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ABSTRACT 

The suborder Scorpaenoidei is among the most speciose fish taxa of the World Ocean, 

including the Gulf of Mexico (GoM). Most adult scorpionfishes are benthic and have a 

pelagic juvenile phase. Although the species descriptions and distributions of adult 

scorpionfishes within the GoM are well documented, their juvenile forms are largely 

undescribed. Due to the poorly resolved taxonomic status of juvenile scorpionfishes, their 

assemblage dynamics have not been accurately assessed. Specimens were collected from 

the GoM during seven research cruises (2010-2011), as part of the NOAA-supported 

Offshore Nekton Sampling and Analysis Program (ONSAP), and during six research 

cruises (2015-2018), as a part of the GOMRI-supported Deep Pelagic Nekton Dynamics 

of the Gulf of Mexico Consortium (DEEPEND). Members of the suborder Scorpaenoidei 

occurred within 47% of epipelagic trawls from the ONSAP and DEEPEND surveys. 

Juvenile scorpaenoids were as abundant within the upper 200 m of the GoM during the day 

from the DEEPEND survey as one of the most successful midwater fish groups, the 

Myctophidae. Nine unique morphotypes were defined, with putative identifications, based 

upon meristics, morphometrics, and internal and external features with an emphasis on 

head spines. Pontinus rathbuni accounted for the majority of specimens collected. 

Specimens of P. rathbuni that were of comparable size to juvenile myctophids (e.g., 15-19 

mm standard-length) showed the same diet composition as myctophids but predated during 

the day as opposed to nocturnal feeding by the myctophids, suggesting a degree of niche 

partitioning between juvenile benthic and adult pelagic species in a low-latitude oceanic 

ecosystem. 
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1. INTRODUCTION 

1.1. Dominant Holopelagic Fishes and Meropelagic Scorpaenoids – Differing Body Plans 

Despite Habitat Co-occurrence 

 The fish families Gonostomatidae, Sternoptychidae, and Myctophidae are the numerically 

dominant constituents of the mesopelagic ichthyofaunal assemblage of the World Ocean, including 

the Gulf of Mexico (hereafter referred to as GoM), and thus exhibit a high frequency of occurrence 

in pelagic trawl catches (Hopkins & Baird 1981, 1985, Cook et al. 2013). These families define a 

“classic” deep-pelagic morphological ichthyotype, which includes bioluminescent photophores, a 

lack of spiny fin-rays, weak and low-density musculature, and the presence of countershading 

(Figure 1; Nafpaktitis 1975, Badcock & Merrett 1976, Kinzer & Schulz 1988, Sutton & Hopkins 

1996). In contrast, pelagic-phase juveniles of the suborder Scorpaenoidei (scorpionfishes and 

allies) deviate from this “classic” form with the presence of heavy spination, relatively robust 

musculature, and a lack of both bioluminescence and countershading (Figure 2; Washington et al. 

1984, Eschmeyer 1998, Nelson 2018). Despite this disparity in body form, pelagic-phase juvenile 

scorpaenoids have been collected in epipelagic (0-200 m depth) trawls of the GoM at a frequency 

of occurrence that is comparable to some of the numerically dominant deep-pelagic fishes in the 

GoM, such as the Myctophidae (anecdotal observation, T. Sutton and J.A. Moore). 

 

 

 

 



2 

 

 
Figure 1. A) Sigmops elongatus, a member of Gonostomatidae. B) Argyropelecus aculeatus, a member of 

Sternoptychidae. C) Myctophum asperum, a member of Myctophidae. Image credit: DEEPEND/Danté Fenolio. 

 



3 

 

 
Figure 2. A) A pelagic-phase juvenile scorpaenoid. B) Diaphus fragilis, a myctophid exhibiting the classic deep-sea 

ichthyotype. Image credit: DEEPEND/Danté Fenolio. 

 

1.2. Meropelagic Fish Body Forms, with Emphasis on Scorpaenoids 

Meropelagic fishes, such as juvenile scorpaenoids, Anguilliformes (eel leptocephali), and 

Pleuronectiformes (Figure 3) rely primarily on transparency as juveniles to reduce visually 

oriented predation (Mukhacheva 1974, Smith 1979, Ahlstrom et al. 1984). Pelagic-phase 

scorpaenoids also have a diverse range of pigmentation (e.g., erythrin, melanin, and xanthin) in 

the pectoral fins and throughout the body. Additionally, the head is generally ornate with 

prominent spination (Figure 3). The head spines of scorpaenoids may aid with extended suspension 

in the water column by increasing surface area, which in turn increases drag, thus retarding sinking 

(Cowen & Guigand 2008, Nonaka et al. 2021). The form exhibited by juvenile scorpaenoids may 

have evolved to accommodate a protracted pelagic phase for greater species dispersal (Love et al. 

1990, Rooker et al. 2013). 
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Figure 3. Body forms of: A) pelagic-phase juvenile scorpaenoid, B) eel leptocephalus and C) larval pleuronectiform. 

Image credit: DEEPEND/Danté Fenolio. 

 

1.3. Scorpaenoid Life History Relative to Pelagic Existence 

Scorpaenoids exhibit a wide array of reproductive modes, the most common of which is 

oviparity (Breder & Rosen 1966, Moyer & Zaiser 1981, Munehara et al. 1997, Sequeria et al. 

2003). Members of Scorpaeninae, Pteroinae, Sebastidae, Setarchidae, and Sebastolobinae release 

a buoyant, gelatinous egg mass into the water column to be fertilized (Moser 1967, 1974, 

Washington et al. 1984). The gelatinous egg masses floats to the ocean surface and the juveniles 

develop within the epipelagic (0-200 m). The resulting progeny are carried by surface ocean 

currents and settle to the benthos after a maximum of one year in order to continue development 

into adulthood (Boehlert 1977, Moser & Boehlert 1991). Therefore, the pelagic early life history 

of scorpaenoids gives these fishes the ability to colonize a wide geographic range of benthic 

habitats. 

 

1.4. Taxonomic Composition of Juvenile Scorpionfishes 

The species composition of juvenile scorpaenoids worldwide is inadequately documented 

because of low taxonomic resolution. Specimens are routinely identified only to order 
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(Scorpaeniformes) or family (Scorpaenidae) due to knowledge gaps in scorpaenoid ontogeny and 

development, largely stemming from a lack of unique identifying external traits (Imamura 2004, 

Smith & Wheeler 2004, Nelson et al. 2018). Juvenile scorpaenoids have meristic overlaps across 

multiple genera in fin-spine, fin-ray, vertebral, and gill-raker counts (Eschmeyer 1965, 1969, 

Richards 2006). Therefore, little is known regarding the species-specific early life history of many 

juvenile scorpaenoids (Washington et al. 1984). 

1.4.1. Systematic Background of Scorpionfishes 

The order Scorpaeniformes is one of the most speciose orders of fishes, with 24-36 

families, 250-280 genera, and over 1,400 species (Washington 1984, Washington et al. 1984, 

Eschmeyer 1998, Smith & Wheeler 2004), though the order is far from resolved systematically 

and phylogenetically (Washington et al. 1984, Johnson & Patterson 1993, Imamura & Yabe 2002, 

Imamura 2004). Some now place the Scorpaeniformes as a suborder within the Perciformes 

(Fricke et al. 2021), but the traditional classification is used herein pending consensus acceptance 

of this classification. In the Western Central Atlantic, the order Scorpaeniformes comprises three 

suborders: Scorpaenoidei (scorpionfishes/rockfishes), Platycephaloidei (gurnards/flatheads/sea 

robins), and Serranoidei (sea basses/groupers) (Imamura 1996, Poss 1999, Near et al. 2013, 

Hastings et al. 2015). The suborder Scorpaenoidei includes one family, 11 genera, 29 species, and 

one subspecies of scorpionfishes in the Western Central Atlantic, including the GoM, (Table 1; 

Richards 1990, 2006, Smith et al. 2018). 
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Table 1. Scorpaenoid species in the Western Central Atlantic (adapted from Richards 2006, Smith et al. 2018, Fricke 

et al. 2021). 

Family Genus and Species 

Scorpaenidae Idiastion kyphos Eschmeyer, 1965 

Neomerinthe beanorum (Evermann & Marsh, 1900) 

Neomerinthe hemingwayi Fowler, 1935 

Phenacoscorpius nebris Eschmeyer, 1965 

Pontinus castor Poey, 1860 

Pontinus helena Eschmeyer, 1965 

Pontinus longispinis Goode & Bean, 1986 

Pontinus nematophthalmus (Günther, 1860) 

Pontinus rathbuni Goode & Bean, 1896 

Pterois miles (Bennett, 1828) 

Pterois volitans (Linnaeus, 1758) 

Scorpaena agassizi Goode & Bean, 1896 

Scorpaena albifimbria Evermann & Marsh, 1900 

Scorpaena bergii Evermann & Marsh, 1900 

Scorpaena brachyptera Eschmeyer, 1965 

Scorpaena brasiliensis Cuvier, 1829 

Scorpaena calcarata Goode & Bean, 1882 

Scorpaena dispar Longley & Hildebrand, 1940 

Scorpaena elachys Eschmeyer, 1965 

Scorpaena grandicornis Cuvier, 1829 

Scorpaena inermis Cuvier, 1829 

Scorpaena isthmensis Meek & Hildebrand, 1928 

Scorpaena plumieri Bloch, 1789 

Scorpaenodes caribbaeus Meek & Hildebrand, 1928 

Scorpaenodes tredecimspinosus (Metzelaar, 1919) 

 Helicolenus dactylopterus (Delaroche, 1809) 

Trachyscorpia cristulata cristulata (Goode & Bean, 1896) 

Ectreposebastes imus Garman, 1899 

Setarches guentheri Johnson, 1862 

 

1.4.2. Taxonomy of Pelagic-Phase Juvenile Scorpaenoids 

Scorpaeniform fishes are distinguished from other fishes by the presence of a suborbital 

stay, a bony strut made of infraorbital bones that connect the lacrimal bone to the preopercle 

(Figure 4; Nelson 2018). While the suborbital stay is one of the only constant characters of the 

Scorpaeniformes, finer identification of scorpaeniform species, particularly within juvenile forms, 

is both complex and controversial (Eschmeyer 1969, Washington et al. 1984, Kendall 1991, Wiley 

& Johnson 2010). Therefore, the juvenile phases of many Western Central Atlantic scorpaenoids 

are poorly described (Eschmeyer 1969, Richards 1990, 2006).  
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The current morphological descriptions of juvenile scorpaenoids are limited to melanin 

pigmentation, fin-ray branching elements, and internal features within specific size classes 

(Kendall 1991, Richards 2006). The pigmentation of pectoral fins and their respective fin-ray 

counts (i.e. meristics) can be difficult to discern because fins and other soft external features are 

often damaged during collection (Wiebe et al. 1985, Judkins et al. 2017). Some diagnostic internal 

features are the pigmentation of the gut, the presence or absence of a swim bladder, and the 

presence or absence of a slit behind the fourth gill arch (McEachran & Fechhelm 2010). However, 

internal features are often difficult to discern and their use for field identification would require 

the dissection of individuals before preservation. Therefore, internal features are not helpful for 

identifications of scorpaenoids immediately following collection while hard external features are 

much easier to use for identification purposes. Although head spines are not only a salient and hard 

external feature (Figure 4), the characterization and use of head spination is missing from current 

taxonomic treatments (Moser et al. 1977, Richards 2006). All juvenile scorpaenoids exhibit 

spination of the head to varying degrees, and these spines can be useful distinguishing characters 

(Ginsburg, 1953). 
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Figure 4. Head spination of a typical adult scorpaenoid (adapted from Eschmeyer 1969) 
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1.5. Trophic Ecology of Scorpaenoids and Other Pelagic Fishes 

The trophic ecology of adult scorpaenoids is well-documented throughout the world, 

particularly in the Mediterranean and the Pacific (Russell 1983, Stergiou & Karpouzi 2002, 

Başçinar & Sağlam 2009). However, the diets of larval and juvenile scorpaenoids of the Western 

Central Atlantic are mostly unknown (Richards 2006). In comparison, the dominant prey of 

mesopelagic fishes, such as the Myctophidae and Sternoptychidae, is well known. The 

Myctophidae and some species of Sternoptychidae, like Lampanyctus alatus and Valenciennellus 

tripunctulatus, respectively, follow their prey during diel vertical migration and feed within the 

epipelagic at night (Hopkins & Baird 1985, Hopkins et al. 1996, Link & Almeida 2000). The diet 

of these species is known through extensive study to consist of copepods, euphausiids, and 

ostracods (Conley & Hopkins 2004, Stowasser et al. 2009, Drazen & Sutton, 2017). The categories 

of known prey items for dominant pelagic fishes and the presumed zooplanktivorous diets of 

juvenile scorpaenoids, as well as a shared use of the epipelagic as habitat, suggest the potential for 

niche overlap. 

 

1.6. Objectives 

The first aim of this thesis was to investigate and compare the frequency of occurrence 

(percent of trawls in which at least one scorpaenoid was collected) and standardized abundance 

(no. ind. 10-6 m-3) of scorpaenoids within the epipelagic zone of the GoM with that of a well-

documented pelagic fish taxon (e.g., Myctophidae). The influence of time of day (day/night) on 

the frequency of occurrence and standardized abundance of both scorpaenoids and myctophids 

was also examined. The spatial and temporal water column use of scorpaenoids within the 

epipelagic of the GoM in comparison to myctophids is described in support of this first aim. 

The second aim of this thesis was to identify pelagic-phase juvenile scorpaenoids to genus 

or species level to provide a faunal inventory for the GoM. Morphotypes of scorpaenoid specimens 

were defined based on head spination in conjunction with meristics, morphometrics, and internal 
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features. Genus or species identifications were proposed for each morphotype using available 

literature. Diagnoses of scorpaenoids identified to species are presented. 

The third aim of this thesis was to investigate the trophic ecology of the dominant pelagic-

phase juvenile scorpaenoid species to better understand the resource utilization of this taxon within 

the epipelagic of the GoM. The number of prey types and the cumulative number of prey 

specimens per prey type were quantified. The diet of pelagic-phase juvenile scorpaenoids was 

compared with the reported diets of the dominant Myctophidae and Sternoptychidae  species in 

the epipelagic GoM to investiagte potential trophic niche partitioning. 

 

2. METHODS 

2.1. Scorpaenoid Sample Collection 

 Pelagic-phase juvenile scorpaenoids were collected in the GoM during the National 

Oceanic and Atmospheric Administration (NOAA)-supported Offshore Nekton Sampling and 

Analysis Program (ONSAP) from 2010-2011 (Figure 5, Figure 8) as well as during the Deep-

Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) consortium research program from 

2015-2018 (Figure 6). Seven ONSAP cruises were conducted aboard two vessels, the M/V Meg 

Skansi (MS6, MS7, and MS8) and the NOAA FRV Pisces (PC8, PC9, PC10, and PC12), to assess 

potential environmental damage imposed by the Deepwater Horizon oil spill (DWHOS) that 

started on April 20th, 2010 (Table 2; Cook et al. 2020). The DEEPEND consortium sampled the 

same stations occupied during the ONSAP from 2015-2018 aboard the R/V Point Sur (DP01-

DP06) (Table 2). Sampling aboard both the M/V Meg Skansi and the R/V Point Sur utilized a 10-

m2 Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) with a mesh 

size of 3 mm (Wiebe et al. 1985). Sampling aboard the FRV Pisces utilized a commercial high-

speed rope trawl (HSRT) with a 165-m2 mouth area and 3.2-m to 19-mm mesh sizes. 
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Figure 5. ONSAP MOCNESS sampling stations in the winter, spring, and summer 2011. Symbol colors represent 

the number of cruises that each station was sampled (adapted from Cook et al. 2020). 

 

 
Figure 6. DEEPEND MOCNESS sampling stations between 2015-2018. Symbol colors represent the number of 

cruises that each location was sampled (adapted from Cook et al. 2020). 
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Table 2. Summary of the 13 research cruises conducted in the Gulf of Mexico. Three surveys were conducted during 

the ONSAP aboard the M/V Meg Skansi. Four surveys were conducted during the ONSAP aboard the FRV Pisces. 

Six surveys were conducted during the DEEPEND consortium aboard the R/V Point Sur. The column “No. of 

Samples” refers to the combined total number of quantitative tows per cruise. Combined volumes (m3) are reported 

as the total volume filtered across all samples during quantitative tows of each cruise. 

Cruise Sampling Dates 
No. of 

Samples 

Combined 

volumes (m3) 

MS6 January 28th – March 30th, 2011 207 7,960,547.20 

MS7 April 14th – June 30th, 2011 285 9,625,358.60 

MS8 July 18th – September 30th, 2011 356 10,740,501.45 

DP01 May 1st – May 8th, 2015 34 1,179,842.00 

DP02 August 8th – August 21st, 2015 95 2,880,308.00 

DP03 April 30th – May 14th, 2016 75 2,230,905.80 

DP04 August 5th – August 19th, 2016 112 2,674,249.30 

DP05 May 1st – May 11th, 2017 80 3,455,683.10 

DP06 July 19th – August 1st, 2018 57 1,568,427.20 

PC8 December 2nd – December 19th, 2010 22 89,419,063.84 

PC9 March 23rd – April 6th, 2011 3 11,714,434.26 

PC10 June 23rd – July 13th, 2011 42 98,686,682.90 

PC12 September 8th – September 27th, 2011 48 106,376,488.60 

 

2.1.1. Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) 

Sampling. 

The M/V Meg Skansi 6, 7, and 8 (MS6, MS7, and MS8, respectively) cruises utilized a 

MOCNESS with a 10-m2 mouth diameter with a 3-mm mesh equipped with six nets to sample 

discrete depth ranges (Meg Skansi survey henceforth). The first net (net 0) sampled from the 

surface to 1500 m depth. The other five nets sampled the following depth ranges sequentially: 

1500 – 1200 m (net 1), 1200 – 1000 m (net 2), 1000 – 600 m (net 3), 600 – 200 m (net 4), and 200 

– 0 m (net 5) (Figure 7). Sampling efforts were conducted between 09:00-15:00 (Day) and 21:00-

03:00 (Night). A magnetically sensing flowmeter (Tsurumi-Seiki-Kosakusho) determined the 

volume of water filtered by each net. The six DEEPEND research cruises aboard the R/V Point 

Sur used the same MOCNESS (10-m2 mouth diameter with a 3-mm mesh), sampling scheme, and 

flowmeter used during the Meg Skansi survey. 
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Figure 7. Depth strata sampled during the ONSAP and the DEEPEND MOCNESS surveys. 

 

2.1.2. High-Speed Rope Trawl (HSRT) Sampling 

 All research cruises aboard the NOAA FRV Pisces used an oblique “V” pattern during 

sampling in which the HSRT was towed from the surface to depth and back to the surface without 

closing the mouth of the net. Two depth sampling patterns were used: “shallow” (0-700 m) and 

“deep” (0-1500 m). A subset of the stations sampled by the Meg Skansi survey was also sampled 

with the HSRT (Figure 8). This cruise series will be henceforth referred to as the Pisces survey. 
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Figure 8. ONSAP HSRT sampling stations in winter 2010 and, spring, summer, and fall 2011. Symbol colors 

represent the number of seasons that each location was sampled. Contour lines, from north to south, correspond to 

200 m, 1000 m, 2000 m, and 3000 m isobaths (adapted from Cook et al. 2020). 

 

2.2. Spatiotemporal Distribution 

  The percent frequency of occurrence of both scorpaenoids and myctophids was calculated 

by dividing the sum of the quantitative samples in which at least one specimen from each taxon 

was caught per depth range (Figure 7) by the total number of quantitative samples that occurred in 

the respective depth range. The standardized abundance (no. ind. 10-6 m-3) of both scorpaenoids 

and myctophids was calculated by dividing the sum of the raw count of scorpaenoids/myctophids 

collected by the sum of the volume of water filtered from each depth (Table 2). Due to differing 

gear types, abundance calculations did not include specimens obtained during the Pisces survey. 

Diel vertical distributions of scorpaenoids and myctophids were determined by plotting the 

standardized abundances by depth during day and night samples. Vertical distribution plots of 

standardized abundance were made using R Studio (version 4.1.0, R foundation for Statistical 

Computing). Additionally, both the number of individuals of the dominant scorpaenoid species 

and the length-frequency distributions were plotted against catch and depth data to examine 

spatiotemporal trends. Due to the non-normal distribution of data, a non-parametric Kruskal-
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Wallis test was used to determine statistical significance between standard length and depth of 

occurrence of the dominant scorpaenoid species. 

 

2.3. Scorpaenoid Specimen Processing 

Specimens were preserved at sea in 10% buffered formalin:seawater solution and were 

later transferred into a 70% ethanol:water solution. Standard lengths (SL) were measured for 

specimens that were identified to species level prior to preservation. Most specimens were 

identified to family level (i.e. Scorpaenidae) during initial processing, and were therefore not 

measured prior to preservation. Specimens that were not initially identified to species level were 

measured during specimen processing for this study. 

2.3.1. Specimen Morphology 

Specimens were examined under a dissecting stereomicroscope (Carl ZeissTM STEMI 

2000-C). The left side of specimens was used for measurements and counts unless sufficient 

damage was observed. Seven morphometric traits were measured. Standard length (SL) was 

defined as the distance between the anterior-most point of the upper maxilla and the posterior end 

of the hypural plates. Pre-anal fin length (PAL) was defined as the length between the anterior-

most point of the upper maxilla and the beginning of the anal vent. Snout length (SNL) was defined 

as the length between the anterior-most point of the upper maxilla and the beginning of the orbit. 

Head length (HL) was defined as the length between the anterior-most point of the upper maxilla 

and the posterior end of the operculum. Body depth (BD) was defined as the length between the 

origin of the pelvic fin to the highest point of the dorsal curvature. Pectoral depth (PD) was 

measured from the length between where the first pectoral ray connects to the body and where the 

last pectoral ray connects to the body. Orbit diameter (OD) was defined as the distance between 

the anterior edge of the orbit and the posterior edge of the orbit. The snout-orbit length (SNOL) 

was defined as the length between the anterior-most point of the upper maxilla and the posterior-

most portion of the orbit (Figure 9). 
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Figure 9. Morphometric analysis of juvenile scorpaenoid fishes from the Gulf of Mexico. SNL = snout length. OD = 

orbit diameter. SNOL = snout-orbit length. HL = head length. BD = body depth. PD = pectoral depth. PAL = pre-

anal fin length. SL = standard length is represented by SL. 

 

Digital images were taken with a camera attached to a stereomicroscope (ZEISS AxioCam 

ICc 3) and processed with the ZEN imaging software (version 2.6, blue edition). The SL and PAL 

of specimens that were too large to completely fit within the field of view of the stereomicroscope 

were measured using a ruler to the nearest mm. The SL and PAL of smaller specimens (<18 mm) 

were measured using imaging software to the nearest 0.01 mm. All remaining morphometrics were 

measured to the nearest 0.01 mm, regardless of specimen size, using the ZEN software. Ratios 

between morphometric measurements were calculated and reported as a percent with respect to 

SL. 

In addition to lengths and meristic counts, external features were documented, including 

scale type, and the number, presence/absence, degree of curvature, and length of the preopercular, 

preorbital, supraorbital, parietal, and nuchal spines (Figure 10). Internal features documented 

include the presence/absence of a slit behind the fourth gill arch and the presence/absence of a 

swim bladder. 
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Figure 10. The head spines of a typical juvenile scorpaenoid: A. preorbital spines. B. supraorbital spine. C. parietal 

spine. D. nuchal spine. E. preopercular spines. 

 

The spines of the first dorsal fin and the anal fin as well as the rays of the second dorsal 

fin, the pectoral fin, and the anal fin were counted with the stereomicroscope. The loss of body 

color during preservation in formalin made the identification and subsequent counting of some fin 

elements difficult. Select specimens were cleared and stained to facilitate counts of fin-spine/fin-

ray elements and were processed in the Microbiology and Genetics Labs at the Nova Southeastern 

University Oceanographic Center. Alizarin red and Alcian blue 8GX were used with a 1% 

potassium hydroxide (KOH) solution following Dingerkus and Uhler (1977; Figure 11). 
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Figure 11. Scorpaena plumieri after being cleared and stained. Calcified elements appear pink (stained with Alizarin 

red) while cartilage appears blue (stained with Alcian blue) (Image created by Phillip-Eric Fortman). 

 

2.4. Gut Content Analysis 

  Specimens between 15-19 mm standard-length (SL), the dominant size-class mode among 

available specimens, were dissected for gut content analysis. A longitudinal cut was made with a 

micro-knife in between the pelvic fins and proceeded posteriorly until the vent of the anus. A pair 

of blunt forceps peeled the trunk dorsally until the gastrointestinal tract was exposed. The 

esophagus was then severed by applying a small amount of manual force posteriorly. The 

gastrointestinal (GI) tract was excised by severing the anus from the trunk of the fish and 

subsequently placed into a small drop of water atop a glass microscope slide. Fuchsin acid was 

added to stain the GI tract contents. The stomachs were examined before being separated at the 

duodenum from the intestines via blunt forceps and all stomachs were given a value from five to 

zero based on stomach fullness, with a score of five representing an extremely full stomach and a 

score of zero representing an empty stomach (Table 3). Once all individual stomachs were assigned 

a fullness score, the stomach vacuity coefficient (Cv%) was calculated by dividing the number of 

empty stomachs by the total number of stomachs examined and the resultant was multiplied by 
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100 (Castriota et al. 2011). Both the stomach and the intestinal tract were opened, contents 

carefully transferred to a microscope slide, and examined separately. Prey items were then 

examined and identified to major taxon using a compound microscope (Carl ZeissTM AXIO Scope 

A1). 

Table 3. Indices of stomach fullness. 

Categories of Stomach Fullness 

5 Stomach completely full with portions of stomach noticeably bulbous from prey. 

4 Stomach largely full with only some prey items noticeable from outside. 

3 Stomach moderately bulging with no prey items being noticeable from outside. 

2 Stomach somewhat flat, not bulging, and no prey items noticeable from outside. 

1 Stomach mostly flat with no prey items noticeable from outside. 

0 Stomach nearly transparent, quite thin, and completely empty.  

  

After prey items were identified, an index of state of digestion, from five to 0.5, was scored 

for all prey items that were extracted from stomachs (Figure 12, Table 4). A prey state of digestion 

score of five indicated a pristine specimen that exhibited no structural degradation, missing 

appendages, and/or a clear and defined body form. A prey state of digestion score of 0.5 would 

indicate mere remnants of prey such as bones, scales, shattered pieces of shell/carapace, and whole 

or fragmented appendages with no clear indication to the main body of the prey organism. 

Table 4. Indices of prey state of digestion. 

Categories of Prey State of Digestion 

5 Pristine specimen. The entire prey item is observed with no structural damage. 

4 Prey item is observed with minor structural damage and full limb compliment. 

3 Portions of the prey item body absent but the majority of limbs/appendages remain. 

2 Main body of prey item recognizable with few limbs present, but no other body parts. 

1 Main body of prey item recognizable with no other parts of the body present. 

0.5 Reserved for the presence of bits of shell, scales, bones, and/or standalone 

limbs/appendages.  
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Figure 12. Varying states of digestion of prey items found within the stomachs of juvenile scorpaenoids. Left (A) 

and center (B) images are both copepods while the right image (C) is digested bone. From left to right the states of 

digestion are 5, 3, and 0.5. 

   

A two-tailed two-sample nonparametric Mann-Whitney Wilcoxon t-test was applied to 

determine if varying degrees of stomach fullness and prey state of digestion were statistically 

related to time of day of capture (p < 0.05). All statistical analyses were conducted with R and R 

Studio (version 4.1.0, R foundation for Statistical Computing). 

 

3. RESULTS 

  A total of 666 scorpaenoids were collected during the Meg Skansi (n=558), Pisces (n=37), 

and DEEPEND (n=71) surveys. Scorpaenoids collected during the Pisces survey were omitted 

from both frequency of occurrence and standardized abundance calculations due to incomparable 

sampling gear types (i.e. HSRT vs MOCNESS; widely disparate mesh sizes). 

  Of the 666 individuals collected, 347 were examined during this study. Nine unique 

morphotypes were discriminated based on fin-spine and fin-ray counts, head spine 

presence/absence, morphometric measurements, and the presence/absence of some internal 

features (Figure 9, Figure 10). Specimens were identified to the lowest taxonomic level possible. 
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Table 5. Morphotypes and species of pelagic-phase juvenile scorpaenoids collected in the Gulf of Mexico. The 

designation “N/A” means that neither a genus nor a species identification was possible. 

Morphotype/Species Individuals 

examined (no.) 

Individuals 

examined (%) 

Size Range 

(mm SL) 

Putative  

ID 

A 276 79.54 5-24 Pontinus rathbuni 

B 1 0.29 8 N/A 

C 17 4.90 6-10 Scorpaena plumieri 

D 2 0.58 4-5 Setarches guentheri 

E 1 0.29 12 Pontinus longispinis 

F 3 0.87 4-9 Scorpaena agassizi 

G 9 2.58 7-11 Scorpaena spp. A 

H 2 0.58 8-9 Scorpaena spp. B 

I 3 0.87 6-8 N/A 

Helicolenus 

dactylopterus 

4 1.15 7-11 Helicolenus 

dactylopterus 

Pterois spp. 3 0.86 5-12 Pterois spp. 

Setarches guentheri 17 4.90 6-48 Setarches guentheri 

Damaged 9 2.59 6-11 N/A 

Total 347 100 4-48  

 

3.1. Pelagic-Phase Juvenile Scorpaenoid Identification 

  A total of 347 pelagic-phase juvenile scorpaenoids were examined from the Meg Skansi, 

Pisces, and DEEPEND surveys. The scorpaenoid assemblage was dominated by morphotype A 

(~80%; Table 5). Morphotypes B–I made up approximately 10% of specimens. Helicolenus 

dactylopterus, Pterois spp., and Setarches guentheri composed approximately 7% of specimens. 

Several individuals (n=9) were damaged and could not be identified beyond the family level (~3%; 

Table 5). Morphotypes A–I were defined based on fin-spine and fin-ray counts, head spines, 

morphometric measurements, and some internal features (Appendix Tables 1 and 2, Appendix 

Figure 1). 

3.1.1. Morphotype A 

  Morphotype A was the most numerous morphotype of the scorpaenoids collected from the 

Meg Skansi, Pisces, and DEEPEND cruise surveys. This morphotype was defined by the curvature 

and a comparatively large parietal spine, the presence of a supraorbital spine, and the longest 

preopercle spine being the second spine (Figure 13). Morphotype A was also characterized by 

having 11-12 dorsal fin-spines, 8-10 dorsal fin-rays, three anal fin-spines, five anal fin-rays, and 
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16-18 pectoral fin-rays. In addition, unbranched pectoral fin-rays, the presence of two preorbital 

spines, ctenoid scales (Figure 14), a small slit behind the fourth gill arch, and the presence of a 

swim bladder characterize morphotype A. The morphometric measurements and their respective 

ratios reported as a percent with respect to SL helped identify morphotype A. Morphometrics and 

ratios of morphotype A are presented in Table 6 and Table 7. 

 

 
Figure 13. Image of morphotype A. 
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Figure 14. Ctenoid scales consistently observed in specimens larger than 15 mm SL from morphotype A. 

 

 

Table 6. Average morphometrics (mm ± SE) of 214 specimens of morphotype A. 

Standard-Length (SL) 15.61 ± 3.32 

Snout Length (SNL) 1.53 ± 0.47 

Pre-anal Fin Length (PAL) 9.39 ± 2.33  

Head Length (HL) 6.82 ± 1.36  

Body Depth (BD) 5.46 ± 1.06  

Pectoral Depth (PD) 1.66 ± 0.35  

Orbit Diameter (OD) 2.48 ± 0.49  

Snout-Orbit Length (SNOL) 4.01 ± 0.87  

 

Table 7. Average morphometric ratios reported as percent (% ± SE) of SL of 214 specimens of Morphotype A. 

SNL:SL 9.82% ± 1.89 

PAL:SL 59.92% ± 4.59 

HL:SL 43.99% ± 3.36 

BD:SL 35.35% ± 2.78 

PD:SL 10.73% ± 1.72 

OD:SL 15.96% ± 1.30 

SNOL:SL 25.80% ± 2.21 
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 Putative identification was made based on the morphometric ratios and other traits reported 

above. The presence of unbranched pectoral fin-rays, two preorbital spines, ctenoid scales, a small 

slit behind the fourth gill arch, and a swim bladder indicate two possible genera: Neomerinthe or 

Pontinus. The genus Neomerinthe comprises two species in the Western Central Atlantic: 

Neomerinthe beanorum and Neomerinthe hemingwayi (Richards 2006, McEachran & Fechhelm, 

2010). Morphotype A exhibits two preorbital spines over the maxilla, with the first curving ventro-

posteriorly and the second curving posteriorly. This curvature is inconsistent with reports of 

preorbital spines for N. beanorum (McEachran & Fechhelm 2010). While the curvature of the 

preorbital spines is consistent with reports of N. hemingwayi, no specimen of morphotype A had 

the three dark spots of pigmentation on the posterior part of the lateral line, which is a key 

characteristic of N. hemingwayi (McEachran & Fechhelm 2010). Additionally, the morphometric 

ratios as a percent of SL in respect to SNL, OD, and BD for morphotype A were not within the 

ranges reported for either N. beanorum or N. hemingwayi. 

  The genus Pontinus comprises five species in the Western Central Atlantic: Pontinus 

castor, Pontinus helena, Pontinus longispinis, Pontinus nematophthalmus, and Pontinus rathbuni 

(Richards 2006). An identification of morphotype A as P. helena was ruled out, as it is documented 

to be endemic to the “Gulfo de Triste” in Venezuela (Richards 2006). Further separation of adult 

P. castor, P. longispinis, P. nematophthalmus, and P. rathbuni is possible via pectoral fin-ray 

counts; however, this has low taxonomic value for juvenile forms due to a high potential for 

changes ontogenetically (Washington et al. 1984). Despite the lack of more distinguishing 

characters of the remaining species, morphotype A appears most similar to the body form of 

Pontinus rathbuni illustrated in Sánchez & Acha (1988) (Figure 15). Additionally, larger 

specimens (~20 mm SL) exhibited four dusky saddles of pigmentation of the upper section of the 

body below the dorsal fin that is in accordance with pigmentation described for P. rathbuni in 

McEachran & Fechhelm (2010). Lastly, the morphometric ratios presented above are largely in 

accordance with those reported for P. rathbuni, with the exception of SNL (McEachran & 

Fechhelm 2010). Therefore, morphotype A is assigned Pontinus rathbuni herein. 
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Figure 15. Head spination shown by pelagic-phase juvenile Pontinus rathbuni (adapted from Sanchez & Acha 

1988). 

 

3.1.2. Morphotype B 

  Morphotype B characterized and defined a single specimen. The key characteristics of this 

morphotype were the morphology of the supraocular and parietal spines (Figure 16). No other 

morphotype examined in this study possessed anteriorly oriented supraocular spines. The parietal 

spines extend far beyond both the pectoral- and dorsal-fin bases. The parietal spines also appeared 

much thicker than that of other morphotypes. The specimen designated as morphotype B had 12 

dorsal fin-spines, 11 dorsal fin-rays, three anal fin-spines, six anal fin-rays, and 17 pectoral fin-

rays. The presence of six anal fin-rays limited the identification of Morphotype B to a select few 

species within Scorpaenoidei: Ectroposebastes imus, Pterois miles, Pterois volitans, Scorpaena 

plumieri, and Setarches guentheri. Juvenile forms of both S. plumieri and S. guentheri are 

described below and both forms do not possess the head spine compliment shown by morphotype 

B. Morphotype B is also neither P. miles nor P. volitans because the parietal spines, anal fin-rays, 

pectoral fin-rays, and relative body length to head length do not match those described for either 

species (lionfishes: see account of Pterois spp. below). While the meristics of morphotype B are 

mostly consistent with E. imus, the head spine compliment of morphotype B does not match with 

published accounts and illustrations of juvenile E. imus (Richards 2006, McEachran & Fechhelm 
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2010). Therefore, it is possible that morphotype B is not a member of Scorpaenoidei, since 

morphotype B is also not a member of the families Triglidae or Peristediidae because the head 

shape is inconsistent with juvenile forms of Triglidae and/or Peristediidae and morphotype B does 

not display the elongated first through third pelvic fin-rays that are diagnostic features of either 

family (Richards 2006). Morphotype B might still belong to the order Perciformes. Due to the 

uncertainty surrounding finer identification of this morphotype, it will stay defined as morphotype 

B. Morphometrics and ratios of morphotype B are presented in Table 8 and Table 9. 

 

 
Figure 16. Image of morphotype B. 

 

 

 

Table 8. Morphometrics (mm) of one specimen of morphotype B. 

Standard-Length (SL) 8.00 

Snout Length (SNL) 0.91 

Pre-anal Fin Length (PAL) 4.51 

Head Length (HL) 3.31 

Body Depth (BD) 2.99 

Pectoral Depth (PD) 1.00 

Orbit Diameter (OD) 1.20 

Snout-Orbit Length (SNOL) 2.09 
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Table 9. Morphometric ratios reported as percent (%) of SL of one specimen of Morphotype B.  

SNL:SL 11.39% 

PAL:SL 56.39% 

HL:SL 41.39% 

BD:SL 37.36% 

PD:SL  12.50% 

OD:SL 15.00% 

SNOL:SL 26.11% 

 

3.1.3. Morphotype C 

  Morphotype C characterized 17 specimens. The key characteristics of morphotype C were 

branched pectoral rays, two preorbital spines, five or six preopercular spines with the first and third 

spines reaching close to the pectoral base, absence of a slit behind the fourth gill arch, heavy 

pigmentation of the pectoral fin, and some pigmentation of the gut (Figure 17). Morphotype C had 

12 dorsal fin-spines, nine dorsal fin-rays, three anal fin-spines, five anal fin-rays, and 18-20 

pectoral fin-rays. The aforementioned features were sufficient to conclude morphotype C as 

Scorpaena plumieri. While the examples of S. plumieri were missing their distinctive coloration 

due to preservation in formalin, the body form and pectoral pigmentation matched that described 

for the early life history of S. plumieri (Richards 2006). Morphometrics and ratios of morphotype 

C are presented in Table 10 and Table 11. 

 

 
Figure 17. Images of morphotype C. A) pigmentation of the gut under the highly pigmented pectoral fin. B) head 

spines (arrow) and pectoral fin in a clearer view. 
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Table 10. Average morphometrics (mm ± SE) of 17 specimens of morphotype C. 

Standard-Length (SL) 7.88 ± 0.97 

Snout Length (SNL) 0.88 ± 0.19 

Pre-anal Fin Length (PAL) 4.95 ± 0.57 

Head Length (HL) 3.74 ± 0.47 

Body Depth (BD) 3.61 ± 0.54 

Pectoral Depth (PD) 1.14 ± 0.22 

Orbit Diameter (OD) 1.34 ± 0.19 

Snout-Orbit Length (SNOL) 2.23 ± 0.27 

 

Table 11. Average morphometric ratios reported as percent (% ± SE) of SL of 17 specimens of Morphotype C. 

SNL:SL 11.25% ± 2.24 

PAL:SL 63.08% ± 5.01 

HL:SL 47.69% ± 4.31 

BD:SL 45.98% ± 4.97 

PD:SL 14.72% ± 3.50 

OD:SL 17.19% ± 2.54 

SNOL:SL 28.42% ± 3.25 

 

3.1.4. Morphotype D 

  Morphotype D characterized two specimens. These individuals were also the smallest 

scorpaenoids examined (4-5 mm standard-length). This morphotype was defined by the presence 

of a largely transparent cranium, a weakly ossified skull, three preopercle spines, and some 

reddish-orange pigmentation on the pectoral fins (Figure 18). Specimens of morphotype D had 11 

dorsal fin-spines, nine dorsal fin-rays, three anal fin-spines, five or six anal fin-rays, and 20 or 22 

branched pectoral fin-rays. The combination of a maximum of six anal fin-rays and over 20 

pectoral fin-rays limit identification to a single species: Setarches guentheri. Even though S. 

guentheri is documented to have four or five preopercle spines, the individuals examined are small 

enough to assume that they could still develop more preopercle spines at a larger size. 

Morphometrics and ratios of morphotype D are presented in Table 12 and Table 13. 



29 

 

 
Figure 18. Image of morphotype D. 

 

Table 12. Average morphometrics (mm ± SE) of two specimens of morphotype D. 

Standard-Length (SL) 4.55 ± 0.78 

Snout Length (SNL) 0.63 ± 0.19 

Pre-anal Fin Length (PAL) 2.73 ± 0.32 

Head Length (HL) 2.23 ± 0.33 

Body Depth (BD) 2.06 ± 0.36 

Pectoral Depth (PD) 0.81 ± 0.30 

Orbit Diameter (OD) 0.73 ± 0.33 

Snout-Orbit Length (SNOL) 1.47 ± 0.38 

 

 

Table 13. Average morphometric ratios reported as percent (% ± SE) of SL of two specimens of Morphotype D. 

SNL:SL 13.77% ± 1.80 

PAL:SL 60.23% ± 3.21 

HL:SL 49.19% ± 1.15 

BD:SL 45.16% ± 0.22 

PD:SL  17.52% ± 3.56 

OD:SL 15.73% ± 4.57 

SNOL:SL 32.10% ± 2.97 
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3.1.5. Morphotype E 

  Morphotype E characterized one specimen and was defined by a relatively flat head and 

the absence of any frontal, parietal, or nuchal spines. The preopercle has three spines, with the 

second spine being the longest and extending beyond the pectoral fin base (Figure 19). Morphotype 

E also had a slit behind the fourth gill arch. The meristics of morphotype E were the same as those 

for Pontinus rathbuni: 12 dorsal fin-spines, nine dorsal fin-rays, three anal fin-spines, five anal 

fin-rays, and 17 pectoral fin-rays. While meristics of morphotype E might match that of P. 

rathbuni, the body form clearly does not match. However, the body form did match that of 

Pontinus longispinis, a sister taxon to P. rathbuni, shown in Richards (2006). Morphometrics and 

ratios of morphotype E are presented in Table 14 and Table 15. 

 

 
Figure 19. Image of morphotype E. 
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Table 14. Average morphometrics (mm) of one specimen of morphotype E. 

Standard-Length (SL) 11.57 

Snout Length (SNL) 1.28 

Pre-anal Fin Length (PAL) 7.07 

Head Length (HL) 5.11 

Body Depth (BD) 3.96 

Pectoral Depth (PD) 1.29 

Orbit Diameter (OD) 1.87 

Snout-Orbit Length (SNOL) 3.14 

 

Table 15. Average morphometric ratios reported as percent (%) of SL of one specimen of Morphotype E.  

SNL:SL 11.06% 

PAL:SL 61.08% 

HL:SL 44.17% 

BD:SL 34.18% 

PD:SL  11.12% 

OD:SL 16.16% 

SNOL:SL 27.12% 

 

3.1.6. Morphotype F 

  Morphotype F characterized three specimens. This morphotype was defined by five 

preopercle spines (with the first and third being the longest), two preorbital spines over the maxilla, 

a very small supraorbital spine, branching pectoral fin-rays, absence of pigmentation on the 

dorsally distal portion of the pectoral fin, a distinct band of pigmentation at the pectoral base, 

pigmentation of the dorsal portion of the gut, and the absence of a slit behind the fourth gill arch 

(Figure 20). Morphotype F had 12 dorsal fin-spines, nine dorsal fin-rays, three anal fin-spines, five 

anal fin-rays, and 19-20 pectoral fin-rays. The head spines, pigmentation, and meristics were 

enough to conclude morphotype F as Scorpaena agassizi based on the description of S. agassizi 

within Richards (2006). Morphometrics and ratios of morphotype F are presented in Table 16 and 

Table 17. 
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Figure 20. Morphotype F showing A) pigmentation of the gut and the presence of two preorbital spines (arrows), B) 

the pigmentation of the pectoral fin as well as the positioning and size of five preopercular spines. 

 

Table 16. Average morphometrics (mm ± SE) of three specimens of morphotype F. 

Standard-Length (SL) 6.59 ± 1.96 

Snout Length (SNL) 0.71 ± 0.18 

Pre-anal Fin Length (PAL) 3.99 ± 1.10 

Head Length (HL) 2.73 ± 0.58 

Body Depth (BD) 2.29 ± 0.96 

Pectoral Depth (PD) 0.88 ± 0.13 

Orbit Diameter (OD) 1.12 ± 0.21 

Snout-Orbit Length (SNOL) 1.82 ± 0.30 

 

Table 17. Average morphometric ratios reported as percent (% ± SE) of SL of three specimens of Morphotype F. 

SNL:SL 10.94% ± 2.09 

PAL:SL 60.73% ± 2.32 

HL:SL 42.09% ± 3.71 

BD:SL 34.41% ± 8.20 

PD:SL  14.50% ± 5.77 

OD:SL 17.38% ± 2.35 

SNOL:SL 28.45% ± 4.91 

 

3.1.7. Morphotype G 

  Morphotype G characterized nine specimens. Two key characteristics were unique to this 

morphotype: the second portion of the dorsal fin began with a soft ray as opposed to a spine and 

the parietal spine appeared to be fused with the nuchal spine (however, osteological verification 

was not conducted). The parietal spine appeared shorter, positioned more anteriorly, and directed 

dorsally whereas the nuchal spine appeared slightly longer, positioned more posteriorly, and 

directed anteriorly (Figure 21). Morphotype G had 11-12 dorsal fin-spines, 9-10 dorsal fin-rays, 

three anal fin-spines, five anal fin-rays, and 17 pectoral fin-rays. Meristics alone for morphotype 

G were not helpful in any further identification as the reported average fin-spines and fin-rays 
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overlapped with ranges reported for various genera and species of scorpaenoids (Richards 2006, 

McEachran & Fechhelm 2010). However, the absence of a slit behind the fourth gill arch did 

permit for a few potential identifications: Trachyscorpia cristulata, Helicolenus dactylopterus, or 

any species within the genus Scorpaena. Morphotype G cannot be H. dactylopterus due to missing 

pigmentation under the dorsal fin and the stomach. Helicolenus dactylopterus also does not exhibit 

the fused parietal spine shown in morphotype G. Therefore, morphotype G could be within the 

genus Scorpaena or Trachyscorpia cristulata but will remain defined as morphotype G since 

species identification cannot be confirmed. Morphometrics and ratios of morphotype G are 

presented in Table 18 and Table 19. 

 

 
Figure 21. Images of morphotype G showing: A) the whole fish, B) a close-up of the parietal and nuchal spines. 

 

Table 18. Average morphometrics (mm ± SE) of nine specimens of morphotype G. 

Standard-Length (SL) 8.57 ± 1.19 

Snout Length (SNL) 0.84 ± 0.28 

Pre-anal Fin Length (PAL) 4.84 ± 0.89 

Head Length (HL) 3.48 ± 0.44 

Body Depth (BD) 3.30 ± 1.00 

Pectoral Depth (PD) 1.54 ± 0.63 

Orbit Diameter (OD) 1.30 ± 0.18 

Snout-Orbit Length (SNOL) 2.14 ± 0.37 

 

Table 19. Average morphometric ratios reported as percent (% ± SE) of SL of nine specimens of Morphotype G. 

SNL:SL 9.66% ± 2.79 

PAL:SL 56.42% ± 6.73 

HL:SL 40.77% ± 3.21 

BD:SL 37.90% ± 8.99 

PD:SL 34.29% ± 10.27  

OD:SL 15.35% ± 2.16 

SNOL:SL 24.96% ± 3.11 
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3.1.8. Morphotype H 

  Morphotype H characterized two specimens. A strong suborbital ridge, three preopercular 

spines of equal size, and parietal spines that pointed caudally (in-line with the dorsal ridge) defined 

this morphotype (Figure 22). The meristics of morphotype H were the same as morphotype G, 

with a dorsal fin-spine count of 12, a dorsal fin-ray count of nine, an anal fin-spine count of three, 

an anal fin-ray count of five, and a pectoral fin-ray count of 17. This morphotype also lacked a slit 

behind the fourth gill arch. Therefore, it can be concluded that morphotype H represents a species 

of the genus Scorpaena but will remain defined as morphotype H since species identification 

cannot be confirmed. Morphometrics and ratios of morphotype H are presented in Table 20 and  

Table 21. 

 

 
Figure 22. Image of morphotype H. 
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Table 20. Average morphometrics (mm ± SE) of two specimens of morphotype H. 

Standard-Length (SL) 8.50 ± 0.71 

Snout Length (SNL) 1.00 ± 0.00 

Pre-anal Fin Length (PAL) 5.50 ± 0.71 

Head Length (HL) 3.55 ± 0.35 

Body Depth (BD) 3.60 ± 0.57 

Pectoral Depth (PD) 1.65 ± 0.21 

Orbit Diameter (OD) 1.25 ± 0.07 

Snout-Orbit Length (SNOL) 2.25 ± 0.07 

 

Table 21. Average morphometric ratios reported as percent (% ± SE) of SL of two specimens of Morphotype H. 

SNL:SL 11.81% ± 0.98 

PAL:SL 64.58% ± 2.95 

HL:SL 41.74% ± 0.69 

BD:SL 42.22% ± 3.14 

PD:SL  19.58% ± 4.12 

OD:SL 14.72% ± 0.39 

SNOL:SL 26.53% ± 1.37 

 

3.1.9. Morphotype I 

  Morphotype I characterized three specimens. The most notable feature of this morphotype 

was the presence of parietal spines which displayed a dramatic curve caudally and protruded 

further from the body than was observed from any other morphotype (Figure 23). Morphotype I 

had 12 dorsal fin-spines, nine dorsal fin-rays, three anal fin-spines, five anal fin-rays, and 18 

pectoral fin-rays. This morphotype also possessed a slit behind the fourth gill arch, ruling out 

identifications like H. dactylopterus, Scorpaena spp., or T. cristulata and the presence of heavy 

head spines rule out the possibility of morphotype I as Pterois spp. (see account of Pterois spp. 

below). The combination of the meristics and the presence of a slit behind the fourth gill arch left 

the following species as potential identifications: Ectreposebastes imus, Idiastion kyphos, 

Neomerinthe beanorum, Neomerinthe hemingwayi, Phenascorpius nebris, Pontinus castor, 

Pontinus helena, Pontinus nematophthalmus, Scorpaenodes caribbaeus, Scorpaenodes 

tredecimspinosus, and Setarches guentheri. Morphotype I did not match published juvenile 

descriptions of E. imus, S. caribbaeus, S. tredecimspinosus, or S. guentheri (Richards 2006). 

Therefore, morphotype I could be any of the following: I. kyphos, N. beanorum, N. hemingwayi, 

P. nebris, P. castor, P. helena, or P. nematophthalmus. Due to the degree of uncertainty 

surrounding this morphotype, it will remain defined as morphotype I. Morphometrics and ratios 

of morphotype I are presented in Table 22 and Table 23. 
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Figure 23. Image of morphotype I. 

 

Table 22. Average morphometrics (mm ± SE) of three specimens of morphotype I. 

Standard-Length (SL) 7.43 ± 0.93 

Snout Length (SNL) 0.77 ± 0.25 

Pre-anal Fin Length (PAL) 4.80 ± 0.53 

Head Length (HL) 3.47 ± 0.47 

Body Depth (BD) 2.93 ± 0.40 

Pectoral Depth (PD) 1.20 ± 0.35 

Orbit Diameter (OD) 1.13 ± 0.31 

Snout-Orbit Length (SNOL) 1.90 ± 0.56 

 

Table 23. Average morphometric ratios reported as percent (% ± SE) of SL of three specimens of Morphotype I. 

SNL:SL 10.18% ± 2.46 

PAL:SL 64.90% ± 7.49 

HL:SL 46.60% ± 0.87 

BD:SL 39.48% ± 3.10 

PD:SL  15.94% ± 2.51 

OD:SL 15.13% ± 2.93 

SNOL:SL 25.31% ± 5.36 

 

3.1.10. Helicolenus dactylopterus 

  Four individuals were identified as Helicolenus dactylopterus prior to the work of this 

thesis. This species can be easily identified by any combination of the following characteristics: a 

dorsal fin-ray count of 13 or 14, a pectoral fin-ray count of 19-20, and numerous pigmented 
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blotches of the gut (Figure 24). Specimens of Helicolenus dactylopterus examined during this 

study had 11 dorsal fin-spines, 13 dorsal fin-rays, three anal fin-spines, five anal fin-rays, and 20 

pectoral fin-rays. Helicolenus dactylopterus is the only species of Scorpaenoidei that is 

documented to have 13 or 14 dorsal fin-rays. Therefore, the dorsal fin-ray count alone can serve 

as a sufficient diagnosis. Additionally, the parietal and nuchal spines were also helpful in 

identification. The parietal spine was larger than the nuchal spine in H. dactylopterus, whereas the 

parietal spine was smaller than the nuchal spine as shown in morphotype G (Figure 21). Also, both 

the parietal and nuchal spines point caudally. Gut pigmentation can also be used for identification 

in individuals up to 17 mm SL, as no other species of Scorpaenoidei are documented to have the 

numerous pigmented blotches of the gut. Morphometrics and ratios of Helicolenus dactylopterus 

are presented in Table 24 and Table 25. 

 

 
Figure 24. Image of a pelagic-phase juvenile Helicolenus dactylopterus. 
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Table 24. Average morphometrics (mm ± SE) of four specimens of Helicolenus dactylopterus. 

Standard-Length (SL) 11.28 ± 4.08 

Snout Length (SNL) 1.24 ± 0.28 

Pre-anal Fin Length (PAL) 7.12 ± 2.84 

Head Length (HL) 4.74 ± 1.03 

Body Depth (BD) 4.22 ± 1.78 

Pectoral Depth (PD) 1.23 ± 0.38 

Orbit Diameter (OD) 1.70 ± 0.25 

Snout-Orbit Length (SNOL) 2.96 ± 0.48 

 

Table 25. Average morphometric ratios reported as percent (% ± SE) of SL of four specimens of Helicolenus 

dactylopterus. 

SNL:SL 11.31% ± 1.33 

PAL:SL 62.44% ± 3.17 

HL:SL 43.50% ± 5.61 

BD:SL 37.27% ± 5.17 

PD:SL  11.10% ± 1.09 

OD:SL 15.99% ± 3.56 

SNOL:SL 27.56% ± 4.83 

 

3.1.11. Pterois spp. 

  Three individuals were identified as juvenile Pterois spp. (lionfishes) prior to the work of 

this thesis. Juvenile Pterois spp. are easily distinguished from any other genera or species of 

Scorpaenoidei by their comparatively long and narrow body as opposed to the deep-bodied forms 

present in other juvenile scorpaenoids. Juvenile Pterois spp. also possess pectoral fins that extend 

far beyond the origin of the anal fin, a stout head comparative to body length, smaller head spines 

compared to other juvenile scorpaenoid species, and a maximum of seven or eight anal fin-rays 

(Figure 25). Additionally, finer identification between species of both adult and juvenile Pterois 

spp. is nearly impossible without genetic evidence. The meristics between Pterois miles and 

Pterois volitans are almost the same (Richards 2006). As a result, identification is left at the genus 

level for juvenile Pterois spp. Morphometrics and ratios of Pterois spp. are presented in Table 26 

and Table 27. 
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Figure 25. Pelagic-phase juvenile lionfish (Pterois spp.) 

 

Table 26. Average morphometrics (mm ± SE) of three specimens of Pterois spp. 

Standard-Length (SL) 9.49 ± 2.91 

Snout Length (SNL) 0.78 ± 0.23 

Pre-anal Fin Length (PAL) 4.83 ± 1.70 

Head Length (HL) 2.97 ± 0.67 

Body Depth (BD) 2.86 ± 0.92 

Pectoral Depth (PD) 1.17 ± 0.79 

Orbit Diameter (OD) 0.91 ± 0.15 

Snout-Orbit Length (SNOL) 1.70 ± 0.37 

 

Table 27. Average morphometric ratios reported as percent (% ± SE) of SL of three specimens of Pterois spp. 

SNL:SL 6.76% ± 1.30 

PAL:SL 40.91% ± 5.12 

HL:SL 26.03% ± 6.57 

BD:SL 24.36% ± 2.99 

PD:SL  9.00% ± 4.67 

OD:SL 8.15% ± 2.86 

SNOL:SL 14.91% ± 4.07 

 

3.1.12. Setarches guentheri 

  Seventeen individuals were identified as Setarches guentheri based on a pectoral fin-ray 

count of 21 to 25 prior to the work of this thesis (Figure 26). Three other scorpaenoid species are 

documented to have a pectoral fin-ray count of 20 or higher (e.g., Trachyscorpia cristulata, 
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Scorpaena agassizi, or Scorpaena albifimbria). However, S. guentheri differed from all other 

possible species in two distinct ways: the head of S. guentheri appeared cavernous and weakly 

ossified (opposed to heavy ossification in all other possibilities) and the presence of a slit behind 

the fourth gill arch that is not present in other possible species (Eschmeyer & Collette, 1966; 

McEachran & Fechhelm, 2010). Additionally, specimens of juvenile S. guentheri had five 

preopercle spines, all of which were nearly equal in size and distance from each other (Eschmeyer 

& Collette, 1966). Morphometrics and ratios of Setarches guentheri are presented in Table 28 and 

Table 29. 

 

 
Figure 26. Image of a pelagic-phase juvenile Setarches guentheri. 

 

 

Table 28. Average morphometrics (mm ± SE) of 17 specimens of morphotype Setarches guentheri. 

Standard-Length (SL) 12.45 ± 9.14 

Snout Length (SNL) 1.26 ± 0.77 

Pre-anal Fin Length (PAL) 8.23 ± 6.83  

Head Length (HL) 5.49 ± 4.12 

Body Depth (BD) 5.27 ± 3.66 

Pectoral Depth (PD) 2.40 ± 1.37 

Orbit Diameter (OD) 1.84 ± 1.23 

Snout-Orbit Length (SNOL) 3.17 ± 2.25 
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Table 29. Average morphometric ratios reported as percent (% ± SE) of SL of 17 specimens of Setarches guentheri. 

SNL:SL 11.49% ± 2.87 

PAL:SL 64.25% ± 5.20 

HL:SL 45.24% ± 3.22 

BD:SL 41.08% ± 4.63 

PD:SL  18.88% ± 3.77 

OD:SL 15.13% ± 2.15 

SNOL:SL 26.72% ± 2.93 

 

3.2. Frequency of Occurrence of Juvenile Scorpaenoids in the Pelagic GoM 

  The overall frequency of occurrence of scorpaenoids during the Meg Skansi and 

DEEPEND surveys was calculated to be a 47% within epipelagic depths (Table 30). Myctophids, 

by comparison, were collected in 62% of day trawls and 99% of night trawls in the upper 200 m. 

Table 30. The percent frequency of occurrence of Scorpaenoidei and Myctophidae in the epipelagic zone of the Gulf 

of Mexico. 

 Solar Cycle 

Day Night Day & Night 

Scorpaenoidei 48.6 44.1 46.6 

Myctophidae 62.1 99.3 81.5 

 

3.2.2. Abundance and Vertical Distribution 

  Scorpaenoids were primarily caught in the upper 200 m of the GoM during both daytime 

and nighttime (Table 31). There was a similar abundance (ind. 10-6 m-3) of pelagic-phase juvenile 

scorpaenoids during daytime and nighttime samples of the upper 200 m of the GoM from the Meg 

Skansi and DEEPEND surveys (Figure 27, Figure 28). Additionally, the abundance of pelagic-

phase juvenile scorpaenoids for all other depths between day and night during the Meg Skansi 

survey was nearly zero and was zero for the DEEPEND survey (Table 31). In direct contrast, 

myctophids were primarily caught in the upper 200 m of the GoM at night and at deeper depths 

during the day (Table 32, Figure 27, Figure 28). 
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Table 31. Abundance of juvenile scorpaenoids from the open Gulf of Mexico as a function of depth. Values 

represent no. ind. 10-6 m-3. 

 Depth Ranges (m) 

0-200 200-600 600-1000 1000-1200 1200-1500 

Meg Skansi 
Day 87.1 3.5 1.8 2.5 0.5 

Night 76.9 3.3 1.7 1.8 4.3 

DEEPEND 

Day 14.2 0 0 0 0 

Night 12.3 0 0 0 0 

 

 

 

Table 32. Abundance of myctophids from the open Gulf of Mexico as a function of depth. Values represent no. ind. 

10-6 m-3. 

 Depth Ranges (m) 

0-200 200-600 600-1000 1000-1200 1200-1500 

Meg Skansi 
Day 179.3 1578.8 1410.7 477.7 222.0 

Night 3491.8 256.0 728.3 199.8 168.7 

DEEPEND 

Day 14.2 N/A N/A N/A N/A 

Night 913.8 N/A N/A N/A N/A 
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Figure 27. Vertical distribution of scorpaenoids and myctophids during the Meg Skansi survey. 

 

 
Figure 28. Vertical distribution of scorpaenoids and myctophids during the DEEPEND survey. 
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3.2.3. Pontinus rathbuni – Depth of Occurrence and Size at Depth 

  The majority (88%) of juvenile Pontinus rathbuni obtained from both the Meg Skansi and 

DEEPEND surveys were collected from the upper 200 m of the water column (n=177; Figure 29). 

No statistical difference was found between the SL of P. rathbuni at each depth range (p>0.05; 

Figure 30), though sample numbers below 600 m depth were too small for meaningful 

comparisons. 

 
Figure 29. The number of pelagic-phase juvenile Pontinus rathbuni collected at varying depth ranges in the Gulf of 

Mexico during the Meg Skansi and DEEPEND surveys. 
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Figure 30. The standard lengths of pelagic-phase juvenile Pontinus rathbuni collected at varying depth ranges (X ±  

mean). Error bars represent one standard deviation from the mean. 

 

3.2.4. Pontinus rathbuni – Temporal Distribution 

  During the Meg Skansi survey, specimens were collected during a 9-month consecutive 

time span, allowing for a comparison of catches and sizes of individuals over time. The majority 

(n=107, ~60%) of juvenile Pontinus rathbuni were collected during February (Table 33; Figure 

31). Additionally, the number of specimens caught between August 2016 (n=4) and July 2018 

(n=10) were similar to the number of specimens caught during those same months in 2011 (e.g., 

n=2, n=5, respectively). While 60% of specimens were collected during February 2011, the 

average SL of specimens collected during March 2011 (~18.7 mm) was larger than February 

(~15.3 mm) (Figure 32). However, the average SL of specimens collected during July 2018 (e.g., 

~12 mm) was approximately 4-mm larger than the average SL of specimens collected during July 

2011 (e.g., ~9.6 mm) (Figure 32). 
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Table 33. Average standard lengths (mm ± SE) of Pontinus rathbuni collected from the ONSAP and DEEPEND 

surveys. 

Cruise Survey Year Month Standard Length 

Meg Skansi 2011 

January 14.1 ± 3.2 

February 15.3 ± 2.9 

March 18.7 ± 3.4 

May 7.2 ± 2.1 

June 10.2 ± 2.5 

July 9.6 ± 2.3 

August 10.0 ± 1.4 

DEEPEND 
2016 August 10.8 ± 4.4 

2018 July 12.0 ± 4.0 

 

 

 
Figure 31. The number of juvenile Pontinus rathbuni collected in the upper 200 m from the Gulf of Mexico in 2011. 
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Figure 32. The average standard lengths of juvenile Pontinus rathbuni collected in the upper 200 m from the Gulf of 

Mexico in 2011. Error bars reflect calculated standard error of SL per month. 

 

3.3 Trophic Ecology 

  A total of 113 specimens of the dominant scorpaenoid species, Pontinus rathbuni, were 

analyzed for gut contents. Analyses were performed only on specimens between 15-19 mm SL in 

order to compare stomach contents with those of juveniles of the Myctophidae and 

Sternoptychidae (Hopkins & Baird 1981, 1985). 

3.3.1. Stomach Fullness and Vacuity 

  The overall average stomach fullness of juvenile P. rathbuni was 1.3. When delineated by 

time of day, the average stomach fullness became 3.0 for daytime, and 0.4 for nighttime. The 

overall average stomach fullness of prey-positive stomachs was 2.8. If delineated by time of day, 

the average stomach fullness for prey-positive stomachs was 3.1 during the day, and 1.3 at night 

(Table 34). The stomach fullness of P. rathbuni with respect to time of day was determined to be 

significantly different (p=3.91 x 10-16; non-parametric Mann-Whitney Wilcoxon; Figure 33). 
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Table 34. The average scores of stomach fullness for all stomachs and prey-positive stomachs (score ± SE) of 

Pontinus rathbuni. 

 Overall Average 

Stomach Fullness 

Average Stomach Fullness 

of Prey-Positive Stomachs 

Day 3.00 ± 1.45 3.10 ± 1.32 

Night 0.40 ± 0.63 1.30 ± 0.48 

Total 1.30 ± 1.60 2.50 ± 1.38 

  

  

Figure 33. The stomach fullness of pelagic-phase juvenile Pontinus rathbuni collected during day and at night. 

   

From the 113 dissected P. rathbuni, 42 were caught during the day and 71 were caught at 

night. Only two of the 42 stomachs of P. rathbuni caught during the day were empty, resulting in 

a 4.8% stomach vacuity index. The stomach vacuity index was calculated to be 73.2% for the P. 

rathbuni caught at night. Despite a larger number of specimens collected at night, the stomach 

vacuity index was lower and the average stomach fullness and the percent of prey-positive 

stomachs were higher for specimens collected during the day (Table 35). 
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Table 35. The total number of stomachs, the number and percentage of prey-positive stomachs, the number of empty 

stomachs, and the stomach vacuity of dissected pelagic-phase juvenile Pontinus rathbuni. 

 No. of 

Stomachs 

Prey Positive 

Stomachs (n) 

Prey Positive 

Stomachs (%) 

Empty 

Stomachs (n) 

Stomach 

Vacuity (%) 

Day 42 40 95.2% 2 4.8% 

Night 71 19 26.8% 52 73.2% 

Total 113 59 52.2% 54 47.8% 

 

3.3.2. Prey Assemblage of Pontinus rathbuni 

  A total of 283 prey items were found within the 59 prey-positive stomachs of pelagic-phase 

juvenile Pontinus rathbuni. A variety of prey types were found including copepods, pteropods, 

ostracods, an amphipod, bits of carbonate shell, and/or appendages from unidentified zooplankton 

(UID invertebrate), as well as scales and fish bones (Figure 34). The majority of prey items were 

copepods (81.3%), which occurred in 73% of prey-positive stomachs. Pteropods composed 5.6% 

of prey items. However, the percentage of prey items with respect to pteropods is slightly 

misleading because 16 individual pteropods occurred within a single P. rathbuni stomach. While 

ostracods composed less of the prey assemblage than pteropods, ostracods occurred in 12% of prey 

positive stomachs as opposed to the single stomach filled with pteropods. Additionally, three 

stomachs were filled with the intermediate stage of an unknown digenean parasite (Figure 35). 

 
Figure 34. Prey assemblage found within the stomachs of pelagic-phase juvenile Pontinus rathbuni. 
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Figure 35. Intermediate stage of an unknown digenean parasite found in the stomachs of Pontinus rathbuni. 

   

  A total of 53 intestines contained prey items from the 113 juvenile P. rathbuni that were 

dissected. Within the 53 intestines, 115 individual prey items were identified. The same types of 

prey were found within the intestines as within the stomachs, with the exception of amphipods. 

The majority of prey were copepods (76.5%), which occurred in 75.5% of prey positive intestines. 

The remaining portion of the prey assemblage was represented by pteropods (6.1%), ostracods 

(6.1%), UID invertebrates (6.1%), and scales or bones from fish (5.2%; Table 36). Pteropods 

occurred in intestinal tracts of three specimens (5.7% of prey-positive intestines) while ostracods 

occurred in intestinal tracts of five specimens (9.4% of prey-positive intestines). Additionally, one 

fish had two copepods, two pteropods, and two ostracods within its intestinal tract. Lastly, three 

individuals had their intestines filled with an unknown digenean parasite. These individuals were 

also the same individuals that had their stomachs filled with the parasite. Pontinus rathbuni may 

be involved in the life cycle of some species of marine digenean parasite. 
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Table 36. Intestinal prey contents of Pontinus rathbuni. 

 Copepod Pteropod Ostracod UID Invertebrate Pisces Amphipod Total 

Number 88 7 7 7 6 0 115 

 

3.3.3. Prey State of Digestion 

  There was a higher average state of digestion of prey from the stomachs of P. rathbuni that 

were collected during the day than at night (Table 37). The differences in state of digestion of prey 

items from the stomachs of P. rathbuni with respect to day and night were significantly different 

(p=1.608 x 10-5;  non-parametric Mann-Whitney Wilcoxon t-test; Figure 36). 

Table 37. The average scores of state of digestion (score ± SE) of prey in pelagic-phase juvenile Pontinus rathbuni. 

 Average prey state of digestion 

Day 2.40 ± 1.20 

Night 1.30 ± 1.10 

Total 2.30 ± 1.30 

 

 

Figure 36. The state of digestion of prey items found within the stomachs of Pontinus rathbuni collected during day 

(D) and at night (N). 
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4. DISCUSSION 

4.1. Spatiotemporal Distribution of Pelagic-Phase Scorpaenoids 

  Anecdotal observations suggested that pelagic-phase scorpaenoids were being predictably 

caught in a high frequency that is nearly par with other dominant midwater fishes in epipelagic 

samples of the GoM during the day (Sutton & Moore, personal communication). Therefore, this 

study sought to examine the frequency of occurrence and abundance of scorpaenoids to validate 

anecdotal observations.  

Scorpaenoids are not historically considered as a prominent pelagic taxon. However, 

juvenile scorpaenoids were caught with an overall 47% frequency of occurrence within the 

epipelagic zone (0-200 m) during both the Meg Skansi and DEEPEND surveys. While the overall 

frequency of myctophids, the overall frequency of myctophids was nearly double that of juvenile 

scorpaenoids within the epipelagic GoM (Table 30), this was primarily due to nighttime 

occupation by the former. The disparity between the frequency of occurrence of juvenile 

scorpaenoids and myctophids was much less during the daytime (49% and 62%, respectively; 

Table 30). Thus, juvenile scorpaenoids appear to be successful enough in the pelagic realm to be 

caught nearly as often as the dominant myctophids during half of the diel cycle. 

The standardized abundance of pelagic-phase juvenile scorpaenoids in the epipelagic of 

the GoM were lower from the DEEPEND survey than from the Meg Skansi survey both during the 

day and night (Table 31). This difference in abundance within the epipelagic of the GoM between 

cruise series could be attributed to the fact that the Meg Skansi survey sampled nearly double the 

volume of water and a larger geographical area than the DEEPEND survey (Table 2; Figure 5, 

Figure 6), or that pelagic-phase juvenile scorpaenoids were absent due to their spawning cycle. 

The species which composes most of the specimens collected, Pontinus rathbuni, may spawn 

during February, due to a huge spike of catches in 2011 (Figure 31). This hypothesis is based on 

the reproductive habits of other species, as the spawning season for P. rathbuni is not officially 

documented (Richards 2006). Future sampling efforts during the winter months (e.g., January,  

February, and March) of the year are needed to support this hypothesis. 
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The similarity in the abundance of juvenile scorpaenoids in the epipelagic zone of the GoM 

during daytime and nighttime suggests that this taxon do not vertically migrate on a diel cycle 

(Figure 27, Figure 28). In stark contrast, myctophids are strong diel vertical migrators and were 

found in higher abundances at depth during the daytime but are more abundant within the 

epipelagic at night (Figure 27, Figure 28). Thus, pelagic-phase juvenile scorpaenoids strongly co-

occur with a dominant mesopelagic fish taxon half of the time (night) yet exhibit morphological 

and behavioral characteristics that deviate from the classic deep-pelagic ichthyotype defined by 

myctophids. 

 

4.2. Scorpaenoid Faunal Assemblage Structure 

 Nine unique morphotypes and three scorpaenoid species that have been routinely identified 

to the genus or species level (e.g., Helicolenus dactylopterus, Pterois spp., and Setarches 

guentheri) comprised the faunal inventory of juvenile scorpaenoids in the pelagic GoM. Several 

anatomical and morphological aspects were used to define the nine morphotypes, but parietal 

spine(s) seemed to be the most diagnostic for differentiating morphotypes. Every juvenile 

scorpaenoid examined in this study, aside from Pontinus longispinis, had parietal spines. The 

presence/absence, shape, length, curvature, serration, angle, and position of the parietal spine(s) 

with respect to the nuchal spine(s) separated the scorpaenoids presented in this thesis. The fishes 

that were collected from the Meg Skansi, Pisces, and DEEPEND surveys comprised at least 11 

species (Table 5). Morphotypes B and I are probably not scorpaenoids. Therefore, at least nine 

different species compose the pelagic-phase juvenile scorpaenoid assemblage of the GoM. One 

scorpaenoid species, Pontinus rathbuni, exhibited dominance, accounting for approximately 80% 

of scorpaenoids that were collected (Table 5). Future work may benefit from preserving one 

specimen for each morphotype described in this thesis for genetic analysis and validation of the 

putative identifications presented in this study. 
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4.3. Trophic Analysis of Pontinus rathbuni   

4.3.1. Pontinus rathbuni Diet Composition and Comparison 

 The majority of the diet of pelagic-phase juvenile Pontinus rathbuni consisted of copepods, 

with occasional ostracods, pteropods, and amphipods. Comparatively, the diet of dominant pelagic 

vertically migrating taxa, like Lampanyctus alatus (family Myctophidae) and Valenciennellus 

tripunctulatus (family Sternoptychidae), also comprises of copepods, euphausiids (shrimps), and 

ostracods (Baird et al. 1975, Hopkins & Baird 1985, Link & Almeida 2000, Burdett et al. 2017). 

Even though the only dietary difference between P. rathbuni and L. alatus/V. tripunctulatus 

appeared to be that juvenile P. rathbuni feed upon pteropods and the dominant vertically migrating 

taxa prey upon euphausiids, these prey types are minor, approximately 10% or less of their 

respective diets. More importantly, the majority of the diet of both P. rathbuni and L. alatus/V. 

tripunctulatus comprised copepods. Therefore, both P. rathbuni and dominant vertically migrating 

taxa share copepods as their dominant source of prey and resource partitioning regarding prey type 

does not appear to occur between these common fish taxa (Horn & Ferry-Graham 2006, Burghart 

et al. 2010). 

4.3.2. Stomach Fullness, Prey State of Digestion, and Stomach Vacuity 

 Gut content analysis of pelagic-phase juvenile Pontinus rathbuni suggests that P. rathbuni 

feed during the day and digest their prey at night. Due to the similarity in prey taxa, it can be 

reasonably concluded that P. rathbuni and adult, vertically migrating, mesopelagic fish taxa 

partition prey resources temporally. 

 

5. CONCLUSION 

 This thesis focused on the epipelagic habitat use in the GoM by pelagic-phase juvenile 

scorpaenoids, morphotype characterization of juvenile scorpaenoids, and diet examination of 

juvenile Pontinus rathbuni. Juvenile scorpaenoids were collected in nearly half of all epipelagic 

samples in the GoM. While there was a large difference in abundance between juvenile 

scorpaenoids and adult myctophids in the epipelagic at night, abundances during the day were 

similar (approximately 14 ind. per 10-6 m-3). There is no evidence to suggest that juvenile 
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scorpaenoids vertically migrate. Nine taxa of scorpaenoid were collected, with Pontinus rathbuni 

accounting for approximately 80% of the assemblage. The growth and development of P. rathbuni 

in the pelagic domain are made possible by a diet comprised mostly of energy-rich copepods, 

consumed primarily during the day, in contrast to the nocturnal feeding of most zooplanktivorous 

mesopelagic fishes. Understanding how a primarily benthic fish taxon utilizes the epipelagic for 

development, what juvenile stages eat, and how that predation and development interact with other 

fish taxa not only illuminates the complexity of the pelagic food web but also allows for insight 

into a historically overlooked group of fishes with respect to a low-latitude pelagic ecosystem.  
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Appendix Figure 1. Images representing the pelagic-phase juvenile scorpaenoid forms of morphotypes A-I (A-I) and 

three species identified before the work of this thesis: Helicolenus dactylopterus (J), Pterois spp. (K), and Setarches 

guentheri (L). 
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