. No invalid 13 

responses were found. Many of the questions provided an open-ended response, thereby 14 

removing response-set bias for those respective questions. 15 

IBM SPSS version 26 was used to perform a check for multivariate outliers via 16 

Mahalanobis Distance and Box Plots. No multivariate outliers having significance were 17 

found. All responses were retained and accepted for analysis. Respondents were coded 18 

using three-digit identifiers, with the first representing the survey round and the 19 

remaining digits the response number. 20 

Expert Panel Demographics and Composition 21 

The Delphi panel was recruited from a variety of information security professionals 22 

via Facebook closed information security and privacy groups, LinkedIn, Reddit closed 23 

privacy groups, and contacts. Due to the contextuality of personal information 24 
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classification in the literature, a dissimilar group of SMEs was desired. The 11 1 

demographic questions were administered to the SMEs. Table 14 presents a summary of 2 

the Delphi Panel demographics with 37% of the participants between 45 and 49 years of 3 

age, 47% having a doctorate, 32% being female, and 37% functioning primarily as 4 

practitioners. Additionally, approximately half of the SMEs had a military / law 5 

enforcement background. 6 

Table 14 7 

Descriptive Statistics of the SMEs (N=19) 8 

Group Frequency Percentage 
Age   

25-29 1 5.3% 
30-34 1 5.3% 
40-44 4 21.1% 
45-49 7 36.8% 
50-54 1 5.3% 
55-59 2 10.5% 
60-64 2 10.5% 
65+ 1 5.3% 

Education   
Some college, no degree earned 2 10.5% 

Bachelors 2 10.5% 
Masters 6 31.6% 

Doctorate 9 47.4% 
Gender   

Female 6 31.6% 
Male 13 68.4% 

Law Enforcement Experience 2 10.5% 
Military Background 9 47.4% 
Professional Focus    

Academia 3 15.8% 
Mostly academic, occasional practitioner efforts 3 15.8% 

Evenly between academic and practitioner efforts 3 15.8% 
Practitioner 7 36.8% 

Mostly practitioner, occasional academic efforts 3 15.8% 
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 1 

Table 15 presents a summary of the certifications held by the SMEs, which number 2 

approximately three dozen, including several not included in the survey. The Delphi 3 

Panel comprised experts having certifications from a variety of specializations, including 4 

healthcare, information security, information systems, and the Department of Defense. 5 

The CISSP certification was held by 42% of the SMEs along with 26% having the CEH 6 

certification.  7 

Table 15 8 

Summary of Certifications Held by Delphi Panel Participants (N=19) 9 

Certification Number of 
SMEs Having 

[CAP] Certified Authorization Professional 2 
[CCENT] Cisco Certified Entry Networking Technician 2 
[CCEP] Certified Compliance & Ethics Professional 1 
[CCEP-I] Certified Compliance & Ethics Professional-International 1 
[CCFE] Certified Computer Forensics Examiner 2 
[CCFP] Certified Cyber Forensics Professional 1 
[CCNA] Cisco Certified Network Administrator 1 
[CEH] Certified Ethical Hacker 5 
[CHC] Certified in Healthcare Compliance 1 
[CHPC] Certified in Healthcare Privacy Compliance 1 
[CISA] Certified Information Systems Auditor 2 
[CISM] Certified Information Security Manager 2 
[CISSP] Certified Information Systems Security Professional 8 
[CRISC] Certified in Risk and Information Systems Control 1 
[CSX] Cybersecurity Nexus Certificate 1 
DOD Cyber Workforce 1 
[GSEC] GIAC Security Essentials Certification, [GCFE] GIAC 
Certified Forensics Examiner, [GCFA] GIAC Certified Forensic 
Analyst, [GCIA] GIAC Certified Intrusion Analyst, [GCIH] GIAC 
Certified Incident Handler, [GASF] GIAC Advanced Smartphone 
Forensics, [GCCC] GIAC Critical Controls Certification, [GCPM] 
GIAC Certified Project Manager Certification, [PMP] Project 
Management Professional 

1 
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[ISSAP] Information System Security Architecture Professional 
[ISSEP] Information Systems Security Engineering Professional 
[ISSMP] Information Systems Security Management Professional 

1 

[ITIL] IT Infrastructure Library 1 
[MTA] Microsoft Technology Associate 1 
[Sec+] Security+   2 
[SSCP] Systems Security Certified Practitioner 1 
No Certifications 3 

Table 16 presents a summary of the SMEs' occupational positions and industries. The 1 

19 SMEs selected 16 current occupations and 42 positions across 12 industries. The 2 

largest concentration of SMEs was spread across IS/IT Professors and Consultants 3 

working in the Government and Information Technology industries. Additional 4 

occupations not provided on the survey were provided by the SMEs.  5 

Table 16 6 

Summary of SMEs Occupation(s) (N=19) 7 

Group Frequency 
Occupation  

Chief Information Officer (CIO) 2 
Chief Information Security Officer (CISO) 2 

Chief Knowledge Officer (CKO) 1 
Chief Privacy Officer (CPO) 1 
Chief Security Officer (CSO) 1 

Compliance and audit 1 
Consultant 8 

Cybersecurity Manager 1 
Cyber Security Engineering 1 

Department of Defense – USAF 1 
Founding Owner 1 
IS/IT Professor 9 

Law Enforcement 1 
Mobile Device Management Backend 1 

Security Manager 1 
Security Specialist 4 

Industry  
Banking & Finance 2 

Consulting 4 
Education 5 

Energy 1 
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Federal Government – DoD 1 
Healthcare 5 

Government 11 
Information Technology 8 

Law Enforcement 1 
Manufacturing 1 

Not-For-Profit/Non-Profit 1 
Retail 2 

Table 17 provides a summary of the self-identified experience of the Delphi panel as 1 

Cybersecurity professionals. The SMEs were also asked to indicate the years of 2 

experience working specifically with information privacy. Over 63% of the SMEs 3 

indicated at least 10 years of Cybersecurity experience, while 53% had at least ten 10 4 

years of working with information privacy. 5 

Table 17 6 

Summary of SMEs Cybersecurity and Information Privacy Experience (N=19) 7 

Group Frequency Percentage 
Years as a Cybersecurity professional   

1-3 years 2 10.5% 
4-5 years 2 10.5% 
7-9 years 3 15.8% 

10-12 years 1 5.3% 
13-15 years 5 26.3% 
19-21 years 1 5.3% 
22+ years 5 26.3% 

Years working with information privacy   
1-3 years 2 10.5% 
4-5 years 2 10.5% 
7-9 years 5 26.3% 

10-12 years 1 5.3% 
13-15 years 2 10.5% 
16-18 years 1 5.3% 
19-21 years 1 5.3% 
22+ years 5 26.3% 

 8 
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Social Engineering and Personal Information in the Work Environment  1 

The SMEs were asked several questions to ascertain their perception and experience 2 

for SE attempts within their work environment, as well as gather their opinion on the 3 

implementation of security policy as it relates to privacy and personal information. The 4 

majority of the SMEs (79%) had at least seven years of cybersecurity experience working 5 

with information privacy. 6 

The objective of the questions was to provide a mechanism to assess the TOM of the 7 

panel of experts with regards to the implementation and execution of organizational 8 

privacy policy and SE attempts. Table 18 provides a summary of the information security 9 

culture of the SMEs' work environments, while Table 19 provides a summary of the work 10 

environment consequences of violating privacy policy.  11 

Table 18 12 

Summary SMEs Work Environment: Information Security Culture (N=19) 13 

Question Mean Median Mode 
BG01 [Policy] I work for an organization that has a well-
defined privacy policy. 

5.74 7.00 7 

BG02 [TrainingPrivacy] I work for an organization that has 
mandatory training for privacy. 

5.74 7.00 7 

BG03 [Consequences] I work for an organization that has 
consequences for violating the privacy policy. 

5.79 6.00 7 

BG04 [TrainingSE] I work for an organization that has 
mandatory social engineering training. 

5.37 6.00 7 

BG05 [SecurityAudits] I work for an organization that has 
security audits. 

5.79 6.00 7 

BG06 [Pretending] I work for an organization that has 
experienced an attempt to gain access to unauthorized assets 
through someone pretending to be another individual. 

5.79 6.00 7 

BG07 [Persuasion] I work for an organization that has 
experienced an attempt to gain access to unauthorized assets 
at my organization through persuasion. 

5.37 6.00 6 
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BG08 [AuthorityBypassPolicy] I work for an organization 
where someone has the authority to bypass policy on a case-
by-case basis. 

5.00 6.00 6 

BG09 [UnauthorizedBypassPolicy] I work for an 
organization where an employee bypassed policy without 
authorization. 

4.53 5.00 4 

BG10 [Repercussion] I work for an organization where an 
employee bypassed policy without repercussion. 

4.00 4.00 4 

BG11 [PrivacyVsEfficiency] I work for an organization 
where employees feel like they must choose between privacy 
policy and efficiency. 

3.84 4.00 2 

BG12 [PrivacyCulture] I work for an organization where 
employees are shown ways to bypass policy by other 
employees. 

2.74 2.00 1 

 1 

Table 19 2 

Summary SMEs Work Environment: Consequences 3 

Responses Frequency Percentage 
BG13 [Consequence] I work for an organization 
where violating the privacy policy typically results 
in: 

  

No Consequence 2 10.5% 
Informal Verbal Warning 1 5.3% 
Formal Verbal Reprimand 3 15.8% 
Written Reprimand 5 26.3% 
Temporary Suspension of Duties 2 10.5% 
Reassignment 1 5.3% 
Termination / Legal Issues 5 26.3% 

 4 

Delphi Round 1 5 

In Round 1, the panel of experts was elicited for their opinion on the level of 6 

exposure of an individual due to a particular PICC, in and of itself. Table 9 established 7 

the thresholds for each category using a 10-point Likert scale. Table 20 presents the 8 

conversion and transformation of Round 1 responses to the three personal information 9 

categories based on the thresholds set forth in Table 9. 10 
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Table 20 1 

Conversion of Round 1 Responses to Round 2 Exposure Categories 2 

10-point scale Conversion Category Category Transformed 
0 1 DNA 0 
1 1.2 PUI 1 
2 1.4 PUI 1 
3 1.6 PUI 1 
4 1.8 PII 2 
5 2 PII 2 
6 2.2 PII 2 
7 2.4 PII 2 
8 2.6 PII 2 
9 2.8 PDI 3 
10 3 PDI 3 

Table 21 presents the consensus analysis of the first round of SME feedback, where 3 

four items met the minimum 75% requirement (indicated in bold italics). While very few 4 

items reached the minimum requirement, this developmental research presents all 5 

consensus levels in Table 21 to provide as much information as possible to facilitate 6 

future research. A total of 64 items had a minimum of 51% consensus as to which 7 

category each PICC belonged. No items were recommended for removal by the SMEs, 8 

and subsequently presented to the expert panel during the subsequent round.  9 

Table 21 10 

Round 1 Consensus 11 

Identifier Description DNA PUI PUI PDI 
PIC001 Acceleration via personal tracking 0.21 0.21 0.32 0.26 
PIC002 Account numbers 0.00 0.00 0.53 0.47 
PIC003 Activities 0.00 0.11 0.68 0.21 
PIC004 Age 0.05 0.26 0.53 0.16 
PIC005 Agency seal / Organizational logo 0.00 0.21 0.58 0.21 
PIC006 Alias 0.11 0.16 0.32 0.42 
PIC007 Area code 0.00 0.37 0.53 0.11 
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PIC008 Audit log of user actions 0.11 0.05 0.32 0.53 
PIC009 Biometric records 0.00 0.05 0.11 0.84 
PIC010 Bluetooth connections to other devices 0.00 0.05 0.63 0.32 
PIC011 Calorie counting with images of food 0.11 0.42 0.42 0.05 
PIC012 Cardholder name 0.05 0.00 0.37 0.58 
PIC013 Cell phone number 0.00 0.11 0.32 0.58 
PIC014 Cell tower location 0.00 0.21 0.37 0.42 
PIC015 Credit card account number 0.05 0.05 0.16 0.74 
PIC016 Credit card CAV2 / CVC2 / CVV2 / CID 0.00 0.16 0.21 0.63 
PIC017 Card expiration date 0.00 0.32 0.37 0.32 
PIC018 Credit card pin 0.00 0.32 0.47 0.21 
PIC019 Credit card service code 0.05 0.32 0.42 0.21 
PIC020 Credit score 0.00 0.32 0.53 0.16 
PIC021 Criminal history 0.00 0.05 0.37 0.58 
PIC022 Date of birth 0.00 0.16 0.32 0.53 
PIC023 Demographics 0.00 0.16 0.37 0.47 
PIC024 Driver's license [number] 0.00 0.05 0.26 0.68 
PIC025 Education information 0.05 0.05 0.74 0.16 
PIC026 Electricity usage 0.05 0.58 0.32 0.05 
PIC027 Electronic facial image / selfie 0.00 0.00 0.42 0.58 
PIC028 E-mail address 0.00 0.00 0.58 0.42 
PIC029 Employee identification 0.00 0.11 0.32 0.58 
PIC030 Employment history 0.11 0.05 0.37 0.47 
PIC031 Employment information 0.05 0.05 0.37 0.53 
PIC032 Family income 0.00 0.26 0.63 0.11 
PIC033 Favorite movies 0.00 0.53 0.42 0.05 
PIC034 Favorite restaurants 0.00 0.42 0.47 0.11 
PIC035 Favorite television shows 0.00 0.53 0.37 0.11 
PIC036 Financial records / information, balances 0.00 0.21 0.16 0.63 
PIC037 Fingerprints 0.11 0.00 0.68 0.21 
PIC038 Fingerprints of two fingers 0.05 0.00 0.63 0.32 
PIC039 Full name 0.05 0.21 0.63 0.11 
PIC040 Full set of fingerprints 0.00 0.00 0.00 1.00 
PIC041 Gender 0.00 0.63 0.26 0.11 
PIC042 Genetic information 0.00 0.00 0.32 0.68 
PIC043 Geographical indicators 0.00 0.05 0.84 0.11 
PIC044 Global Positioning Systems (GPS)  0.05 0.05 0.68 0.21 
PIC045 Handwriting 0.00 0.00 0.58 0.42 
PIC046 High school name 0.00 0.26 0.63 0.11 
PIC047 Holographic images 0.05 0.00 0.63 0.32 
PIC048 Host-specific persistent static identifier 0.21 0.05 0.53 0.21 
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PIC049 IP address 0.00 0.16 0.47 0.37 
PIC050 Laser etches 0.32 0.11 0.32 0.26 
PIC051 License plate 0.00 0.11 0.58 0.32 
PIC052 MAC address 0.00 0.21 0.42 0.37 
PIC053 Maiden name 0.00 0.00 0.53 0.47 
PIC054 Marital status 0.11 0.26 0.47 0.16 
PIC055 Medical history 0.00 0.21 0.21 0.58 
PIC056 Medical information 0.05 0.16 0.21 0.58 
PIC057 Medical test results 0.00 0.26 0.21 0.53 
PIC058 Mental health 0.00 0.26 0.21 0.53 
PIC059 Mother's maiden name 0.00 0.16 0.42 0.42 
PIC060 Nationality 0.00 0.37 0.21 0.42 
PIC061 Newsletter subscription 0.05 0.42 0.47 0.05 
PIC062 Organization affiliation / membership 0.05 0.16 0.63 0.16 
PIC063 Owned property 0.00 0.05 0.47 0.47 
PIC064 Parent's middle name 0.00 0.32 0.58 0.11 
PIC065 Partner(s) name 0.05 0.21 0.47 0.26 
PIC066 Passport number 0.00 0.16 0.16 0.68 
PIC067 Password 0.00 0.21 0.37 0.42 
PIC068 Patient identification number 0.00 0.16 0.21 0.63 
PIC069 Payment for health care 0.05 0.16 0.47 0.32 
PIC070 Persistent Identifier 0.05 0.11 0.26 0.58 
PIC071 Personal heart-rate meter 0.05 0.32 0.37 0.26 
PIC072 Photographic image 0.05 0.00 0.32 0.63 
PIC073 Physical health 0.05 0.32 0.32 0.32 
PIC074 Place of birth 0.00 0.21 0.37 0.42 
PIC075 Place of sensing moment 0.47 0.16 0.16 0.21 
PIC076 Political views 0.00 0.32 0.53 0.16 
PIC077 Professional title 0.00 0.26 0.53 0.21 
PIC078 Provision of health care 0.05 0.37 0.37 0.21 
PIC079 Race 0.11 0.32 0.32 0.26 
PIC080 Rank 0.11 0.26 0.42 0.21 
PIC081 Recent purchases 0.00 0.16 0.74 0.11 
PIC082 Religion 0.00 0.37 0.42 0.21 
PIC083 Salary information 0.05 0.26 0.42 0.26 
PIC084 Search engine query 0.00 0.21 0.53 0.26 
PIC085 Sexual fantasy / behavior 0.00 0.32 0.53 0.16 
PIC086 Sexual orientation 0.00 0.37 0.42 0.21 
PIC087 Signature Digital 0.05 0.11 0.16 0.68 
PIC088 Signature Handwritten 0.00 0.05 0.37 0.58 
PIC089 Social media profile 0.00 0.05 0.42 0.53 
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PIC090 Social Security Number 0.00 0.05 0.05 0.89 
PIC091 Status updates 0.11 0.16 0.47 0.26 
PIC092 Street address 0.00 0.05 0.47 0.47 
PIC093 Tax records 0.00 0.11 0.21 0.68 
PIC094 Taxpayer identification number 0.00 0.16 0.26 0.58 
PIC095 Telephone number 0.00 0.00 0.68 0.32 
PIC096 Location / Time of sensing moment 0.00 0.05 0.47 0.47 
PIC097 Timestamp of Web page visit 0.00 0.32 0.47 0.21 
PIC098 Uniform Resource Locator (URL) of last Web page 0.00 0.32 0.42 0.26 
PIC099 Unique health identifier 0.05 0.21 0.32 0.42 
PIC100 User identification 0.11 0.16 0.32 0.42 
PIC101 Web browser history 0.00 0.11 0.63 0.26 
PIC102 Weight 0.00 0.32 0.63 0.05 
PIC103 Work phone 0.00 0.21 0.47 0.32 
PIC104 X-Rays 0.00 0.26 0.37 0.37 
PIC105 ZIP Code 0.00 0.37 0.37 0.26 

      Table 22 presents the consensus summary for the first Delphi round (N=19). 1 

Table 22 2 

Round 1 Consensus Overview Showing Number of SME Designated Items 3 

Range Number of Items Cumulative 
Number of Items 

Cumulative 
Percentage 

>= .75 
 

4 
 

4 3.81% 
>= .7 < .75 3 

 
7 6.67% 

>= .6 < .7 23 
 

30 28.57% 
>= .51 < .6 34 

 
64 60.95% 

< .51 
 

41 
 

105 100% 
 4 

Delphi Round 2 5 

Table 23 presents the consensus analysis of the second round of SME feedback, 6 

where seven items met the minimum 80% requirement (indicated in bold italics). A total 7 

of 73 PICCs were categorically placed by the SMEs with a minimum of 51% consensus. 8 

Table 24 presents the consensus summary for the second Delphi round. 9 

Table 23 10 
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Items Reaching 80% Consensus in Round 2 1 

Identifier Description DNA PUI PUI PDI 
PIC001 Acceleration via personal tracking 0.06 0.12 0.65 0.18 
PIC002 Account numbers 0.00 0.12 0.71 0.18 
PIC003 Activities 0.00 0.41 0.47 0.12 
PIC004 Age 0.00 0.53 0.29 0.18 
PIC005 Agency seal / Organizational logo 0.00 0.71 0.24 0.06 
PIC006 Alias 0.06 0.35 0.35 0.24 
PIC007 Area code 0.00 0.65 0.24 0.12 
PIC008 Audit log of user actions 0.06 0.06 0.53 0.35 
PIC009 Biometric records 0.00 0.06 0.06 0.88 
PIC010 Bluetooth connections to other devices 0.00 0.35 0.47 0.18 
PIC011 Calorie counting with images of food 0.12 0.65 0.24 0.00 
PIC012 Cardholder name 0.00 0.06 0.35 0.59 
PIC013 Cell phone number 0.00 0.06 0.24 0.71 
PIC014 Cell tower location 0.00 0.24 0.65 0.12 
PIC015 Credit card account number 0.00 0.06 0.18 0.76 
PIC016 Credit card CAV2 / CVC2 / CVV2 / CID 0.06 0.18 0.24 0.53 
PIC017 Card expiration date 0.00 0.71 0.18 0.12 
PIC018 Credit card pin 0.06 0.29 0.59 0.06 
PIC019 Credit card service code 0.06 0.35 0.47 0.12 
PIC020 Credit score 0.00 0.71 0.18 0.12 
PIC021 Criminal history 0.00 0.00 0.24 0.76 
PIC022 Date of birth 0.06 0.12 0.59 0.24 
PIC023 Demographics 0.00 0.35 0.35 0.29 
PIC024 Driver's license [number] 0.06 0.00 0.18 0.76 
PIC025 Education information 0.00 0.12 0.71 0.18 
PIC026 Electricity usage 0.18 0.53 0.29 0.00 
PIC027 Electronic facial image / selfie 0.00 0.00 0.12 0.88 
PIC028 E-mail address 0.00 0.12 0.53 0.35 
PIC029 Employee identification 0.06 0.06 0.12 0.76 
PIC030 Employment history 0.00 0.06 0.47 0.47 
PIC031 Employment information 0.00 0.18 0.24 0.59 
PIC032 Family income 0.06 0.47 0.41 0.06 
PIC033 Favorite movies 0.18 0.47 0.24 0.12 
PIC034 Favorite restaurants 0.06 0.59 0.24 0.12 
PIC035 Favorite television shows 0.06 0.59 0.29 0.06 
PIC036 Financial records / information, balances 0.06 0.00 0.29 0.65 
PIC037 Fingerprints 0.06 0.00 0.18 0.76 
PIC038 Fingerprints of two fingers 0.06 0.00 0.18 0.76 
PIC039 Full name 0.00 0.06 0.53 0.41 
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PIC040 Full set of fingerprints 0.00 0.00 0.12 0.88 
PIC041 Gender 0.00 0.59 0.29 0.12 
PIC042 Genetic information 0.00 0.00 0.29 0.71 
PIC043 Geographical indicators 0.00 0.35 0.35 0.29 
PIC044 Global Positioning Systems (GPS)  0.06 0.12 0.71 0.12 
PIC045 Handwriting 0.00 0.18 0.59 0.24 
PIC046 High school name 0.00 0.47 0.41 0.12 
PIC047 Holographic images 0.00 0.29 0.47 0.24 
PIC048 Host-specific persistent static identifier 0.00 0.24 0.65 0.12 
PIC049 IP address 0.00 0.24 0.65 0.12 
PIC050 Laser etches 0.12 0.24 0.47 0.18 
PIC051 License plate 0.00 0.12 0.47 0.41 
PIC052 MAC address 0.00 0.29 0.47 0.24 
PIC053 Maiden name 0.00 0.18 0.71 0.12 
PIC054 Marital status 0.06 0.59 0.35 0.00 
PIC055 Medical history 0.00 0.00 0.47 0.53 
PIC056 Medical information 0.00 0.00 0.35 0.65 
PIC057 Medical test results 0.06 0.06 0.29 0.59 
PIC058 Mental health 0.00 0.24 0.47 0.29 
PIC059 Mother's maiden name 0.00 0.18 0.71 0.12 
PIC060 Nationality 0.00 0.59 0.35 0.06 
PIC061 Newsletter subscription 0.06 0.53 0.29 0.12 
PIC062 Organization affiliation / membership 0.00 0.24 0.71 0.06 
PIC063 Owned property 0.00 0.06 0.41 0.53 
PIC064 Parent's middle name 0.00 0.59 0.35 0.06 
PIC065 Partner(s) name 0.06 0.12 0.59 0.24 
PIC066 Passport number 0.00 0.00 0.12 0.88 
PIC067 Password 0.00 0.41 0.47 0.12 
PIC068 Patient identification  number 0.00 0.00 0.35 0.65 
PIC069 Payment for health care 0.06 0.29 0.41 0.24 
PIC070 Persistent Identifier 0.06 0.00 0.29 0.65 
PIC071 Personal heart-rate meter 0.06 0.59 0.29 0.06 
PIC072 Photographic image 0.00 0.06 0.18 0.76 
PIC073 Physical health 0.12 0.41 0.29 0.18 
PIC074 Place of birth 0.00 0.35 0.41 0.24 
PIC075 Place of sensing moment 0.18 0.41 0.29 0.12 
PIC076 Political views 0.12 0.47 0.35 0.06 
PIC077 Professional title 0.00 0.29 0.59 0.12 
PIC078 Provision of health care 0.06 0.29 0.53 0.12 
PIC079 Race 0.00 0.53 0.41 0.06 
PIC080 Rank 0.06 0.41 0.29 0.24 
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PIC081 Recent purchases 0.00 0.24 0.65 0.12 
PIC082 Religion 0.12 0.47 0.35 0.06 
PIC083 Salary information 0.12 0.35 0.41 0.12 
PIC084 Search engine query 0.06 0.41 0.47 0.06 
PIC085 Sexual fantasy / behavior 0.06 0.47 0.29 0.18 
PIC086 Sexual orientation 0.06 0.59 0.29 0.06 
PIC087 Signature Digital 0.00 0.06 0.06 0.88 
PIC088 Signature Handwritten 0.00 0.12 0.29 0.59 
PIC089 Social media profile 0.06 0.06 0.12 0.76 
PIC090 Social Security Number 0.00 0.06 0.12 0.82 
PIC091 Status updates 0.12 0.24 0.53 0.12 
PIC092 Street address 0.06 0.06 0.65 0.24 
PIC093 Tax records 0.00 0.06 0.06 0.88 
PIC094 Taxpayer identification number 0.00 0.06 0.18 0.76 
PIC095 Telephone number 0.06 0.12 0.59 0.24 
PIC096 Location / Time of sensing moment 0.00 0.18 0.65 0.18 
PIC097 Timestamp of Web page visit 0.00 0.53 0.35 0.12 
PIC098 Uniform Resource Locator (URL) of last Web page 0.12 0.41 0.35 0.12 
PIC099 Unique health identifier 0.00 0.12 0.41 0.47 
PIC100 User identification 0.06 0.18 0.35 0.41 
PIC101 Web browser history 0.00 0.35 0.47 0.18 
PIC102 Weight 0.06 0.53 0.35 0.06 
PIC103 Work phone 0.00 0.24 0.59 0.18 
PIC104 X-Rays 0.00 0.35 0.47 0.18 
PIC105 ZIP Code 0.06 0.41 0.29 0.24 

Table 24 1 

Round 2 Consensus Overview Showing Number of SME Designated Items 2 

Range Number of Items Cumulative  
Number of Items 

Cumulative  
Percentage 

>= .80 
 

7  7  6.67% 
>= .70  < .80  20  27  25.71% 
>= .60  < .70  13  40  38.10% 
>= .51  < .60  33  73  69.52% 
< .51 

 
32  105  100% 

 3 
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Consensus Analysis Between Rounds 1 

Table 25 presents the median analysis of the two rounds of the SMEs' feedback with 2 

the media for each PICC for the respective round provided, as well as if consensus was 3 

reached between the two rounds. The median analysis provided a consensus for 78 items 4 

(74%).  5 

Table 25 6 

Subject Matter Experts Consensus Median Analysis 7 

Identifier Description Round 1 Round 2 Consensus 
PC001 Acceleration via personal tracking 2 2 Yes 
PC002 Account numbers 2 2 Yes 
PC003 Activities 2 2 Yes 
PC004 Age 2 1 No 
PC005 Agency seal / Organizational logo 2 1 No 
PC006 Alias 2 2 Yes 
PC007 Area code 2 1 No 
PC008 Audit log of user actions 3 2 No 
PC009 Biometric records 3 3 Yes 
PC010 Bluetooth connections to other devices 2 2 Yes 
PC011 Calorie counting with images of food 1 1 Yes 
PC012 Cardholder name 3 3 Yes 
PC013 Cell phone number 3 3 Yes 
PC014 Cell tower location 2 2 Yes 
PC015 Credit card account number 3 3 Yes 
PC016 Credit card CAV2/CVC2/ CVV2/CID 3 3 Yes 
PC017 Card expiration date 2 1 No 
PC018 Credit card pin 2 2 Yes 
PC019 Credit card service code 2 2 Yes 
PC020 Credit score 2 1 No 
PC021 Criminal history 3 3 Yes 
PC022 Date of birth 3 2 No 
PC023 Demographics 2 2 Yes 
PC024 Driver's license [number] 3 3 Yes 
PC025 Education information 2 2 Yes 
PC026 Electricity usage 1 1 Yes 
PC027 Electronic facial image / selfie 3 3 Yes 
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PC028 E-mail address 2 2 Yes 
PC029 Employee identification 3 3 Yes 
PC030 Employment history 2 2 Yes 
PC031 Employment information 3 3 Yes 
PC032 Family income 2 1 No 
PC033 Favorite movies 1 1 Yes 
PC034 Favorite restaurants 2 1 No 
PC035 Favorite television shows 1 1 Yes 
PC036 Financial records / information, 

balances 
3 3 Yes 

PC037 Fingerprints 2 3 No 
PC038 Fingerprints of two fingers 2 3 No 
PC039 Full name 2 2 Yes 
PC040 Full set of fingerprints 3 3 Yes 
PC041 Gender 1 1 Yes 
PC042 Genetic information 3 3 Yes 
PC043 Geographical indicators 2 2 Yes 
PC044 Global Positioning Systems (GPS)  2 2 Yes 
PC045 Handwriting 2 2 Yes 
PC046 High school name 2 2 Yes 
PC047 Holographic images 2 2 Yes 
PC048 Host-specific persistent static 

identifier 
2 2 Yes 

PC049 IP address 2 2 Yes 
PC050 Laser etches 2 2 Yes 
PC051 License plate 2 2 Yes 
PC052 MAC address 2 2 Yes 
PC053 Maiden name 2 2 Yes 
PC054 Marital status 2 1 No 
PC055 Medical history 3 3 Yes 
PC056 Medical information 3 3 Yes 
PC057 Medical test results 3 3 Yes 
PC058 Mental health 3 2 No 
PC059 Mother's maiden name 2 2 Yes 
PC060 Nationality 2 1 No 
PC061 Newsletter subscription 2 1 No 
PC062 Organization affiliation / membership 2 2 Yes 
PC063 Owned property 2 3 No 
PC064 Parent's middle name 2 1 No 
PC065 Partner(s) name 2 2 Yes 
PC066 Passport number 3 3 Yes 
PC067 Password 2 2 Yes 
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PC068 Patient identification number 3 3 Yes 
PC069 Payment for health care 2 2 Yes 
PC070 Persistent Identifier 3 3 Yes 
PC071 Personal heart-rate meter 2 1 No 
PC072 Photographic image 3 3 Yes 
PC073 Physical health 2 1 No 
PC074 Place of birth 2 2 Yes 
PC075 Place of sensing moment 1 1 Yes 
PC076 Political views 2 1 No 
PC077 Professional title 2 2 Yes 
PC078 Provision of health care 2 2 Yes 
PC079 Race 2 1 No 
PC080 Rank 2 2 Yes 
PC081 Recent purchases 2 2 Yes 
PC082 Religion 2 1 No 
PC083 Salary information 2 2 Yes 
PC084 Search engine query 2 2 Yes 
PC085 Sexual fantasy / behavior 2 1 No 
PC086 Sexual orientation 2 1 No 
PC087 Signature Digital 3 3 Yes 
PC088 Signature Handwritten 3 3 Yes 
PC089 Social media profile 3 3 Yes 
PC090 Social Security Number 3 3 Yes 
PC091 Status updates 2 2 Yes 
PC092 Street address 2 2 Yes 
PC093 Tax records 3 3 Yes 
PC094 Taxpayer identification number 3 3 Yes 
PC095 Telephone number 2 2 Yes 
PC096 Location / Time of sensing moment 2 2 Yes 
PC097 Timestamp of Web page visit 2 1 No 
PC098 Uniform Resource Locator (URL) of 

last Web page 
2 1 No 

PC099 Unique health identifier 2 2 Yes 
PC100 User identification 2 2 Yes 
PC101 Web browser history 2 2 Yes 
PC102 Weight 2 1 No 
PC103 Work phone 2 2 Yes 
PC104 X-Rays 2 2 Yes 
PC105 ZIP Code 2 2 Yes 



      158 

 

 

 1 

The level of SME agreement was reported using the standard deviation and the mean 2 

of central tendency (Boone & Boone, 2012). Stability was measured by comparing the 3 

results of two different rounds to evaluate consistency in the median of responses for 4 

each PICC (Dajani et al., 1979; von der Gracht, 2012). The significant mean differences 5 

in the exposure categories (e.g., PDI, PII, & PUI) were evaluated by performing one-way 6 

ANOVA addressing RQ3 (Boone & Boone, 2012; Norman, 2010). RQ5 was addressed 7 

by performing an ANOVA for each demographic group. RQ6 was addressed by 8 

performing a t-test on the two groups: 50 executives of Fortune 500 organizations and 50 9 

Hollywood personas (Norman, 2010). 10 

Expert Panel SEXI Feedback 11 

As previously noted, 19 SMEs participated in the first round of the survey and 12 

completed all the questions in the survey, thus provided a complete response. Appendix C 13 

presents the first-round survey provided to the SMEs. The SMEs were tasked with 14 

assigning a level of exposure to each of the 105 PICCs on a scale of one to ten. The 15 

SMEs were also provided DNA (“does not apply”) and UNF (“unfamiliar”) options of 16 

reach of the PICCs. The second-round survey, presented in Appendix D, had 17 SMEs 17 

participate and subsequently complete the survey by assigning the PICCs to DNA (“does 18 

not apply”), PDI, PII, or PUI categories.  19 

RQ1 Analysis: SME Designated SEXI Components 20 

The SMEs were asked to approve personal information components for an index of 21 

SE exposure. During two rounds of expert panel feedback, the SMEs were asked to 22 

assign level of exposure and subsequently categories to PICCs. Table 26 presents the 23 
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SME designated SEXI items arranged alphabetically within categorical groups with 1 

11.4% designated at PDI, 54.3% as PII, and 34.3% as PUI. 2 

Table 26 3 

SME Designated SEXI Components 4 

Personally Distinguishable Items 
PDI00
1 

Biometric records PDI00
7 

Genetic information 

PDI00
2 

Credit card account number PDI00
8 

Passport number 

PDI00
3 

Criminal history PDI00
9 

Photographic image 

PDI00
4 

Driver's license [number] PDI01
0 

Signature Digital 

PDI00
5 

Electronic facial image / selfie PDI01
1 

Social Security Number 

PDI00
6 

Full set of fingerprints PDI01
2 

Tax records 
    

Personally Identifiable Items 
PII001 Account numbers PII029 Maiden name                         PII057    ZIP 

Code 
PII002 Activities PII030 Medical history 

PII003 Alias PII031 Medical information 

PII004 Audit log of user actions PII032 Medical test results 

PII005 Bluetooth connections to other 
devices 

PII033 Mental health 

PII006 Cardholder name PII034 Mother's maiden name 

PII007 Cell phone number PII035 Organization affiliation / membership 

PII008 Cell tower location PII036 Owned property 

PII009 Credit card CAV2 / CVC2 / CVV2 / 
CID 

PII037 Partner(s) name 

PII010 Date of birth PII038 Password 

PII011 Demographics PII039 Patient identification number 

PII012 Education information PII040 Payment for health care 

PII013 E-mail address PII041 Persistent Identifier 

PII014 Employee identification PII042 Place of birth 

PII015 Employment history PII043 Professional title 

PII016 Employment information PII044 Recent purchases 

PII017 Financial records / information, 
balances 

PII045 Search engine query 

PII018 Fingerprints PII046 Signature Handwritten 

PII019 Fingerprints of two fingers PII047 Social media profile 
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PII020 Full name PII048 Street address 

PII021 Geographical indicators PII049 Taxpayer identification number 

PII022 Global Positioning Systems (GPS)  PII050 Telephone number 

PII023 Handwriting PII051 Location / Time of sensing moment 

PII024 Holographic images PII052 Unique health identifier 

PII025 Host-specific persistent static 
identifier 

PII053 User identification 

PII026 IP address PII054 Web browser history 

PII027 License plate PII055 Work phone 

PII028 MAC address PII056 X-Rays 

Personally Unidentifiable Items 
PUI00
1 

Acceleration via personal tracking PUI01
9 

Nationality 

PUI00
2 

Age PUI02
0 

Newsletter subscription 

PUI00
3 

Agency seal / Organizational logo PUI02
1 

Parent's middle name 

PUI00
4 

Area code PUI02
2 

Personal heart-rate meter 

PUI00
5 

Calorie counting with images of food PUI02
3 

Physical health 

PUI00
6 

Card expiration date PUI02
4 

Place of sensing moment 

PUI00
7 

Credit card pin PUI02
5 

Political views 

PUI00
8 

Credit card service code PUI02
6 

Provision of health care 

PUI00
9 

Credit score PUI02
7 

Race 

PUI01
0 

Electricity usage PUI02
8 

Rank 

PUI01
1 

Family income PUI02
9 

Religion 

PUI01
2 

Favorite movies PUI03
0 

Salary information 

PUI01
3 

Favorite restaurants PUI03
1 

Sexual fantasy / behavior 

PUI01
4 

Favorite television shows PUI03
2 

Sexual orientation 

PUI01
5 

Gender PUI03
3 

Status updates 

PUI01
6 

High school name PUI03
4 

Timestamp of Web page visit 

PUI01
7 

Laser etches PUI03
5 

Uniform Resource Locator 
 (URL) of last Web page 

PUI01
8 

Marital status PUI03
6 

Weight 
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RQ2 Analysis: SME Designated SEXI Categories 1 

The SMEs were asked to approve categories for the identified set of personal 2 

information components. Three potential categories were presented to the SMEs derived 3 

from the body of literature. The SMEs indicated approval for the categories by providing 4 

categorical weights. Table 27 presents the SME approved SEXI categories as well as the 5 

respective level of personal information exposure risk. 6 

Table 27 7 

Risk Association of SME Designated SEXI Categories 8 

 PDI PII PUI 
Name Personally 

Distinguishable Items 
Personally 

Identifiable Items 
Personally 

Unidentifiable Items 
Exposure Level High Moderate Low 

 9 

RQ3 Analysis: Weights for Criteria and Measures 10 

The SMEs were asked to attribute a level of exposure in the first round and assign an 11 

exposure category in the second round. Table 20 presented the methodology used to 12 

transform the exposure level to a category as defined in Equation 5. The mean of the 13 

values of both rounds was used to assign weights to each of the 105 PICCs. Table 28 14 

presents the 12 PICCs designated as PDICs and their respective weights ranging from 15 

2.61 to 2.94.  16 

Table 28 17 

Expert Panel Designated Personally Distinguishable Information Weights 18 

Designation Description Weight 
PDI001 Biometric records 2.8055556 
PDI002 Credit card account number 2.6388889 
PDI003 Criminal history 2.6388889 
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PDI004 Driver's license [number] 2.6388889 
PDI005 Electronic facial image / selfie 2.7222222 
PDI006 Full set of fingerprints 2.9444444 
PDI007 Genetic information 2.6944444 
PDI008 Passport number 2.6944444 
PDI009 Photographic image 2.6111111 
PDI010 Signature Digital 2.6388889 
PDI011 Social Security Number 2.8055556 
PDI012 Tax records 2.6944444 

 1 

Table 29 presents the 57 PICCs designated as PIICs and their respective weights 2 

ranging from 1.81 to 2.56. Table 30 presents the 36 PICCs designated as PUICs and their 3 

respective weights ranging from 1.22 to 1.78.  4 

Table 29 5 

Expert Panel Designated Personally Identifiable Information Weights  6 

Designation Description Weight 
PII001 Account numbers 2.2777778 
PII002 Activities 1.9166667 
PII003 Alias 1.9166667 
PII004 Audit log of user actions 2.2222222 
PII005 Bluetooth connections to other devices 2.0555556 
PII006 Cardholder name 2.5000000 
PII007 Cell phone number 2.5555556 
PII008 Cell tower location 2.0555556 
PII009 Credit card CAV2 / CVC2 / CVV2 / CID 2.3611111 
PII010 Date of birth 2.1944444 
PII011 Demographics 2.1388889 
PII012 Education information 2.0277778 
PII013 E-mail address 2.3333333 
PII014 Employee identification 2.5277778 
PII015 Employment history 2.3055556 
PII016 Employment information 2.3888889 
PII017 Financial records / information, balances 2.4722222 
PII018 Fingerprints 2.3055556 
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PII019 Fingerprints of two fingers 2.4166667 
PII020 Full name 2.0555556 
PII021 Geographical indicators 2.0000000 
PII022 Global Positioning Systems (GPS)  1.9722222 
PII023 Handwriting 2.2500000 
PII024 Holographic images 2.0833333 
PII025 Host-specific persistent static identifier 1.8055556 
PII026 IP address 2.0555556 
PII027 License plate 2.2500000 
PII028 MAC address 2.0555556 
PII029 Maiden name 2.2222222 
PII030 Medical history 2.4444444 
PII031 Medical information 2.4722222 
PII032 Medical test results 2.3333333 
PII033 Mental health 2.1666667 
PII034 Mother's maiden name 2.1111111 
PII035 Organization affiliation / membership 1.8611111 
PII036 Owned property 2.4444444 
PII037 Partner(s) name 1.9722222 
PII038 Password 1.9722222 
PII039 Patient identification number 2.5555556 
PII040 Payment for health care 1.9444444 
PII041 Persistent Identifier 2.4444444 
PII042 Place of birth 2.0555556 
PII043 Professional title 1.8888889 
PII044 Recent purchases 1.9166667 
PII045 Search engine query 1.8055556 
PII046 Signature Handwritten 2.5000000 
PII047 Social media profile 2.5277778 
PII048 Street address 2.2500000 
PII049 Taxpayer identification number 2.5555556 
PII050 Telephone number 2.1666667 
PII051 Location / Time of sensing moment 2.2222222 
PII052 Unique health identifier 2.2222222 
PII053 User identification 2.0833333 
PII054 Web browser history 2.0000000 
PII055 Work phone 2.0277778 
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PII056 X-Rays 1.9722222 
PII057 ZIP Code 1.8055556 

 1 

Table 30 2 

Expert Panel Designated Personally Unidentifiable Information Weights 3 

Designation Description Weight 
PUI001 Acceleration via personal tracking 1.7777778 
PUI002 Age 1.7222222 
PUI003 Agency seal / Organizational logo 1.6944444 
PUI004 Area code 1.6111111 
PUI005 Calorie counting with images of food 1.2777778 
PUI006 Card expiration date 1.7222222 
PUI007 Credit card pin 1.7777778 
PUI008 Credit card service code 1.7222222 
PUI009 Credit score 1.6388889 
PUI010 Electricity usage 1.2500000 
PUI011 Family income 1.6666667 
PUI012 Favorite movies 1.4166667 
PUI013 Favorite restaurants 1.5555556 
PUI014 Favorite television shows 1.4722222 
PUI015 Gender 1.5000000 
PUI016 High school name 1.7500000 
PUI017 Laser etches 1.6111111 
PUI018 Marital status 1.5000000 
PUI019 Nationality 1.7777778 
PUI020 Newsletter subscription 1.5000000 
PUI021 Parent's middle name 1.6388889 
PUI022 Personal heart-rate meter 1.6111111 
PUI023 Physical health 1.7222222 
PUI024 Place of sensing moment 1.2222222 
PUI025 Political views 1.6111111 
PUI026 Provision of health care 1.7222222 
PUI027 Race 1.6388889 
PUI028 Rank 1.7222222 
PUI029 Religion 1.6111111 
PUI030 Salary information 1.7222222 
PUI031 Sexual fantasy / behavior 1.7222222 
PUI032 Sexual orientation 1.6111111 
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PUI033 Status updates 1.7777778 
PUI034 Timestamp of Web page visit 1.7500000 
PUI035 URL of last Web page 1.7222222 
PUI036 Weight 1.5833333 
 1 

In addition to the assignment of the PICCs to the exposure categories, the SMEs were 2 

asked to allocate the relative weight for each of the three measures (PDIM, PIIM, & 3 

PUIM) within the SEXI. The SMEs allocated 100 points across the measures. The mean 4 

of the SME responses was used to establish the SEXI category weights. Table 31 presents 5 

the expert panel category weight distribution for the SEXI. The sum of the categorical 6 

weights equaled 100% with each respective weight providing a basis to associate risk 7 

assessments. Table 32 presents the normalization coefficients for each Expert Panel 8 

designated category of PICCs, wherein each component indicates the existence (1) of the 9 

respective PDIC, PIIC, and PUIC or not (0).  10 

Table 31 11 

Expert Panel SEXI Category Weight Distribution 12 

Category Number of 
Items 

Measurement Weight 

PDI 12 PDIM 50.21% 
PII 57 PIIM 34.47% 
PUI 36 PUIM 15.32% 

 13 

Table 32 14 

Normalization Coefficients Derived From Expert Panel Feedback 15 

Category Number of 
items 

Normalization Coefficient Minimum Maximum 

PDI 12 1/32.527777777 0 32.527777777 
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PII 57 1/124.444444448 0 124.444444448 
PUI 36 1/58.333333332 0 58.333333332 

 1 

SEXI of 100 Individuals 2 

In the second phase of this study, a preliminary instrument was developed to assess 3 

data collection and quantitative data analysis. Development started in April 2018 and 4 

concluded in April 2019. Google+ and Twitter were used as the data sources due to their 5 

straightforward APIs and data accessibility. On April 2, 2019, Google+ shut down their 6 

services for consumers. By the end of April 2019, the base data structure was defined and 7 

used as the foundation to build a working instrument. 8 

For the third phase of the study six widely used sources were evaluated for accuracy 9 

and found unreliable or simply fake. Development of the instrument progressed through 10 

December 2019 targeting OSPI found at PublicData.com, FullContact.com, and Twitter. 11 

When necessary, the real name of the Hollywood Persona was used. Appendix E presents 12 

the SEXI data collection form.  13 

All values were initialized to null (not found). At the end of processing, if any PICC 14 

was no longer null, it was switched to true (found). Table 33 presents the OSPI sources 15 

used in the data collection for the SEXI. 16 

Table 33 17 

OSPI Data Sources Used For SEXI Data Collection 18 

Category Corporate Executives Hollywood Personas 
Contact 

/Demographics 
/ Geographic 

AdvancedBackgroundCheck.com 
Intellius.com 

PublicData.com 
VoterRecords.com  

AdvancedBackgroundCheck.c
om 

CelebrityInside.com 
Intellius.com 
NNDB.com 
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PublicData.com 
VoterRecords.com 

  
Employment Bloomberg.com 

LinkedIn.com  
IMDB.com 

LinkedIn.com 
  

Financials Sec.gov 
Salary.com 

Wallmine.com  

CelebrityNetWorth.com 
CelebsMoney.com 
NetWorthBro.com 
NetWorthPost.org 
SportsLeeda.com 

TheNetWorthPortal.com 
  

Images Images.Google.com 
Twitter.com 

 

Images.Google.com 
Twitter.com 

Searches Google.com 
 

Google.com 

Signatures 
/Autographs 
/Handwriting 

Images.Google.com 
Sec.gov 

Images.Google.com 
 

 1 

RQ4 Analysis: 100 Individuals Assessed and Classified Using OSPI 2 

Analysis was performed on 50 executives of Fortune 500 companies and 50 3 

Hollywood personas. It was observed that executives in the population might have been 4 

in the same position at the same company for decades, while others changed multiple 5 

times within a decade, while others occupied multiple positions simultaneously in non-6 

competitive organizations. Hollywood personas could be involved in multiple, a single, 7 

or no projects within a calendar year. Table 34 presents descriptive statistics of the 8 

population with the demographic medians indicated in italics, specifically: Age=55, 9 

Gender= 52% Male, Income=$2,550,000, Marital Status=Not Married, and Estimated 10 

Worth=$20,000,000. To meet the two-item requirement of ANOVA, age 29 was added to 11 
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age group 3 and CCPAO was merged with CCO. Table 35 presents the descriptive 1 

statistics of the SEXI of the population (N=100, M=29.23, SD= 4.51).  2 

  3 
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Table 34 1 

Descriptive Statistics of the Population (N=100) 2 

Item Percentage (%) 
Age 

 

29-34 2 
35-39 4 
40-44 8 
45-49 16 
50-54 17 
55-59 25 
60-64 9 
65+ 19   

Gender 
 

Male 65 
Female 35   

Income (1000s) 
 

0-281 36 
282-1,659 9 
1,660-3,099 9 
3,100-4,999 9 
5,000-9,599 9 
9,600-1,3999 9 
14,000-23,499 9 
23,500+ 10   

Marital Status 
 

No 52 
Yes 48   

Estimated Worth (1000s) 
 

0-499 17 
500-5,199 10 
5,200-7,999 8 
8,000-13,999 10 
14,000-23,399 9 
23,400-49,999 9 
50,000-89,999 9 
90,000-179,999 9 
180,000-399,999 9 
400,000+ 10 
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Industry 
 

Aerospace and Defense 5 
Automotive Retailing, Services 6 
Energy 6 
Engineering & Construction 2 
Financial Data Services 3 
Food and Drug Stores 2 
Food Services 3 
Health Care: Insurance and Managed Care 3 
Homebuilders 3 
Railroads 3 
Securities 3 
Semiconductors and Other Electronic 
Components 

3 

Specialty Retailers: Other 3 
Transportation 2 
Wholesalers: Electronics and Office 
Equipment 

3 

Big Screen 23 
Small Screen 25 
Writer 2   

Organizational Position 
 

CAO 2 
CCPAO / CCO 2 
CEO 18 
CFO 11 
CHRO 5 
CIO 6 
CMO 2 
COO 4 
Actor 23 
Producer 25 
Writer 2   

Philanthropic 
 

No 41 
Yes 59   

Military Police Experience 
 

No 96 
Yes 4 
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Table 35 1 

SEXI Descriptive Statistics of the Population (N=100) 2 

  N Min Max Mean SD Skewness Kurtosis       
Statisti

c 
Std. 

Error 
Statisti

c 
Std. 

Error 

SEXI 
10
0 

19.668
3 

43.821
1 

29.231
2 

4.5
1 

0.069 
0.24

1 
0.493 

0.47
8 

Valid N 
(listwise
) 

10
0 

                

 3 

For a PICC item to be designated as found, the item needed to be specifically located, 4 

stated, or directly derived from other data. Examples of derived data include Age 5 

(PUI002) from the Date of birth (PII010), GPS (PII022) coordinates from a full address, 6 

and employment history from movie credits. An electronic facial image / selfie (PDI005) 7 

only met the criteria if the face of the individual served as the primary subject, whereas a 8 

Photographic image (PDI009) could be anything associated with the individual. 9 

Autographs were viewed as handwriting samples, rather than Signature Handwritten. 10 

Signature Digital required an SSL authority, hash, and encryption keys. Hollywood 11 

persona’s legal names were used for Full name (PII020). Table 36 presents a summary of 12 

found / not found SEXI items. 13 

Table 36 14 

Summary of SEXI Data Collection for Executives and Hollywood Personas 15 

Item Description Execs HPers All   
Found Not  

Found 
Found Not 

Found 
Found Not 

Found 
PDI00
1 

Biometric records 0% 100% 0% 100% 0% 100% 

PDI00
2 

Credit card account number 0% 100% 0% 100% 0% 100% 
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PDI00
3 

Criminal history 0% 100% 14% 86% 7% 93% 

PDI00
4 

Driver's license [number] 66% 34% 48% 52% 57% 43% 

PDI00
5 

Electronic facial image / selfie 100% 0% 100% 0% 100% 0% 

PDI00
6 

Full set of fingerprints 0% 100% 0% 100% 0% 100% 

PDI00
7 

Genetic information 0% 100% 0% 100% 0% 100% 

PDI00
8 

Passport number 0% 100% 0% 100% 0% 100% 

PDI00
9 

Photographic image 100% 0% 100% 0% 100% 0% 

PDI01
0 

Signature Digital 0% 100% 0% 100% 0% 100% 

PDI01
1 

Social Security Number 0% 100% 2% 98% 1% 99% 

PDI01
2 

Tax records 0% 100% 0% 100% 0% 100% 

PII001 Account numbers 0% 100% 0% 100% 0% 100% 

PII002 Activities 88% 12% 98% 2% 93% 7% 

PII003 Alias 28% 72% 94% 6% 61% 39% 

PII004 Audit log of user actions 0% 100% 0% 100% 0% 100% 

PII005 Bluetooth connections to other 
devices 

0% 100% 0% 100% 0% 100% 

PII006 Cardholder name 0% 100% 0% 100% 0% 100% 

PII007 Cell phone number 66% 34% 48% 52% 57% 43% 

PII008 Cell tower location 0% 100% 2% 98% 1% 99% 

PII009 Credit card CAV2 / CVC2 / 
CVV2 / CID 

0% 100% 0% 100% 0% 100% 

PII010 Date of birth 82% 18% 100% 0% 91% 9% 

PII011 Demographics 100% 0% 100% 0% 100% 0% 

PII012 Education information 94% 6% 100% 0% 97% 3% 

PII013 E-mail address 64% 36% 86% 14% 75% 25% 

PII014 Employee identification 0% 100% 0% 100% 0% 100% 

PII015 Employment history 92% 8% 100% 0% 96% 4% 

PII016 Employment information 98% 2% 100% 0% 99% 1% 

PII017 Financial records / 
information, balances 

44% 56% 6% 94% 25% 75% 

PII018 Fingerprints 0% 100% 0% 100% 0% 100% 

PII019 Fingerprints of two fingers 0% 100% 0% 100% 0% 100% 

PII020 Full name 100% 0% 100% 0% 100% 0% 

PII021 Geographical indicators 100% 0% 100% 0% 100% 0% 

PII022 Global Positioning Systems 
(GPS)  

98% 2% 96% 4% 97% 3% 

PII023 Handwriting 6% 94% 26% 74% 16% 84% 

PII024 Holographic images 0% 100% 0% 100% 0% 100% 
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PII025 Host-specific persistent static 
identifier 

40% 60% 94% 6% 67% 33% 

PII026 IP address 2% 98% 0% 100% 1% 99% 

PII027 License plate 0% 100% 2% 98% 1% 99% 

PII028 MAC address 0% 100% 2% 98% 1% 99% 

PII029 Maiden name 0% 100% 34% 66% 17% 83% 

PII030 Medical history 0% 100% 4% 96% 2% 98% 

PII031 Medical information 26% 74% 44% 56% 35% 65% 

PII032 Medical test results 0% 100% 0% 100% 0% 100% 

PII033 Mental health 0% 100% 4% 96% 2% 98% 

PII034 Mother's maiden name 2% 98% 70% 30% 36% 64% 

PII035 Organization affiliation / 
membership 

100% 0% 100% 0% 100% 0% 

PII036 Owned property 22% 78% 66% 34% 44% 56% 

PII037 Partner(s) name 42% 58% 94% 6% 68% 32% 

PII038 Password 0% 100% 0% 100% 0% 100% 

PII039 Patient identification number 0% 100% 0% 100% 0% 100% 

PII040 Payment for health care 0% 100% 0% 100% 0% 100% 

PII041 Persistent Identifier 84% 16% 96% 4% 90% 10% 

PII042 Place of birth 2% 98% 100% 0% 51% 49% 

PII043 Professional title 100% 0% 100% 0% 100% 0% 

PII044 Recent purchases 66% 34% 44% 56% 55% 45% 

PII045 Search engine query 0% 100% 0% 100% 0% 100% 

PII046 Signature Handwritten 6% 94% 90% 10% 48% 52% 

PII047 Social media profile 64% 36% 94% 6% 79% 21% 

PII048 Street address 100% 0% 94% 6% 97% 3% 

PII049 Taxpayer identification 
number 

0% 100% 0% 100% 0% 100% 

PII050 Telephone number 86% 14% 94% 6% 90% 10% 

PII051 Location / Time of sensing 
moment 

0% 100% 0% 100% 0% 100% 

PII052 Unique health identifier 0% 100% 0% 100% 0% 100% 

PII053 User identification 28% 72% 94% 6% 61% 39% 

PII054 Web browser history 0% 100% 0% 100% 0% 100% 

PII055 Work phone 0% 100% 0% 100% 0% 100% 

PII056 X-Rays 0% 100% 0% 100% 0% 100% 

PII057 ZIP Code 100% 0% 96% 4% 98% 2% 

PUI00
1 

Acceleration via personal 
tracking 

0% 100% 2% 98% 1% 99% 

PUI00
2 

Age 100% 0% 100% 0% 100% 0% 

PUI00
3 

Agency seal / Organizational 
logo 

98% 2% 80% 20% 89% 11% 

PUI00
4 

Area code 94% 6% 82% 18% 88% 12% 
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PUI00
5 

Calorie counting with images 
of food 

0% 100% 0% 100% 0% 100% 

PUI00
6 

Card expiration date 0% 100% 0% 100% 0% 100% 

PUI00
7 

Credit card pin 0% 100% 0% 100% 0% 100% 

PUI00
8 

Credit card service code 0% 100% 0% 100% 0% 100% 

PUI00
9 

Credit score 0% 100% 0% 100% 0% 100% 

PUI01
0 

Electricity usage 0% 100% 0% 100% 0% 100% 

PUI01
1 

Family income 62% 38% 88% 12% 75% 25% 

PUI01
2 

Favorite movies 0% 100% 8% 92% 4% 96% 

PUI01
3 

Favorite restaurants 0% 100% 2% 98% 1% 99% 

PUI01
4 

Favorite television shows 0% 100% 2% 98% 1% 99% 

PUI01
5 

Gender 100% 0% 100% 0% 100% 0% 

PUI01
6 

High school name 14% 86% 80% 20% 47% 53% 

PUI01
7 

Laser etches 0% 100% 0% 100% 0% 100% 

PUI01
8 

Marital status 50% 50% 94% 6% 72% 28% 

PUI01
9 

Nationality 98% 2% 100% 0% 99% 1% 

PUI02
0 

Newsletter subscription 0% 100% 0% 100% 0% 100% 

PUI02
1 

Parent's middle name 2% 98% 44% 56% 23% 77% 

PUI02
2 

Personal heart-rate meter 0% 100% 0% 100% 0% 100% 

PUI02
3 

Physical health 0% 100% 40% 60% 20% 80% 

PUI02
4 

Place of sensing moment 0% 100% 0% 100% 0% 100% 

PUI02
5 

Political views 68% 32% 68% 32% 68% 32% 

PUI02
6 

Provision of health care 0% 100% 0% 100% 0% 100% 

PUI02
7 

Race 92% 8% 98% 2% 95% 5% 

PUI02
8 

Rank 0% 100% 0% 100% 0% 100% 

PUI02
9 

Religion 0% 100% 68% 32% 34% 66% 

PUI03
0 

Salary information 72% 28% 72% 28% 72% 28% 

PUI03
1 

Sexual fantasy / behavior 8% 92% 18% 82% 13% 87% 
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PUI03
2 

Sexual orientation 8% 92% 94% 6% 51% 49% 

PUI03
3 

Status updates 80% 20% 50% 50% 65% 35% 

PUI03
4 

Timestamp of Web page visit 0% 100% 0% 100% 0% 100% 

PUI03
5 

Uniform Resource Locator 
(URL) of last Web page 

0% 100% 0% 100% 0% 100% 

PUI03
6 

Weight 0% 100% 88% 12% 44% 56% 

 1 

RQ5 Analysis: SEXI Demographic Analysis of the Population 2 

The one-way ANOVA was conducted to investigate SEXI differences due to age. 3 

Table 37 presents the SEXI descriptive statistics for the population (N=100). Results 4 

revealed minor difference (p=0.013) between the 55-59 and 65+ age groups. Figure 7 5 

presents the minimum, maximum, and mean SEXI values for each age group. Overall, 6 

age had very little contribution for the SEXI for our population (N=100). 7 

Table 37 8 

SEXI Descriptive Statistics for Age 9 
 

N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

     
Lower  
Bound 

Upper 
 Bound 

  

29-
34 

2 30.085
0 

5.5601 3.9316 -19.8708 80.0409 26.1534 34.0166 

35-
39 

4 28.588
4 

5.8446 2.9223 19.2883 37.8884 20.1901 33.3891 

40-
44 

8 30.064
4 

2.7330 0.9663 27.7795 32.3492 27.1946 34.1486 

45-
49 

16 30.201
3 

5.7756 1.4439 27.1237 33.2789 20.6677 39.1979 

50-
54 

17 28.997
5 

3.8142 0.9251 27.0365 30.9586 20.1254 34.0798 

55-
59 

25 27.482
2 

4.0229 0.8046 25.8217 29.1428 19.6683 37.8443 

60-
64 

9 28.082
1 

4.5402 1.5134 24.5923 31.5720 21.0818 34.1325 

65+ 19 31.164
1 

4.4572 1.0226 29.0157 33.3124 22.6923 43.8211 
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Tota
l 

10
0 

29.231
3 

4.5100 0.4510 28.3364 30.1262 19.6683 43.8211 

 1 

Table 38, presents the SEXI ANOVA age results, shows no significance [F(7, 92) = 2 

1.32, p = 0.249]. Table 39 presents the SEXI multiple comparisons for age, where most 3 

age groups show no significance between the various age groups. The Tukey HSD post 4 

hoc test was conducted to determine which age categories were significantly different.  5 

Table 38 6 

SEXI ANOVA for Age 7 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 183.986 7 26.284 1.322 0.249 
Within Groups 1829.716 92 19.888 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 8 

Table 39 9 

SEXI Multiple Comparisons for Age 10 
 

(I) 
Age 

(J) 
Age 

Mean 
Difference 
(I-J) 

SE Sig. 95% Confidence 
Interval 

      
Lower 
Bound 

Upper 
Bound 

Tukey HSD 29-34 35-39 1.4967 3.86 1.000 -10.4830 13.4763 
  

40-44 0.0207 3.53 1.000 -10.9152 10.9566 
  

45-49 -0.1163 3.34 1.000 -10.4909 10.2584 
  

50-54 1.0875 3.33 1.000 -9.2532 11.4282 
  

55-59 2.6028 3.28 0.990 -7.5623 12.7679 
  

60-64 2.0029 3.49 1.000 -8.8108 12.8166 
  

65+ -1.0790 3.32 1.000 -11.3623 9.2043 
 

35-39 29-34 -1.4967 3.86 1.000 -13.4763 10.4830 
  

40-44 -1.4760 2.73 1.000 -9.9469 6.9949 
  

45-49 -1.6129 2.49 1.000 -9.3458 6.1199 
  

50-54 -0.4092 2.48 1.000 -8.0964 7.2780 
  

55-59 1.1061 2.4 1.000 -6.3431 8.5554 
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60-64 0.5062 2.68 1.000 -7.8063 8.8188 

  
65+ -2.5757 2.45 0.970 -10.1855 5.0341 

 
40-44 29-34 -0.0207 3.53 1.000 -10.9566 10.9152 

  
35-39 1.4760 2.73 1.000 -6.9949 9.9469 

  
45-49 -0.1369 1.93 1.000 -6.1268 5.8529 

  
50-54 1.0668 1.91 1.000 -4.8640 6.9976 

  
55-59 2.5821 1.81 0.840 -3.0368 8.2011 

  
60-64 1.9822 2.17 0.980 -4.7394 8.7038 

  
65+ -1.0997 1.88 1.000 -6.9298 4.7304 

 
45-49 29-34 0.1163 3.34 1.000 -10.2584 10.4909 

  
35-39 1.6129 2.49 1.000 -6.1199 9.3458 

  
40-44 0.1369 1.93 1.000 -5.8529 6.1268 

  
50-54 1.2037 1.55 0.990 -3.6145 6.0220 

  
55-59 2.7190 1.43 0.550 -1.7097 7.1477 

  
60-64 2.1191 1.86 0.950 -3.6446 7.8829 

  
65+ -0.9628 1.51 1.000 -5.6564 3.7309 

 
50-54 29-34 -1.0875 3.33 1.000 -11.4282 9.2532 

  
35-39 0.4092 2.48 1.000 -7.2780 8.0964 

  
40-44 -1.0668 1.91 1.000 -6.9976 4.8640 

  
45-49 -1.2037 1.55 0.990 -6.0220 3.6145 

  
55-59 1.5153 1.4 0.960 -2.8333 5.8638 

  
60-64 0.9154 1.84 1.000 -4.7870 6.6178 

  
65+ -2.1665 1.49 0.830 -6.7846 2.4516 

 
55-59 29-34 -2.6028 3.28 0.990 -12.7679 7.5623 

  
35-39 -1.1061 2.4 1.000 -8.5554 6.3431 

  
40-44 -2.5821 1.81 0.840 -8.2011 3.0368 

  
45-49 -2.7190 1.43 0.550 -7.1477 1.7097 

  
50-54 -1.5153 1.4 0.960 -5.8638 2.8333 

  
60-64 -0.5999 1.73 1.000 -5.9772 4.7774 

  
65+ -3.6818 1.36 0.130 -7.8919 0.5283 

 
60-64 29-34 -2.0029 3.49 1.000 -12.8166 8.8108 

  
35-39 -0.5062 2.68 1.000 -8.8188 7.8063 

  
40-44 -1.9822 2.17 0.980 -8.7038 4.7394 

  
45-49 -2.1191 1.86 0.950 -7.8829 3.6446 

  
50-54 -0.9154 1.84 1.000 -6.6178 4.7870 

  
55-59 0.5999 1.73 1.000 -4.7774 5.9772 

  
65+ -3.0819 1.8 0.680 -8.6794 2.5156 

 
65+ 29-34 1.0790 3.32 1.000 -9.2043 11.3623 

  
35-39 2.5757 2.45 0.970 -5.0341 10.1855 

  
40-44 1.0997 1.88 1.000 -4.7304 6.9298 
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45-49 0.9628 1.51 1.000 -3.7309 5.6564 

  
50-54 2.1665 1.49 0.830 -2.4516 6.7846 

  
55-59 3.6818 1.36 0.130 -0.5283 7.8919 

  
60-64 3.0819 1.8 0.680 -2.5156 8.6794 

Games-
Howell 

29-34 35-39 1.4967 4.9 
1.000 

-39.2904 42.2837 
  

40-44 0.0207 4.05 1.000 -97.7796 97.8210 
  

45-49 -0.1163 4.19 1.000 -76.1756 75.9431 
  

50-54 1.0875 4.04 1.000 -98.5571 100.7321 
  

55-59 2.6028 4.01 0.990 -102.5025 107.7081 
  

60-64 2.0029 4.21 1.000 -71.3510 75.3567 
  

65+ -1.0790 4.06 1.000 -96.1807 94.0226 
 

35-39 29-34 -1.4967 4.9 1.000 -42.2837 39.2904 
  

40-44 -1.4760 3.08 1.000 -18.2742 15.3222 
  

45-49 -1.6129 3.26 1.000 -17.3906 14.1648 
  

50-54 -0.4092 3.07 1.000 -17.2744 16.4560 
  

55-59 1.1061 3.03 1.000 -16.0360 18.2482 
  

60-64 0.5062 3.29 1.000 -15.2473 16.2597 
  

65+ -2.5757 3.1 0.980 -19.2113 14.0599 
 

40-44 29-34 -0.0207 4.05 1.000 -97.8210 97.7796 
  

35-39 1.4760 3.08 1.000 -15.3222 18.2742 
  

45-49 -0.1369 1.74 1.000 -5.9377 5.6639 
  

50-54 1.0668 1.34 0.990 -3.4735 5.6071 
  

55-59 2.5821 1.26 0.480 -1.7186 6.8828 
  

60-64 1.9822 1.8 0.950 -4.4030 8.3674 
  

65+ -1.0997 1.41 0.990 -5.8153 3.6159 
 

45-49 29-34 0.1163 4.19 1.000 -75.9431 76.1756 
  

35-39 1.6129 3.26 1.000 -14.1648 17.3906 
  

40-44 0.1369 1.74 1.000 -5.6639 5.9377 
  

50-54 1.2037 1.71 1.000 -4.4410 6.8485 
  

55-59 2.7190 1.65 0.720 -2.7494 8.1874 
  

60-64 2.1191 2.09 0.970 -4.9232 9.1615 
  

65+ -0.9628 1.77 1.000 -6.7494 4.8239 
 

50-54 29-34 -1.0875 4.04 1.000 -100.7321 98.5571 
  

35-39 0.4092 3.07 1.000 -16.4560 17.2744 
  

40-44 -1.0668 1.34 0.990 -5.6071 3.4735 
  

45-49 -1.2037 1.71 1.000 -6.8485 4.4410 
  

55-59 1.5153 1.23 0.920 -2.4286 5.4592 
  

60-64 0.9154 1.77 1.000 -5.3361 7.1668 
  

65+ -2.1665 1.38 0.760 -6.6162 2.2832 
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55-59 29-34 -2.6028 4.01 0.990 -107.7081 102.5025 

  
35-39 -1.1061 3.03 1.000 -18.2482 16.0360 

  
40-44 -2.5821 1.26 0.480 -6.8828 1.7186 

  
45-49 -2.7190 1.65 0.720 -8.1874 2.7494 

  
50-54 -1.5153 1.23 0.920 -5.4592 2.4286 

  
60-64 -0.5999 1.71 1.000 -6.7333 5.5335 

  
65+ -3.6818 1.3 0.120 -7.8612 0.4976 

 
60-64 29-34 -2.0029 4.21 1.000 -75.3567 71.3510 

  
35-39 -0.5062 3.29 1.000 -16.2597 15.2473 

  
40-44 -1.9822 1.8 0.950 -8.3674 4.4030 

  
45-49 -2.1191 2.09 0.970 -9.1615 4.9232 

  
50-54 -0.9154 1.77 1.000 -7.1668 5.3361 

  
55-59 0.5999 1.71 1.000 -5.5335 6.7333 

  
65+ -3.0819 1.83 0.700 -9.4308 3.2669 

 
65+ 29-34 1.0790 4.06 1.000 -94.0226 96.1807 

  
35-39 2.5757 3.1 0.980 -14.0599 19.2113 

  
40-44 1.0997 1.41 0.990 -3.6159 5.8153 

  
45-49 0.9628 1.77 1.000 -4.8239 6.7494 

  
50-54 2.1665 1.38 0.760 -2.2832 6.6162 

  
55-59 3.6818 1.3 0.120 -0.4976 7.8612 

  
60-64 3.0819 1.83 0.700 -3.2669 9.4308 

 1 

Figure 7 2 

SEXI for population for age 3 

 4 

The one-way ANOVA was conducted to investigate SEXI differences due to gender. 5 

It was observed that more personal information appeared readily available for Hollywood 6 

Persona females (e.g. body measurements, sexual history, etc.) that may lead to an 7 

assumption of a significant difference due to gender, which was not the case. 8 

0

50

29-34 35-39 40-44 45-49 50-54 55-59 60-64 65+
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Surprisingly, the existence of a maiden name found for several females was not enough 1 

to significantly increase the SEXI for the group. Table 40 presents the SEXI descriptive 2 

statistics for the population (65 males & 35 females) (N=100).  3 

Table 40 4 

SEXI Descriptive Statistics for Gender 5 

  N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

  
    

Lower  
Bound 

Upper  
Bound 

  

Male 65 29.5772 4.73226 0.58696 28.40461 30.7498 19.6683 43.82105 
Female 35 28.58888 4.05203 0.68492 27.19696 29.98081 20.19013 36.99099 
Total 100 29.23129 4.51004 0.451 28.3364 30.12618 19.6683 43.82105 

 6 

Table 41, presents the SEXI ANOVA gender results, shows no significance in 7 

difference between males and females [F(1, 98) = 1.09, p = 0.298]. No post hoc tests 8 

were conducted due to two ordinal categories of genders.  9 

Table 41 10 

SEXI ANOVA for Gender 11 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 22.222 1 22.222 1.094 0.298 
Within Groups 1991.48 98 20.321 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 12 

The one-way ANOVA was conducted to investigate SEXI differences due to income. 13 

Table 42 presents the SEXI descriptive statistics for the income of the population 14 

(N=100). Table 43, presents the SEXI ANOVA results, shows significance for income of 15 

the population [F(7, 92) = 2.15, p < 0.05].  16 
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Table 42 1 

SEXI Descriptive Statistics for Income (1000s) 2 
 

N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

     
Lower  
Bound 

Upper  
Bound 

 

0-281 36 29.779 4.620 0.770 28.216 31.343 21.056 43.821 
282-1659 9 31.395 3.647 1.216 28.592 34.198 25.525 36.991 
1660-3099 9 27.389 5.454 1.818 23.197 31.581 20.125 37.844 
3100-4999 9 25.385 3.075 1.025 23.021 27.749 20.190 29.715 
5000-9599 9 28.698 3.472 1.157 26.029 31.367 20.668 32.522 
9600-13999 9 27.883 3.596 1.199 25.118 30.647 19.668 32.625 
14000-23499 9 30.295 6.191 2.064 25.536 35.053 20.082 39.198 
23500+ 10 31.168 2.512 0.794 29.372 32.965 26.268 34.149 
Total 100 29.231 4.510 0.451 28.336 30.126 19.668 43.821 

 3 

Table 43 4 

SEXI ANOVA for Income (1000s) 5 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 283.257 7 40.465 2.151 0.046* 
Within Groups 1730.445 92 18.809 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 6 

 7 

Table 44 presents the SEXI multiple comparisons for income. Tukey HSD and 8 

Games-Howell post hoc tests were conducted to determine which income categories were 9 

significantly different. The Games-Howell indicated a significant difference between the 10 

3100-4999 income group with the 0-281 (p<0.05), 282-1659 (p<0.05), and 23500+ 11 

(p<0.01) income groups for the population.  12 

Table 44 13 
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SEXI Multiple Comparisons for Income 1 
 

(I) 
Income 

(J) 
Income 

Mean 
Differenc
e  
(I-J) 

SE Sig. 95% Confidence 
Interval 

      
Lower 
Bound 

Upper 
Bound 

Tukey 
HSD 

0-281 282-1659 -1.61562 1.61629 0.973 -6.62904 3.39781 
  

1660-
3099 

2.39037 1.61629 0.817 -2.62306 7.40379 
  

3100-
4999 

4.39423 1.61629 0.130 -0.61920 9.40765 
  

5000-
9599 

1.08122 1.61629 0.998 -3.93220 6.09465 
  

9600-
13999 

1.89658 1.61629 0.937 -3.11685 6.91000 
  

14000-
23499 

-0.51531 1.61629 1.000 -5.52874 4.49811 
  

23500+ -1.38907 1.55029 0.986 -6.19777 3.41964 
 

282-1659 0-281 1.61562 1.61629 0.973 -3.39781 6.62904 
  

1660-
3099 

4.00598 2.04446 0.515 -2.33555 10.34752 
  

3100-
4999 

6.00984 2.04446 0.076 -0.33169 12.35138 
  

5000-
9599 

2.69684 2.04446 0.889 -3.64469 9.03838 
  

9600-
13999 

3.51219 2.04446 0.676 -2.82934 9.85373 
  

14000-
23499 

1.10030 2.04446 0.999 -5.24123 7.44184 
  

23500+ 0.22655 1.99269 1.000 -5.95441 6.40752 
 

1660-
3099 

0-281 -2.39037 1.61629 0.817 -7.40379 2.62306 
  

282-1659 -4.00598 2.04446 0.515 -10.34752 2.33555 
  

3100-
4999 

2.00386 2.04446 0.976 -4.33768 8.34539 
  

5000-
9599 

-1.30914 2.04446 0.998 -7.65068 5.03239 
  

9600-
13999 

-0.49379 2.04446 1.000 -6.83533 5.84774 
  

14000-
23499 

-2.90568 2.04446 0.845 -9.24722 3.43585 
  

23500+ -3.77943 1.99269 0.557 -9.96040 2.40153 
 

3100-
4999 

0-281 -4.39423 1.61629 0.130 -9.40765 0.61920 
  

282-1659 -6.00984 2.04446 0.076 -12.35138 0.33169 
  

1660-
3099 

-2.00386 2.04446 0.976 -8.34539 4.33768 
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5000-
9599 

-3.31300 2.04446 0.737 -9.65454 3.02853 
  

9600-
13999 

-2.49765 2.04446 0.923 -8.83919 3.84388 
  

14000-
23499 

-4.90954 2.04446 0.253 -11.25108 1.43199 
  

23500+ -5.78329 1.99269 0.084 -11.96426 0.39767 
 

5000-
9599 

0-281 -1.08122 1.61629 0.998 -6.09465 3.93220 
  

282-1659 -2.69684 2.04446 0.889 -9.03838 3.64469 
  

1660-
3099 

1.30914 2.04446 0.998 -5.03239 7.65068 
  

3100-
4999 

3.31300 2.04446 0.737 -3.02853 9.65454 
  

9600-
13999 

0.81535 2.04446 1.000 -5.52618 7.15689 
  

14000-
23499 

-1.59654 2.04446 0.994 -7.93807 4.74500 
  

23500+ -2.47029 1.99269 0.918 -8.65125 3.71067 
 

9600-
13999 

0-281 -1.89658 1.61629 0.937 -6.91000 3.11685 
  

282-1659 -3.51219 2.04446 0.676 -9.85373 2.82934 
  

1660-
3099 

0.49379 2.04446 1.000 -5.84774 6.83533 
  

3100-
4999 

2.49765 2.04446 0.923 -3.84388 8.83919 
  

5000-
9599 

-0.81535 2.04446 1.000 -7.15689 5.52618 
  

14000-
23499 

-2.41189 2.04446 0.936 -8.75342 3.92965 
  

23500+ -3.28564 1.99269 0.719 -9.46660 2.89532 
 

14000-
23499 

0-281 0.51531 1.61629 1.000 -4.49811 5.52874 
  

282-1659 -1.10030 2.04446 0.999 -7.44184 5.24123 
  

1660-
3099 

2.90568 2.04446 0.845 -3.43585 9.24722 
  

3100-
4999 

4.90954 2.04446 0.253 -1.43199 11.25108 
  

5000-
9599 

1.59654 2.04446 0.994 -4.74500 7.93807 
  

9600-
13999 

2.41189 2.04446 0.936 -3.92965 8.75342 
  

23500+ -0.87375 1.99269 1.000 -7.05472 5.30721 
 

23500+ 0-281 1.38907 1.55029 0.986 -3.41964 6.19777 
  

282-1659 -0.22655 1.99269 1.000 -6.40752 5.95441 
  

1660-
3099 

3.77943 1.99269 0.557 -2.40153 9.96040 
  

3100-
4999 

5.78329 1.99269 0.084 -0.39767 11.96426 
  

5000-
9599 

2.47029 1.99269 0.918 -3.71067 8.65125 
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9600-
13999 

3.28564 1.99269 0.719 -2.89532 9.46660 
  

14000-
23499 

0.87375 1.99269 1.000 -5.30721 7.05472 

Games-
Howell 

0-281 282-1659 -1.61562 1.43901 0.942 -6.63499 3.40375 
  

1660-
3099 

2.39037 1.97431 0.913 -4.86606 9.64680 
  

3100-
4999 

4.39423 1.28217 0.048* 0.02736 8.76109 
  

5000-
9599 

1.08122 1.39002 0.992 -3.73366 5.89611 
  

9600-
13999 

1.89658 1.42483 0.874 -3.06359 6.85674 
  

14000-
23499 

-0.51531 2.20253 1.000 -8.71878 7.68815 
  

23500+ -1.38907 1.10624 0.907 -5.01067 2.23254 
 

282-1659 0-281 1.61562 1.43901 0.942 -3.40375 6.63499 
  

1660-
3099 

4.00598 2.18693 0.611 -3.71414 11.72611 
  

3100-
4999 

6.00984 1.59019 0.028* 0.48345 11.53623 
  

5000-
9599 

2.69684 1.67836 0.740 -3.11576 8.50945 
  

9600-
13999 

3.51219 1.70730 0.478 -2.39891 9.42329 
  

14000-
23499 

1.10030 2.39497 1.000 -7.45516 9.65577 
  

23500+ 0.22655 1.45207 1.000 -4.89638 5.34948 
 

1660-
3099 

0-281 -2.39037 1.97431 0.913 -9.64680 4.86606 
  

282-1659 -4.00598 2.18693 0.611 -11.72611 3.71414 
  

3100-
4999 

2.00386 2.08707 0.973 -5.48437 9.49209 
  

5000-
9599 

-1.30914 2.15501 0.998 -8.95034 6.33205 
  

9600-
13999 

-0.49379 2.17763 1.000 -8.19050 7.20291 
  

14000-
23499 

-2.90568 2.75010 0.957 -12.44710 6.63574 
  

23500+ -3.77943 1.98385 0.574 -11.07836 3.51950 
 

3100-
4999 

0-281 -4.39423 1.28217 0.048* -8.76109 -0.02736 
  

282-1659 -6.00984 1.59019 0.028* -11.53623 -0.48345 
  

1660-
3099 

-2.00386 2.08707 0.973 -9.49209 5.48437 
  

5000-
9599 

-3.31300 1.54600 0.431 -8.67584 2.04984 
  

9600-
13999 

-2.49765 1.57737 0.753 -7.97630 2.98100 
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14000-
23499 

-4.90954 2.30415 0.449 -13.28449 3.46541 
  

23500+ -5.78329 1.29681 0.008** -10.29172 -1.27486 
 

5000-
9599 

0-281 -1.08122 1.39002 0.992 -5.89611 3.73366 
  

282-1659 -2.69684 1.67836 0.740 -8.50945 3.11576 
  

1660-
3099 

1.30914 2.15501 0.998 -6.33205 8.95034 
  

3100-
4999 

3.31300 1.54600 0.431 -2.04984 8.67584 
  

9600-
13999 

0.81535 1.66622 1.000 -4.95432 6.58502 
  

14000-
23499 

-1.59654 2.36586 0.996 -10.08981 6.89673 
  

23500+ -2.47029 1.40354 0.653 -7.39899 2.45841 
 

9600-
13999 

0-281 -1.89658 1.42483 0.874 -6.85674 3.06359 
  

282-1659 -3.51219 1.70730 0.478 -9.42329 2.39891 
  

1660-
3099 

0.49379 2.17763 1.000 -7.20291 8.19050 
  

3100-
4999 

2.49765 1.57737 0.753 -2.98100 7.97630 
  

5000-
9599 

-0.81535 1.66622 1.000 -6.58502 4.95432 
  

14000-
23499 

-2.41189 2.38648 0.964 -10.94882 6.12505 
  

23500+ -3.28564 1.43803 0.363 -8.35221 1.78092 
 

14000-
23499 

0-281 0.51531 2.20253 1.000 -7.68815 8.71878 
  

282-1659 -1.10030 2.39497 1.000 -9.65577 7.45516 
  

1660-
3099 

2.90568 2.75010 0.957 -6.63574 12.44710 
  

3100-
4999 

4.90954 2.30415 0.449 -3.46541 13.28449 
  

5000-
9599 

1.59654 2.36586 0.996 -6.89673 10.08981 
  

9600-
13999 

2.41189 2.38648 0.964 -6.12505 10.94882 
  

23500+ -0.87375 2.21109 1.000 -9.10804 7.36054 
 

23500+ 0-281 1.38907 1.10624 0.907 -2.23254 5.01067 
  

282-1659 -0.22655 1.45207 1.000 -5.34948 4.89638 
  

1660-
3099 

3.77943 1.98385 0.574 -3.51950 11.07836 
  

3100-
4999 

5.78329 1.29681 0.008** 1.27486 10.29172 
  

5000-
9599 

2.47029 1.40354 0.653 -2.45841 7.39899 
  

9600-
13999 

3.28564 1.43803 0.363 -1.78092 8.35221 
  

14000-
23499 

0.87375 2.21109 1.000 -7.36054 9.10804 
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The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 1 

The one-way ANOVA was conducted to investigate SEXI differences due to marital 2 

status. No post hoc tests were conducted due to only two ordinal categories of marital 3 

status. Table 45 presents the SEXI descriptive statistics for the population (N=100). Table 4 

46, presents the SEXI ANOVA results, shows borderline significance for marital status 5 

[F(1, 98) = 3.05, p =0.084].  6 

Table 45 7 

SEXI Descriptive Statistics for Marital Status 8 
 

N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

     
Lower  
Bound 

    Upper  
    Bound 

 

No 52 28.482 4.395 0.609 27.258 29.706 20.082 39.198 

Yes 48 30.043 4.538 0.655 28.725 31.361 19.668 43.821 

Total 100 29.231 4.510 0.451 28.336 30.126 19.668 43.821 

 9 

For those with a marital status, it was observed that a spouse might also be named, 10 

discussed, or photographed during public events, social media postings, private 11 

ceremonies, etc., thereby contributing to the SEXI of each party. In many instances, the 12 

availability of marital status provided direct access to additional PICCs, such as maiden 13 

name, address, and affiliations.  14 

Table 46 15 

SEXI ANOVA for Marital Status 16 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 60.809 1 60.809 3.051 0.084 
Within Groups 1952.893 98 19.927 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 17 
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The one-way ANOVA was conducted to investigate SEXI differences due to 1 

estimated worth. Table 47 presents the SEXI descriptive statistics for the population 2 

estimated worth (N=100). Table 48, presents the SEXI ANOVA results, shows 3 

significance for estimated worth [F(9, 90) = 3.02, p < 0.01]. Figure 8 presents the 4 

estimated worth SEXI for the population. It was observed that the largest group of 5 

estimated income was found in the sub $500,000 estimated worth group.  6 

Table 47 7 

SEXI Descriptive Statistics for Estimated Worth (Millions) 8 

  N M SD SE 95% Confidence 
Interval for Mean 

Min Max 

          Lower  
Bound 

Upper 
Bound 

  

0-.499 17 26.084 3.341 0.810 24.366 27.802 19.668 30.38 

.5 - 5.19 10 27.744 5.081 1.607 24.109 31.378 21.082 37.844 

5.2 - 7.9 8 27.541 5.149 1.821 23.236 31.846 20.125 34.017 

8 - 13.9 10 28.574 3.104 0.982 26.354 30.795 22.692 33.606 

14 - 23.39 9 30.966 6.324 2.108 26.105 35.827 20.668 43.821 

23.4 - 49.9 9 30.051 3.398 1.133 27.439 32.663 26.142 34.358 

50 - 89.9 9 30.924 3.951 1.317 27.887 33.961 23.365 36.913 

90 - 179.9 9 28.581 4.263 1.421 25.304 31.857 20.082 32.625 

180 - 399.9 9 33.303 3.970 1.323 30.252 36.354 27.195 39.198 

400+ 10 31.176 2.459 0.778 29.417 32.935 26.268 34.149 

Total 100 29.231 4.51 0.451 28.336 30.126 19.668 43.821 

 9 

Table 48 10 

SEXI ANOVA for Estimated Worth (1000s) 11 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 467.442 9 51.938 3.023 0.003** 
Within Groups 1546.26 90 17.181 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 12 
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 1 

Figure 8 2 

SEXI for the population for estimated worth (1000s) 3 

 4 

Table 49 presents the SEXI multiple comparisons for estimated worth. Tukey HSD 5 

and Games-Howell post hoc tests were conducted to determine which estimated worth 6 

categories were significantly different. There was a significant difference between the 0-7 

499 and the 180000-399999 (p<0.01) estimated worth groups. The 400000+ group 8 

showed a borderline difference (p=0.077) with the 0-4999 group. 9 

 10 

 11 

Table 49 12 

SEXI Multiple Comparisons for Estimated Worth 13 

  (I) 
EstWort

h 
(millions

) 

(J) 
EstWort

h 
(millions

) 

Mean 
Differenc

e SE Sig. 
95% Confidence 

Interval 
(I-J) 

      
Lower 
Bound 

Upper 
Bound 

Tukey 
HSD 

0-.499 .5 - 5.19 -1.66 1.652 0.991 -7.019 3.7 

25
26
27
28
29
30
31
32
33
34

$0 - $499

$500 - $5,199

$5,200-$7,999

$8,000 -
$13,999

$14,000 -
$23,399

$23,400 -
$49,999

$50,000 -
$89,999

$90,000 -
$179,999

$180,000 -
$399,999

$400,000+

S
E

X
I

Estimated Worth
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5.2 - 7.9 -1.457 1.777 0.998 -7.223 4.309   
8 - 13.9 -2.49 1.652 0.886 -7.85 2.869   
14 - 23.39 -4.882 1.709 0.134 -10.426 0.662   
23.4 - 
49.9 

-3.967 1.709 0.386 -9.511 1.577 
  

50 - 89.9 -4.84 1.709 0.141 -10.384 0.704   
90 - 179.9 -2.497 1.709 0.904 -8.04 3.047   
180 - 
399.9 

-7.219 1.709 0.002*
* 

-12.762 -1.675 
  

400+ -5.092 1.652 0.077 -10.452 0.267  
.5 - 5.19 0-.499 1.66 1.652 0.991 -3.7 7.019   

5.2 - 7.9 0.203 1.966 1.000 -6.176 6.581   
8 - 13.9 -0.831 1.854 1.000 -6.845 5.183   
14 - 23.39 -3.222 1.904 0.797 -9.401 2.957   
23.4 - 
49.9 

-2.308 1.904 0.969 -8.487 3.871 
  

50 - 89.9 -3.18 1.904 0.809 -9.359 2.999   
90 - 179.9 -0.837 1.904 1.000 -7.016 5.342   
180 - 
399.9 

-5.559 1.904 0.116 -11.738 0.62 
  

400+ -3.433 1.854 0.701 -9.447 2.581  
5.2 - 7.9 0-.499 1.457 1.777 0.998 -4.309 7.223   

.5 - 5.19 -0.203 1.966 1.000 -6.581 6.176   
8 - 13.9 -1.033 1.966 1.000 -7.412 5.346   
14 - 23.39 -3.425 2.014 0.792 -9.96 3.11   
23.4 - 
49.9 

-2.51 2.014 0.962 -9.045 4.024 
  

50 - 89.9 -3.383 2.014 0.804 -9.917 3.152   
90 - 179.9 -1.04 2.014 1.000 -7.574 5.495   
180 - 
399.9 

-5.762 2.014 0.133 -12.296 0.773 
  

400+ -3.635 1.966 0.702 -10.014 2.744  
8 - 13.9 0-.499 2.49 1.652 0.886 -2.869 7.85   

.5 - 5.19 0.831 1.854 1.000 -5.183 6.845   
5.2 - 7.9 1.033 1.966 1.000 -5.346 7.412   
14 - 23.39 -2.392 1.904 0.961 -8.571 3.787   
23.4 - 
49.9 

-1.477 1.904 0.999 -7.656 4.702 
  

50 - 89.9 -2.35 1.904 0.965 -8.529 3.829   
90 - 179.9 -0.007 1.904 1.000 -6.186 6.172   
180 - 
399.9 

-4.729 1.904 0.292 -10.907 1.45 
  

400+ -2.602 1.854 0.923 -8.616 3.412 
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14 - 23.39 0-.499 4.882 1.709 0.134 -0.662 10.426   

.5 - 5.19 3.222 1.904 0.797 -2.957 9.401   
5.2 - 7.9 3.425 2.014 0.792 -3.11 9.96   
8 - 13.9 2.392 1.904 0.961 -3.787 8.571   
23.4 - 
49.9 

0.915 1.954 1.000 -5.425 7.254 
  

50 - 89.9 0.042 1.954 1.000 -6.297 6.381   
90 - 179.9 2.385 1.954 0.967 -3.954 8.725   
180 - 
399.9 

-2.337 1.954 0.971 -8.676 4.003 
  

400+ -0.21 1.904 1.000 -6.389 5.969  
23.4 - 
49.9 

0-.499 3.967 1.709 0.386 -1.577 9.511 
  

.5 - 5.19 2.308 1.904 0.969 -3.871 8.487   
5.2 - 7.9 2.51 2.014 0.962 -4.024 9.045   
8 - 13.9 1.477 1.904 0.999 -4.702 7.656   
14 - 23.39 -0.915 1.954 1.000 -7.254 5.425   
50 - 89.9 -0.873 1.954 1.000 -7.212 5.467   
90 - 179.9 1.47 1.954 0.999 -4.869 7.81   
180 - 
399.9 

-3.252 1.954 0.812 -9.591 3.088 
  

400+ -1.125 1.904 1.000 -7.304 5.054  
50 - 89.9 0-.499 4.84 1.709 0.141 -0.704 10.384   

.5 - 5.19 3.18 1.904 0.809 -2.999 9.359   
5.2 - 7.9 3.383 2.014 0.804 -3.152 9.917   
8 - 13.9 2.35 1.904 0.965 -3.829 8.529   
14 - 23.39 -0.042 1.954 1.000 -6.381 6.297   
23.4 - 
49.9 

0.873 1.954 1.000 -5.467 7.212 
  

90 - 179.9 2.343 1.954 0.971 -3.996 8.683   
180 - 
399.9 

-2.379 1.954 0.968 -8.718 3.961 
  

400+ -0.252 1.904 1.000 -6.431 5.927  
90 - 179.9 0-.499 2.497 1.709 0.904 -3.047 8.04   

.5 - 5.19 0.837 1.904 1.000 -5.342 7.016   
5.2 - 7.9 1.04 2.014 1.000 -5.495 7.574   
8 - 13.9 0.007 1.904 1.000 -6.172 6.186   
14 - 23.39 -2.385 1.954 0.967 -8.725 3.954   
23.4 - 
49.9 

-1.47 1.954 0.999 -7.81 4.869 
  

50 - 89.9 -2.343 1.954 0.971 -8.683 3.996   
180 - 
399.9 

-4.722 1.954 0.329 -11.061 1.618 
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400+ -2.595 1.904 0.935 -8.774 3.583  

180 - 
399.9 

0-.499 7.219 1.709 0.002*
* 

1.675 12.762 
  

.5 - 5.19 5.559 1.904 0.116 -0.62 11.738   
5.2 - 7.9 5.762 2.014 0.133 -0.773 12.296   
8 - 13.9 4.729 1.904 0.292 -1.45 10.907   
14 - 23.39 2.337 1.954 0.971 -4.003 8.676   
23.4 - 
49.9 

3.252 1.954 0.812 -3.088 9.591 
  

50 - 89.9 2.379 1.954 0.968 -3.961 8.718   
90 - 179.9 4.722 1.954 0.329 -1.618 11.061   
400+ 2.126 1.904 0.982 -4.052 8.305  

400+ 0-.499 5.092 1.652 0.077 -0.267 10.452   
.5 - 5.19 3.433 1.854 0.701 -2.581 9.447   
5.2 - 7.9 3.635 1.966 0.702 -2.744 10.014   
8 - 13.9 2.602 1.854 0.923 -3.412 8.616   
14 - 23.39 0.21 1.904 1.000 -5.969 6.389   
23.4 - 
49.9 

1.125 1.904 1.000 -5.054 7.304 
  

50 - 89.9 0.252 1.904 1.000 -5.927 6.431   
90 - 179.9 2.595 1.904 0.935 -3.583 8.774   
180 - 
399.9 

-2.126 1.904 0.982 -8.305 4.052 

Games-
Howell 0-.499 .5 - 5.19 -1.66 1.799 0.993 -8.37 5.051   

5.2 - 7.9 -1.457 1.993 0.998 -9.367 6.453   
8 - 13.9 -2.49 1.273 0.635 -6.993 2.012   
14 - 23.39 -4.882 2.258 0.528 -13.741 3.977   
23.4 - 
49.9 

-3.967 1.393 0.199 -9.031 1.097 
  

50 - 89.9 -4.84 1.546 0.133 -10.573 0.893   
90 - 179.9 -2.497 1.636 0.860 -8.621 3.627   
180 - 
399.9 

-7.219 1.552 0.009*
* 

-12.974 -1.464 
  

400+ -5.092 1.123 0.005*
* 

-9.003 -1.182 
 

.5 - 5.19 0-.499 1.66 1.799 0.993 -5.051 8.37   
5.2 - 7.9 0.203 2.428 1.000 -8.718 9.123   
8 - 13.9 -0.831 1.883 1.000 -7.758 6.096   
14 - 23.39 -3.222 2.65 0.958 -12.928 6.483   
23.4 - 
49.9 

-2.308 1.966 0.966 -9.48 4.864 
  

50 - 89.9 -3.18 2.078 0.862 -10.703 4.342   
90 - 179.9 -0.837 2.145 1.000 -8.588 6.913 
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180 - 
399.9 

-5.559 2.081 0.260 -13.094 1.976 
  

400+ -3.433 1.785 0.657 -10.145 3.28  
5.2 - 7.9 0-.499 1.457 1.993 0.998 -6.453 9.367   

.5 - 5.19 -0.203 2.428 1.000 -9.123 8.718   
8 - 13.9 -1.033 2.068 1.000 -9.066 6.999   
14 - 23.39 -3.425 2.785 0.955 -13.672 6.822   
23.4 - 
49.9 

-2.51 2.144 0.964 -10.701 5.681 
  

50 - 89.9 -3.383 2.247 0.868 -11.822 5.056   
90 - 179.9 -1.04 2.309 1.000 -9.65 7.571   
180 - 
399.9 

-5.762 2.251 0.321 -14.21 2.686 
  

400+ -3.635 1.98 0.705 -11.557 4.286  
8 - 13.9 0-.499 2.49 1.273 0.635 -2.012 6.993   

.5 - 5.19 0.831 1.883 1.000 -6.096 7.758   
5.2 - 7.9 1.033 2.068 1.000 -6.999 9.066   
14 - 23.39 -2.392 2.325 0.983 -11.353 6.57   
23.4 - 
49.9 

-1.477 1.499 0.989 -6.919 3.965 
  

50 - 89.9 -2.35 1.643 0.899 -8.376 3.677   
90 - 179.9 -0.007 1.727 1.000 -6.385 6.372   
180 - 
399.9 

-4.729 1.647 0.196 -10.775 1.318 
  

400+ -2.602 1.252 0.563 -7.121 1.917  
14 - 23.39 0-.499 4.882 2.258 0.528 -3.977 13.741   

.5 - 5.19 3.222 2.65 0.958 -6.483 12.928   
5.2 - 7.9 3.425 2.785 0.955 -6.822 13.672   
8 - 13.9 2.392 2.325 0.983 -6.57 11.353   
23.4 - 
49.9 

0.915 2.393 1.000 -8.177 10.007 
  

50 - 89.9 0.042 2.486 1.000 -9.255 9.339   
90 - 179.9 2.385 2.542 0.992 -7.055 11.826   
180 - 
399.9 

-2.337 2.489 0.992 -11.642 6.968 
  

400+ -0.21 2.247 1.000 -9.074 8.653  
23.4 - 
49.9 

0-.499 3.967 1.393 0.199 -1.097 9.031 
  

.5 - 5.19 2.308 1.966 0.966 -4.864 9.48   
5.2 - 7.9 2.51 2.144 0.964 -5.681 10.701   
8 - 13.9 1.477 1.499 0.989 -3.965 6.919   
14 - 23.39 -0.915 2.393 1.000 -10.007 8.177   
50 - 89.9 -0.873 1.737 1.000 -7.218 5.473 
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90 - 179.9 1.47 1.817 0.997 -5.192 8.133   
180 - 
399.9 

-3.252 1.742 0.689 -9.615 3.112 
  

400+ -1.125 1.374 0.997 -6.203 3.953  
50 - 89.9 0-.499 4.84 1.546 0.133 -0.893 10.573   

.5 - 5.19 3.18 2.078 0.862 -4.342 10.703   
5.2 - 7.9 3.383 2.247 0.868 -5.056 11.822   
8 - 13.9 2.35 1.643 0.899 -3.677 8.376   
14 - 23.39 -0.042 2.486 1.000 -9.339 9.255   
23.4 - 
49.9 

0.873 1.737 1.000 -5.473 7.218 
  

90 - 179.9 2.343 1.937 0.960 -4.718 9.404   
180 - 
399.9 

-2.379 1.867 0.946 -9.177 4.42 
  

400+ -0.252 1.53 1.000 -5.994 5.49  
90 - 179.9 0-.499 2.497 1.636 0.860 -3.627 8.621   

.5 - 5.19 0.837 2.145 1.000 -6.913 8.588   
5.2 - 7.9 1.04 2.309 1.000 -7.571 9.65   
8 - 13.9 0.007 1.727 1.000 -6.372 6.385   
14 - 23.39 -2.385 2.542 0.992 -11.826 7.055   
23.4 - 
49.9 

-1.47 1.817 0.997 -8.133 5.192 
  

50 - 89.9 -2.343 1.937 0.960 -9.404 4.718   
180 - 
399.9 

-4.722 1.942 0.369 -11.797 2.353 
  

400+ -2.595 1.62 0.826 -8.727 3.536  
180 - 
399.9 

0-.499 7.219 1.552 0.009*
* 

1.464 12.974 
  

.5 - 5.19 5.559 2.081 0.260 -1.976 13.094   
5.2 - 7.9 5.762 2.251 0.321 -2.686 14.21   
8 - 13.9 4.729 1.647 0.196 -1.318 10.775   
14 - 23.39 2.337 2.489 0.992 -6.968 11.642   
23.4 - 
49.9 

3.252 1.742 0.689 -3.112 9.615 
  

50 - 89.9 2.379 1.867 0.946 -4.42 9.177   
90 - 179.9 4.722 1.942 0.369 -2.353 11.797   
400+ 2.126 1.535 0.912 -3.638 7.891  

400+ 0-.499 5.092 1.123 0.005*
* 

1.182 9.003 
  

.5 - 5.19 3.433 1.785 0.657 -3.28 10.145   
5.2 - 7.9 3.635 1.98 0.705 -4.286 11.557   
8 - 13.9 2.602 1.252 0.563 -1.917 7.121   
14 - 23.39 0.21 2.247 1.000 -8.653 9.074 
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23.4 - 
49.9 

1.125 1.374 0.997 -3.953 6.203 
  

50 - 89.9 0.252 1.53 1.000 -5.49 5.994   
90 - 179.9 2.595 1.62 0.826 -3.536 8.727 

    180 - 
399.9 

-2.126 1.535 0.912 -7.891 3.638 

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 1 

The one-way ANOVA was conducted to investigate SEXI differences due to industry. 2 

Figure 9 presents the average SEXI for each industry represented for the population. 3 

Table 50 presents the SEXI descriptive statistics for the population (N=100). Table 51, 4 

presents the SEXI ANOVA results, shows significance for industry [F(17, 82) = 5.34, p < 5 

0.001].  6 

Table 52 presents the SEXI multiple comparisons for industry. Tukey HSD post hoc 7 

tests were conducted to determine which industries were significantly different. There 8 

was a significant difference between writers and Energy (p<0.05), Homebuilders 9 

(p<0.001), Specialty Retailers: Other (p<0.01), Aerospace and Defense (p<0.05), as well 10 

as Securities (p<0.01). There was also a significant difference between Small Screen 11 

Hollywood personas and Homebuilders (p<0.001), Specialty Retailers: Other (p<0.01), 12 

Aerospace and Defense (p<0.05), as well as Securities (p<0.05).  13 

Figure 9 14 

SEXI for industries represented by the population 15 
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 1 

Writers showed a borderline significance with Automotive Retailing, Services 2 

(p=0.055). Big Screen Hollywood Personas also indicated a significant difference with 3 

Homebuilders (p<0.05), Specialty Retailers: Other (p<0.001), as well as Securities 4 

(p<0.05). It was observed that Writers appear to have the highest SEXI values, which 5 

may be attributed to their affiliation to multiple industries, such as writing screen plays 6 

(Small Screen), scripts (Big Screen), short stories, and novels, thereby providing multiple 7 

channels of exposure as each industry group may stereotypically focus on specific public 8 

information. Interestingly, there was no significant difference between Writers, Big 9 

Screen Hollywood Personas, or Small Screen Hollywood Personas. There were also no 10 

significant differences found within the industries of the executives.  11 

Table 50 12 
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SEXI Descriptive Statistics for Industry 1 
 

N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

     
Lower 
Bound 

Upper 
Bound 

  

Engineering & Construction 2 26.324 8.766 6.198 -52.433 105.080 20.125 32.522 

Food Services 3 26.963 1.569 0.906 23.067 30.860 25.243 28.314 

Financial Data Services 3 26.214 5.132 2.963 13.465 38.963 20.668 30.795 

Railroads 3 26.981 3.090 1.784 19.305 34.656 23.541 29.522 

Energy 6 26.999 2.933 1.197 23.921 30.077 23.365 30.278 

Wholesalers: Electronics and 
Office Equipment 

3 28.897 1.128 0.652 26.094 31.700 27.610 29.716 

Food and Drug Stores 2 27.449 1.230 0.869 16.402 38.496 26.579 28.318 

Semiconductors and Other 
Electronic Components 

3 27.417 1.644 0.949 23.333 31.502 25.525 28.494 

Automotive Retailing, 
Services 

6 27.157 3.488 1.424 23.496 30.818 21.175 30.110 

Homebuilders 3 20.776 0.508 0.293 19.515 22.037 20.190 21.082 

Health Care: Insurance and 
Managed Care 

3 28.696 1.464 0.845 25.060 32.332 27.737 30.380 

Specialty Retailers: Other 3 23.362 3.732 2.155 14.091 32.633 19.668 27.132 

Aerospace and Defense 5 26.078 3.937 1.761 21.190 30.967 20.082 30.681 

Securities 3 23.688 2.139 1.235 18.375 29.000 22.228 26.142 

Transportation 2 30.109 1.500 1.061 16.629 43.590 29.048 31.170 

Big Screen 23 31.436 3.548 0.740 29.901 32.970 24.347 39.198 

Small Screen 25 32.154 2.994 0.599 30.918 33.390 26.509 37.844 

Writer 2 37.097 9.509 6.724 -48.337 122.532 30.373 43.821 

Total 100 29.231 4.510 0.451 28.336 30.126 19.668 43.821 

 2 

 3 

 4 

Table 51 5 

SEXI ANOVA for Industry 6 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 1058.318 17 62.254 5.343 .000*** 
Within Groups 955.383 82 11.651 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 7 
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 1 

Table 52 2 

SEXI Multiple Comparisons for Industry 3 

(I) 
Industry 

(J) Industry Mean 
Difference 

(I-J) 

SE Sig. 95% Confidence 
Interval   

     
Lower 
Bound 

Upper 
Bound 

 

Tukey HSD 
      

E
ng

in
ee

ri
ng

 &
 C

on
st

ru
ct

io
n Food Services -0.639 3.116 1.000 -11.865 10.586 

 

Financial Data Services 0.11 3.116 1.000 -11.116 11.335 
 

Railroads -0.657 3.116 1.000 -11.882 10.568 
 

Energy -0.675 2.787 1.000 -10.715 9.365 
 

Wholesalers: Electronics and 
Office Equipment 

-2.573 3.116 1.000 -13.798 8.652 
 

Food and Drug Stores -1.125 3.413 1.000 -13.422 11.171 
 

Semiconductors and Other 
Electronic Components 

-1.094 3.116 1.000 -12.319 10.131 
 

Automotive Retailing, Services -0.833 2.787 1.000 -10.873 9.207 
 

Homebuilders 5.548 3.116 0.942 -5.677 16.773 
 

Health Care: Insurance and 
Managed Care 

-2.372 3.116 1.000 -13.597 8.853 
 

Specialty Retailers: Other 2.962 3.116 1.000 -8.263 14.187 
 

Aerospace and Defense 0.245 2.856 1.000 -10.043 10.533 
 

Securities 2.636 3.116 1.000 -8.589 13.861 
 

Transportation -3.786 3.413 1.000 -16.082 8.511 
 

Big Screen -5.112 2.516 0.845 -14.177 3.953 
 

Small Screen -5.83 2.508 0.664 -14.866 3.206 
 

Writer -10.774 3.413 0.159 -23.07 1.523 
 

        

F
oo

d 
S

er
vi

ce
s Engineering & Construction 0.639 3.116 1.000 -10.586 11.865 

 

Financial Data Services 0.749 2.787 1.000 -9.291 10.789 
 

Railroads -0.017 2.787 1.000 -10.057 10.023 
 

Energy -0.036 2.414 1.000 -8.73 8.659 
 

Wholesalers: Electronics and 
Office Equipment 

-1.934 2.787 1.000 -11.974 8.106 
 

Food and Drug Stores -0.486 3.116 1.000 -11.711 10.739 
 

Semiconductors and Other 
Electronic Components 

-0.454 2.787 1.000 -10.494 9.586 
 

Automotive Retailing, Services -0.194 2.414 1.000 -8.889 8.501 
 

Homebuilders 6.187 2.787 0.735 -3.853 16.227 
 

Health Care: Insurance and 
Managed Care 

-1.733 2.787 1.000 -11.773 8.308 
 

Specialty Retailers: Other 3.601 2.787 0.998 -6.439 13.641 
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Aerospace and Defense 0.885 2.493 1.000 -8.095 9.865 
 

Securities 3.275 2.787 0.999 -6.765 13.315 
 

Transportation -3.146 3.116 1.000 -14.371 8.079 
 

Big Screen -4.472 2.095 0.788 -12.021 3.076 
 

Small Screen -5.191 2.086 0.545 -12.704 2.322 
 

Writer -10.134 3.116 0.126 -21.359 1.091 
 

        

F
in

an
ci

al
 D

at
a 

S
er

vi
ce

s Engineering & Construction -0.11 3.116 1.000 -11.335 11.116 
 

Food Services -0.749 2.787 1.000 -10.789 9.291 
 

Railroads -0.766 2.787 1.000 -10.806 9.274 
 

Energy -0.784 2.414 1.000 -9.479 7.91 
 

Wholesalers: Electronics and 
Office Equipment 

-2.683 2.787 1.000 -12.723 7.357 
 

Food and Drug Stores -1.235 3.116 1.000 -12.46 9.99 
 

Semiconductors and Other 
Electronic Components 

-1.203 2.787 1.000 -11.243 8.837 
 

Automotive Retailing, Services -0.943 2.414 1.000 -9.638 7.752 
 

Homebuilders 5.438 2.787 0.883 -4.602 15.478 
 

Health Care: Insurance and 
Managed Care 

-2.481 2.787 1.000 -12.522 7.559 
 

Specialty Retailers: Other 2.852 2.787 1.000 -7.188 12.892 
 

Aerospace and Defense 0.136 2.493 1.000 -8.844 9.116 
 

Securities 2.526 2.787 1.000 -7.514 12.567 
 

Transportation -3.895 3.116 0.998 -15.12 7.33 
 

Big Screen -5.221 2.095 0.543 -12.77 2.327 
 

Small Screen -5.94 2.086 0.305 -13.453 1.573 
 

Writer -10.883 3.116 0.068 -22.108 0.342 
 

        

R
ai

lr
oa

ds
 

Engineering & Construction 0.657 3.116 1.000 -10.568 11.882 
 

Food Services 0.017 2.787 1.000 -10.023 10.057 
 

Financial Data Services 0.766 2.787 1.000 -9.274 10.806 
 

Energy -0.018 2.414 1.000 -8.713 8.677 
 

Wholesalers: Electronics and 
Office Equipment 

-1.916 2.787 1.000 -11.956 8.124 
 

Food and Drug Stores -0.468 3.116 1.000 -11.693 10.757 
 

Semiconductors and Other 
Electronic Components 

-0.437 2.787 1.000 -10.477 9.603 
 

Automotive Retailing, Services -0.176 2.414 1.000 -8.871 8.519 
 

Homebuilders 6.205 2.787 0.731 -3.836 16.245 
 

Health Care: Insurance and 
Managed Care 

-1.715 2.787 1.000 -11.755 8.325 
 

Specialty Retailers: Other 3.619 2.787 0.998 -6.421 13.659 
 

Aerospace and Defense 0.902 2.493 1.000 -8.078 9.882 
 

Securities 3.293 2.787 0.999 -6.747 13.333 
 

Transportation -3.129 3.116 1.000 -14.354 8.096 
 

Big Screen -4.455 2.095 0.793 -12.003 3.093 
 

Small Screen -5.173 2.086 0.551 -12.687 2.34 
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Writer -10.117 3.116 0.128 -21.342 1.108 
 

        

E
ne

rg
y Engineering & Construction 0.675 2.787 1.000 -9.365 10.715 

 

Food Services 0.036 2.414 1.000 -8.659 8.73 
 

Financial Data Services 0.784 2.414 1.000 -7.91 9.479 
 

Railroads 0.018 2.414 1.000 -8.677 8.713 
 

Wholesalers: Electronics and 
Office Equipment 

-1.898 2.414 1.000 -10.593 6.797 
 

Food and Drug Stores -0.45 2.787 1.000 -10.49 9.59 
 

Semiconductors and Other 
Electronic Components 

-0.419 2.414 1.000 -9.114 8.276 
 

Automotive Retailing, Services -0.158 1.971 1.000 -7.258 6.941 
 

Homebuilders 6.223 2.414 0.481 -2.472 14.918 
 

Health Care: Insurance and 
Managed Care 

-1.697 2.414 1.000 -10.392 6.998 
 

Specialty Retailers: Other 3.637 2.414 0.988 -5.058 12.332 
 

Aerospace and Defense 0.92 2.067 1.000 -6.526 8.366 
 

Securities 3.311 2.414 0.996 -5.384 12.006 
 

Transportation -3.111 2.787 1.000 -13.151 6.929 
 

Big Screen -4.437 1.565 0.312 -10.074 1.2 
 

Small Screen -5.155 1.552 0.106 -10.745 0.435 
 

Writer -10.099 2.787 0.047* -20.139 -0.059 
 

        

W
ho

le
sa

le
rs

: E
le

ct
ro

ni
cs

 a
nd

 O
ff

ic
e 

E
qu

ip
m

en
t 

Engineering & Construction 2.573 3.116 1.000 -8.652 13.798 
 

Food Services 1.934 2.787 1.000 -8.106 11.974 
 

Financial Data Services 2.683 2.787 1.000 -7.357 12.723 
 

Railroads 1.916 2.787 1.000 -8.124 11.956 
 

Energy 1.898 2.414 1.000 -6.797 10.593 
 

Food and Drug Stores 1.448 3.116 1.000 -9.777 12.673 
 

Semiconductors and Other 
Electronic Components 

1.479 2.787 1.000 -8.561 11.52 
 

Automotive Retailing, Services 1.74 2.414 1.000 -6.955 10.435 
 

Homebuilders 8.121 2.787 0.268 -1.919 18.161 
 

Health Care: Insurance and 
Managed Care 

0.201 2.787 1.000 -9.839 10.241 
 

Specialty Retailers: Other 5.535 2.787 0.867 -4.505 15.575 
 

Aerospace and Defense 2.819 2.493 1.000 -6.162 11.799 
 

Securities 5.209 2.787 0.915 -4.831 15.249 
 

Transportation -1.212 3.116 1.000 -12.438 10.013 
 

Big Screen -2.539 2.095 0.999 -10.087 5.01 
 

Small Screen -3.257 2.086 0.982 -10.77 4.256 
 

Writer -8.2 3.116 0.443 -19.425 3.025 
 

        

F
oo

d 
an

d 
D

ru
g 

S
to

re
s Engineering & Construction 1.125 3.413 1.000 -11.171 13.422 

 

Food Services 0.486 3.116 1.000 -10.739 11.711 
 

Financial Data Services 1.235 3.116 1.000 -9.99 12.46 
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Railroads 0.468 3.116 1.000 -10.757 11.693 
 

Energy 0.45 2.787 1.000 -9.59 10.49 
 

Wholesalers: Electronics and 
Office Equipment 

-1.448 3.116 1.000 -12.673 9.777 
 

Semiconductors and Other 
Electronic Components 

0.031 3.116 1.000 -11.194 11.257 
 

Automotive Retailing, Services 0.292 2.787 1.000 -9.748 10.332 
 

Homebuilders 6.673 3.116 0.784 -4.552 17.898 
 

Health Care: Insurance and 
Managed Care 

-1.247 3.116 1.000 -12.472 9.978 
 

Specialty Retailers: Other 4.087 3.116 0.997 -7.138 15.312 
 

Aerospace and Defense 1.371 2.856 1.000 -8.917 11.659 
 

Securities 3.761 3.116 0.999 -7.464 14.986 
 

Transportation -2.66 3.413 1.000 -14.957 9.636 
 

Big Screen -3.987 2.516 0.980 -13.052 5.078 
 

Small Screen -4.705 2.508 0.912 -13.741 4.331 
 

Writer -9.648 3.413 0.317 -21.945 2.648 
 

        

S
em

ic
on

du
ct

or
s 

an
d 

O
th

er
 E

le
ct

ro
ni

c 
C

om
po

ne
nt

s

Engineering & Construction 1.094 3.116 1.000 -10.131 12.319 
 

Food Services 0.454 2.787 1.000 -9.586 10.494 
 

Financial Data Services 1.203 2.787 1.000 -8.837 11.243 
 

Railroads 0.437 2.787 1.000 -9.603 10.477 
 

Energy 0.419 2.414 1.000 -8.276 9.114 
 

Wholesalers: Electronics and 
Office Equipment 

-1.479 2.787 1.000 -11.52 8.561 
 

Food and Drug Stores -0.031 3.116 1.000 -11.257 11.194 
 

Automotive Retailing, Services 0.261 2.414 1.000 -8.434 8.956 
 

Homebuilders 6.642 2.787 0.622 -3.399 16.682 
 

Health Care: Insurance and 
Managed Care 

-1.278 2.787 1.000 -11.318 8.762 
 

Specialty Retailers: Other 4.056 2.787 0.991 -5.984 14.096 
 

Aerospace and Defense 1.339 2.493 1.000 -7.641 10.319 
 

Securities 3.73 2.787 0.997 -6.31 13.77 
 

Transportation -2.692 3.116 1.000 -13.917 8.533 
 

Big Screen -4.018 2.095 0.897 -11.566 3.53 
 

Small Screen -4.737 2.086 0.701 -12.25 2.777 
 

Writer -9.68 3.116 0.178 -20.905 1.545 
 

        

A
ut

om
ot

iv
e 

R
et

ai
lin

g,
 

S
er

vi
ce

s Engineering & Construction 0.833 2.787 1.000 -9.207 10.873 
 

Food Services 0.194 2.414 1.000 -8.501 8.889 
 

Financial Data Services 0.943 2.414 1.000 -7.752 9.638 
 

Railroads 0.176 2.414 1.000 -8.519 8.871 
 

Energy 0.158 1.971 1.000 -6.941 7.258 
 

Wholesalers: Electronics and 
Office Equipment 

-1.74 2.414 1.000 -10.435 6.955 
 

Food and Drug Stores -0.292 2.787 1.000 -10.332 9.748 
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Semiconductors and Other 
Electronic Components 

-0.261 2.414 1.000 -8.956 8.434 
 

Homebuilders 6.381 2.414 0.435 -2.314 15.076 
 

Health Care: Insurance and 
Managed Care 

-1.539 2.414 1.000 -10.234 7.156 
 

Specialty Retailers: Other 3.795 2.414 0.981 -4.9 12.49 
 

Aerospace and Defense 1.078 2.067 1.000 -6.367 8.524 
 

Securities 3.469 2.414 0.993 -5.226 12.164 
 

Transportation -2.953 2.787 1.000 -12.993 7.088 
 

Big Screen -4.279 1.565 0.375 -9.916 1.358 
 

Small Screen -4.997 1.552 0.137 -10.587 0.593 
 

Writer -9.94 2.787 0.055 -19.98 0.1 
 

        

H
om

eb
ui

ld
er

s Engineering & Construction -5.548 3.116 0.942 -16.773 5.677 
 

Food Services -6.187 2.787 0.735 -16.227 3.853 
 

Financial Data Services -5.438 2.787 0.883 -15.478 4.602 
 

Railroads -6.205 2.787 0.731 -16.245 3.836 
 

Energy -6.223 2.414 0.481 -14.918 2.472 
 

Wholesalers: Electronics and 
Office Equipment 

-8.121 2.787 0.268 -18.161 1.919 
 

Food and Drug Stores -6.673 3.116 0.784 -17.898 4.552 
 

Semiconductors and Other 
Electronic Components 

-6.642 2.787 0.622 -16.682 3.399 
 

Automotive Retailing, Services -6.381 2.414 0.435 -15.076 2.314 
 

Health Care: Insurance and 
Managed Care 

-7.92 2.787 0.309 -17.96 2.12 
 

Specialty Retailers: Other -2.586 2.787 1.000 -12.626 7.454 
 

Aerospace and Defense -5.302 2.493 0.793 -14.282 3.678 
 

Securities -2.912 2.787 1.000 -12.952 7.128 
 

Transportation -9.333 3.116 0.227 -20.559 1.892 
 

Big Screen -10.66 2.095 0.000*** -18.208 -3.111 
 

Small Screen -11.378 2.086 0.000*** -18.891 -3.865 
 

Writer -16.321 3.116 0.000*** -27.546 -5.096 
 

        

H
ea

lt
h 

C
ar

e:
 I

ns
ur

an
ce

 a
nd

 M
an

ag
ed

C
ar

e Engineering & Construction 2.372 3.116 1.000 -8.853 13.597 
 

Food Services 1.733 2.787 1.000 -8.308 11.773 
 

Financial Data Services 2.481 2.787 1.000 -7.559 12.522 
 

Railroads 1.715 2.787 1.000 -8.325 11.755 
 

Energy 1.697 2.414 1.000 -6.998 10.392 
 

Wholesalers: Electronics and 
Office Equipment 

-0.201 2.787 1.000 -10.241 9.839 
 

Food and Drug Stores 1.247 3.116 1.000 -9.978 12.472 
 

Semiconductors and Other 
Electronic Components 

1.278 2.787 1.000 -8.762 11.318 
 

Automotive Retailing, Services 1.539 2.414 1.000 -7.156 10.234 
 

Homebuilders 7.92 2.787 0.309 -2.12 17.96 
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Specialty Retailers: Other 5.334 2.787 0.898 -4.706 15.374 
 

Aerospace and Defense 2.617 2.493 1.000 -6.363 11.597 
 

Securities 5.008 2.787 0.938 -5.032 15.048 
 

Transportation -1.414 3.116 1.000 -12.639 9.811 
 

Big Screen -2.74 2.095 0.997 -10.288 4.808 
 

Small Screen -3.458 2.086 0.969 -10.972 4.055 
 

Writer -8.402 3.116 0.400 -19.627 2.824 
 

        

S
pe

ci
al

ty
 R

et
ai

le
rs

: O
th

er
 

Engineering & Construction -2.962 3.116 1.000 -14.187 8.263 
 

Food Services -3.601 2.787 0.998 -13.641 6.439 
 

Financial Data Services -2.852 2.787 1.000 -12.892 7.188 
 

Railroads -3.619 2.787 0.998 -13.659 6.421 
 

Energy -3.637 2.414 0.988 -12.332 5.058 
 

Wholesalers: Electronics and 
Office Equipment 

-5.535 2.787 0.867 -15.575 4.505 
 

Food and Drug Stores -4.087 3.116 0.997 -15.312 7.138 
 

Semiconductors and Other 
Electronic Components 

-4.056 2.787 0.991 -14.096 5.984 
 

Automotive Retailing, Services -3.795 2.414 0.981 -12.49 4.9 
 

Homebuilders 2.586 2.787 1.000 -7.454 12.626 
 

Health Care: Insurance and 
Managed Care 

-5.334 2.787 0.898 -15.374 4.706 
 

Aerospace and Defense -2.717 2.493 1.000 -11.697 6.264 
 

Securities -0.326 2.787 1.000 -10.366 9.714 
 

Transportation -6.748 3.116 0.769 -17.973 4.478 
 

Big Screen -8.074 2.095 0.024* -15.622 -0.526 
 

Small Screen -8.792 2.086 0.007** -16.305 -1.279 
 

Writer -13.735 3.116 0.004** -24.961 -2.51 
 

        

        

        

A
er

os
pa

ce
 a

nd
 D

ef
en

se
 

Engineering & Construction -0.245 2.856 1.000 -10.533 10.043 
 

Food Services -0.885 2.493 1.000 -9.865 8.095 
 

Financial Data Services -0.136 2.493 1.000 -9.116 8.844 
 

Railroads -0.902 2.493 1.000 -9.882 8.078 
 

Energy -0.92 2.067 1.000 -8.366 6.526 
 

Wholesalers: Electronics and 
Office Equipment 

-2.819 2.493 1.000 -11.799 6.162 
 

Food and Drug Stores -1.371 2.856 1.000 -11.659 8.917 
 

Semiconductors and Other 
Electronic Components 

-1.339 2.493 1.000 -10.319 7.641 
 

Automotive Retailing, Services -1.078 2.067 1.000 -8.524 6.367 
 

Homebuilders 5.302 2.493 0.793 -3.678 14.282 
 

Health Care: Insurance and 
Managed Care 

-2.617 2.493 1.000 -11.597 6.363 
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Specialty Retailers: Other 2.717 2.493 1.000 -6.264 11.697 
 

Securities 2.391 2.493 1.000 -6.589 11.371 
 

Transportation -4.031 2.856 0.994 -14.319 6.257 
 

Big Screen -5.357 1.684 0.150 -11.425 0.71 
 

Small Screen -6.076 1.672 0.046* -12.1 -0.052 
 

Writer -11.019 2.856 0.023* -21.307 -0.731 
 

        

S
ec

ur
it

ie
s Engineering & Construction -2.636 3.116 1.000 -13.861 8.589 

 

Food Services -3.275 2.787 0.999 -13.315 6.765 
 

Financial Data Services -2.526 2.787 1.000 -12.567 7.514 
 

Railroads -3.293 2.787 0.999 -13.333 6.747 
 

Energy -3.311 2.414 0.996 -12.006 5.384 
 

Wholesalers: Electronics and 
Office Equipment 

-5.209 2.787 0.915 -15.249 4.831 
 

Food and Drug Stores -3.761 3.116 0.999 -14.986 7.464 
 

Semiconductors and Other 
Electronic Components 

-3.73 2.787 0.997 -13.77 6.31 
 

Automotive Retailing, Services -3.469 2.414 0.993 -12.164 5.226 
 

Homebuilders 2.912 2.787 1.000 -7.128 12.952 
 

Health Care: Insurance and 
Managed Care 

-5.008 2.787 0.938 -15.048 5.032 
 

Specialty Retailers: Other 0.326 2.787 1.000 -9.714 10.366 
 

Aerospace and Defense -2.391 2.493 1.000 -11.371 6.589 
 

Transportation -6.422 3.116 0.830 -17.647 4.803 
 

Big Screen -7.748 2.095 0.038* -15.296 -0.2 
 

Small Screen -8.466 2.086 0.012* -15.98 -0.953 
 

Writer -13.41 3.116 0.005** -24.635 -2.184 
 

        

T
ra

ns
po

rt
at

io
n Engineering & Construction 3.786 3.413 1.000 -8.511 16.082 

 

Food Services 3.146 3.116 1.000 -8.079 14.371 
 

Financial Data Services 3.895 3.116 0.998 -7.33 15.12 
 

Railroads 3.129 3.116 1.000 -8.096 14.354 
 

Energy 3.111 2.787 1.000 -6.929 13.151 
 

Wholesalers: Electronics and 
Office Equipment 

1.212 3.116 1.000 -10.013 12.438 
 

Food and Drug Stores 2.66 3.413 1.000 -9.636 14.957 
 

Semiconductors and Other 
Electronic Components 

2.692 3.116 1.000 -8.533 13.917 
 

Automotive Retailing, Services 2.953 2.787 1.000 -7.088 12.993 
 

Homebuilders 9.333 3.116 0.227 -1.892 20.559 
 

Health Care: Insurance and 
Managed Care 

1.414 3.116 1.000 -9.811 12.639 
 

Specialty Retailers: Other 6.748 3.116 0.769 -4.478 17.973 
 

Aerospace and Defense 4.031 2.856 0.994 -6.257 14.319 
 

Securities 6.422 3.116 0.830 -4.803 17.647 
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Big Screen -1.326 2.516 1.000 -10.391 7.739 
 

Small Screen -2.045 2.508 1.000 -11.081 6.991 
 

Writer -6.988 3.413 0.837 -19.284 5.309 
 

        
B

ig
 S

cr
ee

n Engineering & Construction 5.112 2.516 0.845 -3.953 14.177 
 

Food Services 4.472 2.095 0.788 -3.076 12.021 
 

Financial Data Services 5.221 2.095 0.543 -2.327 12.77 
 

Railroads 4.455 2.095 0.793 -3.093 12.003 
 

Energy 4.437 1.565 0.312 -1.2 10.074 
 

Wholesalers: Electronics and 
Office Equipment 

2.539 2.095 0.999 -5.01 10.087 
 

Food and Drug Stores 3.987 2.516 0.980 -5.078 13.052 
 

Semiconductors and Other 
Electronic Components 

4.018 2.095 0.897 -3.53 11.566 
 

Automotive Retailing, Services 4.279 1.565 0.375 -1.358 9.916 
 

Homebuilders 10.66 2.095 0.000*** 3.111 18.208 
 

Health Care: Insurance and 
Managed Care 

2.74 2.095 0.997 -4.808 10.288 
 

Specialty Retailers: Other 8.074 2.095 0.024* 0.526 15.622 
 

Aerospace and Defense 5.357 1.684 0.150 -0.71 11.425 
 

Securities 7.748 2.095 0.038* 0.2 15.296 
 

Transportation 1.326 2.516 1.000 -7.739 10.391 
 

Small Screen -0.718 0.986 1.000 -4.271 2.834 
 

Writer -5.662 2.516 0.715 -14.727 3.403 
 

        

S
m

al
l S

cr
ee

n Engineering & Construction 5.83 2.508 0.664 -3.206 14.866 
 

Food Services 5.191 2.086 0.545 -2.322 12.704 
 

Financial Data Services 5.94 2.086 0.305 -1.573 13.453 
 

Railroads 5.173 2.086 0.551 -2.34 12.687 
 

Energy 5.155 1.552 0.106 -0.435 10.745 
 

Wholesalers: Electronics and 
Office Equipment 

3.257 2.086 0.982 -4.256 10.77 
 

Food and Drug Stores 4.705 2.508 0.912 -4.331 13.741 
 

Semiconductors and Other 
Electronic Components 

4.737 2.086 0.701 -2.777 12.25 
 

Automotive Retailing, Services 4.997 1.552 0.137 -0.593 10.587 
 

Homebuilders 11.378 2.086 0.000*** 3.865 18.891 
 

Health Care: Insurance and 
Managed Care 

3.458 2.086 0.969 -4.055 10.972 
 

Specialty Retailers: Other 8.792 2.086 0.007** 1.279 16.305 
 

Aerospace and Defense 6.076 1.672 0.046* 0.052 12.1 
 

Securities 8.466 2.086 0.012* 0.953 15.98 
 

Transportation 2.045 2.508 1.000 -6.991 11.081 
 

Big Screen 0.718 0.986 1.000 -2.834 4.271 
 

Writer -4.943 2.508 0.874 -13.979 4.093 
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W
ri

te
r 

Engineering & Construction 10.774 3.413 0.159 -1.523 23.07 
 

Food Services 10.134 3.116 0.126 -1.091 21.359 
 

Financial Data Services 10.883 3.116 0.068 -0.342 22.108 
 

Railroads 10.117 3.116 0.128 -1.108 21.342 
 

Energy 10.099 2.787 0.047* 0.059 20.139 
 

Wholesalers: Electronics and 
Office Equipment 

8.2 3.116 0.443 -3.025 19.425 
 

Food and Drug Stores 9.648 3.413 0.317 -2.648 21.945 
 

Semiconductors and Other 
Electronic Components 

9.68 3.116 0.178 -1.545 20.905 
 

Automotive Retailing, Services 9.94 2.787 0.055 -0.1 19.98 
 

Homebuilders 16.321 3.116 0.000*** 5.096 27.546 
 

Health Care: Insurance and 
Managed Care 

8.402 3.116 0.400 -2.824 19.627 
 

Specialty Retailers: Other 13.735 3.116 0.004** 2.51 24.961 
 

Aerospace and Defense 11.019 2.856 0.023* 0.731 21.307 
 

Securities 13.41 3.116 0.005** 2.184 24.635 
 

Transportation 6.988 3.413 0.837 -5.309 19.284 
 

Big Screen 5.662 2.516 0.715 -3.403 14.727 
 

Small Screen 4.943 2.508 0.874 -4.093 13.979 
 

        

Games-Howell 
      

E
ng

in
ee

ri
ng

 &
 C

on
st

ru
ct

io
n Food Services -0.639 6.264 1.000 -231.539 230.26 

 

Financial Data Services 0.11 6.87 1.000 -123.854 124.073 
 

Railroads -0.657 6.45 1.000 -182.682 181.368 
 

Energy -0.675 6.313 1.000 -216.316 214.966 
 

Wholesalers: Electronics and 
Office Equipment 

-2.573 6.232 1.000 -244.28 239.133 
 

Food and Drug Stores -1.125 6.259 1.000 -233.828 231.578 
 

Semiconductors and Other 
Electronic Components 

-1.094 6.271 1.000 -229.897 227.71 
 

Automotive Retailing, Services -0.833 6.36 1.000 -203.45 201.784 
 

Homebuilders 5.548 6.205 0.989 -246.191 257.287 
 

Health Care: Insurance and 
Managed Care 

-2.372 6.256 1.000 -236.076 231.333 
 

Specialty Retailers: Other 2.962 6.562 1.000 -158.282 164.206 
 

Aerospace and Defense 0.245 6.444 1.000 -182.467 182.958 
 

Securities 2.636 6.32 1.000 -211.158 216.43 
 

Transportation -3.786 6.288 0.999 -227.187 219.616 
 

Big Screen -5.112 6.242 0.994 -243.311 233.087 
 

Small Screen -5.83 6.227 0.985 -249.404 237.743 
 

Writer -10.774 9.145 0.975 -117.447 95.9 
 

        

F
o od S

er vi
c Engineering & Construction 0.639 6.264 1.000 -230.26 231.539 
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Financial Data Services 0.749 3.098 1.000 -28.945 30.443 
 

Railroads -0.017 2.001 1.000 -15.689 15.654 
 

Energy -0.036 1.501 1.000 -7.564 7.493 
 

Wholesalers: Electronics and 
Office Equipment 

-1.934 1.116 0.880 -9.489 5.622 
 

Food and Drug Stores -0.486 1.255 1.000 -11.003 10.031 
 

Semiconductors and Other 
Electronic Components 

-0.454 1.312 1.000 -8.839 7.931 
 

Automotive Retailing, Services -0.194 1.688 1.000 -8.571 8.184 
 

Homebuilders 6.187 0.952 0.114 -2.769 15.143 
 

Health Care: Insurance and 
Managed Care 

-1.733 1.239 0.963 -9.661 6.196 
 

Specialty Retailers: Other 3.601 2.337 0.920 -16.306 23.509 
 

Aerospace and Defense 0.885 1.98 1.000 -9.798 11.567 
 

Securities 3.275 1.531 0.739 -7.029 13.58 
 

Transportation -3.146 1.395 0.702 -16.566 10.274 
 

Big Screen -4.472 1.169 0.199 -10.915 1.97 
 

Small Screen -5.191 1.086 0.126 -12.055 1.673 
 

Writer -10.134 6.785 0.898 -264.155 243.887 
 

        

F
in

an
ci

al
 D

at
a 

S
er

vi
ce

s Engineering & Construction -0.11 6.87 1.000 -124.073 123.854 
 

Food Services -0.749 3.098 1.000 -30.443 28.945 
 

Railroads -0.766 3.459 1.000 -25.87 24.337 
 

Energy -0.784 3.196 1.000 -28.07 26.501 
 

Wholesalers: Electronics and 
Office Equipment 

-2.683 3.034 0.997 -34.244 28.878 
 

Food and Drug Stores -1.235 3.088 1.000 -31.423 28.953 
 

Semiconductors and Other 
Electronic Components 

-1.203 3.111 1.000 -30.577 28.171 
 

Automotive Retailing, Services -0.943 3.288 1.000 -26.69 24.805 
 

Homebuilders 5.438 2.978 0.833 -28.224 39.1 
 

Health Care: Insurance and 
Managed Care 

-2.481 3.081 0.999 -32.624 27.661 
 

Specialty Retailers: Other 2.852 3.664 1.000 -21.873 27.577 
 

Aerospace and Defense 0.136 3.447 1.000 -24.036 24.308 
 

Securities 2.526 3.21 0.999 -24.914 29.967 
 

Transportation -3.895 3.147 0.973 -32.916 25.125 
 

Big Screen -5.221 3.054 0.869 -36.028 25.586 
 

Small Screen -5.94 3.023 0.793 -37.814 25.934 
 

Writer -10.883 7.348 0.909 -155.509 133.743 
 

        

R
ai

lr
oa

ds
 

Engineering & Construction 0.657 6.45 1.000 -181.368 182.682 
 

Food Services 0.017 2.001 1.000 -15.654 15.689 
 

Financial Data Services 0.766 3.459 1.000 -24.337 25.87 
 

Energy -0.018 2.149 1.000 -13.958 13.921 
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Wholesalers: Electronics and 
Office Equipment 

-1.916 1.899 0.993 -19.033 15.2 
 

Food and Drug Stores -0.468 1.985 1.000 -17.01 16.073 
 

Semiconductors and Other 
Electronic Components 

-0.437 2.021 1.000 -15.932 15.058 
 

Automotive Retailing, Services -0.176 2.283 1.000 -13.658 13.305 
 

Homebuilders 6.205 1.808 0.420 -13.457 25.867 
 

Health Care: Insurance and 
Managed Care 

-1.715 1.974 0.998 -17.67 14.239 
 

Specialty Retailers: Other 3.619 2.797 0.977 -14.606 21.843 
 

Aerospace and Defense 0.902 2.507 1.000 -12.973 14.777 
 

Securities 3.293 2.17 0.936 -11.601 18.186 
 

Transportation -3.129 2.076 0.931 -19.544 13.286 
 

Big Screen -4.455 1.931 0.682 -20.618 11.708 
 

Small Screen -5.173 1.882 0.553 -22.465 12.118 
 

Writer -10.117 6.956 0.909 -216.389 196.155 
 

        

E
ne

rg
y Engineering & Construction 0.675 6.313 1.000 -214.966 216.316 

 

Food Services 0.036 1.501 1.000 -7.493 7.564 
 

Financial Data Services 0.784 3.196 1.000 -26.501 28.07 
 

Railroads 0.018 2.149 1.000 -13.921 13.958 
 

Wholesalers: Electronics and 
Office Equipment 

-1.898 1.363 0.977 -8.702 4.905 
 

Food and Drug Stores -0.45 1.48 1.000 -8.95 8.049 
 

Semiconductors and Other 
Electronic Components 

-0.419 1.528 1.000 -8.131 7.293 
 

Automotive Retailing, Services -0.158 1.861 1.000 -8.557 8.241 
 

Homebuilders 6.223 1.233 0.067 -0.45 12.895 
 

Health Care: Insurance and 
Managed Care 

-1.697 1.466 0.995 -8.998 5.604 
 

Specialty Retailers: Other 3.637 2.465 0.943 -14.184 21.457 
 

Aerospace and Defense 0.92 2.129 1.000 -9.502 11.342 
 

Securities 3.311 1.72 0.831 -6.002 12.624 
 

Transportation -3.111 1.6 0.813 -13.472 7.25 
 

Big Screen -4.437 1.407 0.291 -10.871 1.998 
 

Small Screen -5.155 1.339 0.145 -11.596 1.286 
 

Writer -10.099 6.83 0.902 -249.571 229.374 
 

        

W
ho

le
sa

le
rs

: E
le

ct
ro

ni
cs

 
an

d 
O

ff
ic

e 
E

qu
ip

m
en

t 

Engineering & Construction 2.573 6.232 1.000 -239.133 244.28 
 

Food Services 1.934 1.116 0.880 -5.622 9.489 
 

Financial Data Services 2.683 3.034 0.997 -28.878 34.244 
 

Railroads 1.916 1.899 0.993 -15.2 19.033 
 

Energy 1.898 1.363 0.977 -4.905 8.702 
 

Food and Drug Stores 1.448 1.086 0.954 -10.378 13.274 
 

Semiconductors and Other 
Electronic Components 

1.479 1.151 0.976 -6.448 9.407 
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Automotive Retailing, Services 1.74 1.566 0.996 -6.199 9.679 
 

Homebuilders 8.121 0.714 0.022* 2.212 14.03 
 

Health Care: Insurance and 
Managed Care 

0.201 1.067 1.000 -6.873 7.276 
 

Specialty Retailers:  
Other 

5.535 2.251 0.640 -16.11 27.18 
 

Aerospace and Defense 2.819 1.877 0.952 -7.858 13.495 
 

Securities 5.209 1.396 0.306 -5.536 15.954 
 

Transportation -1.212 1.245 0.991 -18.092 15.667 
 

Big Screen -2.539 0.986 0.534 -7.062 1.985 
 

Small Screen -3.257 0.885 0.199 -7.785 1.271 
 

Writer -8.2 6.755 0.950 -272.389 255.989 
 

        

F
oo

d 
an

d 
D

ru
g 

S
to

re
s Engineering & Construction 1.125 6.259 1.000 -231.578 233.828 

 

Food Services 0.486 1.255 1.000 -10.031 11.003 
 

Financial Data Services 1.235 3.088 1.000 -28.953 31.423 
 

Railroads 0.468 1.985 1.000 -16.073 17.01 
 

Energy 0.45 1.48 1.000 -8.049 8.95 
 

Wholesalers: Electronics and 
Office Equipment 

-1.448 1.086 0.954 -13.274 10.378 
 

Semiconductors and Other 
Electronic Components 

0.031 1.287 1.000 -10.513 10.576 
 

Automotive Retailing, Services 0.292 1.669 1.000 -8.745 9.329 
 

Homebuilders 6.673 0.917 0.224 -16.446 29.792 
 

Health Care: Insurance and 
Managed Care 

-1.247 1.212 0.993 -11.822 9.328 
 

Specialty Retailers: Other 4.087 2.324 0.860 -16.519 24.693 
 

Aerospace and Defense 1.371 1.964 1.000 -9.78 12.521 
 

Securities 3.761 1.51 0.618 -7.964 15.486 
 

Transportation -2.66 1.372 0.799 -19.297 13.976 
 

Big Screen -3.987 1.142 0.357 -13.088 5.114 
 

Small Screen -4.705 1.056 0.272 -15.91 6.5 
 

Writer -9.648 6.78 0.912 -265.359 246.062 
 

        

S
em

ic
on

du
ct

or
s 

an
d 

O
th

er
 E

le
ct

ro
ni

c 
C

om
po

ne
nt

s Engineering & Construction 1.094 6.271 1.000 -227.71 229.897 
 

Food Services 0.454 1.312 1.000 -7.931 8.839 
 

Financial Data Services 1.203 3.111 1.000 -28.171 30.577 
 

Railroads 0.437 2.021 1.000 -15.058 15.932 
 

Energy 0.419 1.528 1.000 -7.293 8.131 
 

Wholesalers: Electronics and 
Office Equipment 

-1.479 1.151 0.976 -9.407 6.448 
 

Food and Drug Stores -0.031 1.287 1.000 -10.576 10.513 
 

Automotive Retailing, Services 0.261 1.711 1.000 -8.242 8.763 
 

Homebuilders 6.642 0.993 0.110 -2.849 16.132 
 

Health Care: Insurance and 
Managed Care 

-1.278 1.271 0.997 -9.454 6.898 
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Specialty Retailers: Other 4.056 2.355 0.873 -15.597 23.709 
 

Aerospace and Defense 1.339 2 1.000 -9.383 12.061 
 

Securities 3.73 1.557 0.643 -6.604 14.063 
 

Transportation -2.692 1.424 0.818 -15.868 10.484 
 

Big Screen -4.018 1.203 0.311 -10.851 2.815 
 

Small Screen -4.737 1.122 0.192 -12.056 2.583 
 

Writer -9.68 6.791 0.912 -261.714 242.354 
 

        

A
ut

om
ot

iv
e 

R
et

ai
lin

g,
 S

er
vi

ce
s 

Engineering & Construction 0.833 6.36 1.000 -201.784 203.45 
 

Food Services 0.194 1.688 1.000 -8.184 8.571 
 

Financial Data Services 0.943 3.288 1.000 -24.805 26.69 
 

Railroads 0.176 2.283 1.000 -13.305 13.658 
 

Energy 0.158 1.861 1.000 -8.241 8.557 
 

Wholesalers: Electronics and 
Office Equipment 

-1.74 1.566 0.996 -9.679 6.199 
 

Food and Drug Stores -0.292 1.669 1.000 -9.329 8.745 
 

Semiconductors and Other 
Electronic Components 

-0.261 1.711 1.000 -8.763 8.242 
 

Homebuilders 6.381 1.454 0.121 -1.588 14.349 
 

Health Care: Insurance and 
Managed Care 

-1.539 1.656 0.999 -9.768 6.69 
 

Specialty Retailers: Other 3.795 2.583 0.949 -13.11 20.7 
 

Aerospace and Defense 1.078 2.265 1.000 -9.637 11.794 
 

Securities 3.469 1.885 0.867 -6.21 13.149 
 

Transportation -2.953 1.776 0.912 -13.277 7.372 
 

Big Screen -4.279 1.605 0.498 -11.934 3.377 
 

Small Screen -4.997 1.545 0.298 -12.711 2.717 
 

Writer -9.94 6.873 0.909 -236.773 216.892 
 

        

H
om

eb
ui

ld
er

s Engineering & Construction -5.548 6.205 0.989 -257.287 246.191 
 

Food Services -6.187 0.952 0.114 -15.143 2.769 
 

Financial Data Services -5.438 2.978 0.833 -39.1 28.224 
 

Railroads -6.205 1.808 0.420 -25.867 13.457 
 

Energy -6.223 1.233 0.067 -12.895 0.45 
 

Wholesalers: Electronics and 
Office Equipment 

-8.121 0.714 0.022* -14.03 -2.212 
 

Food and Drug Stores -6.673 0.917 0.224 -29.792 16.446 
 

Semiconductors and Other 
Electronic Components 

-6.642 0.993 0.110 -16.132 2.849 
 

Automotive Retailing, Services -6.381 1.454 0.121 -14.349 1.588 
 

Health Care: Insurance and 
Managed Care 

-7.92 0.894 0.054 -16.136 0.297 
 

Specialty Retailers: Other -2.586 2.175 0.975 -26.685 21.513 
 

Aerospace and Defense -5.302 1.785 0.435 -16.356 5.752 
 

Securities -2.912 1.269 0.692 -15.908 10.085 
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Transportation -9.333 1.101 0.202 -41.208 22.541 
 

Big Screen -10.66 0.796 0.000*** -13.762 -7.557 
 

Small Screen -11.378 0.667 0.000*** -13.995 -8.761 
 

Writer -16.321 6.73 0.700 -289.837 257.195 
 

        
H

ea
lth

 C
ar

e:
 I

ns
ur

an
ce

 a
nd

 M
an

ag
ed

 C
ar

e Engineering & Construction 2.372 6.256 1.000 -231.333 236.076 
 

Food Services 1.733 1.239 0.963 -6.196 9.661 
 

Financial Data Services 2.481 3.081 0.999 -27.661 32.624 
 

Railroads 1.715 1.974 0.998 -14.239 17.67 
 

Energy 1.697 1.466 0.995 -5.604 8.998 
 

Wholesalers: Electronics and 
Office Equipment 

-0.201 1.067 1.000 -7.276 6.873 
 

Food and Drug Stores 1.247 1.212 0.993 -9.328 11.822 
 

Semiconductors and Other 
Electronic Components 

1.278 1.271 0.997 -6.898 9.454 
 

Automotive Retailing, Services 1.539 1.656 0.999 -6.69 9.768 
 

Homebuilders 7.92 0.894 0.054 -0.297 16.136 
 

Specialty Retailers: Other 5.334 2.315 0.684 -14.953 25.621 
 

Aerospace and Defense 2.617 1.953 0.979 -8.031 13.265 
 

Securities 5.008 1.496 0.358 -5.305 15.321 
 

Transportation -1.414 1.356 0.990 -15.31 12.483 
 

Big Screen -2.74 1.123 0.612 -8.667 3.187 
 

Small Screen -3.458 1.036 0.328 -9.712 2.795 
 

Writer -8.402 6.777 0.947 -265.074 248.271 
 

        

S
pe

ci
al

ty
 R

et
ai

le
rs

: O
th

er
 

Engineering & Construction -2.962 6.562 1.000 -164.206 158.282 
 

Food Services -3.601 2.337 0.920 -23.509 16.306 
 

Financial Data Services -2.852 3.664 1.000 -27.577 21.873 
 

Railroads -3.619 2.797 0.977 -21.843 14.606 
 

Energy -3.637 2.465 0.943 -21.457 14.184 
 

Wholesalers: Electronics and 
Office Equipment 

-5.535 2.251 0.640 -27.18 16.11 
 

Food and Drug Stores -4.087 2.324 0.860 -24.693 16.519 
 

Semiconductors and Other 
Electronic Components 

-4.056 2.355 0.873 -23.709 15.597 
 

Automotive Retailing, Services -3.795 2.583 0.949 -20.7 13.11 
 

Homebuilders 2.586 2.175 0.975 -21.513 26.685 
 

Health Care: Insurance and 
Managed Care 

-5.334 2.315 0.684 -25.621 14.953 
 

Aerospace and Defense -2.717 2.783 0.998 -19.268 13.835 
 

Securities -0.326 2.483 1.000 -18.745 18.093 
 

Transportation -6.748 2.402 0.526 -26.704 13.209 
 

Big Screen -8.074 2.278 0.372 -28.826 12.679 
 

Small Screen -8.792 2.236 0.322 -30.704 13.12 
 

Writer -13.735 7.061 0.797 -198.672 171.202 
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A
er

os
pa

ce
 a

nd
 D

ef
en

se
 

Engineering & Construction -0.245 6.444 1.000 -182.958 182.467 
 

Food Services -0.885 1.98 1.000 -11.567 9.798 
 

Financial Data Services -0.136 3.447 1.000 -24.308 24.036 
 

Railroads -0.902 2.507 1.000 -14.777 12.973 
 

Energy -0.92 2.129 1.000 -11.342 9.502 
 

Wholesalers: Electronics and 
Office Equipment 

-2.819 1.877 0.952 -13.495 7.858 
 

Food and Drug Stores -1.371 1.964 1.000 -12.521 9.78 
 

Semiconductors and Other 
Electronic Components 

-1.339 2 1.000 -12.061 9.383 
 

Automotive Retailing, Services -1.078 2.265 1.000 -11.794 9.637 
 

Homebuilders 5.302 1.785 0.435 -5.752 16.356 
 

Health Care: Insurance and 
Managed Care 

-2.617 1.953 0.979 -13.265 8.031 
 

Specialty Retailers: Other 2.717 2.783 0.998 -13.835 19.268 
 

Securities 2.391 2.151 0.996 -8.901 13.683 
 

Transportation -4.031 2.056 0.813 -15.855 7.793 
 

Big Screen -5.357 1.91 0.466 -15.744 5.03 
 

Small Screen -6.076 1.86 0.330 -16.668 4.516 
 

Writer -11.019 6.951 0.880 -218.097 196.059 
 

        

S
ec

ur
it

ie
s Engineering & Construction -2.636 6.32 1.000 -216.43 211.158 

 

Food Services -3.275 1.531 0.739 -13.58 7.029 
 

Financial Data Services -2.526 3.21 0.999 -29.967 24.914 
 

Railroads -3.293 2.17 0.936 -18.186 11.601 
 

Energy -3.311 1.72 0.831 -12.624 6.002 
 

Wholesalers: Electronics and 
Office Equipment 

-5.209 1.396 0.306 -15.954 5.536 
 

Food and Drug Stores -3.761 1.51 0.618 -15.486 7.964 
 

Semiconductors and Other 
Electronic Components 

-3.73 1.557 0.643 -14.063 6.604 
 

Automotive Retailing, Services -3.469 1.885 0.867 -13.149 6.21 
 

Homebuilders 2.912 1.269 0.692 -10.085 15.908 
 

Health Care: Insurance and 
Managed Care 

-5.008 1.496 0.358 -15.321 5.305 
 

Specialty Retailers: Other 0.326 2.483 1.000 -18.093 18.745 
 

Aerospace and Defense -2.391 2.151 0.996 -13.683 8.901 
 

Transportation -6.422 1.628 0.280 -19.441 6.598 
 

Big Screen -7.748 1.439 0.101 -17.465 1.969 
 

Small Screen -8.466 1.372 0.091 -19.017 2.085 
 

Writer -13.41 6.836 0.794 -251.066 224.246 
 

        

T
ra

ns
p

or
ta

tio n Engineering & Construction 3.786 6.288 0.999 -219.616 227.187 
 

Food Services 3.146 1.395 0.702 -10.274 16.566 
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Financial Data Services 3.895 3.147 0.973 -25.125 32.916 
 

Railroads 3.129 2.076 0.931 -13.286 19.544 
 

Energy 3.111 1.6 0.813 -7.25 13.472 
 

Wholesalers: Electronics and 
Office Equipment 

1.212 1.245 0.991 -15.667 18.092 
 

Food and Drug Stores 2.66 1.372 0.799 -13.976 19.297 
 

Semiconductors and Other 
Electronic Components 

2.692 1.424 0.818 -10.484 15.868 
 

Automotive Retailing, Services 2.953 1.776 0.912 -7.372 13.277 
 

Homebuilders 9.333 1.101 0.202 -22.541 41.208 
 

Health Care: Insurance and 
Managed Care 

1.414 1.356 0.990 -12.483 15.31 
 

Specialty Retailers: Other 6.748 2.402 0.526 -13.209 26.704 
 

Aerospace and Defense 4.031 2.056 0.813 -7.793 15.855 
 

Securities 6.422 1.628 0.280 -6.598 19.441 
 

Big Screen -1.326 1.293 0.991 -14.834 12.182 
 

Small Screen -2.045 1.218 0.869 -19.089 15 
 

Writer -6.988 6.807 0.977 -253.843 239.867 
 

        

B
ig

 S
cr

ee
n Engineering & Construction 5.112 6.242 0.994 -233.087 243.311 

 

Food Services 4.472 1.169 0.199 -1.97 10.915 
 

Financial Data Services 5.221 3.054 0.869 -25.586 36.028 
 

Railroads 4.455 1.931 0.682 -11.708 20.618 
 

Energy 4.437 1.407 0.291 -1.998 10.871 
 

Wholesalers: Electronics and 
Office Equipment 

2.539 0.986 0.534 -1.985 7.062 
 

Food and Drug Stores 3.987 1.142 0.357 -5.114 13.088 
 

Semiconductors and Other 
Electronic Components 

4.018 1.203 0.311 -2.815 10.851 
 

Automotive Retailing, Services 4.279 1.605 0.498 -3.377 11.934 
 

Homebuilders 10.66 0.796 0.000*** 7.557 13.762 
 

Health Care: Insurance and 
Managed Care 

2.74 1.123 0.612 -3.187 8.667 
 

Specialty Retailers: Other 8.074 2.278 0.372 -12.679 28.826 
 

Aerospace and Defense 5.357 1.91 0.466 -5.03 15.744 
 

Securities 7.748 1.439 0.101 -1.969 17.465 
 

Transportation 1.326 1.293 0.991 -12.182 14.834 
 

Small Screen -0.718 0.952 1.000 -4.245 2.809 
 

Writer -5.662 6.764 0.993 -266.573 255.249 
 

        

S
m

al
l S

cr
ee

n Engineering & Construction 5.83 6.227 0.985 -237.743 249.404 
 

Food Services 5.191 1.086 0.126 -1.673 12.055 
 

Financial Data Services 5.94 3.023 0.793 -25.934 37.814 
 

Railroads 5.173 1.882 0.553 -12.118 22.465 
 

Energy 5.155 1.339 0.145 -1.286 11.596 
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Wholesalers: Electronics and 
Office Equipment 

3.257 0.885 0.199 -1.271 7.785 
 

Food and Drug Stores 4.705 1.056 0.272 -6.5 15.91 
 

Semiconductors and Other 
Electronic Components 

4.737 1.122 0.192 -2.583 12.056 
 

Automotive Retailing, Services 4.997 1.545 0.298 -2.717 12.711 
 

Homebuilders 11.378 0.667 0.000*** 8.761 13.995 
 

Health Care: Insurance and 
Managed Care 

3.458 1.036 0.328 -2.795 9.712 
 

Specialty Retailers: Other 8.792 2.236 0.322 -13.12 30.704 
 

Aerospace and Defense 6.076 1.86 0.330 -4.516 16.668 
 

Securities 8.466 1.372 0.091 -2.085 19.017 
 

Transportation 2.045 1.218 0.869 -15 19.089 
 

Big Screen 0.718 0.952 1.000 -2.809 4.245 
 

Writer -4.943 6.75 0.997 -270.879 260.993 
 

        

W
ri

te
r 

Engineering & Construction 10.774 9.145 0.975 -95.9 117.447 
 

Food Services 10.134 6.785 0.898 -243.887 264.155 
 

Financial Data Services 10.883 7.348 0.909 -133.743 155.509 
 

Railroads 10.117 6.956 0.909 -196.155 216.389 
 

Energy 10.099 6.83 0.902 -229.374 249.571 
 

Wholesalers: Electronics and 
Office Equipment 

8.2 6.755 0.950 -255.989 272.389 
 

Food and Drug Stores 9.648 6.78 0.912 -246.062 265.359 
 

Semiconductors and Other 
Electronic Components 

9.68 6.791 0.912 -242.354 261.714 
 

Automotive Retailing, Services 9.94 6.873 0.909 -216.892 236.773 
 

Homebuilders 16.321 6.73 0.700 -257.195 289.837 
 

Health Care: Insurance and 
Managed Care 

8.402 6.777 0.947 -248.271 265.074 
 

Specialty Retailers: Other 13.735 7.061 0.797 -171.202 198.672 
 

Aerospace and Defense 11.019 6.951 0.880 -196.059 218.097 
 

Securities 13.41 6.836 0.794 -224.246 251.066 
 

Transportation 6.988 6.807 0.977 -239.867 253.843 
 

Big Screen 5.662 6.764 0.993 -255.249 266.573 
 

Small Screen 4.943 6.75 0.997 -260.993 270.879 
 

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 1 

The one-way ANOVA was conducted to investigate SEXI differences due to 2 

organizational position. Table 53 presents the SEXI descriptive statistics for the 3 

population (N=100). Table 54, presents the SEXI ANOVA results, shows significance for 4 

organizational position [F(10, 89) = 7.19, p < 0.001].  5 
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Table 53 1 

SEXI Descriptive Statistics for Organizational Position 2 
 

N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

     
Lower  
Bound 

    Upper  
     Bound 

 

CMO 2 23.826 5.233 3.700 -23.190 70.842 20.125 27.526 
CFO 11 25.858 3.406 1.027 23.570 28.146 20.190 30.278 
CCPAO / CCO 2 25.309 2.862 2.024 -0.402 51.021 23.286 27.333 
CAO 2 24.576 1.463 1.034 11.432 37.719 23.541 25.610 
COO 4 25.186 4.469 2.235 18.074 32.297 20.668 30.110 
CEO 18 27.192 4.016 0.947 25.195 29.190 19.668 32.522 
CIO 6 28.155 0.984 0.402 27.122 29.187 27.132 29.716 
CHRO 5 26.216 3.125 1.398 22.335 30.096 21.056 28.670 
Actor 23 31.436 3.548 0.740 29.901 32.970 24.347 39.198 
Producer 25 32.154 2.994 0.599 30.918 33.390 26.509 37.844 
Writer 2 37.097 9.509 6.724 -48.337 122.532 30.373 43.821 
Total 100 29.231 4.510 0.451 28.336 30.126 19.668 43.821 

 3 

Table 54 4 

SEXI ANOVA For Organizational Position 5 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 899.513 10 89.951 7.185 0.000*** 
Within Groups 1114.189 89 12.519 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 6 

There was a significant difference between Writer and CMO (p<0.5), CFO (p<0.01), 7 

CCPAO/CCO (p<0.05), CAO (p<0.05), COO (p<0.01), CEO (p<0.05), CHRO (p<0.05), 8 

as well as borderline significant difference with CIO (p=0.09). There was a significant 9 

difference between Producer and CFO (p<0.001), COO (p<0.05), CEO (p<0.01), CHRO 10 

(p<0.05), as well as borderline significant difference with CMO (p=0.07). There was a 11 

significant difference between Actor and CFO (p<0.01), CEO (p<0.05), as well as COO 12 
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(borderline at p=0.06). Table 55 presents the SEXI multiple comparisons for 1 

organizational position. Tukey HSD post hoc tests were conducted to determine which 2 

organizational position categories were significantly different. Figure 10 presents the 3 

average SEXI for each organizational position represented for the population. 4 

Table 55 5 

SEXI Multiple Comparisons for Organizational Position 6 
 

(I) OrgPos (J) 
OrgPos 

Mean 
Difference 
 (I-J) 

Std. 
Error 

Sig. 95% Confidence 
Interval 

      
Lower 
Bound 

Upper 
Bound 

Tukey HSD CMO CFO -2.032 2.720 1.000 -11.018 6.954   
CCPAO / 
CCO 

-1.484 3.538 1.000 -13.174 10.207 
  

CAO -0.750 3.538 1.000 -12.440 10.940   
COO -1.360 3.064 1.000 -11.484 8.764   
CEO -3.367 2.637 0.970 -12.080 5.347   
CIO -4.329 2.889 0.917 -13.874 5.216   
CHRO -2.390 2.960 0.999 -12.171 7.391   
Actor -7.610 2.608 0.134 -16.228 1.008   
Producer -8.328 2.600 0.066 -16.919 0.262   
Writer -13.272 3.538 0.013* -24.962 -1.581  

CFO CMO 2.032 2.720 1.000 -6.954 11.018   
CCPAO / 
CCO 

0.549 2.720 1.000 -8.438 9.535 
  

CAO 1.282 2.720 1.000 -7.704 10.268   
COO 0.672 2.066 1.000 -6.154 7.498   
CEO -1.335 1.354 0.996 -5.809 3.139   
CIO -2.297 1.796 0.970 -8.230 3.636   
CHRO -0.358 1.908 1.000 -6.663 5.947   
Actor -5.578 1.297 0.002** -9.863 -1.292   
Producer -6.296 1.280 0.000*** -10.526 -2.067   
Writer -11.239 2.720 0.004** -20.226 -2.253  

CCPAO / 
CCO 

CMO 1.484 3.538 1.000 -10.207 13.174 
  

CFO -0.549 2.720 1.000 -9.535 8.438   
CAO 0.734 3.538 1.000 -10.956 12.424   
COO 0.123 3.064 1.000 -10.000 10.247 



      216 

 

 

  
CEO -1.883 2.637 1.000 -10.596 6.830   
CIO -2.845 2.889 0.996 -12.390 6.700   
CHRO -0.906 2.960 1.000 -10.687 8.874   
Actor -6.126 2.608 0.411 -14.744 2.492   
Producer -6.845 2.600 0.248 -15.435 1.746   
Writer -11.788 3.538 0.046* -23.478 -0.098  

CAO CMO 0.750 3.538 1.000 -10.940 12.440   
CFO -1.282 2.720 1.000 -10.268 7.704   
CCPAO / 
CCO 

-0.734 3.538 1.000 -12.424 10.956 
  

COO -0.610 3.064 1.000 -10.734 9.514   
CEO -2.617 2.637 0.996 -11.330 6.096   
CIO -3.579 2.889 0.976 -13.124 5.966   
CHRO -1.640 2.960 1.000 -11.421 8.141   
Actor -6.860 2.608 0.250 -15.478 1.758   
Producer -7.578 2.600 0.135 -16.169 1.012   
Writer -12.522 3.538 0.025* -24.212 -0.832  

COO CMO 1.360 3.064 1.000 -8.764 11.484   
CFO -0.672 2.066 1.000 -7.498 6.154   
CCPAO / 
CCO 

-0.123 3.064 1.000 -10.247 10.000 
  

CAO 0.610 3.064 1.000 -9.514 10.734   
CEO -2.007 1.956 0.994 -8.469 4.455   
CIO -2.969 2.284 0.967 -10.515 4.577   
CHRO -1.030 2.374 1.000 -8.872 6.812   
Actor -6.250 1.917 0.056 -12.583 0.083   
Producer -6.968 1.905 0.018* -13.264 -0.673   
Writer -11.911 3.064 0.009** -22.035 -1.788  

CEO CMO 3.367 2.637 0.970 -5.347 12.080   
CFO 1.335 1.354 0.996 -3.139 5.809   
CCPAO / 
CCO 

1.883 2.637 1.000 -6.830 10.596 
  

CAO 2.617 2.637 0.996 -6.096 11.330   
COO 2.007 1.956 0.994 -4.455 8.469   
CIO -0.962 1.668 1.000 -6.473 4.549   
CHRO 0.977 1.789 1.000 -4.933 6.886   
Actor -4.243 1.113 0.011* -7.922 -0.564   
Producer -4.962 1.094 0.001** -8.575 -1.348   
Writer -9.905 2.637 0.013* -18.618 -1.192  

CIO CMO 4.329 2.889 0.917 -5.216 13.874   
CFO 2.297 1.796 0.970 -3.636 8.230   
CCPAO / 
CCO 

2.845 2.889 0.996 -6.700 12.390 
  

CAO 3.579 2.889 0.976 -5.966 13.124 
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COO 2.969 2.284 0.967 -4.577 10.515   
CEO 0.962 1.668 1.000 -4.549 6.473   
CHRO 1.939 2.143 0.998 -5.140 9.018   
Actor -3.281 1.622 0.634 -8.640 2.078   
Producer -3.999 1.608 0.327 -9.314 1.315   
Writer -8.943 2.889 0.087 -18.488 0.602  

CHRO CMO 2.390 2.960 0.999 -7.391 12.171   
CFO 0.358 1.908 1.000 -5.947 6.663   
CCPAO / 
CCO 

0.906 2.960 1.000 -8.874 10.687 
  

CAO 1.640 2.960 1.000 -8.141 11.421   
COO 1.030 2.374 1.000 -6.812 8.872   
CEO -0.977 1.789 1.000 -6.886 4.933   
CIO -1.939 2.143 0.998 -9.018 5.140   
Actor -5.220 1.746 0.113 -10.988 0.548   
Producer -5.938 1.733 0.035* -11.665 -0.211   
Writer -10.882 2.960 0.017* -20.662 -1.101  

Actor CMO 7.610 2.608 0.134 -1.008 16.228   
CFO 5.578 1.297 0.002** 1.292 9.863   
CCPAO / 
CCO 

6.126 2.608 0.411 -2.492 14.744 
  

CAO 6.860 2.608 0.250 -1.758 15.478   
COO 6.250 1.917 0.056 -0.083 12.583   
CEO 4.243 1.113 0.011* 0.564 7.922   
CIO 3.281 1.622 0.634 -2.078 8.640   
CHRO 5.220 1.746 0.113 -0.548 10.988   
Producer -0.718 1.022 1.000 -4.096 2.659   
Writer -5.662 2.608 0.531 -14.280 2.956  

Producer CMO 8.328 2.600 0.066 -0.262 16.919   
CFO 6.296 1.280 0.000*** 2.067 10.526   
CCPAO / 
CCO 

6.845 2.600 0.248 -1.746 15.435 
  

CAO 7.578 2.600 0.135 -1.012 16.169   
COO 6.968 1.905 0.018* 0.673 13.264   
CEO 4.962 1.094 0.001** 1.348 8.575   
CIO 3.999 1.608 0.327 -1.315 9.314   
CHRO 5.938 1.733 0.035* 0.211 11.665   
Actor 0.718 1.022 1.000 -2.659 4.096   
Writer -4.943 2.600 0.715 -13.534 3.647  

Writer CMO 13.272 3.538 0.013* 1.581 24.962   
CFO 11.239 2.720 0.004** 2.253 20.226   
CCPAO / 
CCO 

11.788 3.538 0.046* 0.098 23.478 
  

CAO 12.522 3.538 0.025* 0.832 24.212 
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COO 11.911 3.064 0.009** 1.788 22.035   
CEO 9.905 2.637 0.013* 1.192 18.618   
CIO 8.943 2.889 0.087 -0.602 18.488   
CHRO 10.882 2.960 0.017* 1.101 20.662   
Actor 5.662 2.608 0.531 -2.956 14.280   
Producer 4.943 2.600 0.715 -3.647 13.534 

Games-Howell CMO CFO -2.032 3.840 0.999 -98.316 94.252   
CCPAO / 
CCO 

-1.484 4.217 1.000 -62.671 59.704 
  

CAO -0.750 3.842 1.000 -97.811 96.311   
COO -1.360 4.323 1.000 -52.294 49.574   
CEO -3.367 3.819 0.974 -103.801 97.068   
CIO -4.329 3.722 0.921 -129.694 121.037   
CHRO -2.390 3.955 0.997 -80.683 75.903   
Actor -7.610 3.773 0.712 -118.621 103.402   
Producer -8.328 3.748 0.668 -125.958 109.301   
Writer -13.272 7.675 0.776 -123.959 97.416  

CFO CMO 2.032 3.840 0.999 -94.252 98.316   
CCPAO / 
CCO 

0.549 2.269 1.000 -31.648 32.745 
  

CAO 1.282 1.458 0.991 -7.543 10.107   
COO 0.672 2.459 1.000 -12.675 14.019   
CEO -1.335 1.397 0.996 -6.284 3.615   
CIO -2.297 1.103 0.606 -6.549 1.955   
CHRO -0.358 1.734 1.000 -7.661 6.945   
Actor -5.578 1.266 0.009** -10.135 -1.020   
Producer -6.296 1.189 0.002** -10.673 -1.920   
Writer -11.239 6.802 0.802 -227.676 205.197  

CCPAO / 
CCO 

CMO 1.484 4.217 1.000 -59.704 62.671 
  

CFO -0.549 2.269 1.000 -32.745 31.648   
CAO 0.734 2.273 1.000 -34.426 35.894   
COO 0.123 3.015 1.000 -19.219 19.466   
CEO -1.883 2.234 0.983 -36.754 32.988   
CIO -2.845 2.063 0.871 -63.729 58.039   
CHRO -0.906 2.459 1.000 -25.011 23.198   
Actor -6.126 2.155 0.523 -49.757 37.504   
Producer -6.845 2.110 0.474 -57.514 43.824   
Writer -11.788 7.022 0.793 -181.251 157.675  

CAO CMO 0.750 3.842 1.000 -96.311 97.811   
CFO -1.282 1.458 0.991 -10.107 7.543   
CCPAO / 
CCO 

-0.734 2.273 1.000 -35.894 34.426 
  

COO -0.610 2.462 1.000 -14.818 13.597 
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CEO -2.617 1.402 0.723 -11.713 6.480   
CIO -3.579 1.110 0.457 -24.932 17.774   
CHRO -1.640 1.739 0.988 -11.063 7.783   
Actor -6.860 1.272 0.142 -18.154 4.434   
Producer -7.578 1.195 0.145 -21.760 6.603   
Writer -12.522 6.803 0.755 -228.906 203.863  

COO CMO 1.360 4.323 1.000 -49.574 52.294   
CFO -0.672 2.459 1.000 -14.019 12.675   
CCPAO / 
CCO 

-0.123 3.015 1.000 -19.466 19.219 
  

CAO 0.610 2.462 1.000 -13.597 14.818   
CEO -2.007 2.427 0.995 -15.502 11.488   
CIO -2.969 2.270 0.918 -17.852 11.915   
CHRO -1.030 2.636 1.000 -14.148 12.089   
Actor -6.250 2.354 0.428 -20.271 7.771   
Producer -6.968 2.313 0.340 -21.365 7.429   
Writer -11.911 7.085 0.792 -168.930 145.107  

CEO CMO 3.367 3.819 0.974 -97.068 103.801   
CFO 1.335 1.397 0.996 -3.615 6.284   
CCPAO / 
CCO 

1.883 2.234 0.983 -32.988 36.754 
  

CAO 2.617 1.402 0.723 -6.480 11.713   
COO 2.007 2.427 0.995 -11.488 15.502   
CIO -0.962 1.028 0.996 -4.650 2.726   
CHRO 0.977 1.688 1.000 -6.222 8.175   
Actor -4.243 1.201 0.040* -8.381 -0.106   
Producer -4.962 1.120 0.005** -8.857 -1.066   
Writer -9.905 6.790 0.850 -229.674 209.865  

CIO CMO 4.329 3.722 0.921 -121.037 129.694   
CFO 2.297 1.103 0.606 -1.955 6.549   
CCPAO / 
CCO 

2.845 2.063 0.871 -58.039 63.729 
  

CAO 3.579 1.110 0.457 -17.774 24.932   
COO 2.969 2.270 0.918 -11.915 17.852   
CEO 0.962 1.028 0.996 -2.726 4.650   
CHRO 1.939 1.454 0.923 -5.677 9.555   
Actor -3.281 0.842 0.020* -6.236 -0.326   
Producer -3.999 0.721 0.000*** -6.540 -1.459   
Writer -8.943 6.736 0.882 -245.495 227.610  

CHRO CMO 2.390 3.955 0.997 -75.903 80.683   
CFO 0.358 1.734 1.000 -6.945 7.661   
CCPAO / 
CCO 

0.906 2.459 1.000 -23.198 25.011 
  

CAO 1.640 1.739 0.988 -7.783 11.063 
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COO 1.030 2.636 1.000 -12.089 14.148   
CEO -0.977 1.688 1.000 -8.175 6.222   
CIO -1.939 1.454 0.923 -9.555 5.677   
Actor -5.220 1.581 0.190 -12.458 2.018   
Producer -5.938 1.521 0.117 -13.296 1.420   
Writer -10.882 6.868 0.818 -210.125 188.361  

Actor CMO 7.610 3.773 0.712 -103.402 118.621   
CFO 5.578 1.266 0.009** 1.020 10.135   
CCPAO / 
CCO 

6.126 2.155 0.523 -37.504 49.757 
  

CAO 6.860 1.272 0.142 -4.434 18.154   
COO 6.250 2.354 0.428 -7.771 20.271   
CEO 4.243 1.201 0.040* 0.106 8.381   
CIO 3.281 0.842 0.020* 0.326 6.236   
CHRO 5.220 1.581 0.190 -2.018 12.458   
Producer -0.718 0.952 0.999 -3.951 2.514   
Writer -5.662 6.764 0.978 -233.126 221.802  

Producer CMO 8.328 3.748 0.668 -109.301 125.958   
CFO 6.296 1.189 0.002** 1.920 10.673   
CCPAO / 
CCO 

6.845 2.110 0.474 -43.824 57.514 
  

CAO 7.578 1.195 0.145 -6.603 21.760   
COO 6.968 2.313 0.340 -7.429 21.365   
CEO 4.962 1.120 0.005** 1.066 8.857   
CIO 3.999 0.721 0.000*** 1.459 6.540   
CHRO 5.938 1.521 0.117 -1.420 13.296   
Actor 0.718 0.952 0.999 -2.514 3.951   
Writer -4.943 6.750 0.988 -236.769 226.882  

Writer CMO 13.272 7.675 0.776 -97.416 123.959   
CFO 11.239 6.802 0.802 -205.197 227.676   
CCPAO / 
CCO 

11.788 7.022 0.793 -157.675 181.251 
  

CAO 12.522 6.803 0.755 -203.863 228.906   
COO 11.911 7.085 0.792 -145.107 168.930   
CEO 9.905 6.790 0.850 -209.865 229.674   
CIO 8.943 6.736 0.882 -227.610 245.495   
CHRO 10.882 6.868 0.818 -188.361 210.125   
Actor 5.662 6.764 0.978 -221.802 233.126 

    Producer 4.943 6.750 0.988 -226.882 236.769 

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 1 

 2 

Figure 10 3 
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SEXI for organizational position for the population 1 

 2 

The one-way ANOVA was conducted to investigate SEXI differences due to 3 

philanthropic contributions. Table 56 presents the SEXI descriptive statistics for the 4 

population (N=100). Table 57, presents the SEXI ANOVA results, shows significance for 5 

philanthropic contributions [F(1, 98) = 12.36, p < 0.01]. For the population, it was 6 

observed philanthropic contributions were often associated with press releases, events, 7 

and notices posted on the organization web site. These notifications typically include 8 

images, names, ages, geographical information, marital status via spouse mention, 9 

organization affiliation, position, industry, etc. 10 

 11 

 12 

Table 56 13 

SEXI Descriptive Statistics for Philanthropic Contributions 14 
 

N M SD SE 95% Confidence  
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Lower  
Bound 

Upper  
Bound 

  

No 41 27.430 4.916 0.768 25.878 28.982 19.668 43.821 
Yes 59 30.483 3.764 0.490 29.502 31.464 20.082 39.198 
Total 100 29.231 4.510 0.451 28.336 30.126 19.668 43.821 

 1 

Table 57 2 

SEXI ANOVA for Philanthropic Contributions 3 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 225.474 1 225.474 12.357 0.001** 
Within Groups 1788.228 98 18.247 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 4 

The one-way ANOVA was conducted to investigate SEXI differences due to military / 5 

police experience. Table 58 presents the SEXI descriptive statistics for the population 6 

(N=100).  7 

Table 58 8 

SEXI Descriptive Statistics for Military / Police Experience 9 
 

N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

     
Lower  
Bound 

Upper  
Bound 

  

No 96 29.2686
7 

4.5153
7 

0.4608
5 

28.35377 30.18357 19.6683
0 

43.82105 

Yes 4 28.3341
9 

4.9476
3 

2.4738
1 

20.46141 36.20697 24.3474
3 

35.54129 

Tota
l 

10
0 

29.2312
9 

4.5100
4 

0.4510
0 

28.33640 30.12618 19.6683
0 

43.82105 

 10 

Table 59, presents the SEXI ANOVA results, shows no significance for military / 11 

police experience [F(1, 98) = 12.36, p =0.69]. There were only 4 people across the 12 
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population having prior military or police experience. In contrast, nine members of the 1 

expert panel held military or police experience. 2 

Table 59 3 

SEXI ANOVA For Military Police Experience 4 
 

Sum of Squares df Mean Square F Sig. 
Between Groups 3.353 1 3.353 0.163 0.687 
Within Groups 2010.348 98 20.514 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 5 

 6 

RQ6 Analysis: SEXI Analysis of Executives and Hollywood Personas 7 

For RQ6, analysis was performed to investigate differences between the two groups: 8 

Executives of Fortune 500 companies and Hollywood Personas. Table 60 presents the t-9 

test normal distribution data for the Execs and Hpers and indicates the distributions were 10 

sufficiently normal for the purposes of conducting a t-test (i.e., skewness < |2.0| and 11 

kurtosis < |9.0|) (Schmider et al., 2010).  12 

Table 60 13 

T-Test Normal Distribution Data 14 
 

N M SD SE Skewness Kurtosis 
Execs 50 26.44136 3.47880 0.49198 -.543 -.820 
Hpers 50 32.02122 3.62061 0.51203 .573 1.256 
Total 100 29.23129 4.51004 0.45100 .069 .493 

 15 

The independent samples t-test was associated with a statistically significant 16 

effect, t (98) = 7.858, p<0.001. Cohen’s delta (d) = 1.69 indicating a very large effect size 17 

(Cohen, 1992; Sawilowsky, 2009). The confidence interval was 4.17 to 7.99. With the df 18 
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(98) and the α level (0.05), the critical t-value is equal to |1.984|. The calculated t-value 1 

was equal to |7.858|. Table 61 presents the descriptive statistics associated with SEXI. 2 

Table 62 presents the SEXI ANOVA results for Execs and Hpers. There was a statistically 3 

significant difference between groups as determined by one-way ANOVA [F(1, 98) = 4 

61.75, p < 0.001]. 5 

Table 61 6 

Descriptive Statistics Associated with SEXI 7 
 

N M SD SE 95% Confidence  
Interval for Mean 

Min Max 

     Lower  
Bound 

Upper 
Bound 

  

Execs 50 26.44136 3.47879 0.49198 25.45270 27.43002 19.66830 32.52197 
Hpers 50 32.02122 3.62061 0.51203 30.99226 33.05019 24.34743 43.82105 
Total 100 29.23129 4.51004 0.45100 28.33640 30.12618 19.66830 43.82105 

 8 

Table 62 9 

SEXI ANOVA For Executives and Hollywood Personas 10 

  Sum of Squares df Mean Square F Sig. 

Between Groups 778.371 1 778.371 61.749 .000*** 
Within Groups 1235.33 98 12.605 

  

Total 2013.702 99 
   

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001. 11 

 12 

Data analysis for Phase 3 showed the most significant SEXI demographics were 13 

associated with Industry and Organizational Position (p<0.001). The next significant 14 

SEXI demographics were associated with Estimated Income and Philanthropic 15 

Contributions (p <0.01). Income was also significant (p<0.05), while Marital Status was 16 
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borderline significant (p=0.08) for SEXI demographics. Age, Gender, and Military / 1 

Police Experience were not significant for SEXI demographics. Table 63 presents a 2 

summary of the SEXI Results by Demographics across all members of the population. 3 

Table 63 4 

SEXI Results by Demographics (N=100) 5 

Item df Mean Square Between Groups F Sig. 
Age 7 26.284 1.322 0.249 
Gender 1 22.222 1.094 0.298 
Income 7 40.465 2.151 0.046* 
Marital Status 1 60.809 3.051 0.084ǂ 
Estimated Worth 9 51.938 3.023 0.003** 
Industry 17 62.254 5.343 0.000*** 
Organization Position 10 89.951 7.185 0.000*** 
Philanthropic Contributions 1 225.474 12.357 0.001** 
Military Police Experience 1 3.353 0.163 0.687 

The mean difference is significant at *p <0.05, **p <0.01, ***p <0.001,	ǂ borderline p <0.09. 6 

 7 

The Execs group (N=50) was associated with a SEXI M = 26.44 (SD = 3.48). By 8 

comparison, the Hpers (N = 50) was associated with a numerically larger SEXI M = 9 

32.02 (SD = 3.62). A statistically significant difference was shown between the Execs and 10 

Hpers groups (p < 0.001). Hpers Writers were associated with the highest SEXI overall 11 

M=37.10 (SD = 4.51), while the Execs CIOs were associated with the highest SEXI for 12 

the group M = 28.6 (SD = 0.98). 13 

Summary 14 

The process for the SEXI development began with the collection of 105 PICCs from a 15 

variety of literature sources. In Round 1, the PICCs were presented to SMEs asked to 16 

indicate where in the range of 1 (minimal exposure) to 10 (maximum exposure) each 17 
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item, can in and of itself, identify a given individual using a 10-point Likert Scale. In 1 

Round 2, the PICCs were presented to SMEs asked to categorize each as not being 2 

personal information, PUI, PII, or PDI.  3 

Pre-analysis was performed using Mahalanobis Distance and Box Plots via IBM 4 

SPSS to detect outliers, and no items showed a significant value requiring removal. 5 

Round 1 responses were converted to Round 2 categories. Analysis was performed on 6 

each respective round as well as across both rounds. Consensus was found across 78 of 7 

the 105 items. All SME responses were reported and summarized.  8 

This chapter contained the results and data analysis performed by this developmental 9 

research study. This study used a three-phased approach, with each phase addressing at 10 

least one research question. In the first phase a literature review was performed to 11 

ascertain potential personal information components, which were presented to a Delphi 12 

panel addressing RQ1 and RQ2. An instrument was developed in Phase 2, to address 13 

RQ3, using the PDI, PII, PII components, weights, and categories from the SME 14 

feedback. The third phases consisted of data collection and analysis to address RQ4, 15 

RQ5, and RQ6. Table 63 presents a summary of the SEXI Results by Demographics 16 

across all members of the population. 17 

Data collection and analysis of the SMEs' feedback addressed the first three research 18 

questions of this study. For RQ1, SMEs' feedback was assessed to determine the set of 19 

personal information components for an index of SE exposure. For RQ2, SMEs feedback 20 

was assessed to determine the approved categories for the identified set of personal 21 

information components. For RQ3, SMEs feedback was assessed to identify weights of 22 
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the personal information components and categories that enable a validated hierarchical 1 

aggregation to the SEXI benchmarking index.   2 
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Chapter 5 1 

Conclusions, Implications, Recommendations, and Summary 2 

Conclusions 3 

Prior research has shown the information being used to execute SE attacks typically 4 

originates at the target or those closely associated with them  (Heartfield & Loukas, 2015; 5 

Junger et al., 2017; Luo et al., 2013). Studies have also shown a significant increase of 6 

personal information exposed on social networking sites and an overall willingness to 7 

provide personal content by Americans (Acquisti et al., 2015; Boyd & Ellison, 2007; 8 

Hong & Thong, 2013). Olmstead and Smith (2017) stated that 64% of Americans had 9 

been exposed via a data breach. The availability of OSPI allows potential hackers to 10 

glean necessary information to successfully social engineer an exposed target via a 11 

myriad of attack vectors (Heartfield & Loukas, 2015; Luo et al., 2013). Due to the 12 

proliferation of SE attacks due to publicly available OSPI (Heartfield & Loukas, 2015; 13 

Maynard et al., 2015; Mitnick & Simon, 2002), the need exists to assess the exposure of 14 

personal information. This study built upon prior research that called for a tool to serve as 15 

a predictor and determinant for potential SE attacks (Heartfield & Loukas, 2015; 16 

Mohaisen et al., 2017) seeking the specificity of available information (Tetri & Vuorinen, 17 

2013). Additionally, Schwartz and Solove (2011) suggested the delineation of personal 18 

information that will definitively identify someone, while McCallister et al. (2010) as well 19 

as Schwartz and Solove (2011) suggested a third demarcation of personal information 20 

that has no chance to identify an individual on its own. Herein, these additional PII 21 

categories were declared as PDI and PUI, respectively.  22 
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The main goal of this developmental research study was to develop and validate 1 

SEXI using OSPI to assist in identifying and classifying SE vulnerabilities. This study 2 

achieved the six goals via a three-phased approached with each phase addressing at least 3 

one research question. In the first phase, a literature review was performed to ascertain 4 

105 potential personal information components, which were presented to a Delphi panel 5 

and addressed the first two goals of this study. The first specific goal of this research 6 

study was to gather the SME-approved components for an index of SE exposure by 7 

eliciting quantitative feedback on personal information. The second specific goal of this 8 

research study was to assign categories to personal information components based on 9 

exposure.  10 

In the second phase, an instrument was developed, and the third goal of this study 11 

was addressed. The third specific goal of this research study was to develop and validate, 12 

using SMEs, the components and hierarchical weights for SEXI via a Delphi method. 13 

The SEXI instrument was created using the feedback from the SMEs. 14 

The third phase consisted of data collection and analysis, therein addressing the 15 

remaining goals. The fourth specific goal of this research study was to apply the SEXI 16 

instrument to measure the OSPI exposure of 50 executives of Fortune 500 organizations 17 

and 50 Hollywood celebrities. The fifth specific goal of this research study was to assess 18 

and statistically test for significant mean differences of the SEXI of 100 individuals based 19 

on demographical indicators of age, gender, income, marital status, estimated worth, 20 

industry, organizational position, philanthropic contributions, and prior military/police 21 

experience. The sixth specific goal of this research study was to compare the SEXI results 22 
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from the set of US executives to those of Hollywood personas in an effort to uncover 1 

which group is more vulnerable to SE attack from an OSPI exposure perspective.  2 

Discussion 3 

First, this developmental research study ascertained SMEs perception and experience 4 

for SE attempts within their work environment, as well as gather their opinion on the 5 

implementation of security policy as it relates to privacy and personal information. 6 

Second, this developmental research study resulted in a defining a comprehensive list of 7 

105 validated PICCs. Third, this study resulted in establishing validated weights and 8 

measures for the PICCs. Fourth, this study resulted in establishing three categories of 9 

personal information: PDI, PII, and PUI. Fifth, this study resulted in establishing 10 

categorical weights for personal information based on the level of exposure the respective 11 

category represents. Sixth, this study resulted in establishing the SEXI benchmarking 12 

index for measuring the personal information exposure due to OSPI. Sixth, this study 13 

measured the SEXI of 50 Fortune 500 Executives and 50 Hollywood Personas. Last, this 14 

study compared the SEXI of the group of Hollywood Executives to that of the Hollywood 15 

Personas.  16 

The data analysis was performed using one-way ANOVA in Phase 3 revealed that 17 

age, gender, and military/police experience are not significant in the SEXI assessment. 18 

Moreover, the data analysis of Phase 3 revealed that income, estimated worth, industry, 19 

organizational position, as well as philanthropic contributions are significant, and suggest 20 

differences in SEXI assessment scores. Marital Status is significant at p < 0.09. 21 

Therefore, a result of this study shows that income, worth, employment, philanthropic 22 

contributions, and marital status found in OSPI can significantly increase the SEXI of an 23 
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individual. Moreover, another result of this study shows that Hollywood Personas have a 1 

significantly higher SEXI than Fortune 500 Executives.  2 

Overall, every Fortune 500 Executive and Hollywood Persona assessed had a SEXI 3 

value greater than zero due to OSPI consisting of Electronic facial image / selfie, 4 

Photographic image, Demographics, Full Name, Geographical indicators, Organization 5 

affiliation / membership, Professional title, Age, and Gender. Additionally, 90% or more 6 

also had their Activities, Date of Birth, Education Information, Employment History, 7 

Employment Information, Global Positioning Systems, Persistent Identifier, Street 8 

Address, Telephone Number, Zip Code, Nationality, and Race available via OSPI. 9 

Phase 1 of this study had limitations due to the large data collection instruments that 10 

required a high level of commitment from the SMEs. While potential SMEs were 11 

informed of the time requirements before they began their feedback, several took over 30 12 

minutes to complete the forms. Phase 2 of this study had limitations due to the viability 13 

of data sources to test an instrument with, before data collection was performed. During 14 

the development of the preliminary instrument, Google+ was shut down for most users 15 

and the Cambridge Analytica scandal caused Facebook to drastically alter their personal 16 

information API. In addition, other data sources miserably failed authentication of their 17 

data. Initially, the instrument was to have between three and five sources. The final 18 

instrument ended up using approximately two dozen data sources. A possible 19 

inconsequential limitation of this study is that many data sources are required for data 20 

collection. For this study, data sources were selected that had the potential of providing 21 

data for the respective group. 22 
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Implications 1 

This research study contributes to the privacy body of knowledge by providing 2 

weights, measures, and categories of exposure to the PICCs presented in the literature. 3 

This study contributes to the SE literature by providing an index to assess exposure of 4 

personal information to SE attacks and as an example of using OSPI to gather 5 

information to target specific groups. The information security body of knowledge can 6 

also benefit by this research study with the correlation of the low, moderate, and high risk 7 

nomenclature to the exposure categories of personal information. This research study 8 

contributes to the cybersecurity body of knowledge by providing organizations with 9 

validated materials for providing personal information exposure assessments. 10 

Specifically, the literature has shown that regarding personal information and privacy, the 11 

research tends to be contextual and ambiguous as to the significance of personal 12 

information components. Accordingly, the body of knowledge on personal information 13 

did not appear to view the topic without context, nor did it measure or categorize the 14 

exposure of individual PICCs. Therefore, this study provides valuable information by 15 

quantifying and categorizing personal information exposure without contextual 16 

constraints. SEXI will help organizations identify the potential risk and exposure 17 

associated with the personal information they are collecting, securing, and storing. 18 

Moreover, if the weights and measures of this study are implemented by organizations, 19 

this should increase overall personal information data security by providing a quantifiable 20 

measure of the data collected, accessed, and stored, while potentially offering the means 21 

to understand which personal information components provide the greatest exposure and 22 

risk. 23 
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Recommendations and Future Research 1 

This study was a developmental research study and outlined an approach for 2 

designing, developing, validating, and employing a benchmarking instrument assessment 3 

tool for measuring the exposure of personal information due to OSPI using a Delphi 4 

method. Mitnick and Simon (2002), McCallister et al. (2010), Schwartz and Solove 5 

(2011), Pavlou (2011), Junger et al. (2017) discussed the issue of privacy being 6 

contextual and thereby idiosyncratic. The approach demonstrated by this research 7 

assessed personal information outside contextual restraints and is transferable to multiple 8 

fields of study where an instrument is developed or used. This research study provides 9 

several opportunities for future research studies to be conducted.  10 

SEXI Benchmarking Instrument 11 

First, the SEXI benchmarking instrument can be used on a larger sample, other 12 

groups, organizational members, and even random individuals having no known group 13 

affiliation as well as conduct more robust data analysis to determine the exposure of 14 

personal information (Bélanger & Crossler, 2011). Second, the SEXI benchmarking index 15 

is large. Future studies can research streamlining the SEXI benchmarking index, by 16 

reducing the number of PICCs, creating subcategories (i.e. biometrics, demographics, 17 

cyber presence, physical footprint), increase validity, etc. (DeLone & McLean, 2003). As 18 

this study developed a benchmarking index, more refinement should be expected and 19 

explored. Several PICCs were not found for any of the Hollywood personas or 20 

executives. This may leave an opportunity to consider the removal of some items and the 21 

adjustment of the normalization coefficients. SEXI could also be expanded to include 22 

new PICCs not included in the index. Third, ascertaining the minimum SEXI measure 23 
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that indicates an individual has been identified as defined by PDI, PII, and PUI (Schwartz 1 

& Solove, 2011). Fourth, future research can attempt to associate the SEXI benchmarking 2 

index to monetary value. 3 

Data Collection and Storage 4 

Fifth, future studies could use the SEXI benchmarking index to assess the potential 5 

exposure of collected personal information data for organizations, government agencies, 6 

online forms, social media profiles, etc. (Mouton et al., 2016). Sixth, future research can 7 

use SEXI as a pretest and posttest while investigating the potential change of SEXI once 8 

a population interacts (e.g., requests removal/addition) with OSPI (Wolff, 2016; Xu et al., 9 

2011). Seventh, future studies can review, assess, and quantify the level of exposure for 10 

PICCs contained in breach data, stored data, and requested data using the SEXI 11 

benchmarking index (Lee et al., 2011; Mouton et al., 2016). Eighth, OSPI sources may 12 

contain erroneous or false data, as multiple sources evaluated during this study proved to 13 

contain fake or erroneous data. The SEXI benchmarking index could be used to evaluate 14 

data sources against authenticated data (Fleisher, 2008). Ninth, perceived personal 15 

information exposure versus what is measured by SEXI could be studied (Junger et al., 16 

2017; Zhang et al., 2014). 17 

Social Engineering and Data Breaches 18 

Tenth, integration of the Privacy Web and Privacy Chain concepts into SEXI by 19 

ascertaining the original source and proliferation of respective PICCs for any given 20 

individual (Heartfield & Loukas, 2015; Tetri & Vuorinen, 2013). Eleventh, the SEXI 21 

benchmarking instrument can be used as assess, aggregate, and analyze SE events as well 22 
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as data breaches to improve the SE literature that has limited quantifiable attack vector 1 

data (Heartfield & Loukas, 2015; Mouton et al., 2016).  2 

Information Security Culture 3 

Twelfth, the SME feedback indicated surprising Information Security Culture data 4 

that future studies may build upon and expand, with 32% stating that their organization 5 

had minimal consequences to procedure violation as well as the majority of working 6 

environments were described as having a culture that circumvents policy (Culnan & 7 

Williams, 2009; Johnston et al., 2015; Luo et al., 2013).  8 

Summary 9 

The research problem addressed by this study is the proliferation of SE attacks due to 10 

publicly available OSPI. Social engineers are able to pretend and persuade even experts 11 

into behaving favorably for the attacker, even when they suspect something is wrong and 12 

are mandated as well as trained to take appropriate defensive action (Allen, 2006; 13 

Heartfield & Loukas, 2015). 14 

The availability of OSPI has grown substantially over recent years and looks to have 15 

exponential growth as more people gain access to the Web and service providers 16 

continually introduce innovative mechanisms for self-disclosure (Acquisti et al., 2015). 17 

Prior research has shown the information being used to execute SE attacks typically 18 

originates at the target or those closely associated with them (Heartfield & Loukas, 2015; 19 

Junger et al., 2017; Luo et al., 2013). Studies have also shown a significant increase of 20 

personal information exposed on social networking sites and the overall willingness to 21 

provide personal content by Americans (Acquisti et al., 2015; Boyd & Ellison, 2007; 22 

Hong & Thong, 2013). The Privacy Rights Clearinghouse (2018) logged approximately 23 
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10 billion breached data records between 2005 and 2018. Additionally, Olmstead and 1 

Smith (2017) found that 64% of Americans had been exposed via a data breach. 2 

According to Jasper (2017), often data from breaches are shared on the hacker 3 

underground marketplace within 72 hours, facilitating further successful attacks using the 4 

information. Public release of protected information serves as the foundation for SE 5 

attackers to mount attacks through unknown vectors using a massive amount of accurate 6 

data to orchestrate a cacophony of SE attacks (Mouton et al., 2016; Tetri & Vuorinen, 7 

2013).  8 

The main goal of this research was to develop and validate a SEXI via the Delphi 9 

method using OSPI to assist in identifying and classifying SE vulnerabilities. This work 10 

built upon the work of multiple disciplines within the body of knowledge. The initial 11 

SEXI benchmarking index was based on Swarm Theory concepts (i.e. swarm, foragers, 12 

food sources) discussed at length by Kennedy et al. (2001b). From the PDI literature, this 13 

study was building upon the idea of multiple categories of PII presented by Schwartz and 14 

Solove (2011). From PII literature, this study is building upon McCallister et al. (2010) 15 

who associated personal information to measures of risk and harm, and indicated that a 16 

one-size-fits-all understanding of PII may be ineffective. From the PUI literature, this 17 

study is building upon Ohm (2010) who declared anonymization and the concept of PUI 18 

a failure due to the literature showing adeptness in re-identifying individuals even using 19 

PUI as a starting point. From the SE literature, this study built upon Mouton et al. (2016) 20 

who described the difficulty of SE literature wherein neither the literature or news media 21 

provide all the information concerning an attack as well as very little is known about a 22 

potential attack, where the information is obtained for a SE attack, and what information 23 
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is available for a SE attack. Using TOM for the persuasion component of SE from the 1 

psychological literature addresses the issues in SE research raised by Tetri and Vuorinen 2 

(2013). 3 

To achieve the main goal of this developmental research study, six specific goals were 4 

set to address six specific RQs using a three-phased approach, with Writers and CIOs 5 

showing the highest SEXI for their respective groups.  6 

In Phase 1, this study used the Delphi method comprised of 19 cybersecurity experts 7 

in round one and 17 in round two who were tasked with the purpose of answering the 8 

first two RQs: 9 

RQ1: What are the specific SME-panel approved set of personal information 10 

components for an index of SE exposure? 11 

RQ2: What are the specific SME-panel approved categories for the identified 12 

set of personal information components? 13 

First, this study conducted a thorough review of literature to establish a list of 14 

applicable PICCs and category delineations. Second, using anonymous online surveys, 15 

the Delphi method was implemented to present 105 PICCs to the expert panel to assign 16 

exposure ratings from minimum to maximum for each item in and of itself. The SMEs 17 

were also asked to assign a weight to personal information categories. During the second 18 

round, the panel of experts were asked to quantitatively assign each PICC to one of three 19 

personal information categories from the first round: PDI, PII, and PUI. 20 

 In Phase 2, the feedback from Phase 1 was used to answer the third research 21 

question and to create the SEXI benchmarking index: 22 
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RQ3: What are the specific SME-panel identified weights of the personal 1 

information components and categories that enable a validated hierarchical 2 

aggregation to the Social Engineering eXposure Index (SEXI) benchmarking 3 

index? 4 

Second, the feedback from the two-round expert panel was analyzed and codified into 5 

a SEXI benchmarking index that was initially tested via Twitter and Google+. The final 6 

SEXI benchmarking index used almost two dozen sources. 7 

In Phase 3, this research study used the SEXI benchmarking index to answer the 8 

remaining questions: 9 

RQ4: How are 100 individuals assessed and classified by SEXI using OSPI? 10 

RQ5: Are there any statistically significant mean differences of SEXI based 11 

on demographical indicators of age, gender, income, marital status, estimated 12 

worth, industry, organizational position, philanthropic contributions, and prior 13 

military/police experience? 14 

RQ6: Do SEXI results from the set of US executives and Hollywood 15 

personas indicate one group being more vulnerable to SE attack from their 16 

OSPI exposure perspective? 17 

The SEXI benchmarking index was used to assess 50 Fortune 500 Executives and 50 18 

Hollywood Personas, by using OSPI to attempt to find each of the 105 PICCs for each 19 

member of the population (N=100) using “found/not found” indicators. Additionally, 20 

aggregated demographic data was assessed for the purpose of answering RQ5.  21 

The results and data analysis from Phase 3 answered the remaining questions. The 22 

data analysis performed for RQ4 showed that SEXI was appropriate as OSPI was 23 
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available for each member of the population with over half of the 105 SEXI items were 1 

found for at least half of the population. The data analysis performed for RQ5 showed 2 

significant SEXI demographics are associated with Industry, Organizational Position, 3 

Estimated Income, Philanthropic Contributions, Income, and Marital Status (borderline). 4 

The RQ5 analysis suggests that six of the nine demographics produce differences in 5 

SEXI. The analysis performed for RQ6 showed that Hollywood Personas had a 6 

significantly higher SEXI than the Fortune 500 Executives suggesting increased exposure 7 

due to OSPI. Each of the Hollywood Personas organization positions held higher SEXI 8 

measures than all of those held by the Fortune 500 executives. 9 

This research study contributed to the body of knowledge as well as the fields of 10 

privacy, SE, information security, cybersecurity, and personal information. This study 11 

resulted in quantitatively defining three categories of personal information: PDI, PII, and 12 

PUI. This study resulted in establishing validated weights and measures for the PICCs 13 

obtained via literature review. This study resulted in establishing and validating the SEXI 14 

benchmarking index. Therefore, the work presented herein may be used by individuals to 15 

understand their exposure to SE due to OSPI. The work presented in this developmental 16 

research study can be leveraged by organizations to better understand what information is 17 

available and the type of SE attack that may result from it. Additionally, risk assessments 18 

using the SEXI benchmarking index could be used to establish and enforce privacy, 19 

personal information, and cybersecurity policies. 20 

In conclusion, other researchers can use the SEXI benchmarking index to measure 21 

diverse populations of interest. The SEXI benchmarking index can be used to assess 22 

exposure of personal information of organizational members, key organizational 23 
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positions, clients, competitors, vendors, etc. Risk assessments can be performed using the 1 

SEXI benchmarking index. Additionally, the SEXI benchmarking index can be extended 2 

to include any data source using JSON, XML, CSV, API or other data formats thereby 3 

increasing its accuracy as well as effectiveness. As it matures, SEXI can provide a 4 

mechanism to understand, source, and combat the availability of OSPI and reduce the 5 

potential of various attack vectors due to OSPI.  6 
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Appendix B 1 

Email to Expert Panel: Request for Participation 2 

 3 
Dear cybersecurity expert, 4 
 5 
We need your help in providing expert feedback on a framework for an upcoming 6 
doctoral research study. I am a PhD Candidate in Information Systems with a 7 
concentration in Information Security at the College of Computing and Engineering, 8 
Nova Southeastern University, working under the supervision of Dr. Yair Levy in the 9 
Levy CyLab (https://infosec.nova.edu/cylab/). My research is seeking to develop an 10 
index to measure if there is (or to what extent the magnitude exists) exposure to social 11 
engineering via publicly available personal information. To develop the index, I need 12 
assistance from professionals that have extensive experience dealing with personal 13 
information privacy activities, not limited to information security, information privacy, 14 
social engineering, law, medical, application development, etc. 15 
 16 
You will be asked to complete two surveys. The first survey, should take approximately 17 
20 minutes, will help me to understand your work environment, experience, and will be 18 
used to develop the Social Engineering eXposure Index (SEXI) benchmark instrument to 19 
assess the level of exposure to social engineering due to publicly available personal 20 
information. The second survey, should take approximately 10 minutes, will ask for your 21 
feedback on the expert panel aggregate responses from the first-round survey. Your 22 
expertise is being solicited to review the proposed measurement criteria for the 23 
documented privacy components and provide your expert opinion regarding their relative 24 
significance by assigning weights and categories to develop a novel privacy-related 25 
exposure measure. 26 
 27 
The information provided will be used only for this research study and in aggregated 28 
form. Your personal information will not be collected. Your anonymity is assured, and no 29 
negative effect will accompany your truthful responses. If you are willing to participate, 30 
please click on the link below for access to the first-round survey, to be completed by 31 
TBD using password: PASSWORD. 32 
 33 
https://www.surveymonkey.com/r/SEXI-PhDStudy 34 
 35 
Thank you in advance for your consideration. I appreciate your assistance and 36 
contribution to this research study. Should you wish to receive the findings of the study, 37 
please send me an email, and I will be happy to provide you with information about the 38 
academic research publication(s) resulting from this study. 39 
 40 
Regards, 41 
W. Shawn Wilkerson, Ph.D. Candidate 42 
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E-mail: ww364@nova.edu 1 
Information Systems with a concentration in Information Security 2 
College of Computing and Engineering 3 
Nova Southeastern University 4 
 5 
Yair Levy, Ph.D. 6 
E-mail: levyy@nova.edu 7 
Professor of Information Systems and Cybersecurity 8 
College of Computing and Engineering 9 
Nova Southeastern University 10 
Levy CyLab: https://infosec.nova.edu/cylab/ 11 
 12 
  13 
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Appendix C 1 

Round I Expert Panel Survey 2 

Dear cybersecurity expert, 3 
 4 
Thank you for taking time to participate in this expert panel survey on the exposure to 5 
social engineering due to publicly available personal information. In this phase, you will 6 
be asked to provide some background information and general demographics. The 7 
requested information helps me understand the composition of the expert panel. It is 8 
imperative that your answers are as truthful and honest as possible. The information 9 
provided will be used only for this research study and in aggregated form. No personal 10 
information will be collected. Your anonymity is assured, and no negative effect will 11 
accompany your truthful responses. 12 
 13 
This expert panel survey is part of a Ph.D. doctoral dissertation research study that seeks 14 
to develop the Social Engineering eXposure Index (SEXI) benchmark instrument to 15 
measure exposure to social engineering due to publicly available information. Before this 16 
study can move towards the classification of personal information items, I must better 17 
understand the composition of experts taking part in the study. 18 
 19 

Part 1 – Work Environment. Answer the following questions with the most 20 
appropriate answer. 21 
 22 
BG01 [Policy] I work for an organization that has a well-defined privacy policy. 23 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 24 
BG02 [TrainingPrivacy] I work for an organization that has mandatory training for 25 
privacy. 26 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 27 
BG03 [Consequences] I work for an organization that has consequences for violating the 28 
privacy policy. 29 
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○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 1 
BG04 [TrainingSE] I work for an organization that has mandatory social engineering 2 
training. 3 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 4 
BG05 [SecurityAudits] I work for an organization that has security audits. 5 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 6 
BG06 [Pretending] I work for an organization that has experienced an attempt to gain 7 
access to unauthorized assets through someone pretending to be another individual. 8 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 9 
BG07 [Persuasion] I work for an organization that has experienced an attempt to gain 10 
access to unauthorized assets at my organization through persuasion. 11 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 12 
BG08 [AuthorityBypassPolicy] I work for an organization where someone has the 13 
authority to bypass policy on a case-by-case basis. 14 

○ ○ ○ ○ ○ ○ ○ 
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1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 1 
BG09 [UnauthorizedBypassPolicy] I work for an organization where an employee 2 
bypassed policy without authorization. 3 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 4 
BG10 [Repercussion] I work for an organization where an employee bypassed policy 5 
without repercussion. 6 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 7 
BG11 [PrivacyVsEfficiency] I work for an organization where employees feel like they 8 
must choose between privacy policy and efficiency. 9 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 10 
BG12 [PrivacyCulture] I work for an organization where employees are shown ways to 11 
bypass policy by other employees. 12 

○ ○ ○ ○ ○ ○ ○ 

1 – 
Strongly 

Disagree 

2 – 
Disagree 

 

3 – 
Somewhat 
Disagree 

4 – 
Neither 

Agree or 
Disagree 

5 – 
Somewhat 

Agree 

6 –  

Agree 

 

7 – 
Strongly 
Agree 

 13 
BG13 [Consequence] I work for an organization where violating the privacy policy 14 
typically results in: 15 

○ ○ ○ ○ ○ ○ ○ 
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1 –  
No 

Consequen
ce 

2 –  

Inform
al 

Verbal 

Warnin
g 

 

3 –  

Formal 

Verbal 

Repriman
d 

4 – 
Written 

Repriman
d 

5 – 
Temporar

y 
Suspensio

n of 
Duties 

6 – 
Reassignme

nt 

 

7 – 
Terminatio
n / Legal 

Issues 

 1 
Part 2 – Demographics 2 
D01 [Gender] Gender: 3 

1) Male 4 

2) Female 5 

 6 

D02 [Age] Age: 7 

1) 19 – 24 8 

2) 25 – 29 9 

3) 30 – 34 10 

4) 35 – 39 11 

5) 40 – 44 12 

6) 45 – 49 13 

7) 50 – 54  14 

8) 55 – 59 15 

9) 60 – 64 16 

10) 65+ 17 

 18 
D03 [Focus] How would you characterize your work focus? 19 

1) Academia. 20 
2) Mostly academic endeavors with occasional practitioner efforts. 21 
3) Evenly between academic and practitioner efforts. 22 
4) Practitioner. 23 
5) Mostly practitioner endeavors with occasional academic efforts. 24 
6) I am not affiliated with Information Security / Information Privacy. 25 

 26 
DO4 [Educ] Please select the highest degree attained 27 

1) Some college credit, no degree earned. 28 
2) Trade/technical/vocational training 29 
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3) Associate 1 
4) Bachelors 2 
5) Masters 3 
6) Doctorate 4 
 5 

D05 [Certs] Which specialized industry certifications do you currently hold? 6 
□  [CAP] Certified Authorization Professional 7 
□  [CCENT] Cisco Certified Entry Networking Technician 8 
□  [CCEP] Certified Compliance & Ethics Professional 9 
□  [CCEP-I] Certified Compliance & Ethics Professional-International 10 
□  [CCFP] Certified Cyber Forensics Professional 11 
□  [CCSP] Certified Cloud Security Professional 12 
□  [CEH] Certified Ethical Hacker 13 
□  [CGEIT] Certified in the Governance of Enterprise IT 14 
□  [CHC] Certified in Healthcare Compliance 15 
□  [CHPC] Certified in Healthcare Privacy Compliance 16 
□  [CHRC] Certified in Healthcare Research Compliance 17 
□  [CIPM] Certified Information Privacy Manager 18 
□  [CIPP] Certified Information Privacy Professional 19 
□  [CIPT] Certified Information Privacy Technologist 20 
□  [CISA] Certified Information Systems Auditor 21 
□  [CISM] Certified Information Security Manager 22 
□  [CISSP] Certified Information Systems Security Professional 23 
□  [CRISC] Certified in Risk and Information Systems Control 24 
□  [CSSLP] Certified Secure Software Lifecycle Professional 25 
□  [CSX] Cybersecurity Nexus Certificate 26 
□  [CSX-P] Cybersecurity Nexus Certification 27 
□  [HCISPP] HealthCare Information Security and Privacy Practitioner 28 
□  [SSCP] Systems Security Certified Practitioner 29 
□  [OtherCert] Other: _____________________ 30 

 31 
D06 [CurrOcc] Current Occupation: 32 

1)  Chief Information Officer (CIO) 33 
2)  Chief Privacy Officer (CPO) 34 
3)  Chief Security Officer (CSO) 35 
4)  Chief Information Security Officer (CISO) 36 
5)  Consultant 37 
6)  IS/IT Professor 38 
7)  Law Enforcement 39 
8)  Law Professor 40 
9)  Privacy Lawyer 41 
10)  Privacy Specialist 42 
11)  Security Specialist 43 
12)  Other _______________________________ 44 
 45 
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D07 [CySecProYrs] Years as a Cybersecurity professional: 1 

1) 1 – 3 Years 2 

2) 4 – 6 Years 3 

3) 7 – 9 Years 4 

4) 10 – 12 Years 5 

5) 13 – 15 Years 6 

6) 16 – 18 Years  7 

7) 19 – 21 Years 8 

8) 22+ Years  9 

 10 

D08 [Exp] Years working with information privacy:  11 

1) 1 – 3 Years 12 

2) 4 – 6 Years 13 

3) 7 – 9 Years 14 

4) 10 – 12 Years 15 

5) 13 – 15 Years 16 

6) 16 – 18 Years  17 

7) 19 – 21 Years 18 

8) 22+ Years  19 

 20 

D09 [CurOccInd] Current Industry: 21 

1) Banking & Finance 22 

2) Consulting 23 

3) Education 24 

4) Energy 25 

5) Healthcare 26 

6) Government 27 

7) Information Technology 28 

8) Law Enforcement 29 

9) Manufacturing 30 

10) Retail 31 

11) Telecommunication 32 
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12) Other  1 

 2 

D10 [Mil] Have you ever served in the military? 3 

o Yes 4 

o No 5 

 6 

D11 [Leo] Have you ever served in law enforcement? 7 

o Yes 8 

o No 9 

 10 

Part 3 – Items contributing to identification via personal information 11 

Personally identifiable information (PII) is typically thought of as including any personal 12 
information. In this section, you will be provided personal information candidate 13 
components that have been suggested or described by experts in leading journal articles, 14 
federal legislation, and in industry standards. 15 

 16 
Read each item and select the best answer indicating where in the range of 1 (minimal 17 
exposure) to 10 (maximum exposure) the item, can in and of itself, identify a given 18 
individual. Select DNA for any item that you feel is not personal information. Select 19 
UNF for any item that you are unfamiliar with. 20 
 21 
Definitions: 22 
 
Does not Apply (DNA) – any information that is not personal information. 
Unfamiliar (UNF) – any information that you are not familiar with. 

 23 
 24 
 25 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC001 Acceleration  
     via personal  
     tracking 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC002 Account  
     numbers 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC003 Activities   
     (daily life) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC004 Age ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
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PC005 Agency seal /  
     Organizational  
     logo 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC006 Alias ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC007 Area code ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC008 Audit log of  
     user actions 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC009 Biometric  
     records (retina,  
     iris, voice            
     signature,  
     facial  
     geometry,  
     facial  
     recognition) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC010 Bluetooth  
     connections to  
     other devices 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC011 Calorie  
     counting with  
     images of food 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC012 Cardholder  
     name 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 1 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC013 Cell phone  
     number 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC014 Cell tower  
     location 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC015 Credit card  
     account  
     number 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC016 Credit card  
     CAV2 / CVC2      
     / CVV2 / CID 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC017 Card 
expiration  
     date 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC018 Credit card 
pin 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC019 Credit card  
     service code 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
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PC020 Credit score ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC021 Criminal  
     history 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC022 Date of birth ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC023
 Demographic
s 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC024 Driver's 
license  
     [number] 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 1 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC025 Education  
     information 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC026 Electricity  
     usage 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC027 Electronic  
     facial image /  
     selfie 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC028 E-mail 
address 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC029 Employee  
     identification 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC030 Employment  
     history 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC031 Employment   
     information 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC032 Family 
income 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC033 Favorite  
     movies 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC034 Favorite  
     restaurants 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC035 Favorite  
     television  
     shows 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC036 Financial  
     records /            
     information,  
     balances 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 2 
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 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC037 Fingerprints ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC038 Fingerprints 
of  
     two fingers 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC039 Full name ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC040 Full set of  
     fingerprints 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC041 Gender ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC042 Genetic  
     information 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC043 Geographical   
     indicators  
     (location, i.e.   
     city name,        
     latitude,  
     longitude, etc.) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC044 Global  
     Positioning    
     Systems (GPS) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC045 Handwriting ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC046 High school  
     name 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC047 Holographic  
     images (on  
     identification) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC048 Host-specific  
     persistent static   
     identifier (system /    
     hostname, etc.) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 1 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC049 IP address   
     (network location  
     of network device;  
     dynamic / fixed) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC050 Laser etches   
     (on identification) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC051 License plate ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
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PC052 MAC address  
     (hardware ID of  
     network device) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC053 Maiden name ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC054 Marital status ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC055 Medical 
history 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC056 Medical   
     information 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC057 Medical test  
     results 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC058 Mental health ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC059 Mother's  
     maiden name 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC060 Nationality ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
 1 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC061 Newsletter   
      subscription 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC062 Organization  
      affiliation /  
      membership 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC063 Owned  
     property (mortgage,  
     vehicle registration,  
     title) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC064 Parent's 
middle  
     name 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC065 Partner(s)   
     name 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC066 Passport  
     number 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC067 Password ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC068 Patient  
     identification  
     number 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC069 Payment for     
     health care 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC070 Persistent  
     Identifier (customer  
     number held  in  

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
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     cookie, processor   
     serial number,  
     alphanumeric     
     identifier) 

 1 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC071 Personal 
heart- 
            rate meter 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC072 Photographic  
            image 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC073 Physical 
health 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC074 Place of birth ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC075 Place of  
            sensing  
            moment 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC076 Political 
views 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC077 Professional  
            title 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC078 Provision of  
            health care 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC079 Race ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC080 Rank ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC081 Recent  
            purchases 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC082 Religion ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
 2 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

DNA U 
N 
F 

PC083 Salary  
     information 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC084 Search  
     engine query        
     (miscellaneous  
     to vanity) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
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PC085 Sexual   
    fantasy /  
    behavior 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC086 Sexual  
     orientation 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC087 Signature  
     (digital) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC088 Signature  
     (handwritten) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC089 Social  
     media profile 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC090 Social  
     Security  
     Number 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC091 Status  
     updates 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC092 Street  
     address 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC093 Tax 
records 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC094 Taxpayer  
     identification  
     number 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC095 Telephone  
     number 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC096 Location /  
     Time of sensing  
     moment (self-      
     surveillance  
     via smartphone,  
     fitness device) 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 1 

 1 
Minimum 
Exposure 

2 3 4 5 6 7 8 9 10 
Maximum 
Exposure 

D 
N 
A 

U 
N 
F 

PC097 Timestamp of  
     Web page visit 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC098 Uniform  
     Resource  
     Locator (URL) of  
     last Web page 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC099 Unique health  
     identifier 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 



      257 

 

 

PC100 User  
     identification 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC101 Web browser  
      history 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

PC102 Weight ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC103 Work phone ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC104 X-Rays ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
PC105 ZIP Code ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 1 

 2 
 3 
Part 4 – Provide any suggestions for Personally Unidentifiable Information (PUI) 4 
not in the personal information candidate components above. If you have no 5 
additional items, please enter NA.  6 
 
 
 
 
 
 
 
 
 
 

 7 
 8 
Part 5 – Provide any suggestions for Personally Identifiable Information (PII) not in 9 
the personal information candidate components above. If you have no additional 10 
items, please enter NA 11 
 
 
 
 
 
 
 
 
 
 

 12 
 13 
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Part 6 – Provide any suggestions for Personally Distinguishable Information (PDI) 1 
not in the personal information candidate components above. If you have no 2 
additional items, please enter NA. 3 
 
 
 
 
 
 
 
 
 
 

 4 

Part 7 – Category Weight Assignment 5 
The three proposed measures will be assessed based on the clusters of criteria identified 6 
by the expert panel. What should the importance of each category be relative to the other 7 
categories?  8 
 9 
Please allocate from 1 -100 points in each of the Social Engineering eXposure Index 10 
(SEXI) categories (all 100 points should be used): 11 
Personally unidentifiable information 
(PUI) – any information that cannot identify 
an individual by itself. 
 

 
WPUI  [               ] 

Personally identifiable information (PII) – 
any information that can potentially identify 
an individual by itself and not be PDI or PUI. 
 

 
WPII  [               ] 

Personally distinguishable information 
(PDI) – any information that can definitely 
identify an individual by itself. 
 

 
WPDI  [               ] 

 12 

  13 
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Appendix D 1 

Round II Expert Panel Survey 2 

Dear cybersecurity expert, 3 
 4 
Thank you for taking time to participate in this expert panel survey on the exposure to 5 
social engineering due to publicly available personal information. In this phase, you will 6 
be asked to provide feedback on the placement of the personal information components 7 
by a panel of experts. The information provided will be used only for this research study 8 
and in aggregated form. No personal information will be collected. Your anonymity is 9 
assured, and no negative effect will accompany your truthful responses. 10 
 11 
This expert panel survey is part of a Ph.D. doctoral dissertation research study that seeks 12 
to develop the Social Engineering eXposure Index (SEXI) benchmark instrument to 13 
measure exposure to social engineering due to publicly available information.  14 
 15 
Categories: 16 
Personally unidentifiable information (PUI) – any information that cannot identify 
an individual by itself. 
 
Personally identifiable information (PII) – any information that can potentially 
identify an individual by itself and not be PDI or PUI. 
 
Personally distinguishable information (PDI) – any information that can definitely 
identify an individual by itself. 
 
Does not Apply (DNA) – any information that is not personal information. 
 

 17 
Please read over the following lists and indicate the group the personal information item 18 
belongs in 19 
  20 
1 – Items the expert panel designated as personal information that cannot identify an 21 
individual by itself. Using the category definitions above, please read over the 22 
following lists and indicate the group the item belongs. 23 
 Does not 

Apply 
(DNA) 

Cannot 
Identify 

(PUI) 

Potentially 
Identify 

(PII) 

Definitely 
Identify 

(PDI) 

PC011 Calorie 
     counting with  
     images of food 

○ ○ ○ ○ 
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PC026 Electricity 
     usage 

○ ○ ○ ○ 

PC033 Favorite  
     movies 

○ ○ ○ ○ 

PC034 Favorite  
     restaurants 

○ ○ ○ ○ 

PC035 Favorite  
     television shows 

○ ○ ○ ○ 

PC041 Gender ○ ○ ○ ○ 

PC054 Marital status ○ ○ ○ ○ 

PC061 Newsletter  
     subscription 

○ ○ ○ ○ 

PC086 Sexual  
     orientation 

○ ○ ○ ○ 

PC105 ZIP Code ○ ○ ○ ○ 

 1 

2 – Items the expert panel designated as personal information that can definitely 2 
identify an individual by itself. Using the category definitions above, please read over 3 
the following lists and indicate the group the item belongs. 4 

 Does not 
Apply 

(DNA) 

Cannot 
Identify 

(PUI) 

Potentially 
Identify 

(PII) 

Definitely 
Identify 

(PDI) 

PC008 Audit log of  
     user actions 

○ ○ ○ ○ 

PC009 Biometric  
     records (retina,  
     iris, voice  
     signature, facial  
     geometry, facial  
     recognition) 

○ ○ ○ ○ 

PC012 Cardholder  
     name 

○ ○ ○ ○ 

PC013 Cell phone    
     number 

○ ○ ○ ○ 

PC015 Credit card  
     account number 

○ ○ ○ ○ 

PC016 Credit card  
     CAV2 / CVC2 /  
     CVV2 / CID 

○ ○ ○ ○ 

PC021 Criminal  
     history 

○ ○ ○ ○ 
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PC022 Date of birth ○ ○ ○ ○ 

PC024 Driver's  
     license [number] 

○ ○ ○ ○ 

PC027 Electronic  
     facial image /  
     selfie 

○ ○ ○ ○ 

PC029 Employee  
     identification 

○ ○ ○ ○ 

PC030 Employment  
     history 

○ ○ ○ ○ 

PC031 Employment  
     information 

○ ○ ○ ○ 

PC036 Financial  
     records /  
     information,  
     balances 

○ ○ ○ ○ 

PC040 Full set of  
     fingerprints 

○ ○ ○ ○ 

PC042 Genetic  
     information 

○ ○ ○ ○ 

PC055 Medical  
     history 

○ ○ ○ ○ 

PC056 Medical  
     information 

○ ○ ○ ○ 

PC057 Medical test  
     results 

○ ○ ○ ○ 

PC058 Mental health ○ ○ ○ ○ 

PC066 Passport  
     number 

○ ○ ○ ○ 

PC068 Patient  
     identification  
     number 

○ ○ ○ ○ 

PC070 Persistent  
     Identifier  
     (customer number  
     held in cookie,  
     processor serial  
     number,  
     alphanumeric  
     identifier) 

○ ○ ○ ○ 

PC072 Photographic  
     image 

○ ○ ○ ○ 

PC087 Signature  
     (digital) 

○ ○ ○ ○ 
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PC088 Signature  
     (handwritten) 

○ ○ ○ ○ 

PC089 Social media  
     profile 

○ ○ ○ ○ 

PC090 Social  
     Security Number 

○ ○ ○ ○ 

PC093 Tax records ○ ○ ○ ○ 

PC094 Taxpayer  
     identification  
     number 

○ ○ ○ ○ 

 1 

3 – Items the expert panel designated as personal information having the potential to 2 
identify an individual by itself that are not definite identifiers (PDI) or non-identifiers 3 
(PUI). Using the category definitions above, please read over the following lists and 4 
indicate the group the item belongs. 5 

 Does 
not 
Apply 
(DNA) 

Cannot 
Identify 

(PUI) 

Potentially 
Identify 

(PII) 

Definitely 
Identify 

(PDI) 

PC001 Acceleration via  
     personal tracking 

○ ○ ○ ○ 

PC002 Account  
     numbers 

○ ○ ○ ○ 

PC003 Activities (daily  
     life) 

○ ○ ○ ○ 

PC004 Age ○ ○ ○ ○ 

PC005 Agency seal /  
     Organizational logo 

○ ○ ○ ○ 

PC006 Alias ○ ○ ○ ○ 

PC007 Area code ○ ○ ○ ○ 

PC010 Bluetooth  
     connections to other  
     devices 

○ ○ ○ ○ 

PC014 Cell tower  
     location 

○ ○ ○ ○ 

PC017 Card expiration  
     date 

○ ○ ○ ○ 

PC018 Credit card pin ○ ○ ○ ○ 

PC019 Credit card  
     service code 

○ ○ ○ ○ 

PC020 Credit score ○ ○ ○ ○ 
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PC023 Demographics ○ ○ ○ ○ 

PC025 Education  
     information 

○ ○ ○ ○ 

PC028 E-mail address ○ ○ ○ ○ 

PC032 Family income ○ ○ ○ ○ 

PC037 Fingerprints ○ ○ ○ ○ 

PC038 Fingerprints of  
     two fingers 

○ ○ ○ ○ 

PC039 Full name ○ ○ ○ ○ 

PC043 Geographical  
     indicators (location,  
     i.e. city name,  
     latitude, longitude,  
     etc.) 

○ ○ ○ ○ 

PC044 Global  
     Positioning Systems  
     (GPS) 

○ ○ ○ ○ 

PC045 Handwriting ○ ○ ○ ○ 

PC046 High school  
     name 

○ ○ ○ ○ 

PC047 Holographic  
     images (on  
     identification) 

○ ○ ○ ○ 

PC048 Host-specific  
     persistent static  
     identifier (system /  
     hostname, etc.) 

○ ○ ○ ○ 

PC049 IP address  
     (network location of  
     network device;  
     dynamic / fixed) 

○ ○ ○ ○ 

PC050 Laser etches (on  
     identification) 

○ ○ ○ ○ 

PC051 License plate ○ ○ ○ ○ 

PC052 MAC address  
     (hardware ID of  
     network device) 

○ ○ ○ ○ 

PC053 Maiden name ○ ○ ○ ○ 

PC059 Mother's maiden  
     name 

○ ○ ○ ○ 

PC060 Nationality ○ ○ ○ ○ 
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PC062 Organization  
     affiliation /  
     membership 

○ ○ ○ ○ 

PC063 Owned property  
     (mortgage, vehicle  
     registration, title) 

○ ○ ○ ○ 

PC064 Parent's middle  
     name 

○ ○ ○ ○ 

 1 

4 – Items the expert panel designated as personal information having the potential to 2 
identify an individual by itself that are not definite identifiers (PDI) or non-identifiers 3 
(PUI). Using the category definitions above, please read over the following lists and 4 
indicate the group the item belongs.  5 

 Does not 
Apply 

(DNA) 

Cannot 
Identify 

(PUI) 

Potentially 
Identify 

(PII) 

Definitely 
Identify 

(PDI) 

PC065 Partner(s) name ○ ○ ○ ○ 

PC067 Password ○ ○ ○ ○ 

PC069 Payment for 
     health care 

○ ○ ○ ○ 

PC071 Personal heart- 
     rate meter 

○ ○ ○ ○ 

PC073 Physical health ○ ○ ○ ○ 

PC074 Place of birth ○ ○ ○ ○ 

PC075 Place of sensing  
     moment 

○ ○ ○ ○ 

PC076 Political views ○ ○ ○ ○ 

PC077 Professional  
     title 

○ ○ ○ ○ 

PC078 Provision of  
     health care 

○ ○ ○ ○ 

PC079 Race ○ ○ ○ ○ 

PC080 Rank ○ ○ ○ ○ 

PC081 Recent  
     purchases 

○ ○ ○ ○ 

PC082 Religion ○ ○ ○ ○ 

PC083 Salary  
     information 

○ ○ ○ ○ 

PC084 Search engine  
     query   

○ ○ ○ ○ 
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     (miscellaneous to  
     vanity) 
PC085 Sexual fantasy /  
     behavior 

○ ○ ○ ○ 

PC091 Status updates ○ ○ ○ ○ 

PC092 Street address ○ ○ ○ ○ 

PC095 Telephone  
     number 

○ ○ ○ ○ 

PC096 Location / Time  
     of sensing moment   
     (self-surveillance  
     via smartphone,  
     fitness device) 

○ ○ ○ ○ 

PC097 Timestamp of  
     Web page visit 

○ ○ ○ ○ 

PC098 Uniform  
     Resource Locator  
     (URL)  of last Web  
     page 

○ ○ ○ ○ 

PC099 Unique health  
     identifier 

○ ○ ○ ○ 

PC100 User  
     identification 

○ ○ ○ ○ 

PC101 Web browser  
     history 

○ ○ ○ ○ 

PC102 Weight ○ ○ ○ ○ 

PC103 Work phone ○ ○ ○ ○ 

PC104 X-Rays ○ ○ ○ ○ 

 1 

Part 2 – Expert suggested items from Round 1 2 

Read each item and select the best answer indicating where in the range of 1 3 
(minimal exposure) to 10 (maximum exposure) the item, can in and of itself, identify 4 
a given individual. Select DNA for any item that you feel is not personal 5 
information. Select UNF for any item that you are unfamiliar with. 6 

 7 

Definitions: 8 

Does not Apply (DNA) – any information that is not personal information. 9 

Unfamiliar (UNF) – any information that you are not familiar with. 10 

 11 
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5 – Please indicate where in the range of 1 (minimal exposure) to 10 (maximum 1 
exposure) each item, can in and of itself, identify a given individual. 2 

 Does not 
Apply 

(DNA) 

Cannot 
Identify 

(PUI) 

Potentially 
Identify 

(PII) 

Definitely 
Identify 

(PDI) 

PC200 Fitness tracker ○ ○ ○ ○ 

PC201 Google  
     applications 

○ ○ ○ ○ 

PC202 Voting  
     program / ballot 

○ ○ ○ ○ 

PC203 Vehicle make  
     & model 

○ ○ ○ ○ 

PC204 RSA  
     pin/passcode 

○ ○ ○ ○ 

PC205 Clothing style ○ ○ ○ ○ 

PC206 Voting district ○ ○ ○ ○ 

PC207 Transportation  
     method 

○ ○ ○ ○ 

PC220 Gravatar  
     avatar 

○ ○ ○ ○ 

PC221 Reservation  
     confirmation  
     number 

○ ○ ○ ○ 

PC222 SSH Public  
     key 

○ ○ ○ ○ 

PC223 E-mail  
     message ID 

○ ○ ○ ○ 

PC230 GPG public  
     key 

○ ○ ○ ○ 

PC231 Student  
     identification  
     number 

○ ○ ○ ○ 

PC232 Personal SSL /  
     PKI type  
     certificate 

○ ○ ○ ○ 

PC233 Rewards plan  
     member 

○ ○ ○ ○ 

  3 
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Appendix E 1 

SEXI Data Collection Form 2 

 3 

M081-03 (Nondescript identifier) 4 

Label Item SRC1 SRC2 SRC3 

PC001 Acceleration via personal tracking □ □ □ 
PC002 Account numbers □ □ □ 
PC003 Activities (daily life) □ □ □ 
PC004 Age □ □ □ 
PC005 Agency seal / Organizational logo □ □ □ 
PC006 Alias □ □ □ 
PC007 Area code □ □ □ 
PC008 Audit log of user actions □ □ □ 
PC009 Biometric records (retina, iris, voice signature,  

Facial geometry, facial recognition) 
□ □ □ 

PC010 Bluetooth connections to devices □ □ □ 
PC011 Calorie counting w/ images of food □ □ □ 
PC012 Cardholder name □ □ □ 
PC013 Cell phone number □ □ □ 
PC014 Cell tower location □ □ □ 
PC015 Credit card account number □ □ □ 
PC016 Credit card CAV2 / CVC2 / CVV2 / CID □ □ □ 
PC017 Card expiration date □ □ □ 
PC018 Credit card pin □ □ □ 
PC019 Credit card service code □ □ □ 
PC020 Credit score □ □ □ 
PC021 Criminal history □ □ □ 
PC022 Date of birth □ □ □ 
PC023 Demographics □ □ □ 
PC024 Driver's license [number] □ □ □ 
PC025 Education information □ □ □ 
PC026 Electricity usage □ □ □ 
PC027 Electronic facial image / Selfie □ □ □ 
PC028 E-mail address □ □ □ 
PC029 Employee identification □ □ □ 
PC030 Employment history □ □ □ 
PC031 Employment information □ □ □ 



      268 

 

 

PC032 Family income □ □ □ 
PC033 Favorite movies □ □ □ 
PC034 Favorite restaurants □ □ □ 
PC035 Favorite television shows □ □ □ 
PC036 Financial records / information, balances □ □ □ 
PC037 Fingerprints □ □ □ 
PC038 Fingerprints of two fingers □ □ □ 
PC039 Full name □ □ □ 
PC040 Full set of fingerprints □ □ □ 
PC041 Gender □ □ □ 
PC042 Genetic information □ □ □ 
PC043 Geographical indicators (location, i.e. city  

name, latitude, longitude, etc.) 
□ □ □ 

PC044 GPS □ □ □ 
PC045 Handwriting □ □ □ 
PC046 High school name □ □ □ 
PC047 Holographic images (on ID) □ □ □ 
PC048 Host-specific persistent static identifier  

(system / hostname, etc.) 
□ □ □ 

PC049 IP address □ □ □ 
PC050 Laser etches (on ID) □ □ □ 
PC051 License plate □ □ □ 
PC052 MAC address □ □ □ 
PC053 Maiden name □ □ □ 
PC054 Marital status □ □ □ 
PC055 Medical history □ □ □ 
PC056 Medical information □ □ □ 
PC057 Medical test results □ □ □ 
PC058 Mental health □ □ □ 
PC059 Mother's maiden name □ □ □ 
PC060 Nationality □ □ □ 
PC061 Newsletter subscription □ □ □ 
PC062 Organization affiliation / membership □ □ □ 
PC063 Owned property □ □ □ 
PC064 Parent's middle name □ □ □ 
PC065 Partner(s) Name □ □ □ 
PC066 Passport number □ □ □ 
PC067 Password □ □ □ 
PC068 Patient identification Number □ □ □ 
PC069 Payment for health care □ □ □ 
PC070 Persistent Identifier (customer number held in 

cookie, processor serial number, alphanumeric  
□ □ □ 
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identifier)  
PC071 Personal heart-rate meter □ □ □ 
PC072 Photographic image □ □ □ 
PC073 Physical health □ □ □ 
PC074 Place of birth □ □ □ 
PC075 Place of sensing moment □ □ □ 
PC076 Political views □ □ □ 
PC077 Professional title □ □ □ 
PC078 Provision of health care □ □ □ 
PC079 Race □ □ □ 
PC080 Rank □ □ □ 
PC081 Recent purchases □ □ □ 
PC082 Religion □ □ □ 
PC083 Salary information □ □ □ 
PC084 Search engine query (miscellaneous to vanity) □ □ □ 
PC085 Sexual fantasy / behavior □ □ □ 
PC086 Sexual orientation □ □ □ 
PC087 Signature (digital) □ □ □ 
PC088 Signature (handwritten) □ □ □ 
PC089 Social media profile □ □ □ 
PC090 Social Security Number □ □ □ 
PC091 Status updates □ □ □ 
PC092 Street address □ □ □ 
PC093 Tax records □ □ □ 
PC094 Taxpayer identification number □ □ □ 
PC095 Telephone number □ □ □ 
PC096 Location / Time of sensing moment (self- 

surveillance via smartphone, fitness device) 
□ □ □ 

PC097 Timestamp of Web page visit □ □ □ 
PC098 Uniform Resource Locator (URL) of last  

Web page 
□ □ □ 

PC099 Unique health identifier □ □ □ 
PC100 User identification □ □ □ 
PC101 Web browser history □ □ □ 
PC102 Weight □ □ □ 
PC103 Work phone □ □ □ 
PC104 X-Rays □ □ □ 
PC105 ZIP Code □ □ □ 

1 
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