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An Abstract of a Dissertation Submitted to Nova Southeastern University  

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 

Interpretable Machine Learning Model for Clinical Decision Making  

 

Despite machine learning models being increasingly used in medical decision-making 
and meeting classification predictive accuracy standards, they remain untrusted black-
boxes due to decision-makers' lack of insight into their complex logic. Therefore, it is 
necessary to develop interpretable machine learning models that will engender trust in the 
knowledge they generate and contribute to clinical decision-makers intention to adopt 
them in the field. The goal of this dissertation was to systematically investigate the 
applicability of interpretable model-agnostic methods to explain predictions of black-box 
machine learning models for medical decision-making. As proof of concept, this study 
addressed the problem of predicting the risk of emergency readmissions within 30 days 
of being discharged for heart failure patients. Using a benchmark data set, supervised 
classification models of differing complexity were trained to perform the prediction task. 
More specifically, Logistic Regression (LR), Random Forests (RF), Decision Trees (DT), 
and Gradient Boosting Machines (GBM) models were constructed using the Healthcare 
Cost and Utilization Project (HCUP) Nationwide Readmissions Database (NRD). The 
precision, recall, area under the ROC curve for each model were used to measure 
predictive accuracy. Local Interpretable Model-Agnostic Explanations (LIME) was used 
to generate explanations from the underlying trained models. LIME explanations were 
empirically evaluated using explanation stability and local fit (R2). 
 
The results demonstrated that local explanations generated by LIME created better 
estimates for Decision Trees (DT) classifiers. 
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Chapter 1 
 
 

Introduction 
 

Background 
 

Hospital readmissions refer to unplanned hospitalizations that occur within 30 

days of discharge. Jencks et al. (2009) estimated an annual cost of avoidable Medicare 

readmissions of $17.4 billion, and 20 percent of Medicare fee-for-service patients had 

readmissions within 30 days of discharge. These findings established managing 

preventable readmissions as a goal for policymakers to save costs and improve healthcare 

quality (Betancourt et al., 2015). 

The Patient Protection and Affordable Care Act of 2010 instituted the Hospital 

Readmissions Reduction Program (HRRP), requiring the Centers for Medicare & 

Medicaid Services (CMS) to reduce payments to hospitals with excess readmissions 

starting the fiscal year 2013 for select clinical conditions. A 2016 report to the U.S 

Congress noted that HRRP imposed $420 million in penalties against 78 percent of 

hospitals (Medicare Payment Advisory Commission, 2016). 

Heart failure is among the conditions targeted in the HRRP and is the leading 

cause of death in the United States. Cardiovascular disease accounted for over 17.3 

million deaths in 2013 and is expected to account for over 23.6 million deaths by 2030 

(Mozaffarian et al., 2016). Additionally, heart failure is the leading cause of hospital 

admissions and readmissions in the United States among patients over the age of 65 

(Arundel et al., 2016; Joynt & Jha, 2011). 

The increasing availability of electronic patient data presents opportunities to 

leverage machine learning (ML) methods to predict patients at high risk of readmission 
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and consequently aid clinical decision-making (Bayati et al., 2014). While not all 

readmissions are preventable, a high readmission rate has been established as an indicator 

of poor quality of care (Goldfield et al., 2008). Additionally, the active management of 

discharged patients has been established to have a significant bearing on outcomes 

(Verhaegh et al., 2014). Several studies have reported successful readmission reduction 

outcomes by allocating limited post-discharge resources such as scheduled outpatient 

visits and the application of telehealth and patient education (Bayati et al., 2014; Messina, 

2016; Ross et al., 2009). Therefore, accurately and reliably predicting patients at high risk 

of readmissions is useful to healthcare practitioners to identify patients targeted for post-

discharge intervention. 

Black-Box Models 
 

Black-box models refer to automated decision systems that map user features into 

a decision class without exposing how and why they arrive at a particular decision 

(Montavon et al., 2017; Pedreschi et al., 2019). The internals of black-box models are 

either unknown or not clearly understood by humans (Carvalho et al., 2019; Guidotti et 

al., 2018). The terms black box, grey box, and white box refer to the level of exposure of 

the internal logic to the system user (Adadi & Berrada, 2018). 

Machine Learning Interpretability 
 

ML interpretability is of paramount importance in high-stakes decision-making to 

maintain human oversight over black-box models. Although ML interpretability can be 

intentionally obstructed to protect secrets and maintain a competitive advantage (Burrell, 

2016), black-box models’ opacity can arise from the distinct difficulty of interpreting 

classification results leveraging large datasets and achieving accuracy through model 
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complexity. Interpretability approaches can be classified based on the following 

attributes: Intrinsic vs. Post-hoc; Global vs. Local; Model-Specific vs. Model-Agnostic 

(Carvalho et al., 2019). 

Intrinsic vs. Post-Hoc Interpretability 

 
Intrinsic interpretability refers to transparent models in which the inner logic is 

represented by an interpretable model structure (Murdoch et al., 2019). Intrinsic 

interpretability is partly achieved by constraining model complexity, which can lower 

predictive accuracy (Du et al., 2019; Murdoch et al., 2019). 

Post-hoc interpretability takes a trained model as input and extracts the underlying 

relationships that the model had learned by querying the model (Murdoch et al. 2019), 

observing the model’s output on a large number of inputs, and constructing a white-box 

surrogate model (Burkart & Huber, 2020). Post-hoc explanations mimic model 

distillation (Tan et al., 2018) as they transfer the knowledge from a large, complex model 

(teacher) into a simpler model (student), representing an explanation of what the model is 

doing but not how the model is doing it. Although the approximate explanation is not an 

exact match of what the model is doing, it is close enough to be useful in understanding 

the model’s logic. Post-hoc methods do not place constraints on the underlying model, 

hence explain the output of the black box model without negatively impacting predictive 

accuracy (Burkart & Huber, 2020; Du et al., 2019). 
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Figure 1. Post-hoc Interpretability 

From: “Burkart, N., & Huber, M. F. (2020). A Survey on the Explainability of 

Supervised Machine Learning. arXiv preprint arXiv:2011.07876.” 

 
Global vs. Local Interpretability 

 
Global interpretability explains the whole logic of a model and the reasoning 

behind all possible outcomes (Guidotti et al., 2018; Lakkarajuet al., 2019). Global model 

interpretability explains a model through the most important rules learned from the 

training data and represents the explanation through the model’s structure and parameters 

(Du et al., 2019). Examples of global interpretability rules are the coefficients in a linear 

regression model or rules encoded by a path from the root node to the leaf nodes in a 

decision tree model. Global model interpretability explains population-level decisions 

(Yang et al., 2018). However, they are not optimized for individual samples as they 

provide feature importance that is averaged across the entire input space (Yoon et al., 

2018). 

Local interpretability explains model characteristics and the impact of input 

features for a specific prediction (Adadi & Berrada, 2018; Du et al., 2019; Guidotti et al., 

2018). Because small sections of the model are more likely to be linear, local models 

expressed as a linear function of input features can be more accurate than global models 

(Hall et al., 2017). 
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Model-Specific vs. Model-Agnostic Interpretability 

Model-specific interpretability refers to explanations that are exclusive to the 

classifier used and derive their explanation by using the internal model representation or 

learning process (Adadi & Berrada, 2018; Du et al., 2019; Robnik-Šikonja & Bohanec, 

2018). 

Model-agnostic explanatory methods approximate the behavior of underlying ML 

models to generate end-user explanations that are independent of the internal logic used 

to generate predictions (Ribeiro et al., 2016a). Model-agnostic explanations enable the 

use of black-box models for tasks requiring the high accuracy of black-box models 

without sacrificing the need for interpretability (Ribeiro et al., 2016a). 

Local Interpretable Model-Agnostic Explanations (LIME) 

Local interpretable Model-Agnostic Explanations (LIME) is a post-hoc method 

that generates explanations for any underlying classifier prediction. The LIME 

explanations are extracted from the underlying model by learning a simpler linear model 

around the prediction. The LIME linear model is constructed by generating perturbed 

random samples around the instance and establishing local feature importance 

representing the primary drivers supporting the prediction. LIME allows the user to 

generate an explanation budget by pre-defining the number of features used in the 

explanation (Ribeiro et al., 2016a). 

Classification Predictive Accuracy Metrics 

The predicted label of a binary classifier falls into one of four categories: true 

positive (TP), false positive (FP), false negative (FN), or true negative (TN) (Metz, 1978; 

Fawcett, 2006; Linden, 2006; Sokolova & Lapalme, 2009). A confusion matrix generally 

represents the frequencies of the classification label across the four key measures. Key 
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empirical metrics derived from these measures include accuracy, sensitivity (recall), 

specificity, precision, error rate, F-score, and Area Under the Receiver Operator 

Characteristic (ROC) Curve (AUC) derived from the Confusion Matrix parameter in 

Table 1 (Fawcett, 2006; Huang & Ling, 2005; Linden, 2006; Metz, 1978). The study 

reports precision, recall, area under the ROC curve as the accuracy metrics. 

Confusion  

Matrix 

Predicted 

Condition Positive 

Predicted 

Condition Negative 

Actual 

Condition  

Positive 

TP 

 

FN 

 

Actual 

Condition 

Negative 

FP TN 

 
Table 1. Confusion Matrix 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙/𝑇𝑃	𝑅𝑎𝑡𝑒	 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

𝐹𝑠𝑐𝑜𝑟𝑒 = 	
2

: 1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛< + :

1
𝑅𝑒𝑐𝑎𝑙𝑙<	

 

 

𝑇𝑁	𝑅𝑎𝑡𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 

𝐹𝑃	𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 

𝐸𝑟𝑟𝑜𝑟	𝑅𝑎𝑡𝑒 = 	
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 
Post-Hoc Explanation Quality Metrics 

The following empirical metrics have been identified in the literature to 

empirically evaluate the quality of post-hoc local explanatory models (Islam et al., 2019; 

Robnik-Šikonja & Bohanec, 2018; Shankaranarayana & Runje, 2019; Yoon et al., 2019): 

 
Explanation Stability 

The random perturbation used by LIME introduces the risk that the local model 

may generate a different explanation for the same instance when the sampling process is 

repeated multiple times (Visani et al., 2021; Zafar & Khan, 2019). As explanations in 

LIME are expressed in terms of input features, a stable LIME explanation would 

consistently select the same input features for the same instance over multiple iterations 

as defined and experimentally demonstrated by (Zafar & Khan, 2019) using the average 

Jaccard similarity distance for a fixed number of iterations. The Jaccard coefficient is 

𝐽(𝑆!, 𝑆") =
|𝑆! ∩ 𝑆"|
|𝑆!U	𝑆"|

 

 

Where	𝑆!, 𝑆" are two explanation sets 

𝐽(𝑆!, 𝑆")	ranges from 0 to 1; 0 means the sets are identical; 1 means the sets are highly 

dissimilar.  The value closer to 0 means the explanations are less unstable 

The Jaccard similarity distance is: 

𝐽#$%&'()* = 1 − 𝐽(𝑆!, 𝑆") 
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Local fit (R2)  
Also known as the coefficient of determination: 

𝑅" = 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇 

Where:  

• 𝑆𝑆𝐸 (Sum of Squares)  

• 𝑆𝑆𝑇 (Sum of Squared Total) 

R2 measure ranges from 0 to 1; the closer to 1, the better the fit. 

Problem Statement 

Clinical decision-making is evidence-based, probabilistic, fraught with 

uncertainty, and needs to balance conflicting decision criteria (Broekhuizen et al., 2015). 

While ML algorithms can improve decision-making and provide insight, their use 

introduces added uncertainty due to their inherent complexity and lack of interpretability 

(Choi et al., 2016). Managing the uncertainty introduced by ML models is necessary to 

assure healthcare practitioners that their adoption will yield better decisions and can be 

trusted (Ahmad et al., 2018). Numerous studies have demonstrated the improved 

accuracy metrics of ML methods in predicting the risk of unplanned hospital 

readmissions to support clinical decision-making. However, these studies were limited to 

a small non-publicly available dataset (Bayati et al., 2014) or offered global interpretable 

risk factors (Yang et al., 2016). Considering the increased penetration of ML models in 

medical decision making, it is necessary to develop interpretable ML models that will 

engender trust in the knowledge they generate and contribute to individual clinical 

decision-makers intention to adopt them in the field (Biran & Cotton, 2017; Burkart & 

Huber, 2020; Guidotti et al., 2018; Holzinger et al. 2017). There are no known 
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readmission studies that applied ML methods on large publicly available datasets using 

post-hoc model-agonistic local ML interpretability techniques. 

Dissertation Goal 

The goal of this dissertation was to systematically investigate the applicability of 

local model-agnostic methods to explain the predictions of complex ML models used for 

medical decision-making. As a proof of concept, the dissertation addressed the binary 

classification problem of predicting the risk of emergency readmission within 30 days of 

discharge for heart failure patients based on the information available at the time of 

discharge. 

Using a benchmark dataset, supervised classification models of differing 

complexity were trained to perform the prediction task. Logistic Regression (LR), 

Random Forests (RF), Decision Trees (DT), and Gradient Boosting Machines (GBM) 

models were constructed using the Healthcare Cost and Utilization Project (HCUP) 

Nationwide Readmissions Database (NRD). The precision, recall, F1-score, area under 

the ROC curve for each model were used to measure predictive accuracy. Local 

Interpretable Model-Agnostic Explanations (LIME) was used to interpret the predictive 

features of each trained model. Explanation stability and local fit (R2) were used to 

measure the quality of the explanation generated by LIME. 

Research Questions 
 

The following research questions guided the study: 

Research Question 1 (RQ1): Can the ML predictions generate intelligible results 

to guide clinical decision-making? 

Research Question 2 (RQ2): What are the most useful features in predicting 

hospital readmissions for heart failure patients? 
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Research Question 3 (RQ3): Will using the model-agnostic explanatory method 

(LIME) generate high-quality explanations as measured by explanation stability and 

local fit? 

Relevance and Significance 

 
ML techniques are increasingly being applied to support a broad range of health 

care decisions (Dey & Rautaray, 2014; Kaur & Singh, 2014; Valdes et al., 2016). 

Examples include rationalizing the allocation of limited healthcare resources (Bayati et 

al., 2014), diagnosing medical conditions (Foster et al., 2014; Nie et al., 2015), 

classifying stroke risk (Letham et al., 2015), and medical image analysis in digital 

pathology (Litjens et al., 2017; Madabhushi & Lee, 2016). 

ML classification algorithms use training data to build models that map input 

feature values into a finite number of categorical outputs (Abu-Mostafaet al., 2012). ML 

methods improve at a given task through experience gained by learning from data. The 

learning is manifested in the form of tuning input parameters to generate the desired 

output. The parameter tuning is used to derive generalized ML models to produce 

predictions on new unseen data. ML models are designed to improve quantitative 

performance metrics, such as maximizing predictive accuracy and minimizing error 

categories (Jordan & Mitchell, 2015; Mitchell, 1997). The complexity of high-performing 

ML algorithms can make them inscrutable to humans resulting in perceiving them as 

untrusted black-boxes unsuitable for adoption in high stakes decision-making (Henelius 

et al., 2014; Lipton, 2018; Miotto et al., 2018). 

An example of the risks posed by using black-box ML models is noted by 

Caruana (2017). In this example, the ML algorithm was tasked with predicting the 
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probability of death of pneumonia patients. The black-box ML model predicted that 

pneumonia patients with asthma had a lower probability of death than their counterparts 

with no asthma. Medical experts attributed the lower probability of death for the 

asthmatic patient group to a higher medical intervention level. The explanation provided 

by domain experts identified the presence of a moderating variable (increased medical 

intervention). By contrast, the unexplained prediction of the ML model could have led to 

an incorrect decision path of minimal medical intervention. Additional examples of ML 

models failing in a clinical context by learning unintended patterns in the training data 

due to the inability to distinguish causal from correlation effects are noted by (Badgeley 

et al., 2019; Zech et al., 2018). 

Trust in automated systems plays a leading role in the willingness of humans to 

use them in a mission-critical domain such as healthcare (Biran & Cotton, 2017; Hoff & 

Bashir, 2014; Ustun & Rudin, 2014; Vorm, 2018). The lack of trust in ML black box 

models was addressed legislatively by the European Parliament's General Data Protection 

Regulation (GDPR). The legislation included the "right to an explanation" mandating 

human interpretation of ML decisions (Goodman & Flaxman, 2016; Selbst & Powles, 

2017). The legislation mandated opening ML black-box models for inspection, 

highlighting the importance of human interpretation as a condition of adoption and 

granting subjects the right to opt-out of automated decision making. While the extent of 

the legal protections offered by GDPR to data subjects under the right to explanation is 

not fully established (Wachter et al., 2017), it is evident that the drive for regulatory 

safeguards requires human control over automated systems is a manifestation of distrust 

in ML algorithmic decisions. 
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Hence, the transparency afforded by ML interpretability is necessary to protect 

from discriminatory biases (Hutchinson & Mitchell, 2019; Kim et al., 2018; Lepri et al., 

2018; Obermeyer et al., 2019; Wiens et al., 2019; Oliver et al., 2018), support model 

debugging (Du et al., 2019; Kulesza et al., 2015), provide feedback for improving models 

(Ahmad et al., 2018; Rudin, 2019), and support overall transparency and human 

autonomy in decision making (Datta et al., 2016; Pedreschi et al., 2019). 

Related Studies 

Recent studies have attempted to predict hospital readmissions for heart failure 

patients. However, these studies were limited to a small dataset that is not publicly 

available (Bayati et al., 2014), reported interpretable risk factors that are global to the 

population (Yang et al., 2016), did not utilize interpretability techniques (Allam et al., 

2019; Liu et al., 2020). There is no known readmission study that applies ML methods on 

a large publicly available dataset based on local model-agnostic explanations. A summary 

of the accuracy metrics for related studies is shown below: 

Source Classifier Dataset Instances AUC 

(Bayati et al., 2014) Logistic Regression 

with LASSO 

Hospital 

EHR 

1,172 0.66 

(Yang et al., 2016) Logistic Regression 

with LASSO 

NRD 2015 142,527 0.657 

(Yang et al., 2016) GBM  NRD 2015 142,527 0.663 

(Yang et al., 2016) DNN NRD 2015 142,527 0.662 

(Allam et al., 2019) Logistic Regression 

with LASSO 

NRD 2013 272,778 0.643 

(Allam et al., 2019) Recurrent Neural 

Networks combined 

NRD 2013 272,778 0.642 
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Source Classifier Dataset Instances AUC 

with Conditional 

Random Fields 

(Liu et al., 2020) Hierarchical Logistic 

Regression 

NRD 2014 303,233 0.580 

(Liu et al., 2020) XGBoost NRD 2014 303,233 0.602 

(Liu et al., 2020) Feed-Forward Neural 

Networks 

NRD 2014 303,233 0.604 

(Liu et al., 2020) Medical Code 

Embedding Deep Set 

Architecture  

NRD 2014 303,233 0.618 

 
Table 2. Average AUC Comparison for Related Studies 

Summary 

The goal of this dissertation was to systematically investigate the applicability of 

local model-agnostic methods to explain the predictions of black-box machine learning 

models used for medical decision-making. As proof of concept, this study addressed the 

problem of predicting the risk of emergency readmissions within 30 days of being 

discharged for heart failure patients. The precision, recall, area under the ROC curve for 

each model were used to measure predictive accuracy. Local Interpretable Model-

Agnostic Explanations (LIME) was used to generate explanations from the underlying 

trained models. Explanation stability and local fit (R2) were used to measure LIME's 

explanation quality. 
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Chapter 2 
 
 

Review of the Literature 
Introduction 
 
 This chapter surveys the literature to provide a brief overview of ML concepts 

and algorithms used to generate the clinical decision models and their corresponding 

explanations. 

Cost-Sensitive Learning for an Imbalanced Datasets 
 

Imbalanced data refer to datasets with unequal distribution between classes where 

a class is outnumbered and underrepresented (Fernandez et al., 2018). Imbalanced data 

can result in low predictive accuracy for the minority class due to classifiers being 

optimized to minimize overall misclassification errors (Galar et al., 2012; He & Garcia, 

2009; Lipitakis & Kotsiantis, 2014). The class imbalance problem can be addressed using 

sampling techniques such as minority-class over-sampling, majority-class under-

sampling, and combining of minority-class over-sampling and majority-class under-

sampling (Batista et al., 2004; Estabrooks et al., 2004). An alternative technique to 

address the class imbalance problem is cost-sensitive learning (He & Garcia, 2009; Ling 

& Sheng, 2008). Cost-sensitive learning can be used to assign a higher cost to 

misclassifying the minority class (Ling & Sheng, 2008), resulting in a classifier that is 

less biased towards the majority class. 

Ensemble Methods  
 

For classification problems, rule ensembles combine the prediction of multiple 

base learners to generate new classifiers (Bauer & Kohavi, 1999). Empirical studies have 

demonstrated that ensemble methods often produce more accurate predictions than base 



 

 

15 
 

 
 

learners (Bauer & Kohavi, 1999; Freund & Schapire, 1996). The ensemble approaches 

used in this dissertation are boosting and bagging (Breiman, 1996). 

Boosting 
 

Boosting is a sequential learning algorithm that identifies errors in the early 

predictions as hard examples to focus on in subsequent iterations. The emphasis on hard 

examples is implemented by assigning higher weights to the incorrectly classified 

examples and lower weights to the correctly classified examples. The iterative process 

combines many individual weak learners into a complex predictor (Schapire & Freund, 

2012). The committee of weak learners is individually tasked with developing rough 

rules of thumb that perform slightly better than random. (Schapire, 2003). Boosting has 

been shown to provide high accuracy results on benchmark datasets and competitive 

challenges such as the Netflix prize (Chen & Guestrin, 2016). This dissertation used the 

LightGBM implementation of Gradient Boosting Decision Trees (Ke et al., 2017). 

Bagging 
 

Bagging is an acronym for bootstrap aggregation. Bagging is a sampling method 

that trains multiple base learners, each using different parts of the data set drawn at 

random with replacement. The sample size used by each learner is equal to the size of the 

original training set. The learners are combined through a majority vote to predict a class 

(Breiman, 1996). Bagging does not change the distribution of the training set based on 

the performance of previous classifiers (Bauer & Kohavi, 1999); each learning instance is 

chosen with equal probability. (Rokach, 2010). The independence of individual 

classifiers in Bagging characterizes it as a parallel ensemble method that exploits the 

independence of base learners to reduce the generalization error (Zhou, 2012). Bagging 
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has been demonstrated to be well suited for handling noisy and imbalanced data 

(Khoshgoftaar et al., 2011) and for use with tree-based methods that are characterized as 

high-variance, low-bias (Friedman et al., 2001). This study utilized the Random Forests 

(RF) (Breiman, 2001a; James et al., 2013) bagging implementation. 

Random Forests (RF) 
 

Random Forest (RF) is an ensemble algorithm that extends the boosting of 

decision trees. RF is comprised of randomly constructed trees and makes the final 

prediction through a majority vote (Breiman, 2001a; James et al., 2013). RF creates many 

randomized decision trees and averages their predictions to fit the input data (Biau & 

Scornet, 2016). For many problems, RF achieves the same performance as boosting but is 

simpler to train and tune (Friedman et al., 2001). 

Decision Trees (DT) 
 

Decision Tree (DT) algorithms use observed input attributes to classify objects. 

The tree is constructed top to bottom through a sequence of decision splits, starting with 

the root until a leaf is reached, representing a decision class. Candidate branching 

decision variables are chosen based on criteria such as maximizing information gain. The 

closer the feature is to the root, the more relevant it is for the prediction. The paths from 

the root to leaves can be linearized into a set of if-then classification rules (Frank & 

Witten, 1998; Quinlan, 1987). 

DTs are induction algorithms where rules are derived from training examples 

(Mitchell, 1997). As multiple DT can be derived from an example set, simpler rules are 

preferred as they are expected to generalize better to unseen examples and avoid 

overfitting. This principle is referred to as Occam's razor (Blumer et al., 1987). In this 
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context, simple trees are usually small trees. Implementations of DT include 

Classification and Regression Trees (CART) (Breiman et al., 1984), Iterative 

Dichotomizer 3 (ID3) (Quinlan, 1986), and C4.5 (Quinlan, 1993). DTs are considered 

interpretable classification models because they can model non-linear relationships while 

maintaining a simple structure (Breiman et al., 1984); have a graphical structure that 

assists in visualizing the rules; select a subset of features that identify the most relevant 

attributes; have a hierarchical structure that indicates the relative importance of features. 

The disadvantages of DT include that prediction accuracy is sensitive to the presence of 

irrelevant features, and they are prone to overfitting if not pruned (Breiman et al., 1984; 

Freitas, 2014; James et al., 2013; Kohavi & John, 1997). Additionally, the structure of 

DT can be highly sensitive to small data perturbation (Breiman, 2001b). 

Logistic Regression (LR) 
 

Logistic Regression (LR) is a probabilistic binary classification algorithm. The 

LR algorithm uses sigmoid transformation functions to assign the predicted output a 

probability of belonging to a class between 0 and 1. The sigmoid function produces an S-

shaped curve combined with the decision threshold to determine binary class assignment 

(Friedman et al., 2001; James et al., 2013). 

LR is a classic prediction method originating from the statistics field credited to 

(Cox, 1958) and has been well established and widely used in the medical literature 

(Bagley et al., 2001). LR is considered an interpretable model as the explanatory 

variables are assigned coefficients that measure their impact on the probability. 

Additionally, since LR is a probabilistic model, the level of confidence in the prediction 

can be gleaned from the probability assigned to the prediction. The primary disadvantage 
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of LR is that its performance has been reported as lower than more complex methods 

such as Artificial Neural Networks (Tu, 1996). As a result, using LR has traditionally 

been a choice of intelligibility at the expense of accuracy. 

The Least Absolute Shrinkage and Selection Operator (LASSO) is a feature selection 

technique that reduces the number of prediction parameters and contributes to model 

interpretability (Tibshirani, 1996). While the initial presentation of LASSO in 

(Tibshirani, 1996) was for regression models, the technique has been used in the 

literature for classification problems (Ghosh & Chinnaiyan, 2005). 

Interpretability Characteristics 
 

There is no consensus in the literature on a definition of interpretability (Bibal & 

Frénay, 2016; Doshi-Velez et al., 2017; Du et al., 2019; Gilpin et al., 2018; Lipton, 2016; 

Murdoch et al. 2019; Rudin, 2019). Rather, interpretability is context-dependent (Ahmad 

et al., 2018), varies depending on the problem domain (Guidotti et al., 2018) and end-user 

profile (Tomsett et al., 2018). Absent such definition, the following interpretability 

characteristics have been identified in the literature: 

Time Sensitive 
The explanation is available based on timing that is aligned with the task. Urgent 

decisions require simple, easy-to-understand explanations, while non-urgent decisions 

might warrant a more exhaustive and complex explanation (Guidotti et al., 2019b). 

Understand Feature Contribution 
The contribution of individual features to the final prediction is clearly understood 

(Caruana et al., 2015). 
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Explainable to Humans 
The ability to represent information in the way humans think and understand at 

their experience level intuition (Doshi-Velez et al., 2017; Kim, 2015). Example intuitive 

representations include natural text and images (Guidotti et al., 2019b). 

Aligns with User Expertise 
The detail and level of explanation are aligned with the expertise of the user 

performing the task (Guidotti et al., 2019b). 

Support Case-based Reasoning 
The ability to explain the decision based on similarities to previous cases and 

incorporate domain knowledge back into the system (Adhikari et al., 2019; Chen et al., 

2019; Kim, 2015). Case-based reasoning explanations are represented through sample 

instances and not on feature importance (Plumb et al., 2018). 

Inspecting Individual Predictions 
The ability to inspect through textual or visual artifacts that provide a qualitative 

explanation between the model inputs and resulting prediction for a single case (Ribeiro 

et al., 2016b). 

Comprised of Cognitive Chunks 
The ability to form basic explanation units and define the interaction between 

them (Doshi-Velez et al., 2017). 

Expose Internal Logic 
Combine the classification presentation with a user-facing explanation of the 

internal ML algorithm logic (Burrell, 2016). 

Human Simulatability 
Human simulatable models provide a description of their calculations and can be 

fully understood and performed by a human in a reasonable timeframe (Lipton, 2018; 

Plumb et al., 2018).  
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Can be Edited by Experts 
Domain experts have the option to identify an anomaly in the data and manually 

intervene to prevent incorrect or biased predictions (Caruana et al., 2015). 

Generate Knowledge  
 Extract relevant knowledge about domain relationships contained in data  

(Murdoch et al., 2019). 

Identify Causal Associations 
The ability to distinguish between causal associations and non-causal associations 

(Lipton, 2018; Holzinger et al., 2019). 

Human Precision 
The percentage of predictions made by humans that correctly identify model 

output on unseen instances (Ribeiro et al., 2018). 

Human Coverage 
The percentage of instances predicted by the user after seeing the explanation 

(Ribeiro et al., 2018). 

Mimics Human-based Reasoning 
The level of agreement with independent expert judgment and intuition (Doshi-

Velez et al., 2017; Kim, 2015). 

Contrastive 
Contrastive explanations provide the reason for a prediction was made instead of 

another prediction (Buhrmester et al., 2019); highlight the difference between a 

prediction and another instance prediction (Lipton, 1990; Miller, 2019); and align with 

questions in the form of “why this output instead of that output?” (Waa et al., 2018). 

Contrastive explanations are also labeled as counterfactual explanations (Wachter et al., 

2017) and differential explanations (Du et al., 2019). In the context of medical decision-

making, contrastive explanations identify of how a predicted outcome (heart disease) can 

be different if a feature has a different value (smoking). 
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Fidelity 
As the post-hoc models work differently than the underlying models they are 

explaining, differences are expected in their respective predictive outputs. The larger the 

difference, the less faithful the explanation is to the underlying model (Yang et al., 2019). 

Fidelity measures the level of alignment between the interpretable model and the black-

box model (Adhikari et al., 2019; Guidotti et al., 2018; Lakkaraju et al., 2019). Fidelity is 

also defined as descriptive accuracy, “the degree to which an interpretation method 

objectively captures the relationships learned by machine learning models” (Murdoch et 

al., 2019).  Explanation fidelity compares the explanatory model’s prediction accuracy 

vs. the underlying model to validate that the extracted explanation correctly represents 

the reasoning of the underlying black-box model (Adhikari et al., 2019; Yoon et al., 

2019). Explanation fidelity is an established measure for generally evaluating pos-hoc 

explanation methods (Adhikari et al., 2019) and for evaluating the quality of the 

explanation generated by LIME (Shi et al., 2020). Explanation fidelity is measured as the 

percentage of test-set instances in which the explanatory model classifications agree with 

the model it is explaining (Craven & Shavlik, 1996). 

Stability 
The concept of stability is closely tied with model reliability or robustness: small 

changes to input should not result in large changes of a model selected or predicted class 

and has been widely reported in the literature as a measure for model quality (Breiman, 

2001b; Carvalho et al., 2019; Doshi-Velez & Kim 2017; Van Assche & Blockeel, 2007; 

Yeh et al., 2019). The small changes to input could be outliers (points far from the 

majority of the points in the dataset), and a robust model can minimize the negative 

influence of outliers on the output (Björklund et al., 2019). In the context of post-hoc 
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explanatory methods, robustness is “the resilience of an ML system’s correctness in the 

presence of perturbations” (Zhang et al., 2020). Parts of a model that are not stable to 

perturbations are not considered interpretable (Guidotti & Ruggieri, 2019a; Murdoch et 

al., 2019). Post-hoc methods have been reported to be unstable (Alvarez-Melis & 

Jaakkola, 2019b) and vulnerable to adversarial attacks (Ghorbani et al., 2019). LIME 

specifically has been reported to exhibit instability issues, defined as the repeated 

application of the explainer under the same conditions yielding different outcomes 

(Visani et al., 2021). The Jaccard coefficient has been used to measure the stability of 

LIME explanations (Zafar & Khan, 2019). 

Sparsity and Monotonicity Constraints 
The interpretability of a model can be enhanced through sparsity and 

monotonicity constraints (Du et al., 2019). Sparsity constraints are established by 

selecting a subset of important features in the decision and presenting them as key drivers 

behind the prediction (Kim, 2015). Monotonicity constraints are established when a 

change in value in one or more input values monotonically increases or monotonically 

decreases the probability of the prediction label belonging to a class (Freitas, 2014). 

Predictive Accuracy vs. Interpretability 

The primary characteristics of successful ML predictions are accuracy and 

interpretability. Predictive accuracy establishes “what” is the correct label on unseen 

data, while interpretability answers “why” a prediction was made and what features 

influenced the prediction (Baehrens et al., 2010). The tradeoff between accuracy and 

interpretability has been established in the literature (Ahmad et al., 2018; Bratko, 1997). 

Interpretable models provide meaningful insight into the decision-making process but 

may not have the expressive power to capture the underlying relationship between the 



 

 

23 
 

 
 

input features and the output. Models that accommodate more complex functional 

relationships have more predictive power but are often difficult to interpret (Breiman, 

2001b; Carvalho et al., 2019; Choi et al., 2016). 

Intrinsic vs. Post-hoc Explanations 

Intrinsic explanations assume access to the model and generally explain 

transparent/white-box models such as decision trees, rule-based models, and linear 

models (Holzinger et al., 2017; Lipton 2018). White-box models are self-explanatory as 

the model represents the explanation (Du et al., 2019). White-box models are 

interpretable by design, where feature contribution and model logic can be determined by 

examining the model's parameters and structure. Examples of white-box models include: 

• Bayesian List Machine (BLM) (Letham & Rudin, 2012) 

• Supersparse Linear Integer Models (SLIM) (Ustun et al., 2013; Ustun & 

Rudin, 2016) 

• Threshold-Rule Integer Linear Model (TILM) (Ustun & Rudin, 2014) 

• Falling Rule Lists (FRL) (Wang & Rudin, 2015) 

• Decision sets (Lakkaraju et al., 2016) 

• Two-Level Boolean Rules (TLBR) (Su et al., 2016) 

• Certifiably Optimal RulE ListS (CORELS) (Angelino et al., 2017) 

• Scalable Bayesian Rule Lists (SBRL) (Yang et al., 2017) 

Post-hoc model-agnostic explanation methods can be applied to any supervised 

machine learning model. These methods generate post-hoc explanations that are human 

interpretable and capture the causal relationship between inputs and outputs (Robnik-
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Šikonja & Bohanec, 2018). Post-hoc explanatory methods treat the previously trained 

model as a black-box irrespective of how it is generated (white-box or black-box) 

(Carvalho et al., 2019). Post-hoc explanatory methods explain the model without 

changing it (Murdoch et al., 2019) and without insight on how the model predicts 

(Ahmad et al., 2018). 

Model-Specific vs. Model-Agnostic 

 Model-specific interpretability methods are exclusively tied to the specific class 

model (Adadi & Berrada, 2018; Du et al., 2019). Example model-specific interpretability 

methods include: 

• TREPAN, explain neural networks with decision trees (Craven & Shavlik, 1996; 

Krishnan et al., 1999) 

• Decision Tree extractor (DecText) extracts Decision Trees from trained 

feedforward Neural Networks (Boz, 2002). 

• Conditional variable importance for random forests (Strobl et al., 2008) 

• Feature contribution for random forest classification (Palczewska et al., 2014) 

• Computer vision explanations for convolutional networks (Zeiler & Fergus, 2014) 

• Genetic extraction of a single, interpretable model (GENESIM): use a genetic 

algorithm to transfer the learning from ensemble models into a single decision 

tree (Vandewiele et al., 2016). 

• (Reverse Time Attention) model for recurrent neural networks (RNN) (RETAIN) 

(Choi et al., 2016) 

• Additive Tree Models (ensembles of decision trees) interpreter (Hara & Hayashi, 

2016) 



 

 

25 
 

 
 

• TreeView for Deep Neural Networks (Thiagarajan et al., 2016) 

• Layer-wise Relevance Propagation (LRP) for interpreting deep neural networks 

(Binder et al., 2016) 

• Extended the usage of Layer-wise Relevance Propagation (LRP) feed-forward 

neural network classification decisions (Arras et al., 2017) 

• Deep Learning Important FeaTures (DeepLIFT) for interpreting neural networks 

(Shrikumar et al., 2017) 

• Gradient-weighted Class Activation Mapping (Grad-CAM) for interpreting  

Convolutional Neural Networks (CNN) (Selvaraju et al., 2017) 

• Integrated Gradients a method that attributes the prediction of deep neural 

networks for local explanations (Sundararajan et al., 2017) 

• Scalable Bayesian Rule Lists (Yang et al., 2017) 

• Prediction difference analysis for visualizing deep neural network decisions 

(Zintgraf et al., 2017) 

• Explainable Neural Network Architecture (xNN) (Vaughan et al., 2018) 

• Learning to Explain (L2X) (Chen et al., 2018) and INstance-wise VAriable 

SElection (INVASE) (Yoon et al., 2018) are neural networks that provide an 

interpretable explanation of its individual predictions. 

• Contrastive Explanations with Local Foil Trees (Waa et al., 2018) 

• Quantitative Testing with Concept Activation Vectors (TCAV) for interpreting 

neural networks (Kim et al., 2018) 

• Randomized Input Sampling for Explanation (RISE) for explaining deep neural 

networks for image classifiers (Petsiuk et al., 2018) 
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• Interpretable trees (inTrees) for interpreting ensembles of decision trees (Deng, 

2019) 

• Extremal Perturbations (EP) for explaining deep neural network on computer 

vision classification tasks (Fong et al., 2019) 

• GNN Explainer: post-hoc explanations of Graph Neural Networks (Ying et al., 

2019) 

• TreeSHAP for explaining tree-based models (Lundberg et al., 2020) 

Model-agnostic explanatory methods approximate the behavior of underlying ML 

models to generate end-user explanations that are independent of the internal logic used 

to make predictions (Ribeiro et al., 2016a). Model-agnostic explanations enable the use 

of black-box models for tasks requiring explanations. We can take advantage of the 

accuracy offered by the black box model without sacrificing the need for interpretability 

(Ribeiro et al., 2016a). Examples of model-agnostic interpretability methods include: 

• Local model-agnostic explanations for classification methods that output class 

probabilities (Robnik-Sikonja & Kononenko, 2008) 

• Interactions-based Method for Explanation (IME) (Štrumbelj et al., 2009) 

• Leveraging concepts from coalition game theory to explain individual predictions 

(Strumbelj & Kononenko, 2010) 

• Local gradient explanation vector that describes the movement needed for a data 

point to change its predicted label (Baehrens et al., 2010) 

• Sensitivity Analysis (Cortez & Embrechts, 2013) 

• GoldenEye (Henelius et al., 2014) 
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• Layer-Wise Relevance Propagation (LRP) for interpreting image classification for 

multilayered feed-forward neural networks (Bach et al., 2015) 

• Gradient feature auditing (GFA) (Adler et al., 2016) 

• Model Explanation System (MES) (Truner, 2016) 

• Single Tree Approximation (STA)  (Zhou & Hooker, 2016) 

• Quantitative Input Influence (QII) (Datta et al., 2016) 

• Automatic STRucture IDentification (ASTRID) (Henelius et al., 2017) 

• Black Box Explanations through Transparent Approximations (BETA) 

(Lakkaraju et al., 2017) 

• Interpretability via extracting a decision tree to approximate the underlying model 

(Bastani et al., 2017) 

• SHapley Additive exPlanations (SHAP) is based on coalition game theory and 

sets variable combinations as cooperating and competing coalitions to maximize 

the payoff of an accurate prediction. Kernel-SHAP is a model agnostic post-hoc 

interpretability method (Lundberg & Su-In, 2017b) 

• Meaningful Perturbation (MP) for image data (Fong & Vedaldi, 2017) 

• Real-time image saliency for black-box classifiers (Dabkowski & Gal, 2017) 

• Influence Functions (Koh & Liang, 2017) 

• Feature Importance (Adadi & Berrada, 2018) 

• LOcal Rule-based Explanations (LORE) (Guidotti et al., 2018) 

• Anchors (Ribeiro et al., 2018) 

• Model Agnostic Supervised Local Explanations (MAPLE) (Plumb et al. 2018) 
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• Asymmetric Shapley values (ASV), which is based on cooperative game theory 

and incorporate causal knowledge into explanations (Frye et al., 2019) 

• Causal explanation (CXPlain) (Schwab & Karlen, 2019) 

• Contextual Local Explanation (CLE) (Zhang et al., 2019) 

• Local Rule-based Model Interpretability with k-optimal Associations (LoRMIkA) 

(Rajapaksha et al., 2020) 

• Local Example and Feature importance-based model AGnostic Explanations. 

(LEAFAGE) (Adhikari et al., 2019) 

• Sparse LInear Subset Explanations (SLISE) (Björklund et al., 2019) 

• Model Understanding through Subspace Explanations (MUSE) (Lakkaraju et al., 

2019) 

Model Approximation  

Explaining black box models through local approximation methods such as LIME 

(Ribeiro et al., 2016b) is categorized as a proxy method (Gilpin et al., 2018). The 

approach approximates large complex models (Ex: Ensemble or Neural Network) into 

smaller, simpler models (Ex: decision tree, rule-based model, or linear model) that are 

easier to interpret (Gilpin et al., 2018). The approach is also labeled in the literature as 

model compression (Bucila et al., 2006; Wang et al., 2019), knowledge distillation 

(Frosst & Hinton, 2017; Hinton et al., 2015; Liu et al., 2018), model extraction (Bastani 

et al., 2017), model distillation (Tan et al., 2020), and mimic learning (Che et al., 2015; 

Du et al., 2019). 
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Local Interpretable Model-Agnostics Explanations (LIME) 

The model-agnostic explanation in this study was generated using Local 

Interpretable Model-Agnostics Explanations (LIME) (Ribeiro et al., 2016b). 

LIME falls under the broader category of removal-based explanations that establish 

feature importance by systematically simulating removing features to quantify their 

influence (Covert et al., 2020). The main characteristics of LIME are model-agnostic and 

local. The LIME localized explanations zoom in to the input space region relevant to the 

individual prediction and identify an interpretable model locally faithful to the classifier 

without attempting to generalize or establish global rules for other instances in the input 

space (Ribeiro et al., 2016b). While the global decision boundary might be complex and 

squiggly, the localized explanation can be achieved through a linear approximation close 

to the decision point, as illustrated in Figure 2. 

 
Figure 2. LIME Decision Boundary 

From “Why Should I Trust You?” Explaining the Predictions of Any Classifier”, by M. 

T. Ribeiro, S. Singh, and C. Guestrin, 2016, ACM SIGKDD international conference on 

knowledge discovery and data mining (pp. 1135-1144). 

Figure 2 illustrates how LIME is applied to a binary classifier tasked with 

separating instances into a red or blue class. The bold red cross represents the decision 

being explained, the blue and pink regions represent the global decision boundary, and 
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the dashed line represents the localized LIME explanation. The localized explanation 

identifies parts of the input necessary for the prediction, contributing to an intuitive and 

easy-to-understand explanation (Ribeiro et al., 2016b). In the context of medical 

decision-making, localized explanations can identify the specific attributes of the patient's 

condition that drive a decision. While the global decision model needs to account for 

complex edge cases such as rare medical conditions, a simple, localized explanation 

would suffice for most patients. Additionally, highlighting the input parameters that 

drove the decision, such as the presence of a medical condition or the number of recent 

emergency admissions, allows the decision-maker to recognize potential flaws in the 

model’s logic. The LIME approximation process is depicted in Figure 3 and summarized 

below: 

 
Figure 3. The LIME Process 

Input Parameters: choose an instance to explain along with the number of input 

features used to provide an explanation. 

Perturbations: create a new synthetic dataset by randomly sampling points around 

the input instance; obtain the black box predictions of these new samples. 

Weighting: use the proximity to the instance being explained as weights and a 

measure of similarity. 
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Fitting: fit a weighted, interpretable model on the perturbed dataset; fit a linear 

regression in the local area. 

Explanation: construct a simple linear regression model against the perturbed 

dataset with the coefficients of the features used as the explanation. The explanation is 

expressed in terms of how input features influence the model in choosing a class. The 

coefficients can have positive or negative values indicating the direction of the 

relationship between the features and the predicted class. Coefficients values express the 

magnitude of feature contribution. The larger the coefficient value, the more significant 

the contribution to the underlying model’s prediction. 

Figure 4 illustrates the use of LIME to explain the flu/not-flu classifier. The 

patient is classified as having the flu, with the symptoms of sneeze and headache 

supporting the prediction. While the absence of fatigue symptoms contradicts the 

prediction of the flu, the influence of the supporting features is greater. 

 
Figure 4. Explaining a Prediction with LIME 

From “Why Should I Trust You?” Explaining the Predictions of Any Classifier”, by M. T. Ribeiro, S. Singh, and C. 

Guestrin, 2016, ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). 

Figure 5 illustrates the LIME’s output explaining an instance from a tabular 

dataset for a classifier predicting if a mushroom is edible or poisonous. The leftmost 

graph provides prediction probabilities for each class, the middle graph provides feature 

importance visualization, and the rightmost graph provides the feature values for the 

explained instance. 
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Figure 5. LIME Tabular Classifier Explanation 

From: https://github.com/marcotcr/lime 

The output of LIME includes R2 (fit statistic), which is a measure of the fit of the 

linear model in the local region. LIME also outputs the important features based on a pre-

determined threshold. 

The interpretation task performed by LIME can be summarized below (Asano et 

al., 2019; Ribeiro et al., 2016b; Visani et al., 2020): 

To interpret the prediction for an instance 𝑥	 for an underlying model represented 

by function 𝑓+,#*- ∶ 𝑋	 → 𝑌+,#*-;  𝑥	Î	𝑋; 

𝑥: explained instance  
𝑋: input feature space 

𝑌+,#*-: predicted target class for the underlying model 
 

LIME locally approximates decisions made by 𝑓+,#*-(𝑥) with 𝑔./01(𝑥); 

The coefficient parameters 𝑝 generated for 𝑔./01(𝑥) represent the feature 

importance of the local model. 

LIME is formalized as an optimization problem balancing local fidelity loss and 

interpretability with the objective function 

𝜉(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛	𝐿(𝑓+,#*- , 	𝑔./01 , Π2	) +W	(𝑔./01)  

W	(𝑔./01)	:  penalty function for the complexity of 𝑔./01 
𝐿	:  loss function 
Π2	: weight assigned based on proximity to instance 𝑥 
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Limitations of LIME 

Several drawbacks of the LIME method have been reported in the literature. First, 

LIME is computationally expensive as it requires generating a local model for each 

instance with a large number of samples (Ahmad et al., 2018; Schwab & Karlen, 2019). 

Hence, generating individual explanations for the entire dataset can be impractical 

(Lundberg et al., 2020). Second, the presence of uncertainty in LIME explanations due to 

randomness in the sampling procedure (Zhang et al., 2019) results in LIME explanations 

lacking stability and producing different explanations for the same instance (Visani et al., 

2021; Zafar & Khan, 2019). Third, LIME makes no claims on generating causal 

explanations. Additionally, LIME assumes local linearity, which means it may not 

faithfully approximate local non-linear decision boundaries. Finally, as demonstrated by 

(Slack et al., 2020), LIME is vulnerable to adversarial attacks allowing adversaries to 

hide underlying biases of a classifier by gaming a post-hoc perturbation-based technique 

such as LIME to generate an arbitrary explanation of their choice. 

LIME Variants and Alternatives 

Explanatory methods based on LIME making extensions or revisions and 

reporting comparative results to LIME in the literature include: 

Modified Perturbed Sampling (MPS-LIME) alters the perturbed sampling of 

LIME to consider the correlation between features and apply it to an image classifier. 

MPS LIME was reported to have higher local fidelity than LIME (Shi et al. 2020). 

Minimal Pattern (MP-LIME) generates all non-redundant feature sets providing 

visibility to the combination of features that drove the decision. MP-LIME was reported 

to have higher precision than LIME (Asano et al., 2019). 
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Deterministic LIME (DLIME) substitutes the random perturbations with 

agglomerative Hierarchical Clustering to group training data. K-Nearest Neighbour 

(KNN) (Jerez et al., 2010) is used to select a relevant cluster of an explained instance. 

DLIME was reported to generate stable explanations compared to LIME’s unstable 

explanations (Zafar & Khan, 2019; Zafar & Khan, 2021). 

K-LIME partitions local using unsupervised clustering into K-clustered partitions 

and fit local generalized linear model (GLM) within each cluster. K-LIME is utilized in 

the commercial product Driverless AI by H2O (Hall et al., 2017). 

Locally Interpretable Models and Effects based on Supervised Partitioning 

(LIME-SUP) variant of K-KLIME using supervised partitioning vs. unsupervised 

partitioning performed by K-LIME and reporting improved model fit metrics compared 

to K-LIME (Hu et al., 2018). 

Autoencoder Based Approach for Local Interpretability (ALIME) reported 

improved stability and local fidelity using an autoencoder model as the weighting 

function (Shankaranarayana & Runje, 2019). 

Optimized LIME Explanations for Diagnostic Computer Algorithm (OptiLIME), a 

framework designed to address the lack of stability of LIME explanations (Visani et al., 

2020). 

LIME-G uses generative models to explain image classifiers (Agarwal & Nguyen, 

2021). 

QLIME Quadratic Local Interpretable Model-Agnostic Explanation (Bramhall et 

al., 2020). 
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Summary 

The interpretability of machine learning algorithms is required to support critical 

healthcare decisions. Although there is no universally agreed-upon definition of 

interpretability, stability and local fit (R2) have been identified in the literature as 

empirical metrics measuring the quality of post-hoc local explanatory models. 

The dissertation utilized LIME, a mode agnostic, local, post-hoc explanatory 

method. LIME explains the underlying model by fitting a sparse linear model over 

synthetically created perturbed instances in the region of the predicted instance. The 

coefficients of the sparse linear model represent the relative feature importance for the 

prediction and can be used to understand the relationship between input features and the 

prediction outcome. LIME explanation complexity is enforced via regularization. 
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Chapter 3 
 

Methodology 
Overview 

 This study utilized ML techniques to predict hospital emergency readmissions for 

heart failure patients within 30 days of being discharged. The prediction task was 

formulated as the following binary classification problem: At the time of discharge, the 

heart failure patient instance 𝐼 is represented by a feature vector 𝑥̅. The predicted binary 

class label is represented by 𝑦	Î	{0,1}. Readmission within 30 days of discharge is 

represented by label 𝑦 = 1; No readmission within 30 days of discharge is represented by 

label 𝑦 = 0. This chapter provides an overview of the HCUP datasets followed by a 

description of experimental steps (Pre-Process, Predict, Explain & Evaluate). 

HCUP Dataset 

The dataset for this study was derived from the 2016 National Readmissions 

Database (NRD) made available by the Healthcare Cost and Utilization Project (HCUP) 

and sponsored by the Agency for Healthcare Research and Quality (AHRQ), under the 

Department of Health and Human Services (DHHS). The use of the NRD is governed by 

the HCUP Data Usage Agreement (DUA). Patient records were deidentified in 

compliance with the Health Insurance Portability and Accountability Act (HIPPA). 

HCUP contains the most extensive collection of all-payer hospital care data in the US. 

The NRD's intended use is to support the analysis of repeat hospital visits within a year 

and includes both patient and hospital characteristics. While the general schema outline 

for the NRD has remained consistent for the yearly releases, one key difference across 

the years was the migration from the International Classification of Diseases, Ninth 

Edition ICD-9 to ICD-10 as of October 1, 2015. Note that patient IDs do not carry over 
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from one year to the next, so there is no ability to track a patient being discharged from a 

year and readmitted in the subsequent calendar year. 

The 2016 NRD dataset is comprised of three files: Core, Hospital, and Severity. 

The dataset contains 17,197,683 unique discharge records that correspond to 12,602,866 

unique patients and 2,355 unique hospitals. The Core file (17,197,683 rows, 103 features) 

contains admission/discharge, patient demographics, and clinical information on the 

encounter, including discharge diagnoses, recorded procedures based on ICD-10. The 

Severity file (17,197,683 rows, 5 features) contains attributes related to the severity of the 

patient's condition, such as Diagnosis Related Groups and the risk of mortality. The 

Hospital file (2,355 rows, 12 features) includes attributes such as ownership, number of 

beds, teaching hospital status, and regional characteristics. The schema of the 2016 NRD 

is detailed in appendix A. Preprocessing of the dataset was performed to identify patients 

with the primary discharge diagnosis of Heart Failure (HF) and retain features and 

discharge records that could be used for readmission prediction. 

 

Figure 6. Dataset Preprocessing 

An outline of the approach that was followed in the study is depicted below: 
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Pre-Process  Predict 

Step 1 Exploratory Data Analysis Step 6 Construct Predictive Models 

Step 2 Filter Records Explain & Evaluate 

Step 3 Derive Target Variable Step 7 Construct LIME Explainers  

Step 4 Feature Engineering and 

Encoding 

Step 8 Extract Model Specific Global  

Explanations  

Step 5 Split Data Step 9 Accuracy Metrics  

 Step 10 Interpretability Metrics 

 
Figure 7. Study Outline 

Pre-Process 

Step 1 – Exploratory Data Analysis 

Outline the schema for the tabular NRD files (Core, Severity, Hospital), sample 

data, data distribution, check for missing or invalid codes. The analysis included 

identifying missing or invalid records as noted in the following HCUP coding 

practices (HCUP - Healthcare Cost and Utilization Project, 2020) defined the 

dataset coding practices: 

• Missing Data: negative 9-filled value (-9, -99, -999, etc.) for numeric data 

elements; " " (blank) for character data elements. 

• Invalid Data: negative 8-filled value (-8, -88, etc.) for numeric data 

elements; "A" for character data elements. 

• Data Unavailable from Source: negative 7-filled value (-7, -77, etc.) for 

numeric data elements. 

• Inconsistent Data: negative 6-filled (-6, -66, etc.) value for numeric data 

elements. 
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• Not Applicable Data: negative 5-filled value (-5, -55, etc.) for numeric 

data elements. 

Step 2 – Filter Records 

The dataset was filtered to only include initial admissions between January 1, 

2016, to November 30, 2016. Initial admissions in December were not included as 

admission records of January 2017 were not available. The following inclusions 

were applied: (1) Admitted between January and November; (2) Hospital length 

of stay > 0; (3) Non-elective admission; (3) Primary Diagnosis Code (I10_DX1) 

corresponds to Heart Failure (HF) condition based on ICD 10 codes identified in 

appendix E. The following exclusions were applied: (1) Patient left against 

medical advice; (2) Patient died in hospital. 

 
Step 3 – Derive Target Variable (Readmissions within 30 Days) 

The readmission logic was implemented based on (Yoon, Sheng, Jiang, Steiner, & 

Barrett, 2017). The “nrd_visitlink” feature was used to identify a unique patient 

across multiple visits. To mask the identity of patients, the dataset included a 

randomly selected date of admission instead of the actual admission record. 

Therefore, requiring the creation of a “Pseudo Date” to be calculated based on the 

“days to the event” and “length of stay.”  The “Pseudo Date” is required to 

calculate the readmission events. Pseudo Date is assigned: “Days To Event” + 

“Length of Stay.” Subsequent visits were used to calculate the difference between 

visits in days. The numeric difference between admission dates was used to 

establish the binary target variable for the prediction (1 for readmissions less than 
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30 days and 0 for no readmission within 30 days). Patient readmissions after 30 

days are considered new admissions. 

The data frame for the predictive model was established by merging elements 

from the Core, Severity and Hospital files using their common keys as shown 

below for the 2016 NRD dataset: Merge Severity File and Hospital file based on 

HOSP_NRD field; Merge Core File with Severity/Hospital based on the 

KEY_NRD field. The features were manually selected based on the ease of 

encoding them for an ML predictor. 

Feature Name Description Type Number of 

Categories 

Invalid/ 

Missing 

AGE Age in years Numeric - 0% 

TOTCHG Total charges in dollars Numeric - 0% 

LOS Length of stay in days Numeric - 0% 

I10_NECAUSE Number of external causes of 

morbidity codes on the record 

Numeric - 0% 

I10_NPR Number of procedures coded Numeric - 0% 

I10_PR1–I10_PR15 ICD-10-PCS Procedure 

Coding System, principal and 

secondary (15 features) 

Categorical * * 

I10_NDX Number of ICD-10-CM 

diagnoses coded on the record 

Numeric - 0% 

I10_DX1–I10_DX35 ICD-10-CM diagnoses, 

principal and secondary (35 

features) 

Categorical * * 

AWEEKEND Admission on 

weekend/weekday 

Categorical 2 0% 

DISPUNIFORM Disposition of patient, 

uniform coding 

Categorical 5 0% 
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Feature Name Description Type Number of 

Categories 

Invalid/ 

Missing 

DMONTH Discharge month  Categorical 12 0% 

DQTR Discharge quarter  Categorical 4 0% 

FEMALE Indicator of gender Categorical 2 0% 

HCUP_ED HCUP indicator of emergency 

department record  

Categorical 5 0% 

PAY1 Expected primary payer Categorical 8 0.107% 

PL_NCHS Patient Location: National 

Center for Health Statistics 

(NCHS) 

Categorical 7 0.286% 

REHABTRANSFER Transfer to rehabilitation, 

evaluation, or other aftercare 

Categorical 2 0% 

RESIDENT Patient is a resident of the 

State in which he or she 

received hospital care 

Categorical 2 0% 

SAMEDAYEVENT Identifies transfer as same day 

event  

Categorical 5 0% 

ZIPINC_QRTL Median household income for 

patient's ZIP Code 

Categorical 6 1.461% 

MDC Major Diagnostic 

Category MDC in use on 

discharge date 

Categorical 2 0% 

MDC_NoPOA Major Diagnostic 

Category (MDC) in use on 

discharge date, calculated 

without the use of the present 

on admission (POA) flags 

Categorical 2 0% 

DRG Diagnosis Related Group 

(DRG) 

Categorical 77 0% 
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Feature Name Description Type Number of 

Categories 

Invalid/ 

Missing 

DRG_NoPOA Diagnosis Related Group 

(DRG) without the use of the 

present on admission (POA) 

flags for the diagnoses 

Categorical 77 0% 

APRDRG All Patient Refined Diagnosis 

Related Groups (APR-DRGs) 

Categorical 25 0% 

APRDRG_Risk_Mortality All Patient Refined Diagnosis 

Related Groups: Risk of 

Mortality 

Categorical 5 0% 

APRDRG_Severity All Patient Refined Diagnosis 

Related Groups Severity of 

Illness  

Categorical 5 0% 

HOSP_BEDSIZE Hospital Bed Size Categorical 3 0% 

H_CONTRL Hospital control/ownership Categorical 3 0% 

HOSP_URCAT4 Hospital urban-rural 

designation 

Categorical 4 0% 

HOSP_UR_TEACH Teaching status of hospital  Categorical 4 0% 

 
Table 3 Pre-Processed Features 

* I10_PR1–I10_PR15 and I10_DX1–I10_DX35 are utilized to create engineered features 
as outlined in step 4. 
 

All instances with any missing/invalid features were removed. The preprocessing 

of the NRD dataset resulted in single merged dataset as outlined below. 
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Figure 8 Pre-Processed Dataset (prior to feature engineering and encoding) 

All invalid/missing instances removed resulting in (478,756 instances) with a 

target class distribution 

Target Class Number of Instances % Distribution 

Class 0 - Not Readmit <= 30 367,251 76% 

Class 1 – Readmit <= 30 111,505 23% 

 

Step 4 Feature Engineering and Encoding 
AGE feature was binarized to “Not-Senior” for age distribution between 0 and 64 

and “Senior” for age distribution of 65 to 99. 

TOTCHG feature was binarized with bin distribution of 0 to 20K, 20k to 60K, 

and over 60K. 

LOS feature was feature was binarized with bin distribution of 0 to 3, 3 to 6 and 6 

to 344. 

DRG categories were reduced to 11 categories by retaining the top 10 categories 

and assigning the remaining categories to OTHER as summarized below: 
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ICD 10 Code Description 
227 CARDIAC DEFIBRILLATOR IMPLANT WITHOUT CARDIAC 

CATHETERIZATION WITHOUT MAJOR COMPLICATION OR 
COMORBIDITY (MCC) 

246 PERCUTANEOUS CARDIOVASCULAR PROCEDURES WITH 
DRUG-ELUTING STENT WITH MCC OR 4+ VESSELS OR 
STENTS 

264 OTHER CIRCULATORY SYSTEM O.R. PROCEDURES 
280 ACUTE MYOCARDIAL INFARCTION, DISCHARGED ALIVE 

WITH MCC 
281 CUTE MYOCARDIAL INFARCTION, DISCHARGED ALIVE 

WITH CC 
286 CIRCULATORY DISORDERS EXCEPT AMI, WITH CARDIAC 

CATETERIZATION WITH MCC 
287 CIRCULATORY DISORDERS EXCEPT AMI, WITH CARDIAC 

CATETERIZATION WITHOUT MCC 
291 HEART FAILURE AND SHOCK WITH MCC 
292 HEART FAILURE AND SHOCK WITH CC 
293 HEART FAILURE AND SHOCK WITHOUT CC/MCC 
999 OTHER 

 
Table 4 Selected Top DRG Categories 

APRDRG was reduced to the top 6 categories by retaining the top 5 categories 

and assigning the remaining categories to OTHER. 

ICD 10 Code Description 
161 CARDIAC DEFIBRILLATOR & HEART ASSIST IMPLANT 
175 PERCUTANEOUS CARDIOVASCULAR PROCEDURES W/O 

ACUTE MYOCARDIAL INFARCTION (AMI) 
180 OTHER CIRCULATORY SYSTEM PROCEDURES 
192 CARDIAC CATHETERIZATION FOR ISCHEMIC HEART 

DISEASE 
194 HEART FAILURE 
999 OTHER 

 
Table 5 Selected Top APRDRG Categories 

All categorical features were processed with one hot encoding (Hackeling, 2017; 

Hancock & Khoshgoftaar, 2020). All non-primary diagnosis conditions present in 
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features I10_DX2 through I10_DX35 were encoded based on ICD-10 code mapping 

defined in appendix E to create the following binary features: 

Feature Description 
IDXn_CP Chest Pain 
IDXn_HT Hypertension 
IDXn_SH Shock 
IDXn_DB Diabetes 
IDXn_PCI Presence of coronary/cardiac implant and Percutaneous Coronary 

Intervention (PCI) 
IDXn_STR Stroke 
IDXn_COPD Chronic Obstructive Pulmonary Disease (COPD) 
IDXn_ULC Ulcer 
IDXn_MI Myocardial Infarction (MI) 
IDXn_CVS Cardiovascular System (CVS) disease 
IDXn_PVS Peripheral Vascular System (PVS) diseases 
IDXn_LR Liver or Renal Failure/Disease 
IDXn_DM Dementia 
IDXn_CTD Connective Tissue Disease (CTD) 
IDXn_AIDS Acquired immunodeficiency syndrome (AIDS) / Human 

Immunodeficiency Virus (HIV) 
 

Table 6 ICD-10 Mapped Medical Conditions 

 
The medical conditions were based on the readmission risk score calculator 

published by the Yale School of Medicine (Center for Outcomes Research & Evaluation 

(CORE), 2021). 

The top 20 most frequently occurring procedure codes present in features 

I10_PR1through I10_PR15 were identified and mapped into the following binary 

features: 

Feature Description 
I10_PRn_B2111ZZ Fluoroscopy of Multiple Coronary Arteries using Low 

Osmolar Contrast 
I10_PRn_5A09357 Assistance with Respiratory Ventilation, Less than 24 

Consecutive Hours, Continuous Positive Airway Pressure. 
I10_PRn_5A1D60Z Performance of Urinary Filtration, Multiple. 
I10_PRn_4A023N7 Measurement of Cardiac Sampling and Pressure, Left Heart, 

Percutaneous Approach 
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Feature Description 
I10_PRn_02HV33Z Insertion of Infusion Device into Superior Vena Cava, 

Percutaneous Approach 
I10_PRn_30233N1 Transfusion of Nonautologous Red Blood Cells into 

Peripheral Vein, Percutaneous Approach  
I10_PRn_B2151ZZ Fluoroscopy of Left Heart using Low Osmolar Contrast 
I10_PRn_4A023N8 Measurement of Cardiac Sampling and Pressure, Bilateral, 

Percutaneous Approach 
I10_PRn_0W993ZZ Drainage of Right Pleural Cavity, Percutaneous Approach 
I10_PRn_5A09457 Assistance with Respiratory Ventilation, 24-96 Consecutive 

Hours, Continuous Positive Airway Pressure. 
I10_PRn_4A023N6 Measurement of Cardiac Sampling and Pressure, Right 

Heart, Percutaneous Approach 
I10_PRn_B246ZZZ Ultrasonography of Right and Left Heart 
I10_PRn_0W9B3ZZ Drainage of Left Pleural Cavity, Percutaneous Approach  
I10_PRn_5A1D00Z Performance of Urinary Filtration, Single. 
I10_PRn_B24BZZZ Ultrasonography of Heart with Aorta. 
I10_PRn_3E0234Z Introduction of Serum/Tox/Vaccine into Muscle, Perc 

Approach 
I10_PRn_3E0F7GC Introduction of Other Therapeutic Substance into 

Respiratory Tract, Via Natural or Artificial Opening  
I10_PRn_5A2204Z Restoration of Cardiac Rhythm, Single 
I10_PRn_0BH17EZ Insertion of Endotracheal Airway into Trachea, Via Natural 

or Artificial Opening  
I10_PRn_3E033GC Introduction of Other Therapeutic Substance into Peripheral 

Vein, Percutaneous Approach 
 

Table 7 Top 20 Procedure Codes 

The top 20 most frequently occurring external causes of morbidity codes present 

in features I10_ECAUSE1through I10 ECAUSE4were identified and mapped into the 

following binary features: 

Feature Encoding Description 
I10_ECAUSEn_Y95 ECM_Y95 Nosocomial condition 
I10_ECAUSEn_Y929 ECM_Y929 Unspecified place or not applicable 
I10_ECAUSEn_Y92239 ECM_Y92239 Unspecified place in hospital as the 

place of occurrence of the external 
cause 

I10_ECAUSEn_W19XXXA ECM_W19XXXA  Unspecified fall, initial encounter 
I10_ECAUSEn_Y92230 ECM_Y92230 Patient room in hospital as the 

place of occurrence of the external 
cause 
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Feature Encoding Description 
I10_ECAUSEn_Y92009  

ECM_Y92009 
Unspecified place in unspecified 
non-institutional (private) 
residence as the place of 
occurrence of the external cause 

I10_ECAUSEn_X58XXXA ECM_X58XXXA Exposure to other specified factors, 
initial encounter 

I10_ECAUSEn_Y838 ECM_Y838 Other surgical procedures as the 
cause of abnormal reaction of the 
patient, or of later complication, 
without mention of misadventure 
at the time of the procedure 

I10_ECAUSEn_W1830XA ECM_W1830XA Fall on same level, unspecified, 
initial encounter· External causes 
of morbidity. Slipping, tripping, 
stumbling and falls 

I10_ECAUSEn_Y9289 ECM_Y9289 Other specified places as the place 
of occurrence of the external cause 

I10_ECAUSEn_Y848 ECM_Y848 Other medical procedures as the 
cause of abnormal reaction of the 
patient, or of later complication, 
without mention of misadventure 
at the time of the procedure 

I10_ECAUSEn_Y939 ECM_Y939 Activity, unspecified 
I10_ECAUSEn_Y846 ECM_Y846 Urinary catheterization as the 

cause of abnormal reaction of the 
patient, or of later complication, 
without mention of misadventure 
at the time of the procedure 

I10_ECAUSEn_Y831 ECM_Y831 Surgical operation with implant of 
artificial internal device as the 
cause of abnormal reaction of the 
patient, or of later complication, 
without mention of misadventure 
at the time of the procedure 

I10_ECAUSEn_W010XXA ECM_W010XXA Fall on same level from slipping, 
tripping and stumbling without 
subsequent striking against object, 
initial encounter. 

I10_ECAUSEn_Y832 ECM_Y832 Surgical operation with 
anastomosis, bypass, or graft as the 
cause of abnormal reaction of the 
patient, or of later complication, 
without mention of misadventure 
at the time of the procedure 
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Feature Encoding Description 
I10_ECAUSEn_Y92019 ECM_Y92019 Unspecified place in single-family 

(private) house as the place of 
occurrence of the external cause 

I10_ECAUSEn_Y830 ECM_Y830 Surgical operation with transplant 
of whole organ as the cause of 
abnormal reaction of the patient, or 
of later complication, without 
mention of misadventure at the 
time of the procedure - as a 
primary or secondary diagnosis 
code 
 

I10_ECAUSEn_Y92238 ECM_Y92238 Other place in hospital as the place 
of occurrence of the external cause 

I10_ECAUSEn_invl ECM_invl Invalid Code 
 

Table 8 Top 20 External Causes of Morbidity 

 
The pre-processing steps resulted in the following 77 categorical features: 
 

Feature Name Number of Categories 
DISPUNIFORM 5 
HCUP_ED 5 
PAY1 6 
PL_NCHS 6 
SAMEDAYEVENT 5 
H_CONTRL 3 
HOSP_URCAT4 4 
MDC 3 
HOSP_UR_TEACH 3 
DRG 11 
APRDRG 6 
AGE 2 
TOTCHG 3 
LOS 3 
HOSP_BEDSIZE 3 
ZIPINC_QRTL 4 
Risk_Mortality 5 
Severity 5 
AWEEKEND 2 
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Feature Name Number of Categories 
FEMALE 2 
REHABTRANSFER 2 
RESIDENT 2 
IDXn_CP 2 
IDXn_HT 2 
IDXn_SH 2 
IDXn_DB 2 
IDXn_PCI 2 
IDXn_STR 2 
IDXn_COPD 2 
IDXn_ULC 2 
IDXn_MI 2 
IDXn_CVS 2 
IDXn_PVS 2 
IDXn_LR 2 
IDXn_DM 2 
IDXn_CTD 2 
IDXn_AIDS 2 
PRn_B2111ZZ 2 
PRn_5A09357 2 
PRn_5A1D60Z 2 
PRn_4A023N7 2 
PRn_02HV33Z 2 
PRn_30233N1 2 
PRn_B2151ZZ 2 
PRn_4A023N8 2 
PRn_0W993ZZ 2 
PRn_5A09457 2 
PRn_4A023N6 2 
PRn_B246ZZZ 2 
PRn_0W9B3ZZ 2 
PRn_5A1D00Z 2 
PRn_B24BZZZ 2 
PRn_3E0234Z 2 
PRn_3E0F7GC 2 
PRn_5A2204Z 2 
PRn_0BH17EZ 2 
PRn_3E033GC 2 
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Feature Name Number of Categories 
ECM_Y95 2 
ECM_Y929 2 
ECM_Y92239 2 
ECM_W19XXXA 2 
ECM_Y92230 2 
ECM_Y92009 2 
ECM_X58XXXA 2 
ECM_Y838 2 
ECM_W1830XA 2 
ECM_Y9289 2 
ECM_Y848 2 
ECM_Y939 2 
ECM_Y846 2 
ECM_Y831 2 
ECM_W010XXA 2 
ECM_Y832 2 
ECM_Y92019 2 
ECM_Y830 2 
ECM_Y92238 2 
ECM_invl 2 

 
Step 5 – Split Data 

The dataset was split into a training set (80%) and a testing set (20%) 

Predict 

Step 6 – Construct Predictive Models 

Generated predictive models against the dataset, with each model, fitted 

separately. The predictive models were used to eliminate features with low variance. The 

following models were trained: Logistic Regression (LR), Random Forests (RF), 

Decision Trees (DT), and Gradient Boosting Machines (GBM).  Hyperparameter tuning 

for each model was done through grid search with cross validation with K=5. The grid 

search was setup to maximize the AUC so that the search for optimal parameters is 

optimized to maximize the Area and the ROC curve score. 
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Explain & Evaluate 

Step 7 – Construct LIME Models 

Model interpretation was established by generating explanatory features for local 

predictions. Local Interpretable Model Agnostics Explanations (LIME) (Ribeiro, 

Singh, & Guestrin, 2016a) was used to extract local features for individual 

instances. The LIME hyperparameter of the maximum number of feature 

explainers was set to 10 features. 

Step 8 – Extract Global Model Specific Explanations 

Global model-specific explanations were extracted and presented in terms of the 

coefficients for the top 10 features. 

Step 9– Accuracy Metrics 

Predictive accuracy metrics were represented by a confusion matrix with key 

empirical metrics derived from these measures include accuracy, sensitivity 

(recall), specificity, precision, error rate F-Score, and Area Under the Curve 

(AUC). 

Step 10 – Interpretability Metrics 

Interpretability metrics were represented by Explanation Fidelity and Stability. 

The metrics included the LIME hyperparameter of 5000 perturbed samples per 

explanation. 

Local Fit 

The LIME reported coefficient of determination R2 for these explanations 

was averaged for 500 randomly selected test instances. 

Local fit (R2)  
R2 is also known as the coefficient of determination is 
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𝑅" = 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇 

Where:  

• 𝑆𝑆𝐸 (Sum of Squares)  

• 𝑆𝑆𝑇 (Sum of Squared Total) 

𝑅" measure ranges from 0 to 1; the closer to 1, the better the fit. 

Stability 

To measure stability, LIME explanations were generated for 100 randomly 

selected test instances. Each instance had 10 LIME explanations 

generated. The Jaccard similarity is based on the similarity of features 

generated for the same instance. The similarity measure is between 0 and 

1. A value of 0 means highly similar. A value of 1 means highly 

dissimilar. The Jaccard coefficient is 

𝐽(𝑆!, 𝑆") =
|𝑆! ∩	𝑆"|
|𝑆!	U		𝑆"|

 

Where:  

 

• 𝑆!, 𝑆" are two explanation sets 

 

𝐽(𝑆!, 𝑆")	ranges from 0 to 1; 0 means the sets are dissimilar; 1 means the 

sets are identical. 

The Jaccard similarity distance is: 

𝐽#$%&'()* = 1 − 𝐽(𝑆!, 𝑆") 
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Resources 

This study was developed and tested on a MacBook Pro laptop equipped with a 

2.7 GHz Intel Core i7 processor, 16 GB of memory, 500 GB of disk, and running macOS 

Sierra version 10.12.6. The development was implemented using Scikit-learn machine 

learning libraries (Pedregosa et al., 2011). The NRD dataset is publicly available for 

purchase through the AHRQ website. 

 
Summary 

The analysis of a large readmission database comprised of 17 million unique 

discharge records representing 12 million unique patients was performed. Almost 38,000 

patient admissions with heart failure as the primary cause of admission were selected for 

analysis. Supervised classification models were trained to predict the risk of readmission: 

Logistic Regression (LR), Random Forests (RF), Decision Trees (DT), and Gradient 

Boosting Machines (GBM). 
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Chapter 4 

Results 
 

Overview  

The goal of this dissertation was to systematically investigate the applicability of 

local model-agnostic methods to explain the predictions of black-box machine learning 

models used for medical decision-making. As proof of concept, this study addressed the 

problem of predicting the risk of emergency readmissions within 30 days of being 

discharged for heart failure patients. As detailed in the methodology chapter, the study 

was based on the 2016 National Readmissions Database (NRD), containing a total of 

17,197,683 unique discharge records that correspond to 12,602,866 unique patients and 

2,355 unique hospitals. The pre-processing steps included feature engineering and 

manual feature selection resulting in 77 features, 478,756 instances with a target class 

distribution: 

Target Class Number of Instances % Distribution 

Class 0 – Not Readmit <= 30 367,251 76% 

Class 1 – Readmit <= 30 111,505 23% 

 
The precision, recall, area under the ROC curve for each model were used to 

measure predictive accuracy. Local Interpretable Model-Agnostic Explanations (LIME) 

was used to generate explanations from the underlying trained model.  Explanation 

stability and local fit (R2) were used to measure LIME's explanation quality.   

This chapter presents the experimental results of this study for the following 

classifiers: Logistic Regression (LR), Random Forests (RF), Decision Trees (DT), and 

Gradient Boosting Machines (GBM).  The remainder of the chapter is organized as 

follows. First, sample LIME explanations are presented along with a demonstration of the 
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useful insight they generate. Next, a visual illustration of the impact of LIME’s instability 

is provided. Then accuracy and explanation metrics are reported for trained classifiers. 

Finally, the chapter concludes with a summary of results. 

LIME Explanations 

The figure below demonstrates a visual explanation generated by LIME for a 

readmission prediction instance. The left graph provides prediction probabilities for each 

class label, the right graph provides feature importance visualization. 

 

 
 

Figure 9. Example LIME Explanation for Readmission Prediction 

 
In this example, the LIME local model predicted the class label probability of 

readmission within 30 days as 38%. The top 10 features influencing the prediction are 

identified, with each feature assigned a color code and a coefficient. The color code 

indicates if a feature supports or contradicts a class label. In this case, the feature-value 

pairs of AGE=Not-Senior and RESIDENT=Resident support the predictive outcome of 

no readmission within 30 days. The coefficient assigned to the RESIDENT=Resident 

feature-value pair is 0.09, and AGE=Not-Senior feature-value pair is 0.06 indicating their 

influence on the final predictive outcome by the LIME local model.  Additionally, LIME 

supports extracting the coefficients showing the scale and direction of influence on the 

prediction as shown below: 
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For this specific instance, the resulting explanation translates to: 

 
Rank Feature/Value Pair Descriptive Explanation 

1 RESIDENT=Resident 
 

The patient was a resident of the state where the 
hospital admission occurred. This was the most 
influential feature supporting the prediction not likely 
to be readmitted within 30 days. The level of influence 
on the local prediction result is 9%. 

2 IDXn_AIDS=No The patient did not have a medical diagnosis of AIDS. 
This was the second most influential feature 
supporting a prediction of likely to be readmitted 
within 30 days with a level of influence on the local 
prediction result assigned to 8%. 

3 MDC=Circulatory 
 

The Major Diagnostic Category on the date of 
discharge (MDC) indicates the patient had an issue 
related to the Circulatory System. This is the third 
most influential feature supporting the prediction 
likely to be readmitted within 30 days. The level of 
influence on the local prediction result is 8%. 

4 PRn_5A1D00Z=No 
 

The patient did not have a medical procedure related 
to multiple urinary filtrations. This was the fourth 
most influential feature supporting the prediction 
likely to be readmitted within 30 days. The level of 
influence on the local prediction result is 7%. 

5 ECM_Y831=No 
 

The patient did not have an external cause of 
morbidity (surgical operation with an implant of an 
artificial internal device). This was the fifth most 
important feature supporting the prediction of likely to 
be readmitted within 30 days. The level of influence 
on the local prediction result is 7%. 

6 AGE=Not-Senior 
 

The patient was below the age of 65 at the time of 
admission. This was the sixth most important feature 
supporting the prediction outcome of not likely to be 
readmitted within 30 days. The level of influence on 
the local prediction result is 6%. 

7 PRn_4A023N7=No 
 

The patient did not have a procedure (Measurement of 
Cardiac Sampling and Pressure, Left Heart, 
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Rank Feature/Value Pair Descriptive Explanation 
Percutaneous Approach). This was the seventh most 
important feature supporting the prediction of likely to 
be readmitted within 30 days. The level of influence 
on the local prediction result is 5%. 

8 PRn_5A1D60Z=No 
 

The patient did not have a procedure (Performance of 
Urinary Filtration, Multiple). This was the eighth 
most important feature supporting the prediction of 
likely to be readmitted within 30 days. The level of 
influence on the local prediction result is 5%. 

9 ECM_Y832=No 
 

The patient did not have an external cause of 
morbidity (surgical operation with anastomosis, 
bypass, or graft). This was the ninth most important 
feature supporting the prediction of likely to be 
readmitted within 30 days. The level of influence on 
the local prediction result is 5%. 

10 IDXn_LR=No 
 

The patient did not have (Liver or Renal 
Failure/Disease). This was the tenth most important 
feature supporting the prediction of likely to be 
readmitted within 30 days. The level of influence on 
the local prediction result is 5%. 

 
An interesting pattern noted in this example is that seven out of the ten most 

influential features to the local prediction were related to the absence of a medical 

condition or the absence of medical procedure, with six out of the seven features 

supporting a local prediction of likely to be readmitted within 30 days. This could be 

similar to the pattern reported by Caruana (2017), where the presence of certain medical 

conditions was associated with increased medical care and improved health outcomes. It 

is plausible for the presence of medical conditions and procedures to require extensive 

post-discharge follow up which would lead to the reduced likelihood of an emergency 

readmission. Although this association cannot be conclusively derived from the 

explanation, it is a useful insight that could be the basis of additional analysis and 

investigation. 
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Another example of a LIME explanation is shown below. In this example, the 

LIME explanation is not strongly weighted towards one class, as noted in the prediction 

probabilities for both classes being close in value (49%/51%). This could be labeled as a 

low confidence local prediction. Although, the confidence in the prediction is low, the 

explanation offers valuable insight as to which features support each prediction label. For 

example, AGE=Senior supports an increased risk of readmission within 30 days; LOS 

(Length of Stay) being longer than 6 days supports a predictive outcome of not likely to 

be readmitted within 30 days. The insight from the local explanation can be useful in 

validating the logic of the model. 

 
 

Figure 10. Example LIME Explanation for Readmission Prediction - Low Confidence 

 

LIME Explanation Instability 

As detailed in the methodology chapter, LIME has been reported to generate 

explanations that are not stable where the repeated application of the explainer under the 

same conditions yields different outcomes (Visani et al., 2021). The figure below 

demonstrates LIME’s instability in generating different features explanations for the 

same instance prediction by the same model. 
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Figure 11. LIME Instability Example 

Experimental Results 

This section summarizes the experimental results for the trained classifiers 

constructed using Logistic Regression (LR), Random Forests (RF), Decision Trees (DT), 

and Gradient Boosting Machines (GBM) models.  The dataset for all classifiers was split 

to train: test ratio of 80:20. As the binary class labels for the dataset were considered 

imbalanced. All four classifiers utilized the well-established k-fold cross validation 

method (Refaeilzadeh et al. 2016; Wong, 2015) with the number of folds = 5 to estimate 

classifier performance and to avoid over-fitting. The scikit-learn python library 

(Pedregosa et al., 2011) was used for LR, RF, and DT models. GBM was implemented 

through the open source LightGBM made available by Microsoft Research. 

 
Logistic Regression (LR)  

The “max_iter” (maximum iterations for solvers to converge) parameter is set to 

500 to limit the a. The “class_weight” parameter is set to “balanced” to automatically 

adjust weight and increase the penalty for misclassifying the minority class.  The search 

for the best fit hyperparameters was done through scikit-learn’s GridSearchCV.  The grid 

search parameter “cv” was set 5 to the K-fold cross validation, the “scoring” was set to 
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“roc_auc” so that the search for optimal parameters is optimized to maximize the Area 

and the ROC curve score. The grid search hyperparameter search and resulting best fit 

hypermeters were set to the following values: 

Classifier Hyperparameters Grid Search Best Fit Model Hyperparameters 
• C = [2, 10.0, 100.0, 1000.0] 
• solver = [liblinear, saga, newton-cg] 
• penalty = [l1, l2] 

• class_weight = balanced 
• C = 2 
• penalty = l1 
• solver = saga 

 
Accuracy Metrics 
• Area under ROC curve: 0.5749 
• Accuracy: 0.5732 
• Weighted F1 score: 0.6054 

 
Class Precision Recall F1-Score 

Class 0 – Not Readmit <= 30 0.8145 0.5718 0.6719 
Class 1 – Readmit <= 30 0.2941 0.5780 0.3898 

 

Confusion Matrix 

 Predicted Label 
True Label 0 1 

0 40,251 30,144 
1 9,170 12,2558 

 

LIME Explanation Metrics 

Instance Selection Stability R2 

500 Randomly Selected Test 
Instances 

0.4328 0.2471 

500 Randomly Selected Test 
Instances  
(Correctly Predicted) 

0.4310 0.2400 

500 Randomly Selected 
Instances Test  
(Incorrectly Predicted) 

0.4292 0.2468 
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Global Model Generated Feature Importance 
 

Rank 
Feature 

Description Feature 
Importance  

1.  IDXn_CTD Connective Tissue Disease 0.68 
2.  PL_NCHS Patient Location: National Center for 

Health Statistics  0.23 

3.  PRn_3E033GC Procedure: Introduction of Other 
Therapeutic Substance into Peripheral 

Vein, Percutaneous Approach  
0.20 

4.  APRDRG All Patient Refined Diagnosis Related 
Groups  0.19 

5.  ECM_X58XXXA External cause of morbidity: 
Exposure to other specified factors, 

initial encounter  
0.16 

6.  PRn_02HV33Z Procedure Code: Insertion of Infusion 
Device into Superior Vena Cava, 

Percutaneous Approach 
0.11 

7.  PRn_4A023N6 Procedure Code: Measurement of 
Cardiac Sampling and Pressure, Right 

Heart, Percutaneous Approach 
0.09 

8.  AGE Age of the patient 0.09 
9.  ECM_Y92238 External cause of morbidity: Other 

place in hospital as the place of 
occurrence of the external cause  

0.09 

10.  IDXn_PCI Non-primary diagnosis Condition:  
Presence of coronary/cardiac implant 

and Percutaneous Coronary 
Intervention  

0.07 

 
Experiment Observations 
The LIME explanation metrics are stability average 0.43 and local fit (R2) averaging 0.24 

were low.  This was somewhat unexpected given that the underlying local approximation 

model generated by LIME is a logistic regression model.  

Random Forest (RF) 

The “bootstrap” parameter is set to True, resulting in the model using bootstrap 

samples when building trees. The “class_weight” parameter is set to “balanced” to 

automatically adjust weight and increase the penalty for misclassifying the minority class.  

The search for the best fit hyperparameters was done through scikit-learn’s 
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GridSearchCV. The grid search parameter “cv” was set 5 to the K-fold cross validation, 

the “scoring” was set to “roc_auc” so that the search for optimal parameters is optimized 

to maximize the Area and the ROC curve score. The grid search hyperparameter search 

and resulting best fit hypermeters were set to the following values: 

Classifier Hyperparameters Grid Search Best Fit Model Hyperparameters 
• n_estimators [100, 300, 500, 800, 1000,1200, 

2000, 2500, 3000] 
• min_samples_split = [8, 10, 12, 15, 20] 
• min_samples_leaf = [3, 4, 5, 15, 20] 
• max_features = ['auto', 'log2'] 
• max_depth = [50, 70, 80, 90, 100, 110, None] 

• n_estimators = 800 
• min_samples_split = 8 
• min_samples_leaf = 15 
• max_features = log2 
• max_depth = 50 

 

 
 
Accuracy Metrics 
• Area under ROC curve: 0.5767 
• Accuracy: 0.5740 
• Weighted F1 score: 0.6068 

 
Class Precision Recall F1-Score 

Class 0 – Not Readmit <= 30 0.8101 0.5717 0.6731 
Class 1 – Readmit <= 30 0.2920 0.5817 0.3888 

 
Confusion Matrix 

 
 Predicted Label 

True Label 0 1 
0 43,395 30,265 
1 8,979 12,484 

 

LIME Explanation Metrics 
 

Instance Selection Stability R2 

500 Randomly Selected Test 
Instances 

0.4042 0.2453 

500 Randomly Selected Test 
Instances (Correctly Predicted) 

0.4081 0.2439 

500 Randomly Selected Instances 
Test (Incorrectly Predicted) 

0.4068 0.2407 
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Global Model Generated Feature Importance 
 

Rank 
Feature  

Description Feature 
Importance  

1.  ECM_Y92230 External cause of morbidity: Patient 
room in hospital as the place cause 0.02 

2.  ECM_X58XXXA External cause of morbidity: Exposure to 
other specified factors, initial encounter  0.02 

3.  PAY1 Expected primary payer  0.02 
4.  PRn_3E033GC Procedure code: Introduction of Other 

Therapeutic Substance into Peripheral 
Vein, Percutaneous Approach  

0.02 

5.  ECM_Y95 External cause of morbidity: Nosocomial 
condition  0.02 

6.  DRG Diagnosis Related Group  0.02 
7.  APRDRG All Patient Refined Diagnosis Related 

Groups  0.01 

8.  ECM_Y939 External cause of morbidity: Activity, 
unspecified  0.01 

9.  ECM_Y92019 External cause of morbidity: Unspecified 
place in single-family (private) house as 
the place of occurrence of the external 

cause  

0.01 

10.  ECM_Y832 External cause of morbidity: Surgical 
operation with anastomosis, bypass, or 

graft as the cause of abnormal reaction of 
the patient, or of later complication, 

without mention of misadventure at the 
time of the procedure  

0.01 

 
Experiment Observations 
The LIME explanation metrics are stability average 0.4 and local fit (R2) averaging 0.24 

were low. 

Decision Tree (DT) 

The “class_weight” parameter is set to “balanced” to automatically adjust weight 

and increase the penalty for misclassifying the minority class. The search for the best fit 

hyperparameters was done through scikit-learn’s GridSearchCV. The grid search 

parameter “cv” was set 5 to the K-fold cross validation, the “scoring” was set to 
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“roc_auc” so that the search for optimal parameters is optimized to maximize the Area 

and the ROC curve score. The grid search hyperparameter search and resulting best fit 

hypermeters were set to the following values: 

Classifier Hyperparameters Grid Search Best Fit Model Hyperparameters 
• criterion = ['gini','entropy'] 
• splitter = ['best','random'] 
• max_depth = [4,5,6,7,8,9,10,11,12,15,2

0,30,40,50,70,90,120,150] 

• criterion=gini 
• splitter=best 
• max_depth=8 

 

 
Accuracy Metrics 
• Area under ROC curve: 0.5625 
• Accuracy: 0.5344 
• Weighted F1 score: 0.5695 

 
Class Precision Recall F1-Score 

Class 0 – Readmit <= 30 0.8135 0.5098 0.6268 
Class 1 – Not Readmit <= 30 0.2760 0.6125 0.3810 

 
Confusion Matrix 

 
 Predicted Label 

True Label 0 1 
0 36,023 34,637 
1 8,259 13,204 

 
LIME Explanation Metrics 

 
Instance Selection Stability R2 

500 Randomly Selected Test 
Instances 

0.6927 0.4977 

500 Randomly Selected Test 
Instances  
(Correctly Predicted) 

0.6932 0.4969 
 

500 Randomly Selected 
Instances Test  
(Incorrectly Predicted) 

0.6935 0.4980 
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Global Model Generated Feature Importance 
 

Rank Feature 
  

Description Feature 
Importance 

1.  ECM_Y95 External cause of morbidity: Nosocomial 
condition 0.07 

2.  ECM_X58XXXA External cause of morbidity: Exposure to 
other specified factors, initial encounter  0.05 

3.  DRG Diagnosis Related Group 0.04 
4.  

ECM_Y92230 
External cause of morbidity: Patient room 
in hospital as the place of occurrence of 

the external cause 
0.04 

5.  APRDRG All Patient Refined Diagnosis Related 
Group  0.04 

6.  PRn_5A2204Z Procedure Code: Restoration of Cardiac 
Rhythm, Single 0.03 

7.  AGE Age of patient 0.02 
8.  PAY1 Expected primary payer 0.02 
9.  

ECM_Y92019 

External cause of morbidity: Unspecified 
place in single-family (private) house as 
the place of occurrence of the external 

cause  

0.02 

10.  ECM_W19XXXA External cause of morbidity: Unspecified 
fall, initial encounter  0.02 

  

Experiment Observations 
The LIME explanation metrics are stability average 0.69 and local fit (R2) averaging 0.49 

were better for a DT generated model than for other models. 

 

LightGBM (GBM) 

The “is_unbalance” parameter is set to “true” to indicate to the classifier that the 

training dataset is not balanced. The “objective” parameter is set to “binary” to indicate 

the setup of a binary classifier. The search for the best fit hyperparameters was done 

through scikit-learn’s GridSearchCV. The grid search parameter “cv” was set 5 to the K-

fold cross validation, the “scoring” was set to “roc_auc” so that the search for optimal 

parameters is optimized to maximize the Area and the ROC curve score. The grid search 

hyperparameter search and resulting best fit hypermeters were set to the following values: 
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Classifier Hyperparameters Grid Search Best Fit Model Hyperparameters 
• colsample_bytree = [0.69,1,1.25] 
• learning_rate = [0.5, 0.10, 0.15] 
• n_estimators = [50,100,115,116,120] 
• num_leaves = [9,10,11,15,20] 
• subsample = [0.74,1,1.25]                   

 

• colsample_bytree=0.69 
• learning_rate=0.15 
• max_depth=3 (default value) 
• n_estimators=116 
• num_leaves=9 
• subsample=0.74 

 
Accuracy Metrics 
• Area under ROC curve: 0.5737 
• Accuracy: 0.5664 
• Weighted F1 score: 0.5994 

 

Class Precision Recall F1-Score 

Class 0 – Not Readmit <= 30 0.8155 0.5599 0.6639 

Class 1 – Readmit <= 30 0.2909 0.5876 .3891 

 
Confusion Matrix 

 Predicted Label 
True Label 0 1 

0 61,830 8,879 
1 16,839 4,575 

 
LIME Explanation Metrics 

 
Instance Selection Stability R2 

500 Randomly Selected Test 
Instances 

0.416 0.511 

500 Randomly Selected Test 
Instances (Correctly Predicted) 

0.418 0.506 

500 Randomly Selected 
Instances Test (Incorrectly 
Predicted) 

0.418 0.509 
 

 

Global Model Generated Feature Importance 
Rank Feature 

  
Description Feature 

Importance 
1.  

PRn_3E033GC 

Procedure code: Introduction of 
Other Therapeutic Substance into 

Peripheral Vein, Percutaneous 
Approach 

32 

2.  PAY1 Expected primary payer  32 
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Rank Feature 
  

Description Feature 
Importance 

3.  ECM_Y92230 External cause of morbidity: Patient 
room in hospital as the place cause 22 

4.  DRG Diagnosis Related Group  19 
5.  HOSP_BEDSIZE Hospital Bed Size 13 
6.  ECM_Y92019 External cause of morbidity: 12 
7.  LOS Length of Stay 11 
8.  AGE Age of patient 11 
9.  ECM_Y939 External cause of morbidity: 10 
10.  APRDRG All Patient Refined Diagnosis 

Related Groups 10 

 

Google Cloud Platform (GCP) – Auto-ML 

The consolidated and filtered input table was provided to the model as input with 

no feature engineering performed. The optimization objective was set to AUC ROC. 

Accuracy Metrics 
• Area under ROC curve: 0.616 
• Accuracy: 0.766 
• Weighted F1 score: 0.6664 

 

Class Precision Recall F1-Score 

Class 0 – Not Readmit <= 30 0.766 0.999 0.867 

Class 1 – Readmit > 30 0.564 0.003 0.006 

 

Confusion Matrix 

 Predicted Label 
True Label 0 1 

0 35233 24 
1 10771 21 

 

Global Model Generated Feature Importance 

Rank Feature 
  

Description Feature 
Importance 

1.  AGE Age of the patient 0.1072 

2.  IDXn_LR Non-primary diagnosis condition: Liver or Renal 
Failure/Disease 0.1037 

3.  LOS Length of stay 0.1014 
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Rank Feature 
  

Description Feature 
Importance 

4.  IDXn_COPD Non-primary diagnosis condition: Chronic Obstructive 
Pulmonary Disease  0.0664 

5.  I10_NDX Number of ICD-10-CM diagnoses coded on the record  0.0560 

6.  DISPUNIFORM Disposition of patient, uniform coding  0.0527 

7.  PAY1 Expected primary payer  0.0420 

8.  HCUP_ED HCUP indicator of emergency department record 0.0385 

9.  ZIPINC_QRTL Median household income for patient's ZIP Code 0.0382 

10.  IDXn_PCI 
Non-primary diagnosis condition: Presence of 

coronary/cardiac implant and Percutaneous Coronary 
Intervention  

0.0338 

 

Experiment Observations 
The brute force approach of the GCP-Auto-ML solution required 46 node hours of model 

training and resulted in a highly biased classifier. Although the classifier had a higher 

AUC score than the other trained models, this was accomplished by almost predicting all 

labels belonging to the majority class. The majority class (Class 0) had a recall score of 

0.999, and the minority class had a recall score of 0.003. 

 
Classifiers Summary Results 

Accuracy and Local Explanation Metrics Summary 

Model AUC Accuracy Weighted 
F1 Score 

F1 
Class 0 

F1  
Class 1 

Stability R2 

LR 0.5749 0.5732 0.6054 0.6719 0.3898 0.4328 0.2471 
DT 0.5625 0.5344 0.5695 0.6268 0.3820 0.6927 0.4977 
RF 0.5767 0.5740 0.6068 0.6731 0.3888 0.4042 0.2453 
GBM 0.5737 0.5664 0.5994 0.6639 0.3891 0.4161 0.511 
GCP  
Auto-ML 

0.616 0.766 0.6664 0.867 0.006 * * 

 
* Explanatory metrics were not calculated 

The accuracy metrics for the classifiers had AUC results in the range of (0.57 to 

0.61) and accuracy results ranging from (0.57 to 0.76). Accuracy results are consistent 

with previously reported readmission studies as summarized below: 
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Source Classifier Dataset Instances AUC 
(Bayati et al., 2014) Logistic Regression with LASSO Hospital 

EHR 
1,172 0.66 

(Yang et al., 2016) Logistic Regression with LASSO NRD 2015 142,527 0.657 
(Yang et al., 2016) GBM  NRD 2015 142,527 0.663 
(Yang et al., 2016) DNN NRD 2015 142,527 0.662 
(Allam et al., 2019) Logistic Regression with LASSO NRD 2013 272,778 0.643 
(Allam et al., 2019) Recurrent Neural Networks combined 

with Conditional Random Fields 
NRD 2013 272,778 0.642 

(Liu et al., 2020) Hierarchical Logistic Regression NRD 2014 303,233 0.580 
(Liu et al., 2020) XGBoost NRD 2014 303,233 0.602 
(Liu et al., 2020) Feed-Forward Neural Networks NRD 2014 303,233 0.604 
(Liu et al., 2020) Medical Code Embedding Deep Set 

Architecture  
NRD 2014 303,233 0.618 

 
LIME explanation stability range [0.40 -0.69], and local fit (R2) [0.24 - 0.51]. 

 

Global Model Generated Feature Importance Summary 

LR  RF DT GBM GCP-AutoML 
IDXn_CTD (1) ECM_Y92230 (3) ECM_Y95(2) PRn_3E033GC (3) AGE (4) 
PL_NCHS (1) ECM_X58XXXA (3) ECM_X58XXXA (3) PAY1(4) IDXn_LR (1) 

PRn_3E033GC (3) PAY1(4) DRG (3) ECM_Y92230 (3) LOS (2) 
APRDRG (4) PRn_3E033GC (3) ECM_Y92230 (3) DRG (3) IDXn_COPD (1) 

ECM_X58XXXA (3) ECM_Y95 (2) APRDRG (4) HOSP_BEDSIZE (1) I10_NDX (1) 
PRn_02HV33Z (1) DRG (3) PRn_5A2204Z (1) ECM_Y92019 (3) DISPUNIFORM (1) 
PRn_4A023N6 (1) APRDRG (4) AGE (4) LOS (2) PAY1 (4) 

AGE (4) ECM_Y939 (2) PAY1(4) AGE (4) HCUP_ED (1) 
ECM_Y92238(1) ECM_Y92019 (3) ECM_Y92019 (3) ECM_Y939 (2) ZIPINC_QRTL (1) 

IDXn_PCI (2) ECM_Y832 (1) ECM_W19XXXA (1) APRDRG (4) IDXn_PCI (2) 
5 of the top 10 

features are unique to 
the model 

1 of the top 10 
features is unique to 

the model 

1of the top 10 features 
is unique to the model 

1of the top 10 
features is unique to 

the model 

6 of the top 10 
features are unique to 

the model 
 
 * The numeric value next to the feature label (X) range from 1 to 5 and indicates the 
number of times a feature has been identified as a top 10 global feature in the five models 
used in this experiment. 
 
 
Summary 

This chapter presented experimental results of supervised machine learning 

developed to predict the risk of emergency readmissions within 30 days of being 
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discharged for heart failure patients.  Tuned hyperparameters and the accuracy metrics of 

F1 score, precision, recall, the area under the ROC curve for each model were reported. 

Local Interpretable Model-Agnostic Explanations (LIME) sample explanations were 

provided demonstrating the value and the limitations of local explanations for the 

prediction task. Explanation metrics were reported.  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary  
 

Overview 

 Previous chapters outlined the goals, method, and results of this dissertation.  

This chapter draws the conclusions of this dissertation relative to the research questions 

and in the context of reviewed literature.  Implications of the findings, recommendations 

and future research direction are summarized. The chapter concludes with a summary of 

the dissertation. 

 

Conclusions 

The evaluation of experimental results was be guided by answers to the following 

research questions: 

Research Question 1 (RQ1): Can the ML predictions generate intelligible results 

to guide clinical decision-making? 

The combination of global feature importance generated by individual models and 

model agnostic feature importance generated by LIME provided insight explaining the 

logic of the model.   

Research Question 2 (RQ2): What are the most useful features in predicting 

hospital readmissions for heart failure patients? 

This study demonstrated that training five different classifiers capable of reporting 

global feature importance resulted in agreement between the classifiers on a subset of the 

features. Agreement in this context, refers to the same feature being reported by at least 3 

out of the 5 models as a top globally important 10 feature for the model. The following 

features meet this criterion: 
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Feature Description 
AGE Age of the patient 

APRDRG All Patient Refined Diagnosis Related Groups 
DRG Diagnosis Related Group 

ECM_X58XXXA External cause of morbidity: 
Exposure to other specified factors, initial encounter 

ECM_Y92019 
External cause of morbidity: Unspecified place in single-
family (private) house as the place of occurrence of the 

external cause 

ECM_Y92230 External cause of morbidity: Patient room in hospital as the 
place of occurrence of the external cause 

PAY1 Expected primary payer 

PRn_3E033GC Procedure code: Introduction of Other Therapeutic Substance 
into Peripheral Vein, Percutaneous Approach 

 

Research Question 3 (RQ3): Will using the model-agnostic explanatory method 

(LIME) generate high-quality explanations as measured by explanation stability and 

local fit? 

 LIME explanation stability ranged from (0.40 to 0.69), and local fit (R2) ranged 

from 0.24 to 0.51. The results demonstrated that local explanations generated by LIME 

created better estimates for Decision Trees (DT) classifiers as shown below: 

 

 

 

 

 
Implications 

 The use of Cost and Utilization Project (HCUP) Nationwide Readmissions 

Database (NRD) to predict hospital readmissions for heart failure patients resulted in 

binary classifiers of moderate accuracy (AUC [0.57-0.61]).  While the dataset contains 

some clinical features, they are limited into diagnosis and procedures reported as a result 

Model Stability R2 
LR 0.4328 0.2471 
DT 0.6927 0.4977 
RF 0.4042 0.2453 
GBM 0.4161 0.511 
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of hospital admission records. It is plausible that better predictors can be constructed with 

access to clinical notes and medical history.   

LIME explanation stability [0.40 - 0.69], and local fit (R2) [0.24 - 0.51] results 

were poor to moderate using LIME’s default hyper-parameters. An interesting future 

research direction would be to attempt to optimize LIME’s stability and local fit metrics 

through a systematic search of LIME’s hyper-parameter space (kernel width and number 

of samples). 

 
Recommendations 

 
The results demonstrated that local explanations generated by LIME created 

better estimates for Decision Trees (DT) classifiers with an accuracy metrics that are 

nearly identical more complex model such Random Forests (RF) and Gradient Boosting 

Machines (GBM).  Accordingly, the use of Decision Trees (DT) classifiers is 

recommended due to ability to higher quality local explanations by LIME. 

Summary  

This dissertation investigated the applicability of interpretable model-agnostic 

methods to explain predictions of black-box machine learning models for medical 

decision-making.   

Supervised classification models of differing complexity were trained to perform the 

prediction task. Logistic Regression (LR), Random Forests (RF), Decision Trees (DT), 

and Gradient Boosting Machines (GBM) models were constructed using the Healthcare 

Cost and Utilization Project (HCUP) Nationwide Readmissions Database (NRD). The 

precision, recall, area under the ROC curve for each model were used to measure 

predictive accuracy. Local Interpretable Model-Agnostic Explanations (LIME) was used 
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to generate explanations from the underlying trained models. LIME explanations were 

empirically evaluated using explanation stability and local fit (R2). The results 

demonstrated that local explanations generated by LIME created better estimates for 

Decision Trees (DT) classifiers. 



 

 

75 

 
 

Appendix A 
 

2016 NRD Core File Schema 

 
Category  Data Element 

Name  

Description  

Admission/ 

Discharge 

 

AWEEKEND 
Admission on weekend: (0) admission on Monday–Friday, 

(1) admission on Saturday– Sunday  

DIED Indicates in-hospital death: 0) did not die during 

hospitalization, (1) died during hospitalization  

DISPUNIFORM 

 

 

Disposition of patient, uniform coding: (1) routine, (2) 

transfer to short term hospital, (5) other transfers, including 

skilled nursing facility, intermediate care, and another type 

of facility, (6) home health care, (7) against medical advice, 

(20) died in hospital, (99) discharged alive, destination 

unknown  

DMONTH Coded: (1) Jan; (2) Feb; (3) Mar; (4) Apr; (5) May; (6) Jun; 

(7) Jul; (8) Aug; (9) Sep; (10) Oct; (11) Nov; (12) Dec; 

DQTR Coded: (1) Jan–Mar, (2) Apr–Jun, (3) Jul–Sep, (4) Oct–Dec  

ELECTIVE Indicates elective admission: (1) elective, (0) non-elective 

admission  

HCUP_ED Indicator that discharge record includes evidence of 

emergency department (ED) services: (0) record does not 

meet any HCUP ED criteria, (1) ED revenue code was on 

SID record, (2) ED charge reported on SID record, (3) ED 

CPT procedure code on SID record, (4) other indication of 

ED services  

DISCWT Weight to discharges in the universe 

YEAR Discharge year  

Clinical 

Information 

DRG The Diagnosis Related Group (DRG) in use on discharge 

date  
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Category  Data Element 

Name  

Description  

DRG_NoPOA DRG in use on discharge date, calculated without POA 

(present on admission) 

 DRGVER Grouper version in use on discharge date  

 DXVER Diagnosis version (indicating ICD-10-CM)  

I10_DX1–

I10_DX35  

 

ICD-10-CM diagnoses, principal and secondary  

I10_ECAUSE1–I10 

ECAUSE4  

ICD-10-CM external cause of morbidity codes  

I10_NDX Number of ICD-10-CM diagnoses coded on the record  

I10_NECAUSE Number of external causes of morbidity codes on the record  

I10_NPR Number of procedures coded  

I10_PR1–I10_PR15  ICD-10-PCS (Procedure Coding System) procedures, 

principal and secondary  

MDC MDC (Major Diagnostic Category) in use on discharge date 

MDC_NoPOA MDC assignment made without the use of the present on 

admission flags for the diagnoses  

PRDAY1-

PRDAY15  

The day on which the procedure is performed. A value of 0 

indicates the day of admission.  

PRVER Procedure version (indicating ICD-10-PCS)  

NRD 

Identifiers 

HOSP_NRD NRD hospital identifier specific to the NRD and is not 

linkable to any other HCUP or external databases. 

HOSP_NRD can be used to add data elements from the 

Hospital file to records on the discharge-level files. The 

values of HOSP_NRD differ from year to year. An 

individual hospital cannot be tracked across data years.  

KEY_NRD Unique record identifier for the discharge in the NRD and 

not linkable to any other HCUP or external databases. 
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Category  Data Element 

Name  

Description  

KEY_NRD can be used to add data elements from the 

Severity and Diagnosis/Procedure Groups files to the 

records on the Core file within the same data year. The 

values of KEY_NRD are different in each data year 2010–

2012 and 2015–2016 but are nonunique between 2013 and 

2014.  

Please note that KEY_NRD is a record identifier and not a 

patient linkage number. NRD_VISITLINK is the patient 

linkage number specific to the NRD.  

Patient 

Demographics 

AGE Age in years coded 0-90 years; any age greater than 90 was 

set to 90. Missing age was imputed using other records with 

the same patient linkage number. In the 2016 NRD, about 

2,000 discharges (0.011 percent) had the age imputed.  

FEMALE Indicates sex: (0) male, (1) female. Missing sex was 

imputed using other records with the same patient linkage 

number. In the 2016 NRD, about 1,000 discharges (0.006 

percent) had the sex imputed.  

 PAY1 Expected primary payer, uniform: (1) Medicare, (2) 

Medicaid, (3) private insurance, (4) self-pay, (5) no charge, 

(6) other  

PL_NCHS Patient location: National Center for Health Statistics 

(NCHS) urban-rural classification scheme for U.S. counties: 

(1) "Central" counties of metro areas of >=1 million 

population, (2) "Fringe" counties of metro areas of >=1 

million population, (3) Counties in metro areas of 250,000–

999,999 population, (4) Counties in metro areas of 50,000–

249,999 population, (5) Micropolitan counties, (6) Not 

metropolitan or micropolitan counties  
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Category  Data Element 

Name  

Description  

ZIPINC_QRTL Median household income quartiles for patient's ZIP Code: 

(1) quartile 1 [lowest income], (2) quartile 2, (3) quartile 3, 

(4) quartile 4 [highest income].  

For 2016, the median income quartiles are defined as: (1) 

$1–$42,999; (2) $43,000– $53,999; (3) $54,000–$70,999; 

and (4) $71,000 or more. 

Readmission 

Specific 

 

DMONTH Discharge month coded from (1) January to (12) December  

NRD_DaysToEvent Count of days from randomly selected "start date" to 

admission date coded differently for each value of 

NRD_VisitLink  

LOS Length of stay (LOS) is calculated by subtracting the 

admission date (ADATE) from the discharge date 

(DDATE). 

SAMEDAYEVENT One of two data elements that identify transfers, same-day 

stays, and combined transfer records in the NRD. 

Readmission analyses do not usually allow the 

hospitalization at the receiving hospital to be counted as a 

readmission. To eliminate this possibility, pairs of records 

representing a transfer are collapsed into a single 

"combined" record in the NRD.  

 NRD_VisitLink Patient linkage number specific to the NRD and not linkable 

to any other HCUP or external databases. The values of 

NRD_VISITLINK differ from year to year. An individual 

person cannot be tracked across data years.  

REHABTRANSFER A combined record involving transfer to rehabilitation, 

evaluation, or other aftercare: (1) yes, (0) no  

RESIDENT Identifies patient as a resident of the State in which he or 

she received hospital care: (1) resident, (0) non-resident  
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Category  Data Element 

Name  

Description  

 TOTCHG Total charges. Values are rounded to the nearest dollar 
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Appendix B 
 

2016 NRD Severity Measures Schema 

 
Category  Data Element Name  Description  

3M APR-

DRG 

 APRDRG 3M All Patient Refined DRG (Diagnosis Related 

Groups) 

APRDRG_Risk_Mortality 3M All Patient Refined DRG: Risk of Mortality 

Subclass: (0) No class specified, (1) Minor 

likelihood of dying, (2) Moderate likelihood of 

dying, (3) Major likelihood of dying, (4) Extreme 

likelihood of dying  

APRDRG_Severity 

 

3M All Patient Refined DRG: Severity of Illness 

Subclass: (0) No class specified, (1) Minor loss of 

function (includes cases with no comorbidity or 

complications), (2) Moderate loss of function, (3) 

Major loss of function, (4) Extreme loss of function  

 HOSP_NRD 

  

NRD hospital identifier specific to the NRD and is 

not linkable to any other HCUP or external 

databases. HOSP_NRD can be used to add data 

elements from the Hospital file to records on the 

discharge-level files. The values of HOSP_NRD 

differ from year to year. An individual hospital 

cannot be tracked across data years.  

 KEY_NRD Unique record identifier for the discharge in the 

NRD and not linkable to any other HCUP or 

external databases. KEY_NRD can be used to add 

data elements from the Severity and 

Diagnosis/Procedure Groups files to the records on 

the Core file within the same data year.  
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Appendix C 

 
2016 NRD Hospital File Schema 

 
Category  Data Element Name  Description  

Admission/ 

Discharge  

YEAR Discharge year  

Hospital 

Information 

H_CONTRL Control/ownership of hospital: (1) government, 

nonfederal [public], (2) private, not-for-profit 

[voluntary], (3) private, investor-owned [proprietary]  

HOSP_BEDSIZE Size of hospital based on the number of beds: (1) 

small, (2) medium, (3) large. The categories are 

defined using region of the U.S., the urban-rural 

designation of the hospital, in addition to the 

teaching status.  

HOSP_UR_TEACH 

  

Teaching status of hospital: (0) metropolitan non- 

teaching, (1) metropolitan teaching, (2) non- 

metropolitan  

HOSP_URCAT4 Hospital urban-rural location: (1) large metropolitan 

areas with at least 1 million residents, (2) small 

metropolitan areas with less than 1 million residents, 

(3) micropolitan areas, (4) not metropolitan or 

micropolitan, (8) metropolitan, collapsed category of 

large and small metropolitan, (9) non-metropolitan, 

collapsed category of micropolitan and rural  

NRD_STRATUM NRD stratum for post-stratification based on 

geographic region, urban/rural location, teaching 

status, bed size, and control. Region is not identified. 

The values of NRD_STRATUM differ from year to 

year. An individual stratum cannot be tracked across 

data years.  
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Category  Data Element Name  Description  

NRD 

Identifiers 

 HOSP_NRD NRD hospital identifier specific to the NRD and is 

not linkable to any other HCUP or external 

databases. The values of HOSP_NRD differ from 

year to year. An individual hospital cannot be 

tracked across data years.  

Weighting 

N_DISC_U Number of discharges in the target universe in the 

stratum  

 N_HOSP_U Number of hospitals in the target universe in the 

stratum  

 N_DISC_U Number of NRD discharges in the stratum  

 N_HOSP_U Number of NRD hospitals in the stratum  

TOTAL_DISC Total number of discharges for this hospital in the 

NRD  

S_DISC_U Total number of inpatient discharges for the stratum 

S_HOSP_U Total number of hospitals in the stratum 
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Appendix D 
 

2016 NRD File Specifications  

 

Core File 

• Data Set Name: NRD_2016_CORE 

• Number of Records: 17,197,683 

• Number of Data Elements: 103 

• Record layout NRD 2016 Core 

Hospital File 

• Data Set Name: NRD_2016_HOSPITAL 

• Number of Records: 2,355 

• Number of Data Elements: 12 

• Record layout NRD 2016 Hospital 

Severity Measure File 

• Data Set Name: NRD_2016_SEVERITY 

• Number of Records: 17,197,683 

• Number of Data Elements: 5 

• Record layout NRD 2016 Severity 
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Appendix E 
 

ICD-10 Code Mapping 

 
Heart Failure (HF) 

ICD-10 Codes Description 

I50; I50.1-I50.9 Heart failure 

I11.0; I11-I11.9 Heart failure due to hypertension 

I13.0 Heart failure due to hypertension with chronic kidney disease  

I13.2 Heart failure due to hypertension with chronic kidney disease  

I97.130- I97.131 Heart failure following surgery 

I09.81 Rheumatic heart failure 

P29.0 Neonatal cardiac failure  

i46.2- i46.9 Cardiac arrest 

 
Chest Pain (CP) 
 
ICD-10 Codes Description 

R07.1 -R07.9 Chest Pain 

 
Hypertension (HT) 
 
ICD-10 Codes Description 

I10 Hypertension 

I12-I12.9 Hypertension with chronic kidney disease  

I15-I15.9 Secondary hypertension 

I16.0-I16.9 Hypertensive crisis 

H35-H35.09 Essential (primary) hypertension involving vessels of eye 

O10-O11.9 Hypertensive disease complicating pregnancy 

O13-O13.69 Hypertensive disease complicating pregnancy 

I13.0-i13.2 Heart failure due to hypertension with chronic kidney disease  

I60-I69.998 Essential (primary) hypertension involving vessels of brain 
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Shock (SH) 
 
ICD-10 Codes Description 

R57-R57.9 Shock 

T78.2-T78.2XXS Anaphylactic shock, unspecified 

T78.0-T78.09XS Anaphylactic reaction or shock due to adverse food reaction 

T80.5-T80.59XS Anaphylactic shock due to serum 

T88.6-T88.6XXS Anaphylactic shock due to adverse effect of correct drug or 

medicament properly administered 

T75.4-T75.4XXS Electric shock 

O75.1 Obstetric shock 

T81.1-T81.19XS Postprocedural shock 

F43.0 Psychic shock 

O00-O07.4 Shock complicating or following ectopic or molar pregnancy 

O08.3 Shock due to lightning 

T75.0-T75.09XS Traumatic shock 

T79.4-T79.4XXS Traumatic shock 

A48.3 Toxic shock syndrome 

 
Diabetes (DB) 
 
ICD-10 Codes Description 

E08-E08.9 Diabetes mellitus due to underlying condition 

E09-E09.9 Drug or chemical induced diabetes mellitus 

E10-E10.9 Type 1 diabetes mellitus 

E11-E11.9 Type 2 diabetes mellitus 

E11.22 Type 2 diabetes mellitus with diabetic chronic kidney disease 

E13-E13.9 Other specified diabetes mellitus 
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Prior Percutaneous Coronary Intervention (PCI) 
 
ICD-10 Codes Description 

Z95.1-Z95.5 Presence of cardiac and vascular implants and grafts 

Z95.818 Presence of coronary angioplasty implant and graft 

Z95.82-Z95.9 Presence of other cardiac and vascular implants and grafts 

 
Stroke Ischemia (STR) 
 
ICD-10 Codes Description 

I63-I63.9 Cerebral infarction 

P91.82-P91.829 Neonatal cerebral infarction 

 
Chronic Obstructive Pulmonary Disease (COPD) 
 
ICD-10 Codes Description 

J40 Bronchitis, not specified as acute or chronic 

J41 Simple and mucopurulent chronic bronchitis 

J42 Unspecified chronic bronchitis 

J43 Emphysema 

J44 Other chronic obstructive pulmonary disease 

J45 Asthma 

J47 Bronchiectasis 

 
Peptic Ulcer (ULC) 
 
ICD-10 Codes Description 

K27-K27.9 Peptic ulcer, site unspecified, unspecified as acute or chronic, 

without hemorrhage or perforation 

P78.82 Peptic ulcer of newborn 

 
Dementia (DM) 
 
ICD-10 Codes Description 

F03-F03.91 Dementia 
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Myocardial Infarction (MI) 
 
ICD-10 Codes Description 

i21-i21.9 Acute myocardial infarction 

I21.A-I21.A9 Other type of myocardial infarction 

I22-I22.9 Subsequent ST elevation (STEMI) and non-ST elevation 

(NSTEMI) myocardial infarction 

I23-I23.8 Certain current complications following ST elevation 

(STEMI) and non-ST elevation (NSTEMI) myocardial 

infarction (within the 28 day period) 

I25.2 Prior MI-Old myocardial infarction 

 
Cardiovascular System Disease (CVS) 
 
ICD-10 Codes Description 

I05 Rheumatic mitral valve diseases 

I06 Rheumatic aortic valve diseases 

I07 Rheumatic tricuspid valve diseases 

I08 Multiple valve diseases 

I09 Other rheumatic heart diseases 

I11 Hypertensive heart disease 

I13 Hypertensive heart and chronic kidney disease 

I20 Angina pectoris 

I21 Acute myocardial infarction 

I22 Subsequent ST elevation (STEMI) and non-ST elevation 

(NSTEMI) myocardial infarction 

I23 Certain current complications following ST elevation 

(STEMI) and non-ST elevation (NSTEMI) myocardial 

infarction (within the 28 day period) 

I24 Other acute ischemic heart diseases 

I25 Chronic ischemic heart disease 

I26 Pulmonary embolism 
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ICD-10 Codes Description 

I27 Other pulmonary heart diseases 

I28 Other diseases of pulmonary vessels 

I30 Acute pericarditis 

I31 Other diseases of pericardium 

I32 Pericarditis in diseases classified elsewhere 

I33 Acute and subacute endocarditis 

I34 Nonrheumatic mitral valve disorders 

I35 Nonrheumatic aortic valve disorders 

I36 Nonrheumatic tricuspid valve disorders 

I37 Nonrheumatic pulmonary valve disorders 

I38 Endocarditis, valve unspecified 

I39 Endocarditis and heart valve disorders in diseases classified 

elsewhere 

I40 Acute myocarditis 

I41 Myocarditis in diseases classified elsewhere 

I42 Cardiomyopathy 

I43 Cardiomyopathy in diseases classified elsewhere 

I44 Atrioventricular and left bundle-branch block 

I45 Other conduction disorders 

I46 Cardiac arrest 

I47 Paroxysmal tachycardia 

I48 Atrial fibrillation and flutter 

I49 Other cardiac arrhythmias 

I51 Complications and ill-defined descriptions of heart disease 

I52 Other heart disorders in diseases classified elsewhere 
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Pulmonary Valve Stenosis (PVS) 
 
ICD-10 Codes Description 

I70 Rheumatic mitral valve diseases 

I71 Aortic aneurysm and dissection 

I72 Other aneurysm 

I73 Other peripheral vascular diseases 

I74 Arterial embolism and thrombosis 

I75 Atheroembolism 

I76 Septic arterial embolism 

I77 Other disorders of arteries and arterioles 

I78 Diseases of capillaries 

I79 Disorders of arteries, arterioles and capillaries in diseases 

classified elsewhere 

 
Connective Tissue Disease (CTD) 
 
ICD-10 Codes Description 

L94-L94.9 Other localized connective tissue disorders 

M30-M30.8 Polyarteritis nodosa and related conditions 

M31-M31.9 Other necrotizing vasculopathies 

M32-M32.9 Systemic lupus erythematosus (SLE) 

M33-M33.9 Dermatopolymyositis 

M34- M34.9 Systemic sclerosis [scleroderma] 

M35-M35.9 Systemic disorders of connective tissue 

M36- M36.8 Other systemic involvement of connective tissue 

 
Acquired immunodeficiency syndrome (AIDS)  
 
ICD-10 Codes Description 

B20 Human Immunodeficiency Virus (HIV) 
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Liver or Rental Failure/Disease (LR) 
 
ICD-10 Codes Description 

K70-K70.9 Alcoholic liver disease 

K71-K71.9 Toxic liver disease 

K72-K72.9 Hepatic failure 

K73-K73.9 Chronic hepatitis, not elsewhere classified 

K74-K74.9 Fibrosis and cirrhosis of liver 

K75-K75.9 Other inflammatory liver diseases 

K76-K76.9 Other diseases of liver 

K77-K77.9 Liver disorders in diseases classified elsewhere 

N18.1-N18.6 Renal Failure/Chronic Kidney disease 

E08.22 Diabetes mellitus due to underlying condition with diabetic 

chronic kidney disease 

E13.2-E13.29 Other specified diabetes mellitus with kidney complications 

Z94.0 Kidney transplant status 

I12-I12.9 Hypertensive chronic kidney disease 

I13.0-I13.2 Hypertensive heart and chronic kidney disease 
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