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Dear Mathematics Educators: 

I am excited that the Winter issue of the Transformation Journal is ready for your use. This Journal is 

made available online through NSUWorks. I encourage you to submit your research articles so that we can 

share with the mathematics educators around the country. I also invite you to nominate a colleague or self-

nominate to serve on our Board so that we can help make a difference in the K-22 mathematics education 

community in the State of Florida and throughout the country.  

As an affiliate of the Florida Council of Teachers of Mathematics (FCTM), I am looking forward to 

achieving the following goals over the next two years: 

1. Annual FAMTE Conference to promote the improvement of Florida’s mathematics instructional 

programs and to promote cooperation and communication among the teachers of mathematics and 

mathematics teacher educators in Florida. 

2. FAMTE Board represented by at least one K-12 Mathematics Teacher educators. 

3. Promote scholarly publications. 

 

 

With Warm Regards, 

 

Hui Fang Huang “Angie” Su, 

FAMTE President and Editor of 

Transformation 

 



Transformations Transformations 

Volume 7 
Issue 1 Winter 2021 Article 1 

2021 

Don’t Count – Count on Visual Perception! Don’t Count – Count on Visual Perception! 

Klaus Rödler Dr. 
Mathe inklusiv, Frankfurt, klaus.roedler@onlinehome.de 

Follow this and additional works at: https://nsuworks.nova.edu/transformations 

 Part of the Elementary Education Commons, Elementary Education and Teaching Commons, and the 

Science and Mathematics Education Commons 

Recommended Citation Recommended Citation 
Rödler, Klaus Dr. (2021) "Don’t Count – Count on Visual Perception!," Transformations: Vol. 7 : Iss. 1 , 
Article 1. 
Available at: https://nsuworks.nova.edu/transformations/vol7/iss1/1 

This Article is brought to you for free and open access by the Abraham S. Fischler College of Education at 
NSUWorks. It has been accepted for inclusion in Transformations by an authorized editor of NSUWorks. For more 
information, please contact nsuworks@nova.edu. 

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/transformations
https://nsuworks.nova.edu/transformations/vol7
https://nsuworks.nova.edu/transformations/vol7/iss1
https://nsuworks.nova.edu/transformations/vol7/iss1/1
https://nsuworks.nova.edu/transformations?utm_source=nsuworks.nova.edu%2Ftransformations%2Fvol7%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1378?utm_source=nsuworks.nova.edu%2Ftransformations%2Fvol7%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/805?utm_source=nsuworks.nova.edu%2Ftransformations%2Fvol7%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=nsuworks.nova.edu%2Ftransformations%2Fvol7%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/transformations/vol7/iss1/1?utm_source=nsuworks.nova.edu%2Ftransformations%2Fvol7%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


7 
 

Don’t Count – Count on Visual Perception! 

Klaus Rödler 

Mathe inklusiv, Frankfurt 

 

 

Abstract 

Verbal counting is the first step in the child‘s number building and this is why it seems natural 

to start arithmetic in school based on this competence. Under a cultural historical view, the 

development of number does not start with verbal counting but rather with ‚concrete counting‘. 

Number words and the number word sequence developed after experience with concrete 

numbers. 

This article describes the roots, basics, and first practical steps of a didactics based on perception 

rather than on verbal counting. 

This proposed change allows inclusive lessons that prevent all students from misunderstanding 

calculation as a quick or clever form of counting and from becoming stuck in solidified 

counting. 

 

Keywords 

math didactics, primary school, computational problems, reasonable computation, inclusion, 

concrete number, number sequence, solidified counting, cultural history, first grade math, place 

value 
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Solidified Counting as a Key Problem 

Don’t count is an unusual imperative in an article about computation and the development of 

number sense. Can we not say that counting is the first property that children learn about 

numbers? Further, is it not generally agreed that counting is the first step towards cardinal 

understanding? „Counting provides children with the bridge between concrete but limited 

perception and abstract but general mathematical ideas. It is counting that puts abstract number 

and simple arithmetic within the reach of the young child“ (Barroody 1987, p.33, quoted after 

Moser-Opitz 2008, p. 63). For Freudenthal, the Zählzahl (counting-number) plays the first and 

most important role in the genesis of the concept of number. In addition, he denies that quantity 

might be a concept that grows out of perception and the understanding of invariance 

(Freudenthal 1977, p. 177-178). There seems to be no need of further debating this crucial 

aspect.   

As a result of this universal conviction, the learning of number and computation starts with 

verbal counting. „From counting to a structured understanding of numbers“ is Gaidoschik’s 

title of a chapter in his dissertation where he describes the methods that help children on their 

path to reasonable computation (Gaidoschik 2010, p. 208). Lessons might strengthen the 

acquisition of the cardinal aspect by using patterns or manipulatives with five-based structures. 

Lessons might use certain types of tasks to help children to construct number as ‚verbal or 

abstract unit items‘ (Steffe quoted in Fuson 1988, p. 54). All these concepts are based on the 

idea of starting with counting and developing the student’s number concepts from the number 

sequence as a starting point. This view has the consequence that computation starts with 

addition followed later by subtraction. This seems natural as both operations can be easily 

solved by counting.1 

 

On the other hand, we should aim to keep the standard high. Our goal should be for all students 

to learn to calculate with a cardinal understanding. Further, all students should understand the 

decimal system and should be able to use this cardinal structure in smart calculation methods. 

We should not except that „a significant proportion of second graders, perhaps the majority“ 

constructs ten only as a ‚numercial composite‘ (Cobb&Wheatley 1988, p. 5), and 19% of the 

4th-grader group performed below the NAEP basic level (NCES 2021). Even the 3.6-6.6 % of 

children with mathematical learning disablities or a diagnosis of dyscalculia should be still in 

our focus (Dorheim 2007, p. 13 ff.), as should the even larger group of children with learning 

and other disabillities. While schooling is not successful for all students, it makes sense to 

question the basis of teaching methodology in this field. This is especially so when solidified 

counting is one typical symptom of children with difficulties in understanding calculations. 

 

The symptoms of weak performance are broadly described in works such as Moser-Opitz 

(2008), Gerster&Schultz (2004), and Gaidoschik (2010). In addition to the phenomenon of 

solidified counting, children may lack the concept of a part-whole-scheme, and they may also 

lack the concept of ten as a reversible unit together with an absence of understanding and 

reasonable use of the place-value-system. However, the causes of this failure are not sought in 

the lessons and even less in the basic didactic assumptions of the curricula. Instead, they are 

 
1 Cobb&Wheatley‘s (1988) research on „Children‘s Initial Understanding of Ten“ also shows  that verbal counting seems 
to be the only basis for developing number concept. The described development shows up in the ability to use tens and 
ones in counting. Other solutions based on the concept of operation and contra-operation and/or on step-by-step 
approximation are not mentioned. The performance of the children indicates their use of mechanical and systematic 
counting. However, they have not yet learned to think in reversible operative arithmetic structures, and they have not 
managed to overcome particular hurdles as given in 5 and 6 (see down, p. 7-8). 
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sought in the students, in their cognitive abilities, in perceptual problems, and in their social 

background. Weak performance in calculation had become something as a medical diagnosis. 

 

Meyerhöfer (2011) criticises this approach. He describes how didactics such as Raddatz or 

Gerster have moved the focus away from the analysis of personal disabilities towards the 

analysis of neccessary processes of understanding. The term ‚Dyscalculia‘ was replaced by 

‚Rechenschwäche‘ (‚weak calculation‘) which both names and describes the symptom. But – 

following Meyerhöfer – the math-didactic community has still remained focussed on the child‘s 

difficulties. 

 

Meyerhöfer demands a change to this view. The math-didactic community should ask the 

question as to which obstacles lie in the subject itself, and ask what exactly must be understood 

when the goal is reasonable calculation. A further question is which of these obstacles are basic, 

given that they block the further learning process? 

The factual hurdles that must be overcome Meyerhöfer terms „besondere stoffliche Hürden“ 

(particular factual hurdles), and he claims that it is the school’s task to enpower every child to 

overcome them. However, he does not give more precise information about what he identifies 

as a ‚besondere stoffliche Hürde‘. In light of this, a crucial goal of this article is to propose an 

answer to this important question. 

 

My goal in this paper is to propose a sequence of hurdles or obstacles that are crucial for 

understanding numbers written in a place-value-system. Here, I describe and justify the 

relevance and the order of those hurdles. One argument I give here is that we can analyze these 

hurdles by searching the steps of development in the cultural history of number and 

computation. It is an important background to my thinking and of my didactic concept ‚Math 

Inclusive – Calculation through Acting‘ that cultural history can teach us what has to be 

understood and also illuminate which sort of tasks enable us to acheive understanding (Rödler 

1998, 2006a, 2010, 2011, 2015, 2016a, 2018, 2020). 

We can ask which tasks can initiate processes of accommodation, and that is the central 

question. This is so because it is accomodation that is necessary to change and develop a concept 

(von Glaserfeld 1997, pp. 72 ff., 168 f., 191). And it was the development of accommodations 

of number concepts that led mankind over many thousands of years to the modern level of 

understanding of number in a place-value-system.  

 

In contrast to our familiar point of view, the starting point of mankind was not the number word 

sequence - not even the single number word. Words followed the experience of concrete 

counting. Cardinality, number-words and the part-whole-scheme were all rooted in experiences 

of perception in a context of a numercial problem (Menninger 1979, Ifrah 1987, Damerov et al. 

1994a/b, Zaslavski 1999). Before I come to the main points of my article (‚What has to be 

understood‘ and ‚How it can be understood‘), I want to give a short overview about the first 

steps of human number building from cultural historical perspective. 

I am convinced that it is this misinterpretation of the starting point that narrows the analysis of 

computational problems and therefore the spectrum of didactic methods. The idea that number 

necessarily starts with verbal counting and therefore depends on competences that are based on 

the number word sequence, is, for me, the key mistake and has a constricting effect. It is 

important to detect that this assumption is a constraint (von Glaserfeld 1997, pp. 62-77) in 

recognizing the relevance of concrete numbers and in that context of perception. I argue that 

this view allows new and valuable discussion on the topic.  

 

1. The Beginning of Number Sense under a Cultural Historical Perspective 
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If we change our view and look to the origin of number, we must go more than 20,000 years 

into the past. By doing this, we can find people that did not have numbers, just as very young 

children do not (Menninger 1979, Ifrah 1988).  So, we must ask the question: Why did humans 

develop numbers? There must have been a reason. 

We do not have a time-machine, but we know that concepts are constructions and grow out of 

acting and reflected experience (von Glaserfeld 1979). New concepts are found when there are 

relevant problems that demand new solutions. Maybe those early humans wanted to ensure that 

no sheep of the flock was lost. Maybe they wanted to know how often the sun rises from full 

moon to full moon. Maybe they wanted to count dead enemies to find out who of a tribe is the 

most powerful warrior. For whatever reason, there was a cardinal reality that was important. 

But, there were no words for precise quantities and thus they they counted with objects. Humans 

took stones or shells or they carved wood or bones. Counting was a material process! The 

number was a ‚concrete number‘ (Rödler 2006a, 2011, 2016, 2020). „So many“ was the only 

expression they needed.2 Maybe, they had words with the meaning of ‚some‘, ‚many‘ or ‚a lot‘; 

there was no need for more precision. 

From this beginning, we can learn two things about the root of our numbers: First, the evolution 

did not start with the counting-process – it started with the need to get hold of a cardinal reality. 

Without a need, there is no action. Second, counting did not start as a verbal concept. It started 

with a concrete one-to-one or an ‚analog mapping‘ (Rödler 2011, 2020), based on a material 

process. This mapping fixed the cardinal reality into a material ‚re-presentation‘ (von Glaserfeld 

1979). 

There was no need for verbal counting in order to create cardinal meaning. The cardinal was 

already a concept.  Fingers, carving, stones or shells were the items that reduced a 

heterogeneous reality into a collection of homogeneous unit items. At the same moment, these 

collections of unit items re-presented the counted reality and thus stood for something. In this 

sense, it was a „single whole“ (Fuson 1988, p. 8); it was an ‚abstract composite unit‘ 

(Gerster&Schultz 2004, p. 58). 

 

Small quantities up to three or four could be identified and distinguished by subitizing. So, it is 

not surprising that the first number words had the meaning of our one, two, three (four); larger 

quantities were termed as ‚many‘ (Menninger 1979, I, p. 33).  

In the beginning, those first number words were used as adjectives (Menninger 1979, I, p. 33 

ff.). They were closely connected to what they designate. But because of the experience of 

material counting and the perceptive identity of for example III and III (even if the both III 

counted different objects), the concept of the number as an abstract whole was possible to be 

reflected  and in this context arose the option of creating abstract number words that were not 

bound to a specific counted reality (Menninger 1979, I, p. 48). 

This development of number words did not automatically create a number sequence. New 

words were built out of existing words or visible structures: A pair of pairs, a  double four, two 

more than a hand. Step by step, number words for larger quantities were found and ‚many‘ 

gained new meanings. Menninger writes about „Zählgrenzen“ (borders of counting) und 

„Rangschwellen“ (thresholds) that had to be overcome. Concrete patterns and bundles create 

visual gradiations and so the verbal number sequence could be built by designating these grades 

and designating the gaps between those grades. Menninger describes this principle of building 

larger number words as ‚Reihung und Bündelung‘ (sequencing and bundling). He stresses that 

this process was possible because the counting and finding of words no longer occured at the 

 
2 There has been a second form of counting using parts of the body. Those ‚body-numbers‘ allowed to name quantities 
higher than four and were strictly ordinal (Ifrah 1987, p. 30-31). But when we research the number-systems of higher 
cultures and especially those our decimal place value system is rooted in, we find no links to these counting techniques. 
Obviously they have been something like a dead-end. 
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counted quantities in reality but on the concrete number, which was built by concrete counting 

in the form of a material one-to-one-mapping (Menninger 1979, pp. 49 ff.).3 

 

The familiar view on learning numbers and computation describes the necessity of developing 

a  cardinal understanding of the number word originally found by verbal counting. This 

development of the child is described in steps of knowledge. The counting scheme develops 

(Gelman&Gallistel 1978, Fuson 1988) and the understanding of counting items has to develop 

from perceptual unit items to the construction of  number as a ‘composite unit’ (Steffe&Cobb 

1988 after Gerster&Schultz 2004, p. 56-58)The fact that there is so much research in this field 

underlines  the difficulties that some children have. There is so much research as even if most 

of the children succeed in learning reasonable computation, there are many who do not. For 

such children, the concept of number stays basic and hinders them from reasonable computa-

tional development. And thus they are stuck with solidified counting. 

 

The cultural historical view shows us that the development from ‚perceptual unit item‘ to an 

‚abstract composite unit‘ originally happened before (!) the number word sequence was 

developed. When number words arose, the cardinal aspect of number was already constructed. 

Words were named cardinality from the very beginning. 

This fact helps us to understand why the existing number word sequence is not only a chance 

for most children but also a burden for some: A constraint! It hinders those students from the 

development of the basic ideas, and that is the reason why it makes sense to search for 

alternative curricula that are not based on the number word sequence but are based rather in 

concrete counting and perceptual reflection, just as things began more than 20,000 years ago. 

 

This introduction aims to make my rethinking of teaching calculation understandable. I assume 

that children are just as much at the beginning of their conceptual number development as early 

humans. Analogous to Norbert Elias (Elias 1976, p. LXXIV), I assume that during their mental 

and conceptual development, children need to overcome the similar conceptual hurdles that we 

see throughout cultural history. These basic assumptions make it possible to formulate the 

epistemological hurdles more precisely. I think this is exactly what Meyerhöfer’s concept of 

„nicht bearbeitete stoffliche Hürden“ calls for. It helps us to realize what a student must 

understand in order to prevent the development of arithmetic impairment. 

 

2. What has to be Understood? – 10 Particular Hurdles 

In this section, I describe what must be understood; however, I do not describe here how this is 

done. I discuss that aspect in the next section.  

The ten hurdles I describe here are those that I feel to be essential for an understanding of 

number and place-value. They also build a sequence. In particular, the first six hurdles build on 

each other and form the basis for discussion of the final four. And within the first six the first 

four hurdles again are crucial. 

This does not mean that lessons should thematisize one after the other. Learning processes and 

especially understanding does not go step by step and is therefore not a stairway of perfect 

stages. Knowledge grows by processes of approximation. This requires a complex process of 

dealing with experiences on different levels at the same time. The teacher must acquire an 

overview in order to understand the connection of basics and progress to more challenging  

aspects. It is this complexity which makes this sort of curriculum an inclusive one. It allows 

learning and understanding on different levels at the same time. 

 

 
3 Similar developments are described in Zaslavski (1999). Here it is striking that in Bantu there are „wide variations in 
the words for 6, 7, 8 and 9“ but „we find similarity in the names for 2, 3, 4 and 5.“  (Zaslavski 1999, p. 39). The word for 
5 is included here, because numbers are closely related to finger-gestures and the ‚full hand‘ gives a perceptive five. 
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• First Particular Hurdle: The Need for Building Numbers  

It is amazing: The first and most important hurdle is ignored in school, namely the need for 

building numbers. Courses and tutorials start with verbal counting, learning the number signs, 

and giving these number-representations cardinal meaning and structure. Nobody seems to ask 

what relevance numbers have apart from teaching courses. Besides counting rhymes, number 

seems to be nothing more than a cultural technique that must be learned as useful for future life. 

 

In textbooks, authors emphasize this learning with child orientated content: for instance, 

lighting and blowing out birthday candles, sitting and flying birds, children at the playground 

and cars in the street, and so on. But all these situations in a child’s life have no relevance 

besides counting. All other aspects are irrelevant and do not really matter.  This fact strengthens 

the child’s impression that numbers have nothing to do with their own actual life. They are 

artificial and something that becomes relevant in the future. This false impression needs to be 

changed! 

Counting must be made relevant to the child’s life now! Counting contexts must be provided 

that are rooted in the enviroment of the child and are therefore relevant for his or her life. For 

example, when the next excursion is planned, it becomes important to ascertain whether the 

majority prefers the zoo, the playground, or a museum, for instance. Such experiences build the 

motivation to count and bring number and patterns of the surrounding world into the child’s 

focus of interest. This is the first and most important basic to built up a competent concept of 

number. 

 

• Second Particular Hurdle: Cardinality (Number as a Collection of Single Unit Items) 

The child that becomes interested in a certain quantity makes these elements into perceptual 

unit items, which then makes it possible to count them. This is usually done by saying the 

number word sequence while touching one object after the other with their fingers or by eye-

contact. However, this verbal counting does not mean that the child already understands the 

final word as the number for the whole quantity. There are different steps of development. For 

verbal or concrete counting, further development requires understanding the cardinality of the 

counted number in terms of a collection of countable single unit items (Gerster&Schultz 2004, 

p. 56-62).  

 

• Third Particular Hurdle: Number as a Cardinal Whole (Single Whole/Abstract 

Composite Unit) 

Numbers such as five or six should be understood not only as collections of single unit items. 

That is not sufficient, because it means that computation is dependent on counting processes. 

Numbers should also be understood as wholes. In German, we can formulate the difference 

easily. IIIII should not only ‚fünf‘, but also a ‚Fünfer‘; not only five, but a ‚fiver‘. A child needs 

to understand that numbers are wholes, which can be used as modules or building blocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Such a whole is invariant, and it can stand for many different quantities in reality. A ‚Fünfer‘ 

can stand for five fingers as well as for five toes or five candles on the birthday cake. This 

understanding of the number as a whole makes it possible to build bigger numbers out of smaller 

ones and to divide a number into parts, not only into ones.  

 

• Fourth Particular Hurdle: The Part-Whole-Scheme 

For Gerster&Schultz (2004), the part-whole-scheme is the crucial point in the development of 

number understanding as it allows computation without counting. They cite Resnick: 

„The Part-Whole schema specifies relationships among triples of numbers. In the triple 2-5-7, 

for example, 7 is allways the whole; 5 and 2 are allways the parts. Together, 5 and 2 satisfy the 

equivalence constraint for the whole: 7. The relationship among 2, 5 and 7 holds whether the 
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problem is given as 5+2=?, 7-5=?, 7-2=?, 2+_=7, or _+5=7“ (Resnick, 1983, 115) 

(Gerster&Schultz 2004, p. 79). 

 

What should be understood is that the decomposition provides the parts that build the whole. 

That is why the knowledge of partitions gives the answer to all equations with addition and 

subtraction. 

Numbers are building blocks that build bigger numbers, and bigger numbers can be broken into 

such blocks. A subtraction takes away one of the blocks and leaves the other, and addition 

rebuilds the whole. An equation such as 2+_=7 or 7=5+_ asks for the other block, and an 

equation such as 7-_=2 or 5=7-_ does the same in that it asks which part has been removed 

when a certain part is left. 

 

This fundamental understanding of number in the part-whole-scheme is the goal that should be 

reached as soon as possible; not only because it allows fast and secure calculation, but also 

because two-digit numbers are built out of two such building blocks: the tens and the ones.  

 

• Fifth Particular Hurdle: Tens-Ones Breakdown of the Two-Digit Number 

Our place value system4 builds large numbers from building blocks that are encoded in decimal 

place values. In the two-digit number range, these are the tens and ones. 

To understand that a 35 is built out of a thirty and a five does not need a change in concept. For 

a child with a solid part-whole-scheme there is nothing new, besides the number words for the 

tens (ten, twenty, thirty, …) and their cardinal understanding. The tens-ones-breakdown can be 

learned by assimilation! 

  

• Sixth Particular Hurdle: Reversible Tens 

More difficulties relate to the sixth hurdle, and weak performers often fail at this point 

(Gerster&Schultz 2004, p. 80-99). For operations with two-digit numbers as well as for the 

understanding of place values in bigger number ranges, it is equally important to understand 

the reversible relation between ones and tens: Tens are compositions of ten units and therefore 

can be decomposed if necessary. Tens are not just a new unit; they are not just another ‚one‘. 

Tens and ones do not exist independently of each other side by side – they must be understood 

in their reversible relation. 

This competence makes it possible to calculate tasks such as 15-8= , 47+9= , 43-18=, 25+47= 

or 25+_=42 and 71-_=39 in reasonable steps. 

 

• Seventh Particular Hurdle: Number Signs are Coded Quantity, which Get Value by a 

Convention 

A number sign such as 125 seems to carry value. Our calculation techniques, especially  written 

calculation methods, strengthen that impression. Experienced calculators can decode the 

number sign into the decimal building blocks by mental calculation. In lessons, children get 

materialisations such as Dienes-material which translates these building blocks into a visual 

cardinal reality by using rods as compositions of ten unit items, plates as compositions of 

hundred (ten rods), and big cubes as composition of thousand (ten plates). The number sign 

seems to be the starting point and carries value that can be visualized. 

 

However, the number sign is just a sign just as the number word is just a word. It is a medium 

of communication and does not carry value. Rather, it carries information and allows the 

discussion or determinationof value, but this happens only for those who have already 

 
4 Not only place value system! The Sumerian and Egyptian number signs, too, were based on tens and ones. The 
concept of reversible decimal bundling is more basic and much older than our modern number system. 
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constructed this value in their mind. The concept of decimal building needs to be already 

constructed to decode the sign. 

 

Under a cultural historical view, number signs and number words grew as re-presentations of 

concrete numbers. They allowed communication about material experiences. ‚M‘ does not carry 

a thousand, but it could be used for a thousand just as the Egyptian lotus-flower or a tree (if I 

define a tree as a symbol for thousand in my own number system). It is a question of convention 

to represent cardinal meaning into signs. That must be understood. 

 

• Eighth Particular Hurdle: Idea of Bundling /Concept of Decimal Value Levels 

Hurdles 7 and 8 are closely related. The two aspects of knowledge must interact to understand 

the problem and overcome these two hurdles.  

In order to understand a convention and to re-build the coded value, it is a prerequisite that the 

user of the number sign has already built up the fundamental ideas that are decoded. Concerning 

our place-value system, this means that the concept of reversible decimal building blocks needs 

to be established. If not, and if a child‘s concept is still based in the number sequence, she or he 

will decode the three digits in 125 as one, two and five instead of a hundred, twenty and five. 

On this conceptual basis, such a child will solve the task 43+24= correctly with ‚67‘ by 

calculating with the digits as numbers: 4+2=6 and 3+4=7, but they will fail with 43-24= , 

because typically he or she computes the result 21 by 4-2=2 and 3-4=1.  

 

In order to understand the concept of a place-value, it is not enough to think in tens, hundreds 

and thousands as long as these value levels are material concepts like ‚tens are rods‘ and 

‚hundreds are plates‘, the concept of a bundle is something like a unit item of higher value. This 

concept fits to the cultural stage of Sumerian and Egyptian numbers. In addition, we still find 

it it in the ‚Roman‘ numbers of the middle ages.  

Place value develops, when bundling becomes a process: ‚Ten of the smaller unit create a new 

value level.‘ This idea made it possible to break out of material presentation of a definite 

quantity and opened the space to the structural idea of computation. This breakthrough 

happened first in computation techniques by using tools such as the calculation board, the 

abacus, or the soroban. Counters became valuable depending on the position. Based on the 

experience of thousands of years with material place value computation, it was possible to 

understand bundling as a process that goes on and on and on. This experience made it 

meaningful for humans to develop a number system that maps iteration: the place value system. 

  

It is important to understand that overcoming this hurdle is a necessary condition but is not 

sufficient. For some thousands of years, cultures had invented place value tools for computation 

but did not take the step to a corresponding writing of numbers, and this shows that the 

understanding of place value writing is a further hurdle to take. 

 

• Nineth Particular Hurdle: Place Value Numbers ‚upwards‘ 

The first understanding of value by bundling is based on the unit item, the one. Higher value 

levels like tens, hundreds, thousands and so on can be created by bundling. It now must be 

understood that every additional level is coded in a new position to the left. Instead of using 

different signs for the different levels, we can use equal signs (digits) that get their value in 

connection with the position. 

 

Why was it so difficult to make this step in historical development and what makes it difficult 

still for children to decode a multidigit number different from a collection of one-digit numbers? 

It is the problem of the ‚zero‘! 
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Number signs are a coded quantity, and it is natural to build the whole number out of cardinal 

modules. MMXXI means that we need two thousands, two tens and a one to have the number 

of our actual year. Place value numbers make it necessary to write down what is missing: no 

hundreds! Otherwise, the number 2021 would be missunderstood as 221. 

And there is another problem: The correct number sign shows two ‚2‘. But they have a 

completely different value. It is obvious that it is much easier to think of two thousands and two 

tens when they are shown with MM and XX. Clearly that cannot mean the same. To decode the 

one ‚2‘ as two different values demands a high level of developed construction of decimal value 

levels. One needs to search for and expect them in the number sign. 

 

• Tenth Particular Hurdle: Complete Place Value System (including downwards) 

Decimal bundling is the process that creates ascending new value levels, shown in number signs 

with new positions on the left. Because these processes can be inverted, the bigger and the 

smaller value level is in a reversible relation: thousands can be debundled into ten hundreds, 

hundreds into ten tens and tens into ten ones. 

Therefore, the system becomes complete when we demand that the indefinite process of 

bundling should be equally indefinite in the direction of debundling. 

What happens when the idea of ‚every value level can be debundled into ten smaller units‘ is 

used on the level of ones? We get tenths! And if we continue descending, we create hundredths, 

thousandths and so on. And every new smaller value level gets a position to the right. 

This last step completes the full understanding of a decimal place value system. 

 

 

3. How to Overcome these Particular Hurdles  

A cultural historical view into the past has shown us that the process of number building and 

computation started with concrete numbers. It has also helped us to understand the changes in 

conceptual understanding and especially the obstacles that had to be overcome. The fact that all 

these steps in development lasted thousands of years proves that there were hurdles to this 

development. It was no easy and smooth continous process.  

The thesis of the following section is that the epistomological question as to what a child must 

build up in order to understand numbers and computation is closely related to the cultural 

historical process. Here we can identify the problems and we can identify the hurdles and the 

prerequisites that support certain changes in concept. 

Concepts develop based on experiences. A change of a concept in terms of accommodation 

depends on new experiences that disturb former interpretations. Therefore, didactics should ask 

how the environment of the child can be changed in order to provide situations in which number 

becomes relevant and the particular hurdles become a real problem in the child’s view. I will 

describe here the start of this curriculum to give an impression as to how lessons change under 

this view.5 

 

Taking the first three particular hurdles ‘(need for building numbers, cardinal number and 

number as a whole) is the basis for all further understanding. When students fail to compute 

with understanding, the reason often is that they did not overcome these first three hurdles. 

They are stuck in solidified counting computation because they did not overwind the number 

concept of the number word sequence. They compute with the digits as numbers and with tricks 

that allow them to solve problems by keeping on counting. New types of tasks are edited by 

assimilation. 

That leads us to the question of which setting helps children: 

 
5 The further curricular in arithmetic, up to grade 4, is described in the following publications: Rödler 2012, 2013, 2016a, 
2016b, 2018, 2020. Also in my youtube-channel, especially in playlist ‚Rechenprobleme‘. 
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1. to become interested in building numbers. 

2. to understand the aspect of cardinality (including invariance and classification)? 

3. to understand numbers as cardinal wholes that can become building blocks for other 

numbers. 

This includes the question: Which setting helps children to stop assimilation to the number word 

sequence and demands accomodation? A change in concept will not occur while our curriculum 

begins with verbal counting and supports solutions on this basis. I am convinced that we need 

to help children to experience the relevance of perception by solving counting and computation 

tasks on this basis. 

 

The methods I describe have developed through 25 years of practical work as a teacher in first 

to fifth grade classes (Rödler 1997, 1998, 2006a, 2006b, 2012, 2013). All groups were very 

heterogenious, and some were inclusive in sense of that they included children with special 

needs. Inspired by Norbert Elias (Elias 1976, p. LXXIV) and it was based on the idea that early 

cultural ideas of number might fit better to childrens’ natural concepts that I changed my 

concept of teaching. Step by step and by trial and error, I tested the effect of using early cultural 

historical number and calculation concepts. Out of this experience I developed the concept of 

‚Calculation on Different Levels of Abstraction‘ (Rödler 2011). The following section describes 

some fundamental didactical changes that have proven the worth of this basic idea. Under this 

concept, perception becomes a key aspect. It marks the starting point, and it gives impulses for 

conceptual development of understanding number. 

 

 

A: Concrete Counting Instead of Verbal Counting (The Construction of Number)  

Children seem to begin with numbers by learning the number word sequence, but as the term 

‚number word‘ says: these are only words, and more is required to understand the concept of 

number. The long way from the knowledge of words and sequence to the concept of the word 

as a cardinal number has been broadly described (Gelman&Gallistel 1978, Fuson 1988, 

Gerster&Schultz 2004, Dornheim 2008). This is the familiar view of the child‘s construction 

of number based on verbal counting.6 

Under a cultural historical view, the number arises earlier than the word. This is possible 

because counting is a material process. It is concrete counting that creates the number as a 

perceptible collection and as a whole of unit items. („So many!“) This concrete number allows 

understanding of relevant consequences of the construction out of the counting process directly 

by perception. 

- A number is an abstraction that fixes the cardinal aspect of an unhomogeneous  reality 

and is thus a creation by purpose (Frege 1987, p. 93 ff.). 

- A number is a fixed quantity of unit items. 

- Because of the counted backround, changing position of the singles in space does not 

change the value of the whole (invariance).  

- Concrete numbers may differ in size and thus it is possible to order them as less, more, 

and equal (ordinal aspect and idea of number sequence). 

- Equal concrete numbers show that every number can stand for different quantities in 

reality. So, every concrete number re-presents a class of counting results (classification). 

 
6 That does not mean the relevance of perception is ignored. The role of ‚perceptual and conceptual subitizing‘ 
(Clements (1999) the importance of figurative gesture and patterns and of manipulatives that visualize numbers and 
allow structured operations are common methods and suggestions, when it comes to the question how to prevent 
weak calculation (see, Gerster&Schultz 2004, Moser-Opitz 2008, Gaidoschik 2010). However, this all happens based on 
and still linked to the starting point of counting.  
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From the very beginning, the number is understood in its cardinal function. And this is not a 

sophisticated process. Rather, it is the direct consequence of the need for counting, and therefore 

this starting point is an inclusive access to number and computation. 

 

To prevent verbal counting, it is important that our questions and problems lead to larger 

quantities. Otherwise, children will assimilate the counting problem and have no reason for 

accomodation (von Glaserfeld 1997, p. 84ff. /Piaget 1974, p.154 ff.). If we are no more bound 

to start with a small number range, it becomes possible to follow every question that arises in 

the class: Are there more boys or girls among the first graders? How many doors do we find in 

school? What is the favourite subject of the school’s students? Which car brand is the most 

popular? It is obvious that projects like these demand something different rather than knowing 

just the number sequence. It leads to a cooperative process of collecting information by concrete 

counting in groups. It is a social process as every child is involved! Nobody stands aside because 

this concrete counting does not require special prerequisites, and, importantly, nobody knows 

the solution in advance, not even the teacher! What nobody knows, creates an inclusive setting! 

That is a very important didactical rule. 

 

To return to our subject, concrete counting creates concrete numbers, but differently to the 

construction of the number out of the word sequence, this starting point creates and uses the 

concept of cardinality from the very beginning. Cardinality as the basis of number is understood 

by every learner. 

 

Figure 1 shows the 

difference. When we locate 

the number in the number 

word or number sign on the 

left, we must underlie the 

cardinality in a second step. 

Only after this 

understanding of cardinality 

is it possible to calculate 

with understanding. Without 

this understanding, 

calculations stay mechanical 

and lead to solidified 

counting instead of 

computation.  

When we locate the number 

on the right, because this 

collection of unit items was created by mapping a certain concept of reality, we have a cardinal 

number that shows its value simply by perception. Number word and number sign are only 

media of communication that are added afterwards. They allow us to talk about our created 

numbers. Importantly, number words and number signs are not the numbers! At least not in the 

beginning. 

 

B: Giving Structure (Making Perception Possible) 

Finding the answer to a real question by concrete counting automatically leads to the  

limits of perception. If there is not a large difference, we can only distinguish small quantities 

up to four (Gelman&Gallistel 1979, Fuson 1989, Clements 1999, Gerster& Schultz 2004). So, 

when it comes to evaluating whether there are more boys or girls in school, we need to give the 

counting result, the two concrete numbers, a perceptiple figure. 

Figure 1: Abstract and Concrete Number 
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By giving the students the experience of spontaneous perception of quantities, they find out that 

this is easy up to three and four, bur that it is not possible with larger quantities. There is a limit 

of competence in subitizing and thus it is plausible to 

use this knowledge by structuring the cubes that re-

present the boys and the girls (Graphic 2). We get 

‚buildings‘ that make these concrete numbers 

perceptible. With these two buildings, the question 

can be answered by every child and there is no need 

for verbal counting. 

Every child can find the answer by perception even 

in this quite huge number range. 

 

This has a strong effect on children in that they do not 

have to be convinced and nothing needs to be trained, 

thus there is no need for teaching. Arithemtic stays a 

practical experience close to real problems in the 

child’s reality, and therefor close to the child’s individual cognitive abilities. 

‚So many‘ girls. ‚ ‘so many‘ boys. Counting is not necessarily a verbal process. The number 

does not emerge out of the number word sequence as the number already exists.7 This is 

therefore the new experience.  

 

C: Words, Symbols and Signs (Language and Scripture of Arithmetic) 

Numbers up to four can be distinguished without verbal counting, but rather by subitizing. If 

we put one, two, three or four cubes under our hand and lift the hand for just a part of a second, 

children are able recognize the number. We just need words for what we see. One, Three, Four, 

Two – it is reasonable to give words to these visible differences. 

The experience of naming the number without counting fosters the understanding that a number 

is not only a collection of singletons but also a single whole. Thus, III is not only three in sense 

of three singles but also a trinity that is different from a fourth or a pair. 

 

Number words are a medium of communication as they describe value. Verbal counting 

becomes necessary when perception does not allow naming a quantity spontaneously. 

Importantly, verbal counting is a help in finding the word; it is not a process of creating number. 

 

Observe the building in figure 3. Maybe you first view the two 

trinities. 

Then you can describe the bulding with 2 ∙ 3 + 2 ∙ 3 + 1. 

Or you see the single trinities. Then the term would be 4 ∙ 3 + 1.  

If your first view perceives the layers (2 ∙ 2), your building is built 

out of 2 ∙ 2 + 2 ∙ 2 + 2 ∙ 2 + 1. 

 

 

 
7 Of course, it is possible to ask how many cubes there are exactly just as it is possible to name visible substructres like 
two, four, eight, sixteen or even to count or distinguish the the numbers 52 and 47. It is even possible to talk about the 
difference ‚five more girls‘.  It is a typical complex situation that allows natural differentiation not only for the weak 
performers but also for the very gifted. The main point is this: the starting question, the basis of the project, has been 
already completely answered by perception. The number exists, before it is counted verbally and that is why it is an 
inclusive project. 

Figure 2: More girls than boys 

 

Figure 3: Which parts do you see? 
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Let us do it the other way round. Take cubes and lay a 3∙3-structure. Now put a 2∙2 as a second 

floor and on top a last single cube. This building-manual we can write with 3 ∙ 3 +  2 ∙ 2 +  1. 

 

Every building can be described in terms and each term can be understood as a construction 

manual for a building! Every building provides an opportunity to talk about visible numbers 

and about multplicative structures, and it is an occasion to also write down the words in the 

scripture of arithmetic. Every term is an oppotunity to translate the signs into material reality. 

Working in this field helps children to overcome the particular hurdles three and four as set out 

above. Children become familiar with numbers such as 1, 2, 3 and 4 as cardinal wholes, and 

they get used to recognizing structures of 4, 6, 8 and 9 built out of smaller parts. This is a first 

step towards the understanding of number in the part-whole-scheme. 

 

D: Concrete Calculations (Supporting Structures, Not Verbal Counting) 

The entry into calculation, too, must support this important change in number concept. In the 

beginning, computation should be less a question of finding the correct result than of learning 

about operations and structured numbers. This starts at the first week in school! 

 

If learning to compute has the goal of developing number concept, we must provide tasks that 

focus numbers as wholes and as structures of wholes. If we want to prevent solidified counting, 

we should not give tasks that are easily solved by verbal counting. Therefore, the familiar 

approach of starting with addition is counter productive. 

A child whose number-concept is based on (a certain level) of number word sequence will solve 

3+4= easily by her or his way of counting. There is no natural disturbance that demands a 

change in concept. The following subtraction will be solved in a fitting interpretation. Namely, 

either by counting backwards, or, more often, by using fingers or a manipulative and count 

forward three times. (7 − 4 =  3, because first the counting what is there: One, two, …,six, 

seven and then putting singles away: One, two, three, four, and at the end counting what stays: 

One, two, three.) 

Manipulatives such as fingers, chains of pearls, or the abacus in a 20 number range are used as 

a counting aids. Teachers show and explain how those manipulatives have a structure with five 

and ten that can be used. However, weak performers do not integrate this information. When 

they are on their own, they return to the verbal counting procedure that is deeply rooted in their 

understanding of number. The correct result confirms that they have done well and thus they 

are held in wrong thinking and they stuck in a dead-end. 

 

Constructivism emphasizes that accomodation arises only when assimilation fails (von 

Glaserfeld 1997). Therefore, the question is which entry in calculation provides such a 

disturbance? Which operation focuses structure instead of counting? Which sequence of 

operations helps the child to finally solve additions and subtractions within the framework of 

the part-whole-scheme? 

This is easy to solve by not starting with 3 + 4 = but with 3 ∙ 4 =! 

 

- Starting Calculation by Multiplication and Division 

Starting with multiplication instead of addition creates an inclusive situation. Unlike with 3 +
4 =, no child in first grade will know the answer for 3 ∙ 4 =, and therefore this task does not 

divide the class. Every single child needs to approach the meaning of this operation and the 

possibilities of the solution. However, every child is able to understand the problem when it is 

translated into a real situation such as: There are 3 children, and every child has 4 cubes. How 

many do they have altogether? 
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In this introduction, the calculation happens at the level of reality. Every child understands what 

is going on. Even the child who might not be able to count up to 12 and whose answer might 

be ‚so many‘ understands the concept of multiplication. 

The next step is therefore to transform the calculation from reality to the first level of number 

building, to analog mapping (Figure 4). It is the stoneage-level, when concrete numbers were 

used in concrete counting, and it is thus the lowest level of using a number. 

 

Counting processes in class, as already described, 

create numbers by using cubes as single unit items. 

Patterns and buildings make it possible to talk about the 

perceptible numbers up to four. Number words and 

number signs are connected with these first numbers. 

Operation signs become relevant when descriptions of 

patterns and buildings are written down. 

Parallel to this process, the same numbers and signs 

emerge in computing tasks when we take the same 

cubes. Thus, a ‚4‘ out of a counting process or in a 

building shows the same cardinality as in the task 3 ∙
4 =. 

 

The cubes that are used in a concrete calculation are not 

manipulatives nor are they illustrative or visual aids. Thus, they do not visualize abstract 

symbols as this transition is already done by translating the abstract task 3 ∙ 4 = into reality. 

The cubes and the cones map this reality onto the ‚calculation carpet‘8: Three children (cones) 

with four cubes each. The cubes are concrete numbers! 

Children who do 

not know the 

number signs, get 

a ‚number sign 

table‘ (Figure 5). 

This makes it possible for all children to start to work on the same tasks. And all children can 

find the results by acting with concrete numbers. 

 

To start with multiplication has the advantage that all children are willing to calculate with 

concrete numbers. There is nothing discriminating in calculating by acting. In addition, this 

acting shows significant advantages with respect to developing the number concept in a 

direction of numbers as a whole and the concept of structured numbers as shown here: 

 

- By laying  3 ∙ 4 =  on the carpet, a counting child will count the first four and the second, 

and maybe the third also. With every new task the child will learn that the second and 

the third factor looks same as the first. Thus, when they have identified the first factor, 

they can just rebuild the others by perception. 

- Only giving tasks with the factors zero to four will consolidate the visual concept of 

these concrete numbers. This allows children to name them by subitizing and to grab 

them at once. The items don’t need to be counted by verbal counting. 

- The solution of 2 ∙ 3 =/3 ∙ 2 =  or 3 ∙ 4/4 ∙ 3 = shows the same result. This can easily 

be understood: Children only need to put the corns on the other side of the rectangle. 

This eqality can be seen and understood even better when it is connected with the 

experience of patterns in buildings: Every rectangle (of cubes) can be named in two 

ways, depending on the side of view. 

 
8 All calculation happens on a carpet. This helps children to focus on the act of calculation and the partcipating numbers. 

Figure 4: Entry by Multiplication 

3∙4=12 

 

Figure 5: Number sign table  (4 / four) 
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- Many children start to memorize 6 as a double-three, 8 as a double-four or 9 as three 

threes.9 They build up the concept of numbers constructed out of smaller numbers. 

- The following operation division allows the insight that operations might be reversibly 

related. The solution of 12: 3 = (There are 12 cubes. Three children share them. How 

many does each get?) shows the same picture as the multiplication 3 ∙ 4 =. (Every child 

gets four, because three times four equals twelve.) 

 

To start with multiplication followed by division helps children to build up a cardinal view on 

operations and supports the aspect of operation in correlations. This sequence supports the 

change in number concept in direction of numbers as structured wholes that is the fundamental 

prerequisite for calculations based on the part-whole-scheme. This start makes it possible to do 

this work in an inclusive setting where all children work on the same tasks with the same 

methods. 

 

 

- Subtraction Before Addition 

If we use the cubes as concrete numbers and 

accept calculation as the solving of a task 

concerning quantity or size, addition is an 

operation that merges two parts. 

This has the effect that the result often 

overruns the limits of perception even in small 

additions like 4 + 2 = (Figure 6) and this 

means that the result must be determined by 

counting. 

 

If we instead solve the counter-operation, the 

task 6 − 2 = on the level of analog mapping, 

things are different (Figure 7). Though the 

minuend must be counted, the operation itself 

and the finding of the result is possible on the 

basis of subitizing. Two cubes can be grabbed 

at once and the remaining four can be 

perceived at once. This supports the concept of 

numbers as a whole. 

 

If the subtrahend ‚Two‘, does not disappear in the operation, because subtraction means ‚Take 

away and let lie!‘, the student realizes that subtraction is a form of segmentation. It splits the 

minuend into one part that is taken away and one part that remains. Here we get a second 

argument as to why subtraction should be first and addition should be second: The evidence of 

the partition makes it possible to take notice of the operational context. It is obvious that when 

6 − 2 = 4 the task 6 − 4 = can be solved with 2. Both subtractions split 6 into a 2 and a 4.  

Further, it is natural to realize that uniting the two parts 2 and 4 will rebuild the 6. Addition 

from the very beginning is something that is recognized as a task in the part-whole-scheme. 

Addition and subtraction are counter-operations – one merges what the other has divided. From 

6 − 2 = 4, we find 4 + 2 =  6 and 2+4 =  6. Subtraction as an action on the level of analog 

mapping leads directly into the operational connection of partition, addition, and subtraction. 

In other words, it leads into calculations in the part-whole-scheme. 

 

 
9 This is not for early learning of multiplication tables, but it is rather an early opportunity to get acquainted with 
numbers that are built out of other numbers: It is a first evidence of the part-whole-scheme! 

Figure 6: Addition                𝟒 + 𝟐 = 𝟔   

  

Figure 7: Subtraction           𝟔 –  𝟐 =  𝟒  
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There is a third aspect to the curricula I recommend that is used to root the thinking in the childs 

concept of number and operation. The children are not only given simple subtractions and 

addition but also the whole bandwith of equations. 

 

This starts in about the sixth week in the very small 

number range up to 2, 3 and 4 and is carefully 

extended to 5. Always in connection with the 

‚Zerlegungshaus‘ (Figure 8), where the different 

partners have to be filled in. 

 

After filling in the possible partitions of three, the 

child works on a sheet with tasks like 

2 + _ = 3 ,  _ + 1 = 3 ,  3 = _ + 0 ,  3 = _ + 3 , 

3 − 1 =_  ,  3 − _ = 1 ,  2 = 3 − _ . 

If this works for ‚three‘ without counting, the next 

step consists of tasks with one, two and three 

mixed. And if this works, the number range is 

extended to four and then to five. This deceleration 

guarantees that children gain trust in calculation 

without counting. They come to understand that 

verbal counting is an aid for when the partitions are not known. Verbal counting is not the 

calculation that we are aiming at. Rather, it is an auxilliary because of a lack of knowledge. 

 

 

E: How to Encourage Concept Development 

The use of concrete numbers on the level of analog mapping purely without any further 

didactical additions helps children understand the cardinal basis of number and operation. Every 

intervention, for example by putting the cubes on a 20th-field, prevents the intuitive natural 

acting of the child and therefore limits the options of tasks. Multiplication and division do not 

make sense on such a field and are nearly impossible by using a 20-abacus or a pearl-chain. The 

realisation of a subtraction in form of a partition is equally impossible or, at least, it does not 

give a clear picture. 

 

All the familiar manipulatives have been invented in order to visualize an idea that does not lie 

in the focus of the learner. The power of five and ten, for example, are worked into those fields, 

chains, and abacuses, in order to introduce the idea into the childs thinking. However, 

experience and research show that this does not necessarily happen (Cobb&Wheatley 1988, 

Lorenz 1998). 

 

However, starting with concrete numbers allows the child to calculate intuitively and correctly. 

Practical calculation is just a use of daily experiences thereby taking more or giving away or of 

sharing and multiplying. Thus, it is nothing new! It is only new in the sense that it happens in 

analog mapping on a calculation carpet. 

This intuitive acting leads to problems when numbers become bigger and when numbers need 

to be named. It is the experience of a problem that legitimizes the intervention by a teacher. 

There needs to be a disturbance for a child to be open to accomodation. I have described such 

stitations when the task of comparing the cubes of boys and girls was not easily solved and, 

here, it makes sense to intervene in order to explain the reason for the problem and to 

demonstrate the limits of perception as well as the useful effect of structure and patterns. A good 

intervention does not aim towards an unknown future. It aims to solve a present problem! 

 

Figure 8: Zerlegungshaus of 2, 3 and 4 
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If the intervention is a good one, there is no need for a long explanation or for training. The 

child understands immediately, and he or she is capable of using this hint from then on. If, on 

the other hand, the child needs a lot of words and teaching, there is something wrong. Mostly 

this happens when there is too much future in the intervention, which means that there is too 

much of what the child is not able to  understand from his or her actual experience. 

 

When children have begun to understand that 

addition joins parts that have been parted by  

subtraction, it makes sense to keep those parts visible 

(Figure 9). Now it is the point to introduce two-

coloured cubes for use in addition. 

 

When children work on solving tasks such as 6+8=, 

they find that neither summand can be controlled 

visually if they are built out of singles and that the 

result therefore must be counted. It is evident that 

both problems disappear when a concrete fiver makes 

six perceptive as a 5/1 and eight as a 5/3. 

And if we lay the two concrete numbers under each 

other, we can see the result ‚14‘ immediately (Figure 

10) because the two fiver build ten and the rests one 

and three build four. 

 

It is a fiver that is introduced and not a tenner! The 

tens, at this point in development, are not apparent to many children. Tens become important 

when the number range develops in the direction of a hundred. In the range up to 20, there is 

no need for tens. The five is legitimate because it it possible to overcome the limit of perception, 

which is four. This is why in cultural history there is the five before the ten. And that is why 

children spontanously understand the relevance and the worth of the ‚power of five‘ (Easley 

1983, Flexer 1986, Gerster&Schultz 2004), at least, when we gave them the chance to 

experience the problem. 

 

Tens become important and their relevance in our number system is not experienced until the 

recurring sequence of ones up to ten becomes apparent to children. This happens when they 

start counting to one hundred. Tens become equally important when decimal structures need to 

be named. This is possible before (!) the number sequence is secure. This, too, is something we 

can learn from cultural history (Menninger 1979) and that we can translate into primary 

didactics. I discuss this important aspect in the next section. 

 

F: Lookout and Repeat as a Permanent Principle 

Knowledge grows step by step, but not in the sense of one perfect step after the other. It is a 

process of gradual approximation in parallel fields, and it needs groping movements of thought. 

Its development needs reassurances in order to arrive at an assured knowledge. Some important 

aspects such as the recursive decimal structure can only be understood in a larger number range. 

On the other hand, calculation without verbal counting needs a view on structures and starts in 

a smaller range. 

Time is needed to build up calculation in a part-whole-scheme up to ten. We always have to 

play in both fields: securing calculation in the small number range and building up the 

knowledge of the large two and three digit numbers. 

 

The introduction of the two digit number range and its translation into signs and words starts 

early. In fact, it starts in the 5th week of school when our ‚school-day-counter‘ overcomes 23 

Figure 9: Holding the summands visible 

  
Figure 10: 6+8=14 
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(Rödler 2014). Now it is possible to experience and discuss the connection between the two 10-

rods and the three cubes and the written number. 

 

This concept of numbers built out of 

decimal structures becomes central  when 

the hundredth school-day occurs. On the 

school-day-counter, the ten tens are 

changed into a hundred. Keeping on with 

concrete counting and writing the number 

signs daily helps children to understand 

that a sign like 111 does not mean that 

there are three ones. The school-day-

counter shows that the ‚1‘ in a place value system can stand for very different value (Figure 

11). 

 

In parallel, the children sort big numbers by tens and ones and lay tens and ones in patterns 

(Figure 12). This, too, allows children to connect the results with the written number sign. In 

this process, again, every child can take part and this is possible because we have lowered the 

level of abstraction.10 All a child needs to be capable of is to count up to ten, or at least lay pairs 

of peas to each finger of one hand to create a heap. 

 

We want to see the quantity as clearly as a written number, and there should be no more 

counting when the number is named. This becomes possible when we lay the tens and ones in 

patterns. This recurs to the very beginning, and very weak performers can use this entry into 

the large number range at least for securing the small range up to nine and the one digit number 

signs. But for the vast majority, this connection of concrete number, laid in perceptive decimal 

patterns and corresponding number sign repeats not only structures numbers up to nine but also 

clarifies the cardinal basis of our decimal place value system. 

 

- Which picture shows 29 peas? 

- What is the connection between the number sign and the cardinality we see on the first 

carpet? 

- The ‚2‘ does not mean ‚two‘. It means two heaps. The ‚2‘ is a ‚twenty‘ not a ‚two‘! The 

‚2‘ is not a number. It is a digit. And it contains the whole twenty. 

 
10 No more concrete fiver, no more 5-cent-coins, no more two coloured cubes: the concrete number shows up as 
countable in homogeneous ones. After having calculated on the level of concrete bundling and symbolic bundling, we 
go back to the level of analog mapping. This lowering of abstraction is always used when numbers are large or problems 
become complex! 

Figure 11: The school-day-counter   (111 days in school) 

 

Figure 12: Concrete number and number sign 

29    35     20 
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- That also applies for the peas on the third carpet. The whole ‚twenty‘ is included in the 

‚2‘.  

- So why do we need the ‚0‘? – Just let it away. What stays? ‚2‘. We read two. Two ones. 

But there are no ones. The ‚0‘ tells us: There are no ones! 

The sign 20 says: Twenty and nothing. 

 

In this way, it is easy to introduce all children in first grade to the cardinal meaning of two (and 

three) digit numbers and to let them understand how to write those numbers with our place 

value system. 

 

On this basis, we also can start with computation! 

If, for example, we ask how many peas there are 

together on those three carpets, the result can be 

found by acting. We only need to sort heaps and 

ones. 

It is evident then that the nine peas need only one 

more to build another heap and so we move one 

out of the five and find the result: eight heaps and 

four; eighty and four: 84 

 

Tasks like 34 + 17 = or 45– 28 = are an 

exercise in the understanding of two digit 

numbers. They are a practise in understanding the place value system, and they provide a first 

insight into operational proceedings.11 The goal at this point is not to practise mental calculation 

with large numbers. Rather, the goals are more basic and children should understand the 

following: 

- tens are built out of ten ones, which is a prerequsite for the concept of ‚reversible tens‘.  

- multi digit numbers are built out of tens and ones. 

- sometimes tens must be dissolved into ones. (For example, in 45– 28 = ). This means 

that they are a reversible structure. 

- patterns allow spontaneous naming of numbers, and this makes it possible to use this 

concrete numbers for calculation without counting. 

- patterns allow spontanious answering, whether an addition creates a new ten (or a 

subtraction effords to dissolve a ten) or not. 

 

This example from the middle of the first grade proves just how complexity allows lookout and 

repetition in the same situation. Complexity creates inclusive learning by natural differentiation. 

Weak and poor performers are equally addressed and challenged. Differentiation therefore does 

not split the class and it happens in a common learning process while doing the same things on 

the same tasks.  

It is also an example of interventions that are orientated towards the children’s focus and 

concept of number. By lowering the level of abstraction, it is possible to get into large number 

ranges and into complex questions. Raising the level of abstraction by using concrete or 

symbolic bundles helps to rationalize concepts of computation.  

 

Summary: 

 
11 It is evident that this way of starting calculations leads to completely different number concepts and, in particular, to 
different concepts of operation other than a path that is based on verbal counting and the word sequence of ones and 
tens. Just compare this concrete calculation with the solutions of the students in Cobb&Wheatley (1988). We don’t have 
to count verbally when we are capable of using structures. 

Figure 13:  The sum of 29, 35 and 20, 
calculated on the level of first-graders 
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The perspective of cultural history provides a history of concrete numbers and concrete 

computation. It begins with numbers that are created by analog mapping. They then develop by 

integrating patterns and bundles to maintain the detectability, even in larger number ranges. 

Number words develop out of the need to talk about what is perceptive. New number words are 

created when patterns, structures, and concepts of bundling combine to overcome the 

limitations of perception.  

Historically, the extension of number range happened in the interplay of concrete number, 

number word, and number sign. Larger and larger quantities were identified, named, and 

designated. On the bases of this knowledge and experience, the verbal number sequence arose. 

 

The verbal number sequence was not the starting point. Rather, it is a late conceptualization. 

Maybe this is the reason that our cultural approach to reversing this natural order fails for some 

children who know the verbal sequence but do not understand the cardinal basis. 

The fact that it needed thousands of years to get to a number word sequence, to get into decimal 

bundling and into concepts of reversible levels of decimal value, and, finally, to develop the 

concept of writing number signs in a place value system shows that there are hurdles to 

overcome. This should make us sensitive to the fact that it is  precisely the same set of hurdles 

that students must overcome currently when they start with calculation. Whereas humans 

needed thousands of years, we should focus on these particular hurdles and give children the 

time and experience that is necessary to develop the concept of number. 

This development happens when children are drawn into concrete counting and concrete 

calculation. It is based on the childs own concept of counting because this development happens 

on the basis of the child’s thinking, the child is capable of reflecting on what is happening and 

can therefore improve the procedure. 

To enable perception is a key driver in this process. Without perception there is no control. In 

order to sustain perception, the number concept must be developed. A developed number 

concept is the basis of reasonable computation as it allows the use of structures rather than 

simple counting. 
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Abstract 

Math anxiety remains a critical issue affecting student performance and confidence across grade 

levels throughout the world. This paper looks at the impact of math anxiety on students and also 

how using letters instead of numbers with Sudoku puzzles can perhaps alleviate math anxiety and 

number anxiety as an alternative to doing Sudoku puzzles and turning students on to the logic of 

magic squares and Sudoku puzzles.  This paper shares data on math anxiety levels by grade level 

from a study, provides some examples of some Sudoku puzzles with Greek letters and our English 

alphabet along with much research, and recommendations of best practices for teaching math and 

addressing such concerns in light of the reality of math anxiety existing in a world where we are 

preparing young people for a STEM world. The data in this study shows an upward trend in higher 

math anxiety levels as students increase in grade level. It is evident teachers need to do more 

starting in the early grades and each grade to use best practices for teaching math and also use 

math anxiety reduction strategies to work on reducing math anxiety as students advance each grade 

level. Research, best practices for teaching mathematics, strategies, and a survey are included.   

Keywords: Math Anxiety, Best Practices, Sudoku Alternative, Attitudes, STEM 
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Directions: 

Letter Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” 

(made up of 3 x 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with 

the letters a to i, without repeating any letter within the row, column or square. 

Figure 1.  Sudoku Puzzle Using English Alphabet 

Can you solve the above Sudoku puzzle with letters as opposed to the traditional numbers? [See 

Figure 1.] Would it be easier for young people or people afraid of numbers or math to solve these 

puzzles if they used letters instead of numbers? When many people see numbers they panic, many 

people today have math anxiety and numbers and math cause them panic and make them freeze or 

shut down. Maybe an alternative to Sudoku can help.  According to Danesi (2019) ““Sudoku has 

a simple structure, a simple set of rules for solving it, but it still presents a challenge. Unlike the 

crossword, however, it requires no "external knowledge" (names of people, events, linguistic 

knowledge, etc.). It just requires us to place symbols (usually the first nine digits) in cells in a 

logical way. Despite its Japanese name, the concept behind Sudoku crystallized in the United 
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States in the form of "Numbers in Place," which appeared for the first time in the May 1979 issue 

of Dell Pencil Puzzles and Crossword Games magazine. It went virtually unnoticed, except by 

readers of the magazine. By the way, the late architect Howard Garns is pegged as being its 

inventor. In 1984, an editor for Nikoli magazines in Japan came across one of the puzzles, changed 

its name to Sudoku (meaning "only single numbers allowed") and included it in his magazines. 

Sudoku yet, since they could be solved in more than one way. But they had a similar layout. And, 

of course, there are magic squares, which go back to ancient times in China. Magic squares are 

number placement puzzles, but are solved by considering the actual value of a number since, in a 

magic square, the rows, columns, and diagonals must all add up to the same total (known as the 

magic constant). After being told by the AP reporter what Sudoku was all about, I pointed out to 

her that the idea can probably be traced back to magic squares or to "Latin Squares," invented by 

Swiss mathematician Leonhard Euler (1707-1783). A Latin square is a square arrangement of 

digits placed in such a way that no digit appears twice in the same row or column. Sudoku, I 

mentioned to the reporter, seems to simply expand upon Euler's invention. Sudoku is a simple 

puzzle with no tricks or twists built into it. In its usual form, it is made up of a nine-by-nine grid, 

with heavy lines dividing it into nine three-by-three boxes. The challenge is to fill the layout with 

the digits from 1 through 9, so that every row, every column, and every three-by-three box contains 

these digits, without repeating-that is, once and only once. The puzzle-maker provides some of the 

numbers in the layout, and these are the initial clues to be used in solving the puzzle. How is the 

level of difficulty determined? I am not sure, really, although the implicit principle seems to be 

that that the fewer the initial clues given, the harder it is to solve the puzzle” (Danesi, 2019).  One 

of the oldest known Latin Squares known today is the Sator Square. This Square was supposedly 

found amongst the ruins of Pompeii in some volcanic ash as a result of the Mount Vesuvius 

eruptions in 79 AD, they were pressed in clay or perhaps carved in stone that were found after, 

more about it shows up on Glenn Westmore's blog (glennwestmore.com.au). Nonetheless, magic 

squares have been around for maybe more than 4000 years, used and found in Europe, China, and 

Africa and the Sudoku puzzle is based on magic squares.  

When I tell someone that I am a math teacher, almost always they say, “I hated math” or “Math 

was my worst subject.” Unfortunately, many people do not like math or have had bad experiences 

with taking the subject. The purpose of this review math anxiety research and what can be done to 

address such concerns while looking at Sudoku puzzles and connecting them to letters to more 

easily relate them to young learners. In addition to determine some other demographic information 

about math anxiety and preferred teaching styles for learning math. Many statistics/percentages 

are shared from a larger study conducted using K-12 students taking math courses. Some ideas for 

using letters/symbols instead of numbers for Sudoku puzzles is also explored. Negative attitudes 

toward mathematics and math anxiety are serious obstacles for students in all levels of schooling 

today (Süren & Kandemir,2020; Widjajanti, Listyani, & Retnowati,2020; Furner, 2021: Furner, 

2019: Furner, 2017; Geist, 2010).  Yet only limited attention has been devoted to the antecedents 

of math anxiety, which may include social factors like exposure to teachers who themselves 
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suffered with math anxiety (Brewster & Miller, 2020; Maloney & Beilock, 2012). This study 

looks at the math anxiety levels among students K-12.    

An elementary school principal from the school that this data in this paper is from told the author 

once that she always interviews all new students coming into the school and always asks students, 

“What is your favorite subject?”  She said that most of the younger children always say to her, 

“math.”  The same school had decided to as part of their Southern Association of Colleges and 

Schools (SACS) accreditation as a K-12 international school (USA based curriculum) in 

Latin/South America to survey 25% of their students at each grade level (they have approximately 

100 students per grade), Grades  1-12, and administer the Abbreviated Version of the Mathematics 

Anxiety Rating Scale(MARS) (Alexander and Martray, 1989)  to see how their students feel about 

their math attitudes (See Figures 1 and 2).  The results are somewhat inconclusive, but the graph 

shows primarily that as students increase in grade, their level of math anxiety increases for the 

most part (Furner, 2019) (See Figures 2 and 3).  This may not be a complete surprise and seems 

consistent with the Third International Mathematics and Science Study (TIMSS) math results in 

the USA, whereas students increase in grade, their level of math achievement drops significantly 

from elementary, to middle, then to high school (Schmidt, 1998). Today in an age of preparing our 

young people for fields in the areas of Science, Technology, Engineering, and Mathematics 

(STEM), it is critical young people have positive dispositions and attitudes toward mathematics.  

 

Figure 2. Mean Math Anxiety Levels by Grade 
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Grade 2 19.3 

Grade 3 19.7 

Grade 4 18 

Grade 5 15 

Grade 6 15.7 

Grade 7 23.8 

Grade 8 34 

Grade 9 31 

Grade 10 20 

Grade 11 26.8 

Grade 12 25 

Figure 3. Raw Data of Math Anxiety Levels by Grade 

According to Reuters (2007) and the American Association for the Advancement of Science in 

San Francisco, math anxiety saps working memory to do mathematics. Often times, worrying 

about doing math takes up a large part of a student’s working memory which then spells disaster 

for the anxious student who is taking high-stakes tests.  Today math teachers from around the 

world almost have to take on the role of counselors in their classrooms to address the many students 

who dislike or are fearful of mathematics.  Mathematics teachers are encouraged to work with 

school counselors and Exceptional Student Education (ESE) teachers in helping to address the 

many math anxious students in today’s schools. It really has become a pandemic in our society 

where so many young people and adults have negative feelings and poor past experiences with 

mathematics instruction.  Metje, Frank, & Croft, (2007) believe that math anxiety is a worldwide 

phenomenon and that many people are not going into math fields like engineering and that more 

and more math instructors at the university level are not prepared to deal with the increased number 

of students who fear math to be able to teach and reach them during instruction, addressing math 

anxiety has become one of the largest challenges for a lecturer is supporting the students 

overcoming this fear of mathematics.  

Anyone today can easily take an informal poll on the street and find that most respondents will not 

report positive experiences, feelings, and attitudes toward mathematics.  However, we are now 

living in an age that depends so heavily on one being good at mathematics and problem solving.  

We are living in a world in which our students will soon be competing with young people from all 

parts of the globe for jobs.   It is imperative that our students develop positive dispositions toward 

mathematics and the sciences in an information age of which has become so technologically 
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oriented.   Young people today need to be well prepared in the areas of math, science, and 

technology for all career choices.  Nurses, engineers, architects, lawyers, teachers, along with 

many other fields will continue to use more advanced forms of technology that require one to know 

more mathematics and problem solving to perform their jobs more effectively.  Sequencing, 

ordering, patterning, logic, spatial sense, and problem solving are some of the truly basic skills 

that all careers require (NCTM, 2000).  By the time our young people reach middle school they 

have developed certain dispositions toward mathematics. Students’ confidence and ability to do 

mathematics and apply these skills in many diverse settings is essential for success; therefore, our 

young people need to be well prepared to do the mathematics of the 21st century.  

Steen (1999) found that "national and international studies show that most U.S. students leave high 

school with far below even minimum expectations for mathematical and quantitative literacy."  

Neunzert (2000) contends that we have to understand ourselves as MINT-professionals, where 

MINT is M=mathematics, I=informatics, N=natural sciences, T=technology. Neunzert (2000) 

believes that mathematics is critical for people living in the 21st Century for them to be successful.  

Neunzert feels as educators we need to encourage our students in all countries to study more 

mathematics and to see it as a tool for success in life. Most schools and states in the USA today 

are adhering to the Common Core Math Standards (National Governors Association Center for 

Best Practices (NGA Center) and the Council of Chief State School Officers (CCSSO), 2010) 

which provide math teachers core math standards at each grade level to reach all students with 

much higher and rigorous levels of mathematics for US students. Today most states use these 

standards or a variation of them for teaching and learning mathematics to better prepare young 

people for many of the STEM fields. A broad overview of common core standards in mathematics 

include number sense concepts and operations, measurement, geometry and spatial sense, 

algebraic thinking, and statistics and probability. Teacher education programs have included such 

math standards in their curriculum so that teachers are better prepared to teach to these newer math 

standards covered in our K-12 schools in the USA.  

 

Math Anxiety  

What is math anxiety? Well, to put it simply, it is anxiety when confronted with math, especially 

about one’s own performance in solving math problems. It can range from slight nervousness to 

all-out panic. This anxiety makes it more difficult for students to focus in class, learn math, and 

solve math problems. Frequently students would rather give up than have to face their fears. This 

means that they never get better at math and can therefore never overcome their anxiety. If this 

anxiety is not overcome, the student may suffer from this anxiety for their entire life, even beyond 

their time in school. Math anxiety is a well-documented phenomenon that has affected our society 

for over sixty years, and not enough is being done to address it in our classrooms or in the way we 

teach math (Szczygiel, 2020; Beilock & Willingham, 2014; Boaler, 2008; Dowker, Sarkar, & Looi, 

2016; Geist, 2010; Metje, Frank, & Croft, 2007). Negative attitudes toward mathematics and math 

anxiety are serious obstacles for students in all levels of schooling today (Geist, 2010). Beilock 

and Willingham (2014) state that “Because math anxiety is widespread and tied to poor math skills, 
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we must understand what we can do to alleviate it” (p. 29). Even Sudoku puzzles with numbers, 

because of the numbers can be anxiety provoking for math anxious learners.  

What Causes Math Anxiety? Math anxiety is caused by a combination of external and internal 

factors; however, we cannot change internal factors within the student, so as teachers it makes 

more sense to focus on what we can control (Chernoff & Stone, 2014). Studies show that math 

anxiety is caused primarily by the way the student learns math: the type of authority the teacher 

uses, an emphasis on right answers and fear of getting wrong answers, requirements that the 

student respond with an answer sooner than he or she might be ready, and exposure to the rest of 

the class and their potential condemnation of a student who responds poorly, in short the traditional 

way of teaching math (Chernoff & Stone, 2014, Finlayson, 2014). Traditional teaching 

emphasizes: 

• “Basic skills 

• Strict adherence to fixed curriculum 

• Textbooks and workbooks 

• Instructor gives/students receive 

• Instructor assumes directive, authoritative role 

• Assessment via testing/correct answers 

• Knowledge is inert 

• Students work individually.” (Finlayson, 2014) 

Unfortunately, these methods can cause and increase math anxiety in the classroom (Finlayson, 

2014). 

According to Demirtaş & Uygun-Eryurt (2020) math anxiety can also be transmitted and learned 

from others, usually from parent to child or teacher to student, but occasionally student-to-student. 

If someone teaching math, whether to their own child or to a class, experiences math anxiety, they 

are more likely to rush through things in order to “get it over with”. They would not be sure of 

their methods, so they would focus more on the correct answer. Like the student with math anxiety, 

they are also likely to become exasperated and give up rather than continue helping the student. 

This teaches the student that math is something to be afraid of and that, if they are not good at it, 

their parent or teacher will become angry with them and potentially leave. They also learn in class 

that, if their peers see that they are bad at math, they will be ridiculed publicly. Embarrassment is 

a very big deal for children, especially in middle and high school. 

Another problem for those who suffer from math anxiety is the nature of anxiety itself. According 

to Rubinstein et al (2015), anxious individuals tend to focus on negative stimuli more than positive 

stimuli, essentially making themselves more anxious. The same thing is true of individuals with 
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math anxiety; the only difference is that for people with math anxiety, math is negative stimuli 

(Rubinstein et al, 2015). This suggests that math anxiety could be handled through therapies 

designed to lessen anxiety, such as cognitive behavioral therapy and exposure therapy (exposing 

a person little by little to the thing that they are afraid of) (Rubinstein et al, 2015). While this is 

not something that a teacher could do with a full class to manage, it is something that tutors could 

be trained to help with; naturally, a licensed therapist would be the best option, but not all therapists 

are trained to help students with math. A combination of the two fields would be optimal.  

Math anxiety remains a perplexing, persistent, and only partially understood problem from which 

many people suffer, NCTM (1991, p. 6) says, "Classrooms should be mathematics communities 

that thrive on conjecturing, inventing, and problem solving, and that build mathematical 

confidence.   Unfortunately, currently, many kids and adults do not feel confident in their ability 

to do math. Mathematics anxiety in students has become a concern for our high-tech world.    Is it 

possible that only about seven percent of Americans have positive experiences with math classes 

from kindergarten through college study (Jackson, C. D. & Leffingwell, 1999)?   Burns (1998) in 

her book Math: Facing an American Phobia tackles an interesting subject and has found that two-

thirds of American adults’ fear and loathe math.  Whether it is 93% or two-thirds of Americans 

experiencing negative math experiences it is clear that there is a problem and we need to do 

something about it as educators.    If math anxiety is such a problem, one has to wonder why isn't 

as much being done about it in our schools today? 

Evidence of students’ poor attitudes and high levels of anxiety toward math is abundant today.   In 

the midst of a technological era, declining mathematics (math) scores on the Scholastic Aptitude 

Test (SAT) have been widely publicized.   Some reports have shown that American students rank 

last when compared with students from all other industrialized countries on 19 different 

assessments.  The TIMSS study has shown a trend in U. S.  students' math scores as they decline 

as students increase in age group from grade four to grade twelve (Schmidt, 1998).    What is 

happening to our students that so many of them lose interest in math and lack the confidence to do 

and take more math classes? 

How Do We Repair Math Anxiety Concerns in our Schools? 

To put it simply: better teaching. Finlayson suggests the constructivist style of teaching which 

emphasizes these ideas: 

• Begin with the whole – expanding to parts in learning process 

• Pursuit of student questions/interests 

• Use primary sources/manipulative materials 

• Learning is interaction – building on what students already know, constructivism 

• Instructor interacts/negotiates with students 
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• Assessment via student work, observations, points of view, and tests. Process is as 

            important as product 

• Knowledge is dynamic/change with experiences 

• Students should work in groups (2014) 

This style of teaching is very different from the traditional style which can cause and increase math 

anxiety. The constructivist style is much less intimidating and does not emphasize timed 

assessments or correct answers; instead, it focuses on the process of doing mathematics. Students 

are also likely to feel more engaged in class due to the more participatory style of teaching, making 

them want to work harder, instead of “getting it over with” oblivious of how this affects their 

performance. 

However, frequently the problems in the classroom that cause math anxiety are due to a teacher 

with math anxiety (Chernoff & Stone, 2014). These teachers choose the easiest ways of teaching 

(rote memorization of formulas, practice using one method to get one right answer, timed tests, 

etc.) in order to minimize their own math anxiety, not realizing that they are passing their own 

anxiety onto their students (Chernoff & Stone, 2014). Therefore, we must first remove math 

anxiety from teachers, so they may teach their students not to experience math anxiety. Math is 

not inherently frightening, but that is the message that is modeled and expressed to many children, 

even from their parents and teachers. 

As mentioned previously, math anxiety is a form of anxiety and therefore treatable through the 

same types of therapy we use to treat general anxiety and phobias (Rubinstein et al, 2015). This 

may prove especially helpful for adults with math anxiety, especially teachers; by working to 

handle their own math anxiety, adults would be able to prevent transmission of their anxiety to 

their children or students (Chernoff & Stone, 2014). 

Discussing the Data from the K-12 School’s Math Anxiety Levels Presented in this Study 

The major trend from this data shows a notable upward trend in math anxiety in students as 

students increase in grade level and age (See Figures 2 and 3). As students take more math classes 

and are exposed to more math teaching, unfortunately their level of math anxiety increased in this 

data set of a K-12 International School in South America with a US-based curriculum. In 

discussions with the administrators and teachers, little is often done year to year with students as 

they pass from grade to grade in respect to addressing a students’ math anxiety. This math anxiety 

can fester and continue to pass on and increase as students continue through their studies. The 

author of this paper worked with this school for two years during this data collection in the school 

as part of the SACS accreditation. He also worked as the 9th Grade Geometry teacher for the first 

year prior to the data collection year and has extensive expertise in math anxiety research and 

implemented extensive math anxiety reduction and prevention techniques.  The author employed 

these techniques with the 9th Grade mathematics students the year prior to the data collection. It is 
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visible to see that the 10th Grade Students had reduced levels of math anxiety, likely due to the 

preventative and reductive math anxiety techniques used. Preventative strategies: like using “Best 

Practice” in mathematics include using: manipulatives, cooperative groups, discussion of math, 

questioning and making conjectures, justification of thinking, writing about math in math journals, 

using a problem-solving approach to instruction, content integration, using technology Geometer’s 

Sketchpad, assessment as an integral part of instruction, such as homework quizzes and math 

portfolios.  Along with math anxiety reductive strategies which include using: psychological 

techniques such as anxiety management, desensitization, counseling, support groups, 

bibliotherapy, and classroom discussions of how students feel about math and what they are 

learning.  These insights can better help to understand why the 10th Grade class had significantly 

lower math anxiety than the other middle school and high school grades. Students in elementary 

school often start out with little math anxiety, but this anxiety can increase as students go from 

grade to grade in their learning process.  It is critical in an age of STEM (Science, Technology, 

Engineering, and Mathematics) that schools and teachers work to correct this trend of increase in 

math anxiety age students go from Grades K-12.  More schools need to include affective aspects 

into their improvement plans, like checking for math anxiety, and then compare such data to their 

students’ achievement levels. Unfortunately, like TIMSS showed for US schools, the trend of math 

achievement went down as students increased in grade like this study shows with math anxiety 

and it is likely correlations exist with how students feel about mathematics and how they perform.  

School leaders need to start looking at both affective and cognitive aspects of learning to see the 

relationships and to better address achievement and performance of their students in mathematics 

and likely all subjects. Higgins, Furner, and Gerencser (2020) in their work with 9th Grade math 

students found bibliotherapy and some systematic desensitizing and counselling and group work 

effective in addressing students math anxiety.  

Teachers, Counselors, and ESE Teachers Working Together to Improve Math Scores 

To address the issue of math anxiety, classroom teachers need to team up with school counselors, 

ESE teachers, and professional development experts in teaching mathematics and make this all a 

part of their improvement plan, to assess attitudes toward math to then work toward improving 

math achievement.  Teachers need to be sensitive to students’ needs, feelings, and experiences 

with mathematics.  Brigman & Campbell (2003) and Parker (1997) have found based on their 

research that when school counselors’ team up with classroom teachers they can have a profound 

effect on student achievement scores. A counselors’ psychological expertise can serve as a real 

asset to classroom teachers and students who struggle with a fear of mathematics or poor past math 

instruction experiences.   As educators, we need to remember that not all students are alike, yet all 

students deserve equal opportunities in the mathematics classroom (NCTM, 2000).  A math 

teachers’ job is not only to teach the subject area.  One of NCTM’s goals for all learners was that 

as math teachers, we should help students become confident in their ability to do mathematics 

(NCTM 1989). NCTM (1989, 2000) contends that students should be exposed to numerous and 

varied interrelated experiences that encourage them to value math, to develop mathematical habits 
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of the mind, they should understand the role of math in human affairs: they should be encouraged 

to guess, read, write, make conjectures and make errors so that they can gain confidence to solve 

complex problems.  With this in mind, it is clear then that math teachers are not only instructional 

leaders, they are also counselors and confidence builders for their clients, their students. 

Math anxiety may be defined as an inconceivable dread of mathematics that can interfere with 

working with numbers and solving word problems within a variety of everyday world and 

academic situations.   NCTM (1989 & 1995) recognizes math anxiety as a problem and has 

specifically included in its assessment practices as a teacher's job to assess for their students' 

mathematical dispositions as NCTM Standard #10 (NCTM, 1989) (See Appendix A) 

Today there are many things teachers and schools can do to help prevent math anxiety from 

occurring in our students.  It really is a complicated matter and may involve what happens to 

students in and outside of the classroom.   Both parents and teachers can play vital roles in helping 

to develop positive dispositions toward math in students.   It is important that teachers check for 

these positive attitudes and dispositions toward mathematics at an early age.   Often students can 

develop such anxieties toward math very early on in their math classrooms due to poor teaching, 

drill and practice, strained testing situations, parental and teacher insecurities about their own math 

abilities, etc.   The elementary and middle school years are critical to developing positive 

perceptions toward mathematics in children.   The NCTM (2000, 1995, & 1989) has made 

recommendations for preventing and reducing math anxiety (See Appendix A).   

Reducing math anxiety is much different from preventing math anxiety.   Teachers need to work 

with school counselors and to act as psychologist or counselors themselves to help lower or 

overcome such anxiety toward math in their students.  It is critical that math teachers team up with 

school counselors to address reducing math anxiety in their students. Researchers in math anxiety 

propose systematic desensitization (Higgins, Furner, & Gerencser, 2021; Arem, 2003; Furner, 

1996; Schneider & Nevid, 1993; Hembree, 1990; Trent, 1985; Tobias, 1993; Olson & Gillingham, 

1980) as one of the most effective approaches for helping people reduce their math anxiety. 

Systematic desensitization in the context of math anxiety may be defined as a gradual exposure to 

the mathematical concepts that are causing students to become distressed and teaching them how 

to cope with that fear they are dealing with.  Each time students are exposed to the math they fear, 

they should improve in their techniques in coping with their anxious feelings. Being able to talk 

about their history with math and releasing their anger, hatred and fear of the subject may be 

therapeutic in nature and then eventually students can work toward, come to terms with this 

anxiety, and overcome it (Higgins, Furner, & Gerencser, 2020). Through these types of counseling 

approaches, students will be able to come to understand that their anxiety was a learned behavior, 

which they were not born with these feelings toward math, and they can be taught to overcome 

them by consistently implementing their self-monitoring strategies to become less anxious and 

assessment and evaluation play a critical role in all of this (Ghaderi, Gask, & Jamali, 2020; 

Szczygiel, 2020).   
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How is math anxiety reduced? Teachers must help students understand how their math anxiety 

was created (See Appendix A) and work toward overcoming this fear while developing 

confidence.  As Reuters (2007) and the American Association for the Advancement of Science in 

San Francisco reported, a relationship does exist between math anxiety levels and math 

achievement levels.  Teachers can work with school counselors and be counselors themselves to 

ease such anxiety and work toward helping the students gain more confidence in doing math so 

that math achievement levels improve. In the case of the school mentioned here that is also assess 

math attitudes using the abbreviated Version of the MARS, they are using this information to work 

more closely with students to then help them overcome their math anxiety so that the school will 

hope to see high math achievement levels in the years to come.  

Alternative Sudoku Puzzles with Letters 

Students may find Sudoku puzzles more interesting and less threatening when they are presented 

with using letters as opposed to numbers since many students with math anxiety freeze when they 

see numbers [See Figures 4 and 5]. Evans, Lindner, & Shi (2011) advocate that students generate 

and create their own Sudoku puzzles and that by doing so it has many applications in having a 

better understanding of mathematics. While Sudoku really does not involve computational skills 

in math, it does involve logic and deduction, also Sudokus can be done completely without 

numbers as symbols or letters may be used instead in the creating of them. Pantaleon, Payong, 

Nendi, Jehadus, & Kurnila (2020) suggest when addressing math anxiety consider creative 

thinking approaches as part of teaching mathematics and allow students to explain and proving 

their work. Students may create Sudoku puzzles using symbols, letters, or perhaps the Greek 

alphabet, if students fear numbers, then while addressing math anxiety, they may also use letters 

as opposed to numbers in solving such puzzle and even creating them.  According to Güven, 

Gültekin, & Dedeoğlu (2020) even your children who have gone through a math program with 

hands-on and a Montessori approach can benefit from doing Sudoku puzzles, and starting with 

simple one’s like the 4 x 4 below [See Figure 4], you can show the students how to do it with 

numbers and even letters or other symbols or signs and maybe even manipulatives to have them 

fill in the grids with no repeats horizontally, vertically, and diagonally when doing problem solving 

and focusing on strategies. Posamentier & Poole (2020) contend that a lot of math can be learned 

and better understood when it is presented through problem solving. Sudoku is a great problem-

solving game using logic and deduction. Students can also use letters as opposed to numbers to 

substitute in doing the puzzles like the 4 x 4 example below [See Figure 4]. Henle (2020) talks 

about how in grades 1-5 math should be taught more with art, as an educator, the author has always 

thought this too, one may use the Dürer's Magic Square and in his artwork show such a magic 

square to create and explore other magic squares like the one below which may be simple with 

Greek letters of the alphabet.  

 Jiang, Liu, Star, Zhen, Wang, Hong, & Fu (2020) researched how mathematics anxiety 

affects students' inflexible perseverance in mathematics problem‐solving and they examined how 

the mediating role of cognitive reflection is critical as students learn math so to help prevent such 
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anxiety. There is much research on the neurological aspects of learning math, self-regulating, 

stress, and math anxiety and executive function like neural influences of task switching on 

arithmetic processing as people learn math and how anxiety is created (Choi,Taber, Thompson, & 

Sidney,2020; Gabriel, Buckley, & Barthakur, 2020; John, Nelson, Klenczar, & Robnett, 2020; 

Pizzie, Raman, & Kraemer, 2020). As students often may see numbers as more threatening than 

letters or other symbols due to some of this research, perhaps using letters instead allow students 

to solve and explore with Sudoku puzzles with such letters like the examples in this paper as a less 

threatening way to solve, deduce, and use logic without allowing the numbers to pose a threat to 

their cognitive function or bring stress, or a shutdown of the processing [See Figures 4 and 5]. 

Eventually as students get comfortable doing the Sudoku puzzles with letters, they may be 

substituted with numbers as students gain more confidence while doing them systematically 

desensitizing them to the numbers working toward developing more confidence to use numbers. 

Math anxiety and number anxiety are real and if you can teach young people how to do Sudoku 

puzzles with letters first if it is less anxiety provoking, then lead to using numbers this can help 

the students gain more confidence and success with math, as many people believe the Sudoku 

puzzles are only for “math” or “smart” people when really, they are a diversion and an exercise 

for anyone. Consider the example Sudoku puzzles below as lead-ins for such exercises with young 

learners.   

 

 

 

 

 

 

α β   

  β α 

β ε   

Δ  ε β 

 

Complete the 4 x 4 Sudoku/Magic Square with the correct Greek letters. 

Figure 4. 4 X 4 Sudoku/Magic Square Using Greek Letters 
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  Δ    β   

  λ  Ω π   ε Δ 

ε Ω   Δ  α   λ 

Ω  μ    π λ  

 ε   Ω π    

  Κ ε  μ α  Ω 

λ     Δ Ω  Κ 

Κ  π α    μ β 

β  Ω  Κ λ  Δ π 

 

Complete the 9 x 9 Magic Square/Sudoku with the correct Greek letters. Each row, column and 

square (9 spaces each) needs to be filled out with the correct Greek letters without repeating any 

letter within the row, column or square. 

Figure 5. 9 x 9 Magic Square/Sudoku with Greek Letters 

 

Summary 

Math anxiety is a major problem in today’s world. As the old adage says, “attitude is everything,” 

when students have bad attitudes toward mathematics, it can affect their lives forever. Maybe even 

make them as adults to be afraid of or not like math or doing Sudoku puzzles too. As adults, we 

need to be aware of our own anxiety in order to prevent it from being transmitted to our children 

and students; for those who are unduly impacted by math anxiety or for those who are more likely 

to transmit this anxiety to children, it may be helpful to receive assistance from a therapist. The 

data presented in this paper show little math anxiety with the early grades and increasing as 

students go up in grade. As math teachers, we need to make our classrooms a safe haven for 

students with math anxiety by altering our teaching styles; this will help all students, not just those 

with math anxiety. In order to fix this problem, we need to go straight to the source, even if that 

source is in our own anxieties. Only then can we prevent future generations from becoming part 

of the pandemic of math anxiety. Teachers of mathematics need to take on the role of counselors 

to address the math anxious students they have in their classrooms, addressing both preventative 

and reduction techniques to address such math anxiety.  

Math teachers should be teaming up with school counselors and ESE teachers to employ the many 

suggestions and recommendations mentioned in this article in their classrooms/schools to help 



  

44 
 

 

prevent and reduce math anxiety. Today, teachers need to put on their educational psychologists 

hats on in their classrooms to help address the issue of math anxiety.  Teachers may also want to 

work with school counselors as well as encourage their schools to have family math nights where 

parents come with children and together they can "do math” and see its importance and value in 

life.    As a society, we must work together to extinguish the discomfort that our youngsters are 

having toward mathematics, especially as students increase in age.   It is important that all students 

feel confident in their ability to do mathematics in an age that relies so heavily on problem solving, 

technology, science, and mathematics. Today’s educators must make the difference in our 

children’s attitudes toward math. Math teachers working with school counselors and ESE teachers 

can strive toward creating mathematically literate and confident young people for the new 

millennium.  The data in this study shows an upward trend in higher math anxiety levels as students 

increase in grade level. It is evident teachers need to do more starting in the early grades and each 

grade to use best practices for teaching math and also use math anxiety reduction strategies to work 

on reducing math anxiety as students advance from one grade to another. It would be nice to hear 

more young people and adults when asked how they feel about math say, "Math was my favorite 

subject" or "I am great at math!" not “I hate it” which seems to be more often heard by adults in 

the 21st Century.  We need to flat line this trend, not allowing it to create an escalating a bar graph 

of increases as students increase in grade level. As math educators, we need to correct these poor 

attitudes toward mathematics so not to hold young people back in their lives from pursuing STEM 

fields and/or making important decisions, maybe even allow them to like doing Sudoku puzzles 

too!  
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Standards and Strategies to Address 

Math Anxiety including the Mathitudes Survey 
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Standards and Strategies to Address Math Anxiety 

Mathematics teachers need to be counselors too… 

What NCTM says about Mathematics Anxiety and Dispositions Toward Mathematics 

 

Standard 10: Mathematical Disposition (NCTM 1989) 

As mathematics teachers it is our job to assess students’ mathematical disposition  

regarding: 

-confidence in using math to solve problems, communicate ideas, and reason; 

-flexibility in exploring mathematical idea and trying a variety of methods when 

 solving; 

-willingness to persevere in mathematical tasks; 

-interests, curiosity, and inventiveness in doing math; 

-ability to reflect and monitor their own thinking and performance while doing  

math; 

-value and appreciate math for its real-life application, connections to other  

disciplines  

 and   cultures and as a tool and language. 

 

 

 

A Synthesis on How to Reduce Math Anxiety  

1.  Psychological Techniques like anxiety management, desensitization, counseling,  

     support groups, bibliotherapy, and classroom discussions. 

 

2. Once a student feels less fearful about math he/she may build their confidence by 

       taking more mathematics classes. 

 

3.  Most research shows that until a person with math anxiety has confronted this anxiety 

     by some form of discussion/counseling no “best practices” in math will help to 

     overcome this fear. 

 

A Synthesis on How to Prevent Math Anxiety  

1.  Using “Best Practice” in mathematics such as: manipulatives, cooperative groups, 

     discussion of math, questioning and making conjectures, justification of thinking,  

     writing about math, problem-solving approach to instruction, content integration,  

     technology, assessment as an integral part of instruction, etc. 

 

2. Incorporating the NCTM Standards and your State Standards into curriculum and 



  

51 
 

 
    instruction. 

 

3. Discussing feelings, attitudes, and appreciation for mathematics with students    

      regularly 

 

 

Name__________________________________ 

Grade__________________________________ 

Math Class______________________________ 

Age____________________________________ 

Career or Career Interest___________________ 

Mathitudes Survey 

1. When I hear the word math I....... 

 

2. My favorite thing in math is...... 

 

3. My least favorite thing in math is....... 

 

4. If I could ask for one thing in math it would be............ 

 

5.  My favorite teacher for math is_____________because_____________ 

 

6. If math were a color it would be..... 

 

7. If math were an animal it would be..... 

 

8.  My favorite subject is_______________ because__________________ 
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9.  Math stresses me out:  True or False   Explain if you can. 

 

10.  I am a good math problem-solver: True or False   Explain if you can
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Appendix B: 

Blank Grid for Creating Sudoku Puzzles with Symbols 

 

Blank grid for creating Sudoku puzzles using any types of symbols 
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Word Problems in the Mathematics Textbook: An Instructional Resource 

Guide to support writing instruction 

 

Christine Picot, Saint Leo University 

Jenifer Jasinski Schneider, University of South Florida 

 

 

 

 

Abstract 

Mathematics textbooks typically include word problems or story problems that 

require students to develop extended written responses. Yet, the answers to these 

prompts can vary so widely that preservice and inservice teachers must be 

prepared for multiple levels of interpretation of the language used to capture 

mathematical thinking. Based on an analysis of word problems within two 

teacher’s editions of elementary mathematics textbooks, we describe a series of 

strategies and tasks to scaffold teachers’ understanding of planning for word 

problems during mathematics instruction. We detail the following components; 

(1) the use of the Instructional Resource Guide, which assists in the decision-

making process to support preservice and inservice teachers as they plan and 

analyze word problem language aiding in the selection of tasks based on specific 

objectives or instructional goals; (2) the creation of a consistent instructional 

sequence for integrated literacy instruction during mathematics instruction. 

 

 

Keywords 

Writing, Mathematics Education, Professional Development, Word problems, 

Problem Solvers, Instructional Planning 
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Math word problems - this simple phrase often strikes fear in the hearts of 

elementary students, especially for those who are not confident in math or for those 

who do not use written words to think and process mathematical information. Yet, 

scattered across mathematics textbooks are word problems that require students to 

construct written responses that potentially help students solidify concepts beyond 

the computation of digits (Colonneselyn, Armspaugh, LeMay, Evans & Field, 

2018) and possibly provide teachers with a window into student thinking (Sowder, 

2007). However, a window can become a Pandora’s box when student answers to 

a single math prompt can be so varied and unwieldy that the teacher must engage 

in multiple levels of interpretation and draw upon a confluence of skills 

(Verschaffen, Schukajlow, Star & Van Dooren, 2020).  

These skills include mathematics reasoning, problem solving, along with 

language and visual analysis (of drawings)—all skills that require 

transdisciplinary thinking across mathematics and literacy. To mediate these 

challenges, we provide a breakdown of the typical word problems presented in 

elementary mathematics teacher editions and suggest a corresponding 

framework that provides content support and guidance for preservice and 

inservice teachers as they use word problems to make instructional decisions.  

Background Literature 

The Mathematics Textbook as Key Instructional Resource 

Textbooks have a major influence on content and instruction in the 

mathematics classroom (Banilower, Smith, Weiss, Malzahn, Campbell & 

Weiss, 2013). Major publishing companies typically follow guidelines of the 

National Council of Teachers of Mathematics (NCTM, 2000) to provide lessons 

and instructional activities that follow the scope and sequence of the math 

curriculum while connecting to state standards.  Joseph (2012) noted, “As a 

result, commercially-published materials are used in 85% of classrooms in 

grades K-5 and 81% of classrooms grades 6-8 (Banilower, Smith, Weiss, 

Malzahn, Campbell & Weiss, 2013, p. 91).” Additionally, in other reports such 

as the Center for Education Policy Research (CEPR) from Harvard University 

(2019), noted that teachers reported covering 82% of mathematics textbook 

chapters over the course of a school year (p. 15). These findings suggest that the 

influence of the textbook could potentially impact students’ opportunities to 

learn and achievement levels. 

Mathematical Word Problems 

Writing to communicate mathematically has many advantages for 
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conceptual understanding (Casa, et. al., 2016; Pugalee, 2005). For quite some 

time, the NCTM Principles and Standards for School Mathematics (PSSM) have 

explicitly called for multiple forms of communication (including writing) and 

researchers have suggested that writing in math increases students’ 

understanding (PSSM 2000; Fortescue, 1994). For example, in a math 

intervention study, Cohen, Miller, Casa & Firmender (2015) found that when 

students engaged in explicit conversations and wrote about their reasoning on an 

ongoing basis, they demonstrated an increased ability to provide reasoning and 

use math vocabulary in their oral language and written products in comparison 

to control groups. 

To encourage extended forms of communication, writing prompts are 

used for different communicative purposes—to explore, inform, argue, and 

create (Colonneselyn, Armspaugh, LeMay, Evans & Field, 2018). According to 

Sowder (2007), using writing as a formative assessment provides a window into 

student reasoning and justifications.  Moreover, this can assist in planning for 

next steps of instruction by identifying student levels of understanding from their 

written processes.  To this end, the range of mathematical writing can span from 

students by listing steps in a solution, to students writing elaborate justifications 

for why an answer is correct. These writing prompts are commonly known as 

word problems, story problems, problem solvers, higher order thinking 

problems, or extensions in math textbooks. However, the reading of these 

prompts (or what we refer to as “word problems” throughout this paper), requires 

students to pay attention to every symbol and word in the problem with 

consideration to the genre of the task encountered (Sherman & Gabriel, 2017). 

Academic Vocabulary/Mathematical Symbols 

 The amount of academic vocabulary within a mathematics word problem 

may increase the complexity of comprehending the problem, impacting the 

student solution process (Joseph, 2012; Kozdras, Joseph, & Schneider, 2015). For 

example, in order to write mathematically, the understanding of academic 

vocabulary is fundamental towards conceptual understanding. Academic 

vocabulary such as domain specific words, or what Beck, McKeown & Kucan, 

(2013) refer to as Tier 3 words, are more challenging concepts and require explicit 

instruction (e.g., hypotenuse, rhombus, addend, sum, etc.).  Furthermore, students 

also need explicit instruction in understanding how to interpret signs and symbols 

(e.g., +, -, x, etc.) to words, and these words to their corresponding processes in 

order to fully comprehend the problem (Thompson, Kersaint, Richards, Hunsader, 

& Rubenstein, 2008; Baumann & Graves, 2010; Beck, McKeown, Kucan, 2013). 

In thinking about developing students’ mathematical literacy, this academic 

vocabulary needs to be addressed with appropriate scaffolds in place to support 

conceptual understanding. 

Genres of Writing Prompts  
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 In addition, special attention must also be given to the forms of writing 

elicited by the word problem. In mathematics, a word problem can be classified 

into four different types of prompts.  These writing prompts in mathematics can be 

classified as 1) process 2) content 3) narrative, and/or 4) affective in description 

(Baxter et al., 2001; Dougherty, 1996; Shield and Galbraith, 1998; Urquhart, 2009). 

A process prompt is a word problem that would require students to explain the 

process they encounter when solving the problem such as a strategy for a solution, 

or to reflect as to why they used the steps or the specific strategy communicated to 

solve the word problem (Dougherty, 1996; Urquhart, 2009). Dougherty (1996) 

notes the following as a process prompt, “The most important part of solving this 

problem is...” (p. 2).  Following, if the word problem has the affordance of 

mathematics relationships and/or content then it can be classified as a content 

prompt (Urquhart, 2009).  Urquhart (2009) notes a content problem example as the 

following, “Define parallel in your own words” (p.7).  These content prompts 

provide student with the opportunity of explaining, relationships, comparing and 

contrasting, or defining a specific concept.  Next, a narrative prompt is a word 

problem that requires a student to demonstrate an understanding of mathematics 

concepts aligned to imaginary or real-world application.  These types of 

mathematical narratives are often complemented with mathematics children’s 

literature (Joseph, 2018; Russo & Russo, 2017, Schneider, 2016; TESS-India, nd).  

The Teacher Education through School-based Support (“TESS-India,” n.d.) note a 

narrative prompt as the following, “Use your imagination to create a story around 

the given problem of 4 + 7. (Sample response: A girl was playing ‘Snakes and 

Ladders’ with her brother …)” (p.4).  The final genre of mathematics writing 

prompts would be classified as affective.  This type of prompt would require the 

student to write a response utilizing some type of affect or feeling/opinion about a 

specific mathematics concept or topic. (Baxter et al., 2001; Williams & Brian, 

2000; Shield & Galbraith, 1998).  Williams and Brian, (2000), note the following 

as an affective prompt, “Explain how you organize your math notebook. How does 

your notebook help you?” (p.133).  

Challenges of Constructed Responses 

Given the complexity of responses required from the four types of 

mathematical writing prompts, and the specialized word knowledge and language 

needed to respond to a mathematical prompt, it is clear that all constructed 

responses are not created equally and successful student responses to these written 

prompts require a deep understanding of concepts, a sophistication with language, 

and the expansion of thought (Vygotsky, 1978). Similarly, the complexity of 

responses and ranges of writing ability require teachers to have an understanding 

of several instructional components: 1) deep knowledge of mathematics, 2) 

intuitive understanding of students’ mathematics concept development, and 3) 

knowledge of writing development for teaching and learning (Burns, 2004; Martin, 
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Polly, McGee, Wang, Lambert & Pugalee, 2015; 2019). 

Furthermore, teachers must also understand how to facilitate close 

reading (Fisher & Frey, 2012) whereby complex text can be read multiple times 

with annotating, questions, and prompting for further understanding.  

Additionally, teachers should be prepared to develop their content knowledge in 

order to interpret children’s responses (Sipe, 2008). In other words, students may 

answer problems in a variety of ways, using alternative language and novel 

phrasing in order to describe their thinking. 

Methods 

Textbook Prompt Analysis: Minimal Support and Missed Opportunities 

To determine the type of instructional support preservice and inservice 

teachers may need, we built on the first author’s (Christine) analysis of the 

teacher editions of two fourth-grade level math series (enVision MATH and 

Everyday Mathematics) (See Joseph, 2012 for details). By analyzing 100% of 

the lettered or number exercises in the two student editions and corresponding 

teachers’ editions and resources, Christine documented the type of teacher 

edition support teachers received regarding mathematics word problem 

instruction: 

1. No Student Sample or Teacher Support: The teacher edition 

provided no student sample of a response or directions of support 

for the word problem.  

2. Written Directions: The word problem included some form of 

directions of support for the teacher. However, there was no 

student sample response. 

3.  Student Sample Problem with Correct Response: These 

word problems had only one student sample provided. There 

were no other directions of support for the word problem.  

4. Student Sample with Correct Response and Teacher 

Support: The prompts included a form of support for writing 

along with a student sample of the response. These written 

directions included a brief description in the form of instructional 

notes. 

The majority of prompts (90%) in the two teacher editions required 

students to construct responses to questions that could be interpreted in multiple 

ways. Although the students could answer in numerous ways, the teacher 

editions provided limited support for the teacher to provide instruction for 

various responses. Specifically, the teacher editions were lacking in the area of 

direction of support in how to teach, select or assign word problems to match 

learning goals and objectives. Additionally, the teacher editions did not provide 

instructional suggestions based on the word problem even thought a sample 

response may have been provided. As a result, the limited instructional 
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scaffolding for mathematical writing in the teacher edition indicated a key 

opportunity for professional development and support.  

Given that we understood the range and types of writing prompts used 

across two major mathematics textbooks, we also recognized the need for 

additional professional development regarding mathematics writing prompts. 

Specifically, 1) selecting mathematics writing prompts for instruction; and 2) 

supports needed regarding the use of mathematics writing prompts for 

instruction.  

Determining Interest and Usage 

To determine how teachers used mathematics writing prompts and what 

barriers existed regarding the use of mathematics writing prompts for 

instruction, we focused on inservice teachers (n=35) in a Title 1 school in which 

83% of the student population (n=689) were economically disadvantaged and 

31% of the students were dual language learners. Christine, a district math 

coach at the time, met with the teachers during collaborative planning sessions 

in Professional Learning Communities (PLC’s). These teachers represented 

Grades 1-5 and the PLC’s were held once a week for 16 weeks. 

Initial discussions focused on the school’s selected math series and 

teacher edition (Go Math by Houghton Mifflin). The teachers worked together 

to locate, identify, and categorize mathematical writing prompts in order to gain 

a sense of the information these prompts could yield. Throughout the PLC 

meetings, Christine recorded anecdotal notes to summarize the following 

findings. The teachers identified four categories regarding their use of writing 

prompts: (1) as a formative assessment measure, (2) as a vehicle for teaching 

and uncovering skills/strategies, (3) as a discourse method for communicating 

mathematically, and (4) as a tool for the facilitation of real-world mathematics. 

Across the grade level teams, the teachers stated that they valued 

mathematical writing prompts as an important component during mathematics 

instruction. Moreover, intermediate grade level teachers emphasized the 

extensive amount of writing prompts on high-stakes assessments in mathematics 

and the impact these assessments have on teaching and learning. Approximately 

75% of the teachers stated they consistently used mathematical word problems 

in a formative matter to confirm strategies and assess their students’ learning of 

the mathematics. The teachers also expressed a need for support in planning for 

word problem instruction. Specifically, they wanted to know when and how to 

use mathematical word problems during their instructional time with students.  

Implementing a Prompt Selection Tool and an Instructional Sequence 

Because the teachers identified a need to know when and how to use 

word problems, and the lack of scaffolded support in the teacher editions for 

writing in mathematics, this cause necessitated the development of the 

Instructional Resource Guide (See Figure 1).  The IRG provided the planning 
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support needed as a guide for implementing problems solvers within an 

instructional sequence.  

Instructional Resource Guide 

The Instructional Resource Guide (IRG, See Figure 1) breaks down the 

decision-making process to help teachers select prompted tasks based on 

specific objectives or instructional goals. To use the guide, teachers begin by 

analyzing the objective of their instruction (to introduce, to review, to 

instruct, to practice, to intervene, to assess). Placing the objective as the focal 

decision was essential for the teachers to determine the method of instruction 

to follow. With the objective in place, the teachers could also identify the 

most relevant prompt to administer and determine the delivery of instruction. 

While making these decisions, the teacher would also consider student 

affordances elicited from the prompt. In other words, how might the student 

answer the task? Did the problem solver require a description, narration, 

elaboration, or synthesis of mathematics content that would help the teacher 

provide the proper instructional supports? In analyzing the level of support 

teachers required, the Instructional Resource Guide developed into a tool that 

teachers used on a daily basis to plan instruction and address these topics. 

Instructional Sequence  

The IRG supported the teacher's selection of writing tasks within the 

various components of the mathematics instructional block. In addition, the 

IRG also led teachers to develop a consistent instructional sequence that 

corresponded to specific prompt selection. In other words, in selecting a 

purpose and corresponding writing prompt, the teachers also considered their 

gradual release of instructional support: 

Formative Assessment: select a prompt to “gather information 

about the learning in mathematics to directly improve that learning” 

(Popham, 2008). 

Warm up/Review: select a prompt relevant to strategies for content 

previously taught. Introduction of content: select a prompt for 

tapping prior knowledge, identifying strategies, and understanding 

student thinking regarding new content. 

Practice of content: select a prompt to practice skills, concepts, and 

strategies.  

Summative assessment: Select a prompt to serve as a final judgment on 

student success and the quality of instruction regarding the mathematics 

content (Popham, 2008). 

By using the guide to select the appropriate type of prompts to meet the 

instructional goal, teachers were able to select the method of instruction within the 

mathematics block to administer the writing prompt. 

Initial Results 
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  Across the professional development series offered during PLC 

meetings in which the teachers implemented an instructional sequence and used 

the Instructional Resource Guide, teachers stated that they increased in the type 

of word problems used during the mathematics block. Specifically, two fourth 

grade teachers and one fifth grade teacher reported an increase in their use of 

writing tasks by selecting warm up/review, introduction of content, practice of 

content, and during the intervention block as enrichment or remediation. Prior 

to the PLC meetings, these three teachers only assigned word problems as 

outlined in the textbook. 

Implementation of the Instructional Resource Guide 

In the process of tracing the development and introduction of the 

Instructional Resource Guide (IRG) and the corresponding instructional 

sequence, we engaged in design-based research (Reinking & Bradley, 2008) to 

examine the instructional modifications necessary to support teacher's 

implementation of the guide into their classroom instruction. Over the course 

of 16 weeks, Christine met with each of six inservice teachers during their 

planning periods, once a week for approximately 40 minutes. During the first 

meetings, the teachers consulted the mathematics’ teacher edition to identify 

the Chapter or Unit aligned to the standard to be taught. Next, the teachers 

identified the tasks regarding the learning goal of the instruction. For example, 

if a teacher wanted to use the task in order to practice working with content or 

vocabulary then a warmup/review task would be selected. 

During this selection process, each teacher used the curriculum 

materials available to select tasks that were aligned to the standards and 

objective of the lesson. Their conversations centered on the language of the 

task, and the student affordance (how students may or may not answer). 

Data Collection 

Christine conducted the professional development training for writing in 

mathematics to K-5 grade level teachers in the following format:  

Day 1: Gauge Interest to Determine Differentiated PD. Christine met 

with each grade level team during their PLC’s to discuss the teachers use of 

word problems. At the beginning of the meeting, presented each team member 

with a copy of the Instructional Resource Guide (Figure 1) to determine if they 

had any interest in using the tool. The teachers made the following comments 

regarding their first impressions of the Instructional Resource Guide: 

“I never thought of using word problems in all these different ways 

and formats. I am excited to begin the unit with a writing task and end 

with a writing task.” 

“I might end up skipping a “step” – that way it gives me a goal to 

incorporate more word problems into planning. This is a huge 

importance for the literacy integration in mathematics.” 
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“This chart provided me with a way to understand where my students 

are and where to go next with my instruction” 

Given the teachers positive response, Christine asked the teachers to 

collaboratively select the type of instruction they wanted to model. Teachers 

in grades K, 1, 3 and 4 chose Practice of Content (see Figure 1) because these 

grade level teams were in the middle of an instructional unit. Grade 5 selected 

an end of unit task to assess student learning. This task was selected as a 

Summative Assessment. The Grade 2 team chose Formative Assessment to 

determine what students knew about the content that was going to be 

encountered in the upcoming unit. 

Day 2: Select Word Problems and Textbook Selection. On Day 2, the 

grade-level groups reviewed the teacher editions to identify word problems in 

the textbook that would facilitate a constructed response. Based on the content 

within the standard, and discussions of misconceptions, the teachers decided to 

focus on a specific word problem lifted from the textbook per grade level team.  

Day 3: Modeling and Student Collaboration.  Christine modeled the 

instructional delivery of the word problem with students. At the end of the 

lesson, Christine showcased purposeful selections of student work while 

facilitating collaborative discussions with the students.  Christine selected 

exemplars and highlighted common errors to support conceptual development. 

During the student collaborative, Christine addressed misconceptions and 

pointed out efficient strategies in real time. This real time intervention allowed 

for students to develop a deeper understanding of the content by the type of 

discourse that began to unfold from the task response. The teachers observed 

the process.   

Day 4: Analyzing Student Responses to Determine Next Steps. 

Teachers communicated their analysis of student responses. For example, the 

Grade 2 team discovered, through conversations with students and analysis of 

student data, that several students had misconceptions regarding academic 

vocabulary and pictorial representations. The Grade 2 teachers then decided to 

create tasks that encouraged pictorial representations that were similarly 

aligned to the textbook word problem. In Grade 5, the teachers decided to build 

conceptual understanding through additional writing extensions.  These writing 

extensions facilitate building on word problems in the textbook to promote real 

world application. In addition, these teachers determined that the tasks selected 

for further practice should include a student response with a visual 

representation.  Furthermore, if the word problem from the textbook aligned to 

the standard and objective of the instruction but did not provide the opportunity 

for a written response, the teachers made certain modifications. 

● (Original) Does the following array model represent the 

multiplication sentence of 3x2? 
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● (Modification) Does the following array model represent the 

multiplication sentence of 3x2? Explain your reasoning. 

Adding the modification of “Explain your reasoning” extended the prompt 

by requiring the student to write a solution or provide justification. 

Summary. The teachers specifically discussed the value of the IRG and 

the coaching sequence. They also expressed the need for additional PD focused 

on mathematics writing instruction and methods for supporting students when 

modifying textbook word problems to meet student’s needs. These 

recommendations form the next phases of our work as outlined below. 

Writing Instruction is Needed in the Mathematics Classroom 

The lack of support surrounding word problems in mathematics teacher 

editions is a clear indication that professional development is necessary and urgent.  

In support of this matter, the following has been reported by the Partnership for 

Assessment and Readiness for College and Careers (PARCC), notes:  

“The PARCC (2018) Item Development correspondence: 

Designers of curricula, assessments, and professional development 

should all attend to the need to connect the mathematical practices to 

mathematical content in mathematics instruction. Separating the 

practices from the content is not helpful and is not what the standards 

require. The practices to do not exist in isolation; the vehicle for 

engaging in the practices is mathematical content (p. 45).” 

As a result, instructional supports for writing in mathematics should be 

considered.  More specifically supports aligned to mathematics strategies, 

literacy structures, and mathematics processes.  These supports should provide 

teacher with the awareness of how to reflexively move from each element as the 

process of writing is complex. In addition, writing in the disciplines requires 

instruction in the specific genres used within the field.  In support of these 

suggestions, Joseph (2012) notes the paradigm shift for support in literacy as 

stated by Moje, Overby, Tysvaer, & Morris (2008):  

“We need to consider the larger contexts in which strategies are drawn 

up and the practices that various strategies support. It may be most 

productive to build Disciplinary literacy instructional programs rather 

than merely encourage content teachers to employ literacy teaching 

practices and strategies (p. 96).” 

Additional research is necessary in order to fully implement how teachers can 

instruction mathematical writing successfully.  

A survey published on writing in mathematics suggests that 

instructional support of writing in mathematics has not changed at all or is 

growing too slowly to have any observational measurement and that 

mathematics writing may often be considered less sophisticated in terms of 

composition (Kosko, 2016). Given the requirements of the NCTM Principles 
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and Standards for School Mathematics (PSSM) (2000) note that the content 

standards in mathematics are developed through reasoning and proof, problem 

solving, communication, representation and connections.  In thinking about the 

processes, writing certainly plays a central role. However, current methods of 

writing instruction, such as the Writer’s Workshop or the 6 Traits of Writing 

instruction (Culham, 2003), may not have a clear alignment to these processes. 

Mathematics Instruction is Needed in the Language Arts Classroom 

Teachers and researchers in writing have identified common 

characteristics now widely recognized in traits models: ideas, organization, 

voice, word choice, sentence fluency, conventions, and presentation (e.g., 

Culham, 2003). These characteristics, based on the work of Diederich (1974) 

who sorted stacks of student writing into good, fair, and poor categories, have 

become essential components in the process of writing, providing students with 

a common language for writing assessment. Similarly, other researchers have 

developed scoring assessments and features guides to analyze students’ spelling 

development (e.g., Bear, Invernizzi, Templeton, & Johnston, 2020). 

Borrowing concepts and procedures from these models, we are calling 

for a new look at writing instruction in connection to informal strategies such as 

when writing is used as a formative tool for assessing understanding and 

instructional decision making. Elbow and Sorcinelli (2006) noted the difference 

in low stakes writing as an instructional strategy compared to more formal or 

high stakes writing (i.e., essays, term papers). With low stakes writing, students 

are removed from the boundaries of high stakes writing and are able to write 

freely through many forms such as exploratory or focus questions, free writing 

in response to a question, summary writing or reflective journals (White, 

Reichelt, & Woods 2011). 

Using the IRG, preservice and inservice teachers can begin to address the 

appropriate time for writing instruction to occur during mathematics.  This 

planning guide does not address all the areas of writing support that are needed 

in the mathematics classroom.  However, it is the first step in planning for the 

utilization of how low stakes writing such as mathematics word problems can 

facilitate high stakes learning such as measurements of ability and conceptual 

understanding. Teachers and students can begin to build on mathematical 

concepts through the appropriate objective, method, type and delivery of word 

problems.  This planning process is the beginning of understanding how one field 

can successfully inform the other. 
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Figure 1: Instructional Resource Guide (IRG) 

 
Objective of Instruction. Method of Instruction Type of Prompt Delivery of Instruction 

(Teacher Led or Supported) 
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development of 
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Formative 
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(Not graded) 
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Abstract 

 

We argue that context-responsive equitable strategies support the development of a gender-

responsive curriculum in the context of higher education in Nepal. This paper is our reflective 

journey of curriculum content analysis of the two Master’s programs (Mathematics and English) 

from an inclusive cultural perspective of gender which engaged us to explore the answer to the 

question- How can we develop a gender-responsive curriculum? Adapting inclusive cultural 

perspective and participatory design we engaged with students and faculties and management 

representatives in the process of gender mainstreaming through action-reflection cycles. Further, 

we braided discussion with poetry, that is, a poetic inquiry to tell our praxis in a realistic and/or 

literary way. Finally, we discuss the three context-responsive equitable strategies such as (1) 

adapting the collaborative approach, (2) promoting ‘the 3 pillars’, and (3) enhancing 

inclusiveness that supported us for ensuring gender equality. 
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Introduction 

Considering gender as a social issue and mainstreaming gender as an equitable strategy seems an 

empowering process when we give more value to power than to knowledge. If we culturally perceive 

gender (i.e. masculine and feminine) as two inherent human qualities that each of us possesses as a 

cultural understanding, gender and gender mainstreaming might not remain an empowering process rather 

become the process of cultural liberation. Seemingly, some Nepali people are de-cultured by non-

inclusive modern worldviews which did not provide sufficient space to respect our deeply rooted cultural 

perspective, particularly of gender. Here, we are not against the modern worldviews in the educational 

context rather seeking “localness” while meeting globalization (Parajuli, 2015).  Instead, we preferred to 

discontinue the illusionary perspective of ‘gender equity through empowerment’ as the only way of 

liberating from gendered situations. As illusion over clouds, our perception and obstructs for liberation 

and consciousness support us to shed light on illusion (Osborne, 2014), we need to go beyond the existing 

culture of blaming others and thereby recommending the framework. For it, we preferred to appreciate 

and critically reflect our cultural perspective and thereby continue the discussion of gender mainstreaming 

processes in the higher education curriculum development and improvement context.  

According to Lamptey et al. (2015, p.11) gender mainstreaming, a strategy, addresses gender 

equality concerns in policies, programs and activities “to ensure that all development initiatives integrate 

the concerns of both men and women, and their needs are considered equal and equitably with the aim of 

attaining gender equality.” The study shows that the development and/or improvement process of policy 

(i.e. curriculums or courses) of the universities plays a vital role not only in the learning of the students 

but also for gender mainstreaming to ensure gender equity. Here arises a question- what is gender? 

According to UNESCO (2015 (p. 9-10))  

 “Gender refers to the socially constructed relations between men and women… Gender equality 

ensures that men and women enjoy the same status and have equal opportunities to exercise their 
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human rights and realize their full potentiality. Gender equality in education ensures that female 

and male learners treated equally, have equal access to learning opportunities and benefit from 

education equally. They become empowered and can fulfill their potential so that they can 

contribute to and benefit from social, cultural, political, and economic development equally. 

Special treatment/action can be taken to reverse the historical and social disadvantages that 

prevent female and male learners from occurring and benefitting from education on equal 

grounds.”  

Seemingly, the notion of gender equality of UNESCO 

that envisioned treating females and males treating 

equally (2015) is similar to the concept of gender 

balance that we have deeply rooted in our (Nepali) 

culture.  

In our culture, Ardhanarishwar is considered an 

all-inclusive and balanced metaphor (Dhungana, 2020; 

Mishra, 2017) (see Figure 1). Ardhanarishwar, a Sanskrit 

word, refers to the union of the Hindu god Shiv and the 

goddess Parvati.  Moreover, Ardhanarishwar is the 

metaphor of the “receptive, all-inclusive, holistic, integrated, self-sustained and balanced form of dialogic 

inquiry” (Dhungana, 2020, p. 52). The image itself shows our inherent male and female qualities 

metaphorically. With this reference, Ardhanarishwar seems a post-gender metaphor. 

In other words, Ardhanarishwar can be used as a cultural harmonious lens of gender balance or 

gender equality.  According to Hooks's (2002) we need to harmonize and generate better perspectives to 

enhance gender equity. Further,  Hooks (2002, p. 117) claimed that “visionary feminism offers us hope 

for the future. By emphasizing ethics of mutuality and interdependency feminist thinking offers us a way 

to end domination while simultaneously changing the impact of inequality.”  Seemingly, Ardhanarishwar 
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can be a context-responsive metaphor of post-gender perspective metaphor as it is supported to ensure 

gender equity in the graduate curriculum content analysis process. 

However, for many years, overlooking the strength of mutuality and disregarding our cultural 

framework of gender balance, school and university curriculums have used the western framework for 

gender mainstreaming that valued one gender (mainly female) over the other (male). We might be limited 

to analyzing the school level curriculum and proposing guidelines to look for gender-neutral language, 

traditional gender roles, gender stereotypes, pictures and images, and gender parity. However, exploring 

gendered situations examining the only physicality would not be sufficient. We see the possibility of 

influencing ourselves, others and social formation by living the value of equality promoting a deeply 

rooted cultural inclusive perspective of gender. It is because gender is not only a hidden curriculum 

(unintended learning outcome) but masculine (i.e. logical) and feminine (i.e. intuitive) perspective and 

quality in the form of an intended learning outcome. It is because seemingly intended learning outcomes 

highly control learners’ gender knowledge. Here, gender knowledge refers to the knowledge about gender 

and/or knowledge about multiple perspectives of gender.  

Being Master’s level curriculum designers and implementers, in line with Lamptey et al. (2015), 

our engagement in content analysis can engage us in a continuous process of mainstreaming. We can 

explore the nature of the curriculum that we need to address the needs of 21st-century learners. However, 

we might not envision holistic development without questioning our own perspective. Moreover, without 

respecting our deeply rooted cultural values, we might not explore what matters to us and the people with 

whom we live. In addition to that, curriculum needs to address the everyday needs of the learners; 

curriculum needs to be changed regularly to meet the needs of the 21st Century Educational and to bring 

improvement in teaching as well as students’ learning and also ensure the SDG Goal 5, gender equality. 

However, the Western framework might not be sufficient in our local contexts. 

At first glance, it may seem like a given framework has been ensuring gender equity however 

they failed to address the diverse gendered situations. For instance, Acar-Erdol and Gozutok (2018) 

recommended that social awareness of gender equity is a prerequisite to implementing a gender equality 
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curriculum. However, paradoxically, their prescribed “The Taba Model” could not help us in our context 

as we were yet to explore the gender gap. To explore the status of students who were possibly lagging 

behind to enjoy provided learning opportunities because of gender, it was our responsibility to dig out the 

gender gap and thereby address that gap. Then we found Manuel’s (2018) study that motivated us to 

involve students in our project which could enhance students’ academic achievement. Although the 

participation of the students via exchanging experiences, meeting new people and helping and having fun 

(Manuel, 2020), the COVID-19 context discouraged having face-to-face interactions and discussions. 

Meanwhile, we saw the opportunity of online methods of participating in them. Thus, we realized that we 

need a context responsive framework for mainstreaming gender in this period of COVID-19 context. 

Therefore intending to enhance gender equity in the Master's course, we looked for a suitable 

framework but we could not find any. Perhaps, the change in the context, COVID-19 context, provided us 

with an opportunity to seek a new framework. Meanwhile, Hermans & Thissen (2009) also inspired us to 

develop our own framework with the help of stakeholders as they introduced actor-analysis methods for 

public policy analysis as a context responsive method. Therefore, adopting Kincheloe's (2005) active 

perspective of a researcher, we did not follow any prescribed framework rather looked for the possibility 

of context-responsive approaches. Like Tolhurst et al. (2012) post-gender perspective addressing women 

issues like gender parity, inclusion and gender mainstreaming, we could engage ourselves and also other 

stakeholders like students and teachers in the gender mainstreaming process. However, we believed that 

our cultural post-gender perspective could support the meaningful engagement of adult multiple 

stakeholders in a respectful environment.  

If we continue to believe that the western framework is the only one, the standard framework, 

we’ll never explore context-responsive, indigenous, relevant, practical frameworks. We’ll never explore 

what works well in our context unless we acknowledge our framework. We’ll continue to have trouble 

exploring other’s frameworks to understand our problems and solutions. By rethinking, re-using the 

inclusive cultural perspective we can fix our local problems; we can address gendered situations in the 

school (Dhungana, in Press), university and that brings ripple effects to the schools and other educational 
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institutions in the country where the top-down approach is high; we can influence students, teachers by 

walking the talk. 

Thus, as gender is in flux it needs to be dealt with in a context responsive way. Exploring the 

dynamic nature of gender and mainstreaming strategies, we took this as an opportunity to explore context 

responsive approaches for mainstreaming gender in our courses. As we were planning to design the 

Master's curriculum for Spring-2020, we began to ask- How can we develop a gender-responsive 

curriculum?  

Therefore, the purpose of this content analysis is to explore context-responsive approaches 

adapting a cultural (inclusive) perspective of gender equality/equity. Before discussing the four context-

responsive approaches, we discuss the research background and methods in the following sections.   

Research background 

The paper is based on our (the first, and the third authors, Ph. D. fellows and teacher educators) 

and (the second author, Post. Doc. and a teacher educator) collective reflective story on the actual gender-

related experiences in the process of participatory content analysis of the two Master of Education 

Programs while developing a teacher's manual for mainstreaming gender in XXX University. We were 

engaged in content analysis and thereby gender manual development process from June 2020 to 

November 2020.  In the process, we encountered manifold gender issues, which were more context-

responsive than we find in literature which we discuss in the following paragraphs. In addressing the 

issues, we critically reflected upon those gender-related experiences and adapted our inclusive perspective 

of gender in mainstreaming our courses. Being global citizens and educators, we took this project as a 

social responsibility for enhancing gender equity in our work and an opportunity to connect other 

individuals in the COVID-19 context.  We observed the ten courses of the following two subjects. 

A course, YYY Master of Education, was launched in 2006 and another was launched in 2004.  

The course prepares the graduates to follow the latest principles and methodology of teaching, undertake 

small scale research to improve their own pedagogical skills, deliver short term teacher professional 
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development packages, develop appropriate curricula, textbooks, modules and projected and non-

projected materials, and educate pre-service and in-service teachers for effective teaching. Furthermore, 

another curriculum of ZZZ prepares students to possess conference skills, work in a team, master ICT 

skills, be independent practitioners, and be able to facilitate teacher development workshops. 

Both the courses were revised in 2013 and 2018 to prepare competent teachers, teacher educators, 

materials developers and researchers; have similar key features and they are need-based, pedagogical 

content knowledge, applied mathematics, modelling of pedagogy, project-based and skills oriented that 

helps students master the skills of collaboration, investigation, presentation; aim to develop teacher 

educators, school leaders, teacher education experts, teacher development organizers and material 

developers.   

Research Methodology 

We chose a critical participatory action research design (Kemmis, 2008) to examine the existing 

curriculum and thereby seek the possibility of improving gender mainstreaming practices by engaging in 

an action-reflection cycle with the students and colleagues through dialogues. Inspired by living-theory-

methodology that integrated (i.e. both critical and appreciative) approaches which made methodological 

inventiveness possible, we adapted an appreciative approach (that is to appreciate deeply rooted cultural 

practices) intending to complement the critical approach of participatory action research (Dhungana, 

2020). Aiming to engage in action reflection we adapted dialogue as a research method (Delong, 2020). 

Further, the study of Wolstenholme, Rosscobb, and Bowen (2016, p. 1218), supported us to work with 

adult learners with participatory design as their participatory design valued adults and thereby allowed 

them to engage meaningfully and develop shared understandings and goals. Roughly we divided our 

research process into four phases. 

First phase: In the first phase, we conducted a context analysis. In June 2020 we began to review 

the two Masters’ courses from gender perspectives as a part of a gender manual development program 

that intended to guide teachers to make their curriculum gender-responsive. At this stage, borrowing the 
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gender perspective from UNESCO (2015) we explored gender issues. Then we felt the need to participate 

in the content analysis process. In this phase, we felt to empower students or to make them able to 

critically self reflect the taken for granted assumptions of gender and contribute their views to improve 

curriculum. Then we planned for the second phase. 

Second phase: In the second phase, we sent emails to the students of 2017-2019 batches to 

participate in the group discussions (on the issue of gender) voluntarily. We took their consent and 

conducted the FGDs with guideline questions via Google meet. We discussed (2 male and 2 female 

students). In this phase, we explored the reason for gender biases and context responsive ways out. 

However, we felt the need of becoming more inclusive and thereby exploring context-responsive ways 

out by involving teachers or faculty members.  Meanwhile, we felt the need to explore more ways of 

being with colleagues.  

Third phase: In the third phase, intending to explore context-responsive ways out we invited the 

representatives of the school management representatives (e.g. Head of Departments). Doing so, we had 

hope of receiving a safe environment and thereby making a positive influence. It is because we wanted to 

explore more ways to improve curriculum, appreciate teachers’ best practice of mainstreaming gender to 

some extent, and enhance mutual relationships by engaging faculty and school management in gender 

mainstreaming processes. Our intention of gender mainstreaming was not to challenge existing practices 

rather improve best practices harmoniously and collaboratively. Then we sent an email requesting their 

voluntary participation in the Focus group discussion. We discussed it with six (5 males and 1 female) 

colleagues including the two Head of Department. 

Fourth phase: In this phase, we revisited and reflected on our research and developed this paper. 

In the first phase while analyzing contents a question emerged - what were the gendered issues in the 

curriculum?- which guided our research. In the second phase another two questions emerged while 

discussing with students- Why was gender a problem? How can we address the gender gap to ensure 

gender equity?-that guided us further. We deepened our discussion with faculty and school management 
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using all three questions. In short, the three questions emerged in the process and thereby guided the 

research, but not necessarily in a linear way. 

Then, intending to make sense of our (authors, students, faculties and school management) lived 

and living experiences by engaging both mind and heart, we used poetic inquiry, ‘the methodology of 

heart”, (Owton, 2017, p. 103). Our intention of using poetic inquiry, which includes different forms of 

poetry, was to seek our essence of key experiences in the precise form that other modes of presentations 

(e.g. prose) might not bring forth (Owton, 2017). Therefore, we ‘crystallized data’ or framed poetry 

blurring field data and interpretation as we could not separate distinctly data and interpretation while 

writing (Jackson & Mazzei, 2018).  

Results and Discussions 

Our context analysis, discussions with students and teachers, and our reflective notes hold the 

evidence of (1) adapting collaborative approach, (2) promoting ‘the 3 pillars’, and (3) enhancing 

inclusiveness.  

Adapting collaborative approach 

We began inquiry with this initial question (What were the gendered issues in the curriculum?) 

which explored the need for a gender-responsive curriculum in graduate classes. In the process, we 

adapted collaborative inquiry (Belenky & Stanton, 2000). Here, collaborative inquiry refers to the inquiry 

of the two authors by engaging in action-reflection cycles. Such teacher-teacher collaboration in the 

context analysis process was new in our context, which we believe, made it possible for our gender 

awareness and or enhancement in our gender sensitivity. One of us could lead the project and another 

could assist, however, we felt we could work collaboratively.  Perhaps we were going beyond the 

male/female binary construct through collaborative inquiry (Belenky & Stanton, 2000). 

In collaboration, we chose one curriculum for each of us on the basis of our background. We 

shared our analysis, discussed and thereby tried to made sense of them through the following poem:  

I’m happy for getting an opportunity  

I am inviting you by reciting poetry. 
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I am the program designer and implementer  

a female teacher educator, sensitive in gender  

 

My course promotes enough reflective and critical thinking, 

include issues of gender equity with frequent revisiting.  

 

I am very conscious of using gender-neutral language, 

It would be challenging if I did not use the English language.  

 

Books and reference materials; articles and literary pieces, 

With my careful selection of not gender stereotyped texts. 

 

I am aware of gender, gender roles, and authorship of women, 

Dugas & Allard’s article, Plath’s poetry to name a few of them. 

 

Teaching and learning by the individual, pair works, and group works 

Through reading and writing, presentation, discussion and field works. 

 

I instruct, I facilitate, and I teach what to teach, how to teach and why to teach, 

Through the module, auto tutorials, CD, face-to-face, online, games, activity and research. 

 

In-semester 50% and end-semester 50% , my assessment system, 

I evaluate all the assignments and follow the letter grade system. 

 

My teaching and assessment are not of learning but for learning. 

I claim a gender-sensitive environment for conducive learning. 

 

Finally, I would like to thank you all for listening, 

Drop your queries as/for gender mainstreaming. 

 

This poem reflects our lack of gender responsiveness which was the main issue in the existing 

curriculum. However, in the beginning, we could not explore it as we might make shallow observations in 

a single attempt. For instance, we explored that curriculum designers and/or developers had gender 

awareness and sensitiveness. It was because the language used in the curriculum was gender-neutral. We 

believed that gender neutrality would be enough for gender justice. Then we felt that our presence in our 

department was addressing gender disparity. We were kind of happy being representative of the females. 

We believed that our presence, gender awareness and sensitiveness would be enough for gender 

mainstreaming.  

But when we discussed and made a second observation we explored that gender was not an 

intended learning area rather a hidden curriculum in Masters of Education. Hidden curriculum or 
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“informal curriculum”, other than intentional curriculum or “formal curriculum”, refers to those aspects 

of schooling that influence learners values, perceptions and behaviours UNESCO (2015). UNESCO 

defines gender analysis as the examining and exploration of the reasons for gender inequality, the 

disparity in given circumstances and situations. For examination and exploration of gender inequality, in 

the context of university settings, we first assumed that the curriculum had enough space. However, we 

continuously value gender as a ‘hidden curriculum’ that can influence the learning of the students 

(Schubert …) and teachers. 

Then we explored the need of enhancing gender sensitivity. For instance, we thought that many 

times, teachers are aware of gender issues but they lacked gender sensitivity. To be gender inclusive, 

teachers needed to be aware of using proper learning material to ensure gender equity. There could be an 

inclusion of values, ethics, norms and beliefs. Besides that, a teacher could provide a safe learning 

environment where students can exercise human rights and challenge one’s own deep-rooted cultural 

issues. By adopting peer learning, cooperative learning, collaborative learning, peer evaluation, group 

evaluation, and group work, one could provide a space for learning.  

However, we felt enhancement of gender sensitivity alone falls short when we practice teaching, 

learning, and assessing promote individual learning rather than collaborative learning and/or evaluation.  

Meanwhile, we were inspired by Lebler (2008) who provided three functions of assessing students: (1) 

Assessment of learning (to examine the students’ achievement to ensure learning outcomes); (2) 

Assessment for learning (to provide feedback and direction for future activities); (3) Assessment as 

learning (to produce learning in itself by involving students actively in the assessment process). That 

taught us that our practice of assessment should not be limited to ‘assessment of learning and assessment 

for learning’ rather move toward ‘assessment as learning'. Here, we felt that we might need to embrace 

cultural and/or indigenous knowledge to develop a gender-responsive curriculum.  

Reaching this stage, being aware of the gendered curriculum, we saw the possibility of improving 

learning resources as gender equity, which might support our students to enjoy a gender-equitable 
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learning environment.   We could use not only multiple resources like books, journal articles and literary 

pieces but also artefacts, natural phenomena, media, family, and mythologies as learning resources.  

We had some reflective queries. For instance, were the existing learning materials enough for 

gender equity? We could connect values, ethics, norms and beliefs. For it, we thought a safe learning 

environment is a must but had we given space in our curriculum for exercising our human rights? Was my 

pedagogy enough to explore deep-rooted cultural issues? Perhaps not! But we were given space for peer 

learning and group work. Are they enough for peer learning, cooperative learning, collaborative learning 

and peer and group evaluation? No! We had highly promoted individual learning, not collaborative 

learning and evaluation. 

The answer to the question of uneasiness was because of building consensus for gender 

mainstreaming without the involvement of the students and/or having students’ consensus on a decision. 

Participatory assessment could be for the betterment of the curriculum and while talking about students’ 

assessment, their involvement is equally important. Without their involvement, the empowerment of the 

students could not be done. Furthermore, it is not about ending patriarchy and Western Modern 

Worldview in higher education, it is about empowering those who are influenced by the patriarchy 

(Shackelford, 1992) for “cultural emancipation” (Taylor, 2013) through nurturing inclusive perspective. 

Then we realized that realizing gender as a hidden curriculum might not be sufficient in our 

context. It is because students from diverse contexts come to the university and there might be genuine 

gender issues in the higher education context, not limited to male and female issues (e.g. Paudyal, 2015). 

Social inclusion and exclusion might function beyond male/female issues. Therefore, in line with 

Lamptey et al (2015), we thought that gender-neutral content scope would not support us to disrupt 

existing gender relations. Here emerged a question-Why was gender a problem? We explored the answer 

in the following section. 

Promoting ‘the 3 pillars’ 

Our query-Why was gender a problem?- explored the hegemony of binary perspectives of gender 

as male and female (Belenky & Stanton, 2000) but not as inherent (i.e. naturally gifted) qualities of 
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masculine and feminine of each individual (Mishra, 2017).  We made sense of it through the poems, for 

instance, 

 

When my two voices argued, 

 

A separate topic/unit! 

No! Be inclusive. 

 

A separate pedagogy! 

No! Be gender-responsive! 

 

A separate quota! 

No! Make me feel equal! 

 

Continue ‘research on’! 

No! ‘Research with’! 

 

Gender parity! 

No! Equity! 

 

My third voice said, 

 

“Curriculum, community, and university, 

the 3 pillars!” 

 

The third voice of the poem refers to the inclusive voice which broke the boundary of first and 

second voice or binary voices. The third voice suggested the connection of curriculum with the issues of 

community and thereby collaboratively work on it being like the 3 pillars. Similarly, the discussion with 

teachers and school management explored collaboration in a context-responsive way. So, the third voice 

came not to empower any other voice rather connect and collaborate. The sense of oneness provided us 

with the ways out to move beyond binary perspective. To move and dismantle binary perspective, the all-

inclusive metaphor of Ardhanarishwar supported us. 

We think our inclusive perspective that involved students in the content analysis process was our 

belief in students as ‘critical students’ (Johnston, Mitchell, Myles & Ford, 2011) who explore the 

hegemony of the binary perspective and move beyond.  Like Johnston, Mitchell, Myles and Ford (2011), 

we believed that critical students having the following personal qualities and values: 
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(1) a well-developed, robust, confident and aware self, able where necessary to challenge and 

reconstruct existing understanding and modes of operation; (2) an awareness of the values, 

priorities and power structures implicit in a context and a capacity to be constructively critical to 

them; (3) appropriate values such as respect for reasons, an inquiring attitude, open-mindness, 

independent-mindedness (p. 80) 

A student of the 21st century is critically aware of self and others who challenge the hegemonic 

policy and practices. Moreover, this exploration was possible when we valued students' participation; 

their specific needs and multiple intelligences. From the discussion with the students, we saw the 

possibility of introducing varieties of contents of multiple contexts, including gender issues, in 

participation with the students to develop gender-friendly content. It was because, although the objective 

of my program was to foster students' critical thinking, however, the program itself lacked a critical look. 

The notion of the 3 pillars (curriculum, community and university) seems a foundation for 

nurturing gender equity. For it, we needed to embrace the issues (e.g. gender) of community or society in 

curriculum contents. We need to invite community members to our class to discuss gender issues. We can 

bring artefacts in the class to discuss gender. Yes, curriculum, community and university are the three 

pillars of gender justice! The three pillars have equal value and also equal responsibility to ensure gender 

equity.  

However, we should be aware of Schubert's (1986) notion of  "curriculum as a cultural 

reproduction". In Schubert’s words, the metaphor of “curriculum as cultural reproduction” refers to the 

curriculum that uncritically adopts and implements cultural and social practices mandatorily particularly 

in the school curriculum. We think, by promoting enough evaluation skills, creative thinking and affective 

domains of learning among teachers and students we can critically examine cultural practices to ensure 

gender justice.  

Moreover, like us, teachers need to ask ourselves questions like- Is community-university 

participation necessary for the university curriculum designing and implementation? Do I need to give 
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equal value to community knowledge, indigenous knowledge, in the university class? Is my curriculum 

contextualized, and connected to the community fully?  

Thus, embracing the issues of community, inviting community members in the class to discuss 

issues and bringing artefacts from the community are some ways to improve the curriculum. Curriculum, 

community and the university are the three pillars of gender justice that have equal value and 

responsibility to ensure gender equity. By not giving value to the community, by not incorporating 

indigenous knowledge in the classroom and by not participating with the community members, the 

curriculum is decontextualized. It is hard for one individual to contextualize the university curriculum. 

Feminist pedagogy might emphasize dialogue and collaborative culture (Shackel, 1992), however, in the 

Nepalese context to initiate the contextualization of the curriculum classroom interaction, collaboration 

and dialogue are prerequisites (Luitel, 2019).   

In line with Parajuli (2015) our attempt was to explore a cultural gap in education intending to 

make education responsive to the local needs. In the school context, exploring context-responsive 

approaches for contextualizing curriculum was possible through collaborative approaches Dhungana, 

et.al, 2020) and through living collaboration as a professional value (Dhungana, 2020). Moreover, 

exploration of a cultural perspective (i.e. satvic framework) was possible within university classrooms 

through self-study (Dhungana, 2021). 

Decontextualized and decultured curriculum of the university seems one of the major existing 

challenges of higher education which fuelled for ensuring gender injustice. Disregarding the collaboration 

and connection of curriculum with family issues, culture, society and community might not address 

gender issues in our context. For contextualizing curriculum and ‘cultural emancipation’ university-

community collaboration might be helpful. Although contextualizing the university curriculum might not 

be possible by my individual effort, we can continuously attempt to do so. Here emerged a question- who 

is responsible for gender equity?  

Enhancing inclusiveness  
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Who is responsible for gender equity? The inquiry led to explore a rarely discussed (at least in 

our context) issue of teachers’ self-inquiry and “Self-enquiry” (Osborne, 2014). According to LaBoskey 

(2004, p. 826) “each self is different, all offer an important, yet necessarily constrained perspective. 

Therefore, the knowledge of teaching can only be developed in a diverse and inclusive, particularly of 

previously marginalized voices, teacher-learning community.” However, self-inquiry might not be 

sufficient in the Nepali context which has a deeply rooted cultural knowledge of ‘Self-enquiry.’ In line 

with Osborne (2014), who was inspired by the teachings of Ramana Maharshi, we believe that ‘self’ 

might dwell in the egoistic self whereas ‘Self-enquiry’ might take towards pure consciousness or 

inclusive experience. Therefore, self-inquiry is the inquiry of ‘self’ based on our practices whereas ‘Self’-

enquiry is the inquiry of the ‘Self’ or our Pure consciousness (means a sense of inclusiveness or weness). 

In our context, besides ‘self- inquiry’ we feel the need for inquiry of ‘Self’ which might play a vital role, 

particularly in the educational setting. 

For instance, we explored teachers’ collaboration as a context-responsive way to ensure gender 

equity. Here collaboration was not only the approach (Dhungana et. al, 2020) but also a living 

consciousness (Dhungana, 2020), and inclusive context responsive cultural perspective. We made sense 

through the following poem. 

 

My loud voice claimed, 

“I am pedagogy and I am fine.” 

 

My mild voice said, 

“We, students, teachers, university 

family, culture, society, 

Content, learning materials, assignment, 

research topics, university policy, relationships, 

need improvement!” 

 

My low voice whispered, 

“collaboration with colleagues!” 

Discussion with the school management and colleagues explored a context-responsive way of 

‘collaboration’. However, we found it paradoxical because through curriculum teachers intended to 
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enhance collaborative learning (a few courses), but in practice, teachers themselves were overlooking the 

strength of collaborative culture which is deeply rooted in Nepali societies. In White Head’s (2008) 

words, we were “living contradictions” by not living the value of collaboration fully.  For instance, a 

teacher said, “I think teacher-teacher collaboration might work in our context.” Although we had 

incorporated a few group activities for students in our curriculum, we needed to walk the talk! 

Here, we realized that we all are responsible for ensuring gender equity. For instance, not only the 

teachers and school management, students also need to be inclusive and be able to accept change in the 

classroom; to bring change in our dualistic perspective.  

Similarly, the university should encourage research on gender; should let the individual course 

facilitators make personal decisions about the course; should change their existing policy and be gender 

inclusive. Next, the issue of gender is an important content that needs to be integrated in the curriculum. 

Change in the curriculum is essential. There should be gender inclusion in content, learning material, 

assignment. Both males and females’ voices (including texts) should be incorporated in the curriculum. 

Moreover, besides university, family and society need to acknowledge and contribute cultural or 

indigenous knowledge.  

For all these, collaboration as an inclusive context responsive perspective is a prerequisite. 

Promotion of openness among teachers, the connection of curriculum with community or society and 

collaboration among students, colleagues and school management would create a gender-friendly learning 

environment and enhance gender equity.  

Seemingly, we have been ignoring the third or the collaborative voice and promoting the egoistic 

(i.e. first voice) and the victim attitude (i.e. second) voice. We never heard our low voice, the problem-

solving voice. Being adult professionals dealing with adults, role modelling could be a suitable strategy 

for transformative learning (Mezirow, 2000) that could enhance gender equity in the curriculum. We can 

be role models to our students and colleagues by collaboration. Like “curriculum as currere” (1986), we 

can be living curricula. Collaboration with colleagues seems possible in teaching, learning and assessing 
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in our context but-How could we collaborate with our colleagues for enhancing gender equity in the 

curriculum?-emerged as an unanswered question that can be a question for further research.  

Final reflections 

The query-How can we develop a gender-responsive curriculum? -gave rise to the idea of all-

inclusive context-responsive equitable strategies such as (1) adapting collaborative approach, (2) 

promoting ‘the 3 pillars’, and (3) enhancing inclusiveness. 

At first, we explored collaboration as a gender gap that led us towards seeking the possibilities of 

respecting and nurturing the cultural perspective of gender equity. In other words, rather than focusing on 

problems and seeking ways for problem-solving, we could see what had been working well in our context 

and thereby continue being like a critical student (Johnston, Mitchell, Myles & Ford, 2011). 

For instance, we can promote collaborative and cooperative learning communities of practices 

among students and faculty. Next, we can promote collaborative methodologies like action research, 

participatory action research, self-study methodologies which encourage collaboration, participation and 

improvement of professional practices. Similarly, cross-cultural projects like NORHED Rupantanran and 

NORAD QUANTICT can enhance collaboration among colleagues and the community. Collaboration 

between Nepali universities might be helpful in addressing gender issues. For global collaboration, 

mutual relationships within university members can sustain and thereby satisfy the stakeholders for the 

long run (Gaskins-Scott, 2020). University education can be a role model in the Nepali context if it has a 

foundation of collaborative culture and mutual relationships that might enhance gender equity in a 

sustainable way and support the community. 

Moreover, the promotion of an integral worldview that moves beyond binary conflicts might be 

supportive for gender balance and equity. For it, the respect for both worldviews, Western Modern 

Worldviews and Eastern Wisdom Tradition seem the urgent need to realize their potentiality of 

complementing each other with their distinct potentialities. According to Timmers, Willemsen, and 

Tijdens (2010), a multi-perspective framework of policy awareness could help evaluate their gender 

equity policy measures. Therefore, being like Kincheloe's (2005) ‘active researcher’ and using van 
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Manen’s (1991) pedagogical tactfulness, we can integrate both world views respecting so-called 

indigenous knowledge and non-indigenous knowledge.  

Similarly, the promotion of both critical inquiry and appreciative inquiry seems urgent to realize 

our cultural practices, explore indigenous knowledge and practices to address contextual issues rather 

than waiting for the best theories and methods from non-indigenous contexts.  

An inclusive approach prepared us to ‘walk the talk’ and thereby prepared enough space for 

classroom reformation and policy development in the university setting (LaBoskey, 2004). The critical 

self-examination might create tension in the university setting (Savage & Pollard, 2018), however, 

university culture could be a role model to influence students, teachers and faculties, and the society and 

beyond (LaBoskey, 2004). Further, continuous mainstreaming of gender with pedagogical tactfulness in 

the classroom with the hope of students getting informed and empowered with the strength of cultural 

practices would support deconstruction and then reconstruct hegemonic policies and practices. 

Conclusion 

Finally, we explored that openness, the culture of inquiry, the culture of respect, mutual trust, and 

shared values like cooperation and inclusiveness are prerequisites for developing, improving and 

nurturing an all-inclusive context-responsive perspective. All-inclusive perspectives can evolve a new 

(i.e. context-responsive) framework for gender equity. Moreover, we envision university curriculum and 

policy developers in collaboration with students, teachers, school management and the community 

representatives to explore context-responsive equitable strategies in diverse contexts to develop 

curriculum and thereby to execute university policies adapting participatory approach. 
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