
SNR: SOFTWARE LIBRARY FOR INTRODUCTORY ROBOTICS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Spencer Shaw

August 2021

© 2021

Spencer Shaw

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: SNR: Software Library for Introductory

Robotics

AUTHOR: Spencer Shaw

DATE SUBMITTED: August 2021

COMMITTEE CHAIR: Andrew Danowitz, Ph.D.

Professor of Computer Engineering

COMMITTEE MEMBER: Bridget Benson, Ph.D.

Professor of Computer Engineering

iii

ABSTRACT

SNR: Software Library for Introductory Robotics

Spencer Shaw

This thesis introduces “SNR,” a Python library for programming robotic systems

in the context of introductory robotics courses. Greater demand for roboticists has

pressured educational institutions to expand robotics curricula. Students are now

more likely to take robotics courses earlier and with less prior programming experi-

ence. Students may be attempting to simultaneously learn a systems programming

language, a library API, and robotics concepts. SNR is written purely in Python to

present familiar semantics, eliminating one of these learning curves. Industry stan-

dard robotics libraries such as ROS often require additional build tools and configu-

ration languages. Students in introductory courses frequently lack skills needed for

these tools. SNR does not use any additional build tools, so students are faced with

fewer compounding learning curves. SNR presents students with concepts important

to robotic systems programming such as modular and event driven architectures to

bridge the gap between introductory programming courses and industry standard

libraries.

iv

ACKNOWLEDGMENTS

Thanks to:

• Dr. Andrew Danowitz, for his guidance on this thesis and throughout my studies

at Cal Poly

• Dr. John Seng, for his vision and advice for the Robotics Club

• Dr. Bridget Benson, for advice in her areas of expertise

• Dr. Jane Zhang, for coordination of the Electrical Engineering graduate pro-

gram

• Dr. Dennis Derickson, for legendary leadership of the Electrical Engineering

department and engaging seminars

• Dr. Lynne Slivovski, for coordination of the Computer Engineering Program as

an ally to students

• My parents and grandparents for their love, support and feedback in this thesis

and my entire academic career

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF LISTINGS . xii

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Topics for Robotics Software Libraries 5

2.1.1 Publisher-Subscriber Paradigm 5

2.1.2 Typing Checking in Python 5

2.2 Related Work . 7

2.2.1 ROS . 8

2.2.2 F’ . 10

2.2.3 WPILib . 10

2.2.4 Survey Summary . 11

3 Evaluation Framework . 12

3.1 The Arduino Platform . 12

3.2 Characteristics . 13

3.2.1 Prerequisites . 13

3.2.2 Familiarity . 14

3.2.3 Discoverability . 15

3.2.4 Documentation . 15

3.2.5 Error Messages . 16

vi

3.2.6 Misuse Resistance . 16

3.2.7 Openness . 17

3.2.8 Growth Paradigms . 17

4 Library Design . 19

4.1 Design Goals . 19

4.2 Architecture . 20

4.2.1 Runners, Configs, and Roles 21

4.2.2 Node Life Cycle . 22

4.3 Data Objects . 23

4.3.1 Tasks . 23

4.3.2 Pages . 24

4.4 Endpoints . 24

4.4.1 Task Handling . 25

4.4.2 Endpoint Life Cycle . 26

4.4.3 Loops . 26

5 Example Usage and Library Evaluation . 28

5.1 Example: Underwater Remote Operated Vehicle 28

5.2 Moving Average Filter Endpoint . 31

5.2.1 Moving Average Filter Endpoint 31

5.2.2 Moving Average Filter Endpoint Factory 31

5.2.3 Moving Average Endpoint Tests 32

5.3 Example: Lunar Module Landing Simulation 32

5.4 Example: Benchmark Test . 33

5.4.1 Game Controller Over Sockets 35

6 Library Implementation . 40

vii

6.1 Code Style Principles . 40

6.2 Prelude . 41

6.2.1 Page and Task . 41

6.2.2 Type Aliases . 42

6.2.3 Protocols . 43

6.2.4 Interfaces . 43

6.2.5 Precursors . 43

6.2.6 AbstractNode . 44

6.2.7 TaskQueue . 46

6.2.8 AbstractEndpoint . 47

6.2.9 AbstractLoop . 47

6.2.10 AbstractFactory . 47

6.3 Core . 48

6.3.1 Node . 48

6.3.2 Endpoint . 48

6.3.3 ThreadLoop . 48

6.4 Standard Modules . 49

6.4.1 Communications . 49

6.4.2 Filters . 49

6.4.3 Input/Output . 49

6.5 Testing Utilities . 50

7 Library Evaluation . 52

7.1 Prerequisites . 52

7.2 Discoverability . 52

7.3 Error Messages . 53

viii

7.4 Openness . 54

7.5 Familiarity . 54

7.6 Documentation . 54

7.7 Misuse Resistance . 55

7.8 Growth Paradigms . 55

8 Future Work . 56

8.1 Library Improvements . 56

8.1.1 Specification Formalization . 57

8.1.2 Publishing . 57

8.2 Evaluation Framework . 57

8.3 Curriculum Development . 57

8.3.1 Introductory Robotics . 58

8.3.2 Advanced Programming Topics 58

9 Conclusion . 59

BIBLIOGRAPHY . 60

APPENDICES

A Code Listings . 64

B SNR Library Installation Tutorial . 84

ix

LIST OF TABLES

Table Page

2.1 Robotic systems libraries surveyed 11

x

LIST OF FIGURES

Figure Page

2.1 Static analysis workflow diagram 6

2.2 ROS communication architecture diagram 8

4.1 SNR node architecture . 21

4.2 SNR high-level architecture . 22

4.3 SNR Endpoint architecture . 25

4.4 SNR Loop architecture . 27

5.1 Data flow in example UROV system 28

5.2 Game controller read from using an SNR loop 36

5.3 Raspberry Pi 4 running SNR nodes 37

5.4 Terminal output of controller input changes across sockets connection 39

6.1 SNR library submodule dependency directed acyclic graph 40

xi

LIST OF LISTINGS

5.1 Example configuration of a UROV system 30

5.2 Benchmark shell output . 34

5.3 Example configuration using game controller and sockets 38

6.1 Pseudo code interface for node control flow 45

6.2 Pseudo code interface for task execution 45

6.3 Pseudo code interface for task scheduling 45

6.4 Pseudo code interface for datastore access 46

7.1 Example runtime error message . 53

A.1 Standard implementation of a moving average filter endpoint 64

A.2 Standard implementation of a factory for MovingAverageFilterEndpoint 65

A.3 Example usage of testing facilities using SNRTestCase and Expector . 66

A.4 Example configuration of lunar module landing simulation 67

A.5 Example implementation of a benchmark test case 71

A.6 Example implementation of a factory for a control input processor

endpoint . 74

A.7 Example implementation of a control input processor endpoint 75

A.8 Example implementation of a loop for reading controller input 77

A.9 Example implementation of a factory for the controller loop 80

A.10 Example implementation of a factory for the input mapping endpoint 81

A.11 Example implementation of an input mapping endpoint 81

B.1 System information for installation example 84

B.2 Installation of Pip . 84

xii

Chapter 1

INTRODUCTION

The use of robots continues to expand from industrial sectors to other spaces, creat-

ing more demand for robotics engineers [1], [2]. To meet this demand, educational

institutions have expanded robotics curricula and created new programs specializing

in robotics. Some universities have taken the opportunity to offer undergraduate and

graduate programs concentrating on robotics [3], [4]. As new robotics courses per-

meate curricula, students are being introduced to the field earlier. Some institutions

have found success in introducing students to programming using robotics and other

embedded domains [5], [6]. The advancement of robotics concepts in students’ aca-

demic careers has created a gap between their skills and the tools used for cutting

edge robotics.

Without prior systems programming experience, students face obstacles as they learn

to program robotic systems. For example, modern robotic system design often ben-

efits from highly modular system implementations in which components of robots,

such as sensors, actuators, and controllers, are programmed individually. This al-

lows for isolated development and testing of components and design reuse. Industry

standard robotics tools such as ROS and F‘ encourage modular systems by provid-

ing infrastructure to bridge modules. This infrastructure uses paradigms including

event-driven architectures and publisher-subscriber communication. Students should

learn the skills inherent to these tools as they learn about robotics. Unfortunately,

students who have only completed one or two introductory computer science courses

are often unprepared to learn these skills while using an industry standard framework

like ROS or F‘. These frameworks may introduce too many new ideas and skills at

1

once. Students may then be learning a new programming language, robotics library,

and system design skills simultaneously. The learning curves of each of these top-

ics compound, resulting in cognitive overload [7]. A course introducing students to

robotics can be more approachable and accessible by introducing fewer new topics at

once. This thesis is concerned with providing a library with bindings in a language

that students are likely to be familiar with and no dependencies on additional con-

figuration languages or tools. Reducing these requirements lowers academic barriers

to entry when introducing students to robotics.

This thesis presents “SNR”(SNR is Not ROS), a software library for programming

robots in education. SNR uses concepts important to robotic systems in a Python

package friendly to students. SNR does not require the use of an additional build

system or configuration language. For example, SNR introduces the publisher/sub-

scriber paradigm while encouraging students to develop discrete modules for different

robotic functionality. The library is written purely in Python, providing students with

an implementation they can easily inspect and explore. This also makes the library

implementation portable from student PC’s to single board computers such as the

Raspberry Pi. For more advanced systems programming courses, the implementa-

tion of SNR serves as a case study for students learning about systems programming

concepts, type annotation, and intermediate Python tooling.

A framework for evaluation of software libraries and tools for use in the context of

education is also presented. The qualities described in the framework will help to

identify friction in student comprehension of software tools and libraries.

Chapter 2 discusses background information on teaching robotics and embedded sys-

tems. Then, other robotics software libraries commonly used in industry and edu-

cation will be introduced. In chapter 3, the framework for evaluating software for

students will be introduced. In chapter 4, the goals and guiding principles for the de-

2

sign of SNR will be covered prior to describing the application programming interface

(API). Examples using the library will be presented in chapter 5. The implementa-

tion of the library will be covered in more detail in chapter 6. Finally, the library will

be analyzed with the aforementioned framework for evaluation in chapter 7.

3

Chapter 2

BACKGROUND

As undergraduate students’ introduction to systems robotics occurs earlier in their

academic careers, a gap is formed between students’ prior experiences in introductory

computing classes and professional robotics libraries. Undergraduate students have

difficulty transitioning from introductory computing courses to intermediate systems

projects, especially with the introduction of embedded hardware [8]. As students are

introduced to robotics systems programming paradigms earlier, they have less knowl-

edge of programming and organizational techniques. Thus, they are not able to fully

utilize industry standard robotics libraries like ROS. Instead, these less experienced

students should be introduced to robotics libraries in a form they are familiar with,

such as a Python library. Thus, new concepts such as publisher-subscriber commu-

nication can be taught to students without friction of new programming languages

or complex tool-chains. Simultaneously, students can explore concepts such as type

systems with more rigor. Libraries can ease students’ introductions by offering nav-

igable code that students can learn from. In Python, type annotations (hints) can

contribute to student comprehension despite their historical absence.

In this case, it makes sense to introduce embedded robotics systems to students using

software language semantics they are already comfortable with. The challenges of

robotic systems programming provide a suitable requirement for new skills in modu-

lar design, version control, and publisher-subscriber paradigms. Students need these

specific skills for working with robotic systems in order to cope with increased system

complexity. Learning these skills in a familiar Python environment can prepare stu-

dents for more advanced projects in the future. In addition, structuring the library

4

APIs to encourage modularity can smooth the introduction of modular program ar-

chitectures.

2.1 Topics for Robotics Software Libraries

2.1.1 Publisher-Subscriber Paradigm

Publisher-subscriber systems are a common paradigm for robotics programming. This

event-driven pattern, “pub-sub” decouples triggering and handling events [9] [10].

This decoupling is a technique in software engineering that students can also benefit

from. While the concept and operation of pub-sub can be grasped easily by students,

the motivation (decoupling) and internal implementation can elude students.

Pub-sub works as a message passing paradigm by separating the actions of sending

and receiving specific messages. When a message is published, the sender has no

knowledge of the component receiving the message. Likewise, the receiver need not

be aware of the sender, only the data it gets. In the context of systems programming,

this allows decoupling of task creation and execution spatially (between sections of

code) and temporally.

2.1.2 Typing Checking in Python

Python provides an excellent learning environment for students learning to program.

Many undergraduate students favor it following their initial computing classes. Its

dynamic type system can hide important information from students. When requiring

students to satisfy an interface, for example, visible types provide concrete specifi-

cation that can prevent programming errors and misuse. Python 3 supports type

hints [11]. While type annotations provide direct benefit to the programmer, the

5

Type annotations

Python source code

Python Interpreter

Static Analysis Tools
(e.g. mypy)

Execution

Analysis, lessons,
warnings, errors

Figure 2.1: Static analysis workflow diagram

Python interpreter ignores them at runtime. More benefit can be had using ad-

ditional tools designed to make use of the annotations. Figure 2.1 illustrates an

abstract Python programming workflow utilizing a static analysis tool. Results from

static analysis tools can provide insights into code while it is incomplete.

When students are first introduced to a software library, they are not aware of data

types relevant to an interface. Type annotations improve readability for users un-

familiar with an interface. Tools using type annotations can also help users. For

example, the user’s IDE can take the user to the definition of a type from a type

annotation. This reduction in friction can encourage students to gain competency

by reading and exploring code. Type annotations can also allow third party tools to

report incorrect code through static analysis. Static analysis tools inspect code with-

out directly running it to provide insight on the code’s functionality and correctness.

This can include warning and error messages for programming mistakes frequently

made by students. Key to this benefit, the tool provides error messages from which

users and students can learn and take action from. The information provided directly

by type annotations and indirectly though tools enhances the learning experience for

students.

6

As previously discussed, needing to learn to use additional tools can be a hindrance

to students’ direct learning goals. For this reason, it is important that static analysis

tools are seamlessly integrated in students’ development environments. Integrated

development environments (IDEs) such as Microsoft’s Visual Studio Code (VSCode)

can provide static analysis feedback as students type without additional commands.

If the tool provides clear and actionable messages, students can understand mistakes

they have made and correct them. This contributes to the learning process. VSCode

eases adoption of said tools by prompting users to install and enable them once

support for the Python language is installed in VSCode. Beginners benefit from the

accessibility of tools configured this way by default. With analysis tooling automated

by default, students can focus on learning to use type systems without first learning

to use a type checker.

2.2 Related Work

Numerous software frameworks for accelerating development of robots exist. These

libraries accelerate robotics development by abstracting away the interconnection of

modular components. These frameworks make modularization less complex, allowing

for more complex robotic systems. These frameworks are often maintained by large

communities that contribute common packages that can be reused. This reuse auto-

mates development for common robotic tasks such as path planning and computer

vision. Industry and state of the art research primarily use ROS (Robot Operat-

ing System). NASA has successfully deployed its new entrant, the F’ framework, to

the planet Mars on the Ingenuity Mars helicopter project [12]. WPILib, a library

developed for use in the FIRST Robotics Competition (FRC), has grown in use,

complexity, and scope with the popularity of youth robotics competitions.

7

Publishes

Node Node

Subscribes

Topic

Figure 2.2: ROS communication architecture diagram

2.2.1 ROS

Robot Operating System is an industry standard robotics framework. Despite its

name, ROS is not an operating system. Rather, it refers to a core software library, ex-

tensible framework, and package ecosystem. Roboticists use standard ROS runtimes

to operate a combination of their own packages and those developed by the community

and distributed in the package ecosystem. The availability of stable packages in the

package ecosystem accelerates development in academia and industry. This attracts a

large number of contributors and users across academia and the private sector, serv-

ing many niches. A wide community is involved in the development, support, and

use of ROS. As a result, ROS is available on many platforms, is well documented,

and has a large ecosystem of provided packages [13]. Users with knowledge of ROS’s

build and packaging systems can program a wide range of hardware platforms and

utilize modular packages maintained by the community.

The core library implementations of ROS provide an extensible framework for anyone

to develop packages defining the behavior of “nodes”. In ROS, a node is the unit of

execution available to the programmer [14]. Figure 2.2 shows the modular architecture

of ROS. When a ROS-based robot is running, nodes communicate with each other by

publishing and subscribing to messages pertaining to specific “topics”. A message may

contain any type of data as specified by the topic. A central node or manager is used

to register the presence of nodes and routing information per topics to subscribing

nodes.

8

Availability across multiple programming languages makes ROS accessible to a wider

audience and allows hardware independent design and implementation of system ar-

chitectures. Unfortunately, ROS’s broad applicability adds complexity to the ecosys-

tem as a whole as all ROS packages and tools must be compatible with all supported

languages and environments. Standard conventions may conflict between platforms.

Users of additional platforms may be confused by non-idiomatic conventions originat-

ing from other languages. Students learning to program robot systems for the first

time do not need the robustness and ubiquity of ROS and are instead hindered by

this added complexity. Development environments for ROS often involve complicated

build tool-chains hosted on virtual machines. The size of virtual machine images is a

hindrance when inexperienced students are preparing to learn ROS.

Students suffer from the complexity added by build systems. Cross language support

tends to beget language independent build systems. This added complexity that

impedes beginners because it introduces additional language semantics and constructs

for students to learn. In the case of ROS, “Catkin” is the main build system. Catkin

leans on the semantics of CMake, a common C++ build system. [15]. Without an

additional configuration language, students could be more productive.

When being introduced to language bindings for ROS, students must install ROS

and learn how to use Catkin. O’Kane’s “A Gentle Introduction to ROS” contains 26

pages on the installation of ROS prior to guiding the user through creating a sample

project. While much of this can be attributed to availability on a variety of platforms,

installation is still a significant barrier to entry.

9

2.2.2 F’

F’ (F Prime) is a robotics framework developed at NASA Jet Propulsion Laboratory

(JPL). [12]. Its most notable use has been on the Ingenuity vehicle on the planet

Mars. It has also been used to program cubesats for other missions. Fitting this use

case, F Prime provides a Publisher-Subscriber paradigm with a focus on modular,

reusable components [16]. The reusability of components accelerates development

while benefiting from the robustness and correctness of provided modules that have

been verified to be correct.

Like ROS, F Prime uses build tools which complicate its use [17]. F Primes’s bindings

are available in C++ and additional configuration is written in XML. The build tools

generate configuration and compiled results. While additional build tools may slow

down learners, this is made up for by reusability of components.

2.2.3 WPILib

WPILib exists as the premier library for programming robots for the FIRST Robotics

Competition (FRC) [18]. Using WPILib, high school students develop interdisci-

plinary team skills to field robots in competitions [19].

WPILib specifically targets high school students who may or may not have experience

in AP Computer Science courses. Students are also limited to specific hardware such

as the roboRIO, a fully featured micro-controller with numerous peripherals and an

integrated field programmable gate array (FPGA) [20]. Despite these academic and

technical limitations to scope, the competitive nature of FRC has lead WPILib to be

fully featured and well documented.

10

WPILib supports Java and C++ bindings and can be built with Gradle or CMake

[21]. In contrast with Python, these additional build steps add friction to students

experiences.

Java bindings give WPILib the advantage of meshing with Java-based AP Computer

Science curriculum. C++ and CMake experience can also prepare students for us-

ing the same tools when learning to use ROS. Despite this familiarity, a gap is left

for undergraduate students who have been introduced to programming in only one

Python-based introductory computer science course. These students may have had

no experience with compiled programs.

2.2.4 Survey Summary

Table 2.1: Robotic systems libraries surveyed
Name Usage Language Bindings
ROS Industry, academia C++, Python, Lisp

F Prime NASA, spaceflight C++
WPILib FIRST Robotics Competition C++, Java

Table 2.1 summarizes the libraries surveyed. Across ROS, F Prime, and WPILib,

two trends are visible: modular components and additional build tools. The first is

a concept that students can benefit from learning. The second is a complication to

software and embedded systems development.

Following this survey of systems robotics libraries and their relationships to students,

a method is needed for discussing and evaluating how their design impacts the ex-

periences of students. Chapter 3 presents a framework for qualitative evaluation of

software libraries and tools.

11

Chapter 3

EVALUATION FRAMEWORK

This chapter presents a qualitative framework for evaluating software libraries and

tools in the context of undergraduate education. This framework was developed to

help guide the course of this thesis. The framework consists of eight characteristics

listed in section 3.2. Evaluation of the characteristics can be used to discuss the

design and distribution of a software library or tool based on possible experiences

of students. These characteristics have been chosen to assess the how design of the

tool impacts the user experience of students as they learn to use it to accomplish

an external learning objective. The characteristics should not be used to compare

tools. They are best used to initiate a discussion surrounding a specific student user

experience. Without further refinement, these characteristics should not be used to

make a comparative or conclusive assessment. In this chapter the Arduino embedded

development platform will be evaluated within the framework as an example. In

chapter 7, the SNR library will be evaluated within this framework.

3.1 The Arduino Platform

The Arduino platform was originally developed at the Interaction Design Institute

Ivrea in Ivrea, Italy [22] by Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca

Martino, and David Mellis [22]. The project undercut existing micro-controller devel-

opment boards in price while championing ease of use. This was achieved by using the

Processing integrated development environment (IDE) and developing a user-friendly

library [23]. Arduino has enabled learners of diverse backgrounds to create projects

12

and inventions that would have otherwise required a much greater knowledge of em-

bedded systems [24]. Simultaneously, the platform was introduced many people to

the field of embedded systems. The following evaluation of the Arduino platform

includes references to Arduino branded development board hardware, the Arduino

IDE, the Arduino firmware library, the ecosystem of Arduino-compatible hardware,

and the ecosystem of Arduino-compatible libraries.

3.2 Characteristics

The presented framework for evaluation includes the following eight characteristics

listed below. Some characteristics were chosen based on friction experienced by stu-

dents when learning to use a tool or library. Others were selected to reflect desired

learning outcomes.

• Prerequisites

• Discoverability

• Error messages

• Openness

• Familiarity

• Documentation

• Misuse resistance

• Growth paradigms

3.2.1 Prerequisites

Prerequisites may refer to either academic or material barriers to entry for students.

Prerequisites are the most direct barriers to entry for students. The direct nature of

prerequisites means that they may have quantitative elements.

13

Academic prerequisites include knowledge students need to make use of a library or

tool. This could be an understanding of the semantics of a programming language or

mathematical theory of a control system.

Material prerequisites manifest as monetary costs that otherwise prevent students

from gaining an education experience. Material prerequisites might include access to

a specific hardware platform, software distribution, or software tooling.

The Arduino platform tackled both facets of prerequisites at its creation. It offered

development hardware at a lower price, a quantitative reduction in a material pre-

requisite. The development environment was freely distributed, reducing another

material prerequisite. Simple design of the Arduino firmware library decreased aca-

demic requirements for users.

3.2.2 Familiarity

Familiarity may refer to the reuse of semantics and patterns already known to stu-

dents. Familiarity complements prerequisites. While prerequisites tend to exist as

hard requirements, familiarity only improves user experiences and is not a require-

ment. Prior knowledge can greatly improve student comprehension. Accessing knowl-

edge stored in long term memory accelerates comprehension. [25]

Users of the Processing IDE will be familiar with the Arduino IDE as a result of

the common ancestry. The C++ language used in the Arduino platform will also

be familiar to students who have learned the C or Java programming languages.

As a result, they will spend less time learning to use the development environment,

programming language syntax, or object-oriented paradigm respectively.

14

3.2.3 Discoverability

Discoverability may refer both to discovering the existence of the tool and to the ease

with which students can explore the interfaces of the library and find information

needed to solve their problem. For the introduction of a tool, a teacher may introduce

it to students or students may discover its existence on their own. More generally,

discoverability can refer to exploration of the surface of the tool during its use.

The popularity of the Arduino platform means many students and educators are

aware of it and may recommend it to uninformed students. The interface surface

of the Arduino library is documented in a website (bundled with the IDE) linked

from the “Help” menu of the Arduino IDE [26]. As a result of bundling reference

materials with the development environment, the documentation is available without

an internet connection.

3.2.4 Documentation

Documentation refers to the accessibility, coverage, and quality of reference materials

specifying usage of the library. While discoverability pertains to the experience of

users, documentation concerns the material information available for a tool, in the

best case scenario that it is discovered. Good documentation includes both concrete

definitions and examples of usage.

In the Arduino library reference for each provided function, the following fields are

included: a description, the syntax, the parameters, a complete example program,

additional notes and warnings, and a link to further documentation on related con-

cepts. Some translations to languages other than English are available on the same

page.

15

3.2.5 Error Messages

Error messages may refer to the ease of interpretability of tooling responses to in-

valid or anomalous input. If a user makes a mistake or typo, error messages should

warn them in the context of their mistake and not in the context of the underlying

system. The program should gracefully exit after providing the context of the issue

and possible courses of action. Bad error messages might only describe an irrelevant

symptom of the mistake and signify the occurrence of a catastrophe.

The Arduino IDE sometimes exposes users to C++ compiler errors or irrelevant

warnings. These may confuse the user. The syntactic construction of C++ sometimes

prevents the compiler from being able to identify specific typos or mistakes. The

Arduino IDE sometimes produces Java-based error messages of its own, unrelated to

C++ code being compiled. Students using C++ for the first time may be confused

by error messages unrelated to the language or library.

3.2.6 Misuse Resistance

Misuse resistance may refer to preventative measures that reduce the occurrence of

errors or mistakes. Specifically these preventative measures may be implemented

during design of the tool with the expectation that users are likely to make mistakes.

This characteristic might be assessed with the question, “How does the library or

tool minimize the negative consequences of a mistake?”. Tools that excel in misuse

resistance may even approach mistakes differently, seeking to maximize the potential

for learning from mistakes.

The Arduino library hides complexity from users and protects them from complexity

well. This provides misuse resistance within the programming environment. However,

16

difficulties with the hardware, relating to signal integrity (unplugging cables), can

cause errors during program flashing of micro-controllers. This can temporary or

permanently damage the firmware bootloader or development board. Development

boards themselves are fragile and vulnerable to electrical dangers ranging from static

discharge to incorrect pin connections and defective peripheral circuits. This example

shows that misuse resistance can vary between different components and aspects of a

tool.

3.2.7 Openness

Openness may refer to the ease of extension or inspection. A open system should

allow students to investigate its inner workings and then replicate or extend the

implementation.

The Arduino hardware is primarily focused on enabling users to extend it with pe-

ripheral devices. The Arduino IDE and C++ language encourage students to build

abstractions off their code. However, the tool-chain infrastructure is not readily ex-

posed to users and the inner workings of Arduino micro-controllers are not generally

available. Students are not directly encouraged to develop a deeper understanding

our how the compiler is used. This comes as a trade-off to preventing misuse of the

compiler tool-chain.

3.2.8 Growth Paradigms

Growth paradigms may refer to the new semantics and patterns that prepare students

for other libraries and tools. In this way, the tool acts as a prerequisite for something

else. Growth paradigms might also refer to the level of encouragement or lack of

discouragement that the tool provides students. Tools promoting growth paradigms

17

encourage students to have a growth mindset. Growth mindsets have been shown

to improve math and science achievement for students [27]. Openness can also lead

to orthogonal growth paradigms in which students begin to learn about the systems

that underlie the tool.

The Arduino platform is a gateway to electronics and embedded development. The

numerous features of the platform encourage students to explore all the capabilities

of hardware while exercising their own creativity.

18

Chapter 4

LIBRARY DESIGN

This chapter discusses the abstract design of the SNR software library, including the

design of the application programming interface (API), communication paradigm,

and concurrency primitives.

4.1 Design Goals

The main design goal of the SNR library is to use a familiar programming language

to introduce students to programming robotic systems. This is achieved by providing

an API for small modules to communicate discrete pieces of data to each other. This

approach gives students experience with the organizational problems resulting from

complex robotic systems that lend themselves to smaller, reusable modules. This can

help students learn paradigms such as publisher-subscriber communication earlier in

their undergraduate education. Understanding concepts like this prepares students

of more complex architectures in robotic systems and other career paths. The pro-

gramming model of SNR, introduced in 4.2, is intended to avoid cognitive overload

by providing a simple Python library that students can inspect and extend. This

architecture encourages modular components, which can be programmed incremen-

tally, tested, and reused. As a pure python library, SNR avoids the requirement of

additional build tools. Only the Python interpreter and SNR library are needed to

run a program that uses SNR.

19

4.2 Architecture

SNR provides the end user with three levels of abstraction (shown in figure 4.2).

The highest of these levels is a complete robotic system that may include multiple

computing devices. A system is defined by the user in one configuration. The next

level, nodes, corresponds to each computing device within a system. The user defines

which components exist inside each node. These components are the final level of

abstraction. The user implements component modules.

The communication paradigm in SNR consists of discrete components passing mes-

sages to each other. User defined components, called “endpoints”, do not communi-

cate with each other directly. Rather than use network based direct communication,

events called “tasks” are always passed to a task queue consumed by the main event

loop. Endpoints are modules of user code that provide functions that are run in

response to specific tasks. Endpoints are described in section 4.4. SNR does not

provide an internal way for nodes to communicate with each other. Instead, cross

node communication is provided as a standard component that users can include with

a node. This design choice reduces the complexity of nodes while pushing students

towards understanding how data flows between components.

Figure 4.1 shows the internal components of a running “node.” Each node contains a

task queue serviced by the main event loop, a key-value database (“datastore”), and

a collection of endpoints. One node is intended to be run per device. To execute a

task, endpoints are queried for matching “task handler” functions. Task handlers are

registered within a dictionary for each endpoint.

20

1. Task

2. Task

...

Task Queue

0. Task

Node

Robot Controls:
I/O, hardware components

Components

Datastore

Page

Page
Page

...

EndpointEndpoint

Task
scheduling

Task
Handling

Read
Page

Page
Storage

Loop Loop

Figure 4.1: SNR node architecture

4.2.1 Runners, Configs, and Roles

The life cycle of an SNR based program begins with a “runner” that wraps the

execution of a node based on a provided configuration (abbreviated to “config”).

A config is the highest level description of a system in SNR. A config describes a

blueprint for all nodes used to operate a robotic system. Each node is differentiated

by a “role” identifier and may have a unique set of endpoints. Figure 4.2 depicts this

relationship.

21

SNR based robotic system
- Defined by one config

- May span multiple devices

Computing device
- Device within a system
- e.g. Raspberry Pi SBC

Endpoint

Endpoint

Node
- Defined by a role and set

of endpoints
- Program instance

- Synchronous event loop

Endpoint

Endpoint

Computing device
- Device within a system
- e.g. Raspberry Pi SBC

Endpoint

Endpoint

Node
- Defined by a role and set

of endpoints
- Program instance

- Synchronous event loop

Endpoint

Endpoint

Figure 4.2: SNR high-level architecture

A config defines a different set of endpoints to be initialized within a node based

on the “role” of the node with the larger system. For example, a node running on a

computer embedded in a robot would have different endpoints than a node running on

a computer monitoring the robot remotely. Specifying the configuration of both nodes

at once allows code reuse and shared parameters such as communication channels.

At runtime, the runner differentiates the role of the node and provides it the specific

configuration. Then, a node is constructed.

4.2.2 Node Life Cycle

A node is constructed by a runner with a given role and endpoint collection. The

per-role configuration contains endpoint factory objects that construct endpoints for

the node. Each factory can provide the node with one or more endpoints. After being

constructed, the node can enter its main event loop . Prior to beginning the loop,

each endpoint has a post-initialization method run. Once in the event loop, the node

22

pops a task off the task queue and queries each of its endpoints for a matching task

handler. For all endpoints with matching task handlers, the task handlers are run

on the main event loop thread. Task handlers may result in zero or more additional

tasks. These subsequent tasks are scheduled after all task handlers have executed the

current task. The task queue feeds the main event loop with tasks sent by endpoints.

Pages stored in the datastore persist during program execution. They are not im-

plicitly saved between separate program executions (Recorders and Replayers can

achieve this as discussed in section 6.4).

4.3 Data Objects

SNR stores and transmits data as two types of objects, Tasks, and Pages. Task rep-

resents ephemeral units of work to be processed. Pages represent stored information

that can be utilized by components.

4.3.1 Tasks

Tasks represent transitory events. Tasks are ephemeral in that they are available

only when handled by an endpoint task handler. A task is discarded once it has been

handled by all registered task handlers.

A task is identified by two pieces of information, its TaskType and name (represented

as a string). These two properties can be mapped to a task ID that matches registered

task handlers in multiple ways. A task ID can be either a tuple of a task type and

string or a singular task type. Section 4.4.1 discusses the task matching process.

Tasks enable information passing between endpoints. Tasks can also carry arbitrary

data stored in a “value list” accessible to task handlers. This data is not stored

23

outside the task while it is queued and is destroyed with the task after execution

unless otherwise stored by a task handler.

4.3.2 Pages

Pages provide data storage that outlives individual tasks. Pages consist of a key-value

pair. Endpoints may read and write pages based on keys. Keys are represented by

strings. The data representation of values contained in pages is not specified. Pages

also store the name of the node that created them (the origin) and the time they

were created. When a page is created, a task is scheduled to store the page within

the node’s datastore. By creating a task to store the page, endpoints can be notified

of the page and react accordingly. This is useful for transparently communicating

pages from one node to another using endpoints and loops. As a task, writing a

page to a node’s datastore happens synchronously. In line with this, the page storage

task is handled by a core endpoint that has access to the datastore data structure.

Pages also contain a “process” field that causes a second task to be triggered once it

has been stored in the datastore. This enables an additional task execution that is

guaranteed to be after the first.

4.4 Endpoints

Endpoints are modules containing user defined behavior and surfacing it to a node in

the form of registered task handlers. Endpoints are associated with a specific node

and identified by a name. Endpoints have no knowledge of each other. Endpoints

within a node pass messages to each other by queuing tasks and storing data pages.

Figure 4.3 shows the internals of an endpoint. An endpoint’s registration of task

handlers consists of a mapping of task IDs to method references. Endpoints defined

24

by the user may have additional private state accessible only to its task handling

methods.

Task ID Task handler

(Task type,
name)

Task handler
reference

Task type Task handler
reference

Task handler registration mapping

User-defined
task handler

User-defined private
internal state

Helper methods...User-defined
task handler ...

... ...

Endpoint

Figure 4.3: SNR Endpoint architecture

4.4.1 Task Handling

When the main event loop of a node processes a task, it first gathers all matching

task handlers from all of its endpoints. Two sequential attempts are made to match

a task to a registered task handler. First, a task ID consisting of both the task type

and name is used. If no handler is found, a task ID consisting of just the task type

is used. This query is repeated for each endpoint (The runtime complexity of this

lookup algorithm scales linearly with the number of endpoints but allows endpoints

to modify their mapping of task handlers during execution without communication

with the node). Once all task handlers matching a task have been gathered, they

are executed sequentially. All endpoints receive the same task but may have match

a handler to it with a different task ID. Each task handler may result in zero or

more new tasks, which are collected and queued after the execution of all remaining

25

handlers. A task handler may result in communication with other endpoints through

tasks and pages or through side-effects such as physical motion of a robot using

hardware peripherals.

4.4.2 Endpoint Life Cycle

During creation of a node, all of the node’s endpoints are initialized. The get()

method is called for each EndpointFactory object provided by the configuration,

returning constructed endpoint objects. Once the node begins execution of the main

event loop, the begin() method is called on each endpoint, running any additional

initialization code written by the end user.

When execution of a node ends, an endpoint object’s halt() and terminate() meth-

ods are called successively. Halt notifies an endpoint that it will be destructed. This

warning enables the endpoint to store any required state within its original parent

factory. This preservation of state allows a second instance of the factory to reload

the Python source code of the endpoint and construct a new instance with some

preserved state. Terminate is used to notify an endpoint that it will not be reloaded.

4.4.3 Loops

Loops are an additional class of user defined module that allows code to run outside

the main event loop. While the behavior of endpoints is triggered by handling a task,

loops are run continuously in an execution loop internal to the component. This is

typically implemented as a child thread, but the exact backing mechanism is not spec-

ified. A safely synchronized API to the parent node’s thread is required. Loops are

useful for reacting to external events such as communication from a separate node.

A loop in its own thread can block on a communications socket and schedule tasks

26

when data is received. Figure 4.4 shows the interface available for communicating

to and from a loop. While the loop is used for its asynchronous context, endpoint

functionality such as task handling are still available. However, the user becomes

responsible for synchronizing the synchronous and asynchronous internal state of a

loop. The Python standard library provides the multiprocessing module to facilitate

this manner of synchronization. Loops are constructed in the same fashion as end-

points and begin executing their routine when their begin() method is called. Loops

also use the halt() method to shutdown their execution.

Task Queue
Datastore

Node

Robot Controls:
I/O, hardware components

Task
schedulingTask

Handling
Read
Page

Page
Storage

Endpoint task
handling

Loop

Execution
loop

User-implemented
synchronization

Asynchronous/blocking
communication

Asynchronous
context

Figure 4.4: SNR Loop architecture

SNR does not provide an internal mechanism for communication between nodes. To

serve this propose, the user can use standard communications loops, implement their

own, extend the base communication loop. These components communicate between

nodes through an external channel such as a pipe or network socket. The relevant

implementations are discussed in section 6.4.

27

Chapter 5

EXAMPLE USAGE AND LIBRARY EVALUATION

This chapter provides examples of the usage of the SNR library for programming

robots. Afterwords, the SNR library is examined using the evaluation framework

presented in chapter 3. Instructions for installing SNR are shown in appendix B.

5.1 Example: Underwater Remote Operated Vehicle

This example presents a high level definition for the configuration of an underwater

remote operated vehicle (UROV). By definition, UROVs impose the requirement of

remote operation. This problem originally motivated the development SNR.

Figure 5.1 shows the flow of data in the UROV system. This flow of data directly

translates to nodes and components within an SNR configuration.

Sockets
ServerPython UI

XBox Controller Serial UART

Sockets
Client

Microcontroller
PWM Output

Raspberry Pi SBC

Topside Control Unit Underwater Remote Operated Vehicle

Jetson Nano Node

Sockets
Server

Sockets
Client

SensorSensor
Reader

Input
Processor

Input Control
Processor

Figure 5.1: Data flow in example UROV system

In this partial implementation, two SNR nodes will be configured. Implementation

of the factories and components is left as an exercise for the reader.

28

One node takes the role of the underwater vehicle and the other acts as a control

unit from which the robot is operated. In practice each node would be run on a

separate single board computer (SBC) such as a Raspberry Pi. The devices would be

connected via an ethernet cable incorporated into a tether that supports the vehicle.

The vehicle may have multiple pulse width modulation-controlled thrusters and other

sensors. The control unit has a game controller for user input and a graphical user

interface to report telemetry. In the first file, included in listing 5.1, the configuration

for both nodes is defined. Factories for each component are described for each role.

Each factory defined mirrors as component shown in figure 5.1. The order in which the

components are defined does not affect the program but it helps to visualize the flow

of data. Following the configuration, the main() method calls a runner that takes in

the config as a parameter. When the program is run, the role of the computing device

running the program is given as a command-line argument and the corresponding set

of components are constructed.

29

Listing 5.1: Example configuration of a UROV system

1 import sys

2 import snr

3 from urov import *

4

5 controller_input_sockets = snr.SocketsPair(

6 server_tuple =("192.168.1.10", 9000))

7 telemetry_sockets = snr.SocketsPair(

8 server_tuple =("192.168.1.11", 9001))

9 components: snr.ComponentsByRole = {

10 "topside": [

11 # Topside control pipeline

12 XBoxControllerFactory("raw_controller_input"),

13 InputProcessorFactory("raw_controller_input",

14 "controller_input"),

15 controller_input_sockets.client("controller_input"),

16 # Topside sensor pipeline

17 telemetry_sockets.server (),

18 SensorDisplayEndpointFactory("sensor_data")],

19 "urov": [

20 # Robot control pipeline

21 controller_input_sockets.server (),

22 ControlsProcessorFactory("controller_input"),

23 "motor_speed"),

24 SerialConnectionFactory("motor_speed"),

25 # On robot sensor pipeline

26 SensorReaderFactory("sensor_data"),

27 telemetry_sockets.client("sensor_data")],

28 }

29

30 if __name__ == "__main__":

31 snr.CliRunner(components , sys.argv).run()

30

5.2 Moving Average Filter Endpoint

The next example presents an implementation of a moving average filter as an SNR

endpoint as found in the std mod submodule. A factory implementation is also pro-

vided in listing A.2. Listing A.3 demonstrates the testing utilities available in SNR.

5.2.1 Moving Average Filter Endpoint

Listing A.1 defines an endpoint class as it would be instantiated by an node. The

init () method defined on line 6 calls the Endpoint super-class constructor. Then,

the endpoint registers its task handlers in the self.task handlers dictionary. Fi-

nally, the constructor stores the filter’s state.

Following the constructor, the task handler update filter() is defined on line 22.

First, the type of the value from the task is checked. This ensures the rest of the task

handler can be correctly type checked by static analysis tools. The state of the filter

is updated and the task handler returns a task to store the filter’s output.

The begin(), halt(), and terminate() methods are defined to satisfy the Ab-

stractNode interface. This endpoint does not use the control flow provided by these

methods. They are more useful when the endpoint must manage an external resource

such as a socket for file descriptor.

5.2.2 Moving Average Filter Endpoint Factory

Listing A.2 defines the MovingAvgFilterFactory class. Factories primarily con-

sist of constructors and get() methods. In this case, the constructor calls the

EndpointFactory super constructor and initializes the backing state of the filter.

31

The super constructor takes a list of dependant modules that should be reloaded in

order to regenerate Python bytecode for the endpoint. This enables the endpoint to

incorporate changes to its source code without restarting the node. The backing state

of the endpoint is maintained by the factory and provided to the new instance of the

endpoint. The get() method instantiates the endpoint and returns it to the node.

5.2.3 Moving Average Endpoint Tests

Listing A.3 shows an SNRTestCase class that tests the MovingAvgFilterEndoint.

The test runs a test node on line 17. The with statement on line 16 ensures that the

expectations of the expector are satisfied regardless of how the node terminates. The

Node is configured with three components. The list replayer sequentially stores the

values from the list passed to it with the data key input data. The filter endpoint

under test will receive the data storage task from the list replayer and run its task

handler, producing data with the output data key. The expector endpoint wraps

the expector and expects a task for each page of data stored. The node is terminated

once the expector is satisfied.

5.3 Example: Lunar Module Landing Simulation

This example tackles the classic problem of landing the lunar module on the Moon. In

this algorithmic challenge, students must select how much fuel to use at each stage of

the descent. In this hypothetical assignment, students are instructed to develop a Q-

learning model for controlling the lunar module. The implementation and training of

the Q function are left as an exercise. Listing A.4 shows the implementation including

an endpoint, loop, associated factories, and configuration.

32

5.4 Example: Benchmark Test

This section describes a synthetic benchmark designed to show the task throughput

of an SNR node running on a device. This example also shows the testing APIs pro-

vided by the SNR library. Listing A.5 contains the implementation of the benchmark

as component definitions and test cases. First, an endpoint and an associated factory

are defined. Then, an SNRTestCase class is defined. The test class contains two test

methods. The first, test stress endpoint init() ensures that the previously de-

fined endpoint operates as intended. The second, test stress endpoint(), allows

the node to run to a predetermined period of time to measure the throughput of the

node. A node is constructed without a runner so its profiling information is available

after the test. This configuration includes the stressing endpoint as defined at the be-

ginning of listing A.5. The standard modules TimeoutLoop and StopwatchEndpoint

are also included. The TimeoutLoop schedules the terminate task after the bench-

marking period. The StopwatchEndpoint records the time at which the terminate

task is handled. The stressing endpoint schedules a “stress” task, and then later

handles the task by scheduling a task to create another endpoint using its factory.

By exponentially growing the number of endpoints, the rate at which tasks can be

handled and endpoints created is measured. This example differs from normal usage

of the library in two ways: the factory contains more logic than it would normally

and the endpoint creates additional endpoints.

Listing 5.2 shows the output of running the test cases shown in listing A.5. The

output includes the results of the benchmark, profiling information from the node,

and the runtimes of the test cases. Over the two second duration of the benchmark,

hundreds of endpoints were created. The profiling data from the node is printed using

the node.profiler.dump() method. The information printed shows that the most

33

time was spent handling the stress task. The add component and terminate tasks

occupied a minority of the time.

Listing 5.2: Benchmark shell output

$ python3 tests/bench/bench_stress_endpoint_fac.py

Stressed with:

547 stressor endpoints

553 stressor factory calls

Terminate expected at 2000 ms

2008.915 ms terminate handled

2010.324 ms total time

Times called , Avg runtime , Task/Loop type ,

149878 x 2.317 us -> 17.281%: TaskType.event(stress):__main__

552 x 30.942 us -> 0.850%: TaskType.event(add_component):

snr.core.node_core.node_core_endpoint

1 x 39.577 us -> 0.002%: TaskType.terminate(Timeout):snr

.core.node_core.node_core_endpoint

1 x 2.623 us -> 0.000%: TaskType.terminate(Timeout):snr

.std_mods.utils.stopwatch_endpoint

2010.66 ms: __main__.BenchStressEndpointFac.test_stress_endpoint

. 19.66 ms: __main__.BenchStressEndpointFac.

test_stress_endpoint_init

.

Ran 2 tests in 2.031s

OK

34

This benchmark can also be used to compare Python interpreter implementations.

Notably, PyPy, an implementation featuring just-in-time compilation and optimiza-

tions, performs much faster than the defacto standard CPython.

5.4.1 Game Controller Over Sockets

The next example defines two nodes. One node reads user input from a connected

game controller and sends the result to the other over a TCP sockets connection. In

this example, both nodes are run on the same device, however this is not a limitation

of the system. The nodes could be run on separate computing devices connected on

and IP network. This example uses a Raspberry Pi 4 as configured in appendix B.

The PyGame library is also required. A ”Steam Controller” game controller is used

in this example, but PyGame is compatible with other models of controller. For other

controllers, the input mapping used in this example will likely be incorrect. PyGame

can be installed via atp like so:

sudo apt install python3 -pygame

Listing 5.3 defines the configuration of the system. The game controller and Rasp-

berry Pi 4 used in this example are shown in figures 5.3 and 5.2 respectively. Matching

the configuration in listing 5.3, the nodes can be run with the terminal commands

python3 main.py receiver and python3 main.py input device. The implemen-

tations of ControlProcessorFactory, ControlProcessorEndpoint, ControllerLoopFac-

tory, ControllerLoopFactory, InputMappingFactory, and InputMappingEndpoint are

shown in listings A.6 through A.11. The ControllerLoopFactory produces a ControllerLoop

that reads raw input from the controller. The InputMappingEndpoint produced by

the InputMappingFactory maps the raw input to human-readable button and axis

states. This data is then sent over the sockets connection via the sockets client. The

35

Figure 5.2: Game controller read from using an SNR loop

TimeoutLoopFactory terminates the demonstration after twenty seconds for conve-

nience. The receiver node receives the controller input and checks which buttons

have changed state since data was last received. The PrinterEndpoint prints when

a specific task is handled. The output of the system is shown in figure 5.4

36

Figure 5.3: Raspberry Pi 4 running SNR nodes

37

Listing 5.3: Example configuration using game controller and sockets

1 import sys

2 import snr

3

4 from control_processor_factory import ControlProcessorFactory

5 from controller_loop_factory import ControllerLoopFactory

6 from input_mapping_factory import InputMappingFactory

7

8 sockets = snr.SocketsPair(server_tuple =("localhost", 9000))

9 components: snr.ComponentsByRole = {

10 "input_device": [

11 ControllerLoopFactory("raw_controller_data"),

12 InputMappingFactory("raw_controller_data",

13 "controller_data"),

14 sockets.client (["controller_data"]),

15 snr.TimeoutLoopFactory(seconds =20),

16],

17 "receiver": [

18 sockets.server (),

19 ControlProcessorFactory("controller_data"),

20 snr.PrinterEndpointFactory ([

21 (snr.TaskType.event , "button_pressed"),

22 (snr.TaskType.event , "button_released"),

23])

24]

25 }

26

27 if __name__ == ’__main__ ’:

28 snr.CliRunner(components , sys.argv).run()

38

Figure 5.4: Terminal output of controller input changes across sockets
connection

39

Chapter 6

LIBRARY IMPLEMENTATION

This chapter discusses implementation specific details of the SNR library. The SNR

library Python package contains 5 submodules: prelude, core, std mods, utils

and tests. Figure 6.1 shows dependencies between the library’s submodules using a

directed acyclic graph. The prelude defines type aliases, abstract class definitions, and

interfaces (Protocol) definitions later used in the core and std mods submodules. The

core submodule contains the logic that implements important SNR features including

the node and Endpoint and ThreadLoop classes inherited by end users. The std mods

submodule contains standard endpoints and associated classes that can be reused in

end user SNR programs. The utils submodule contains testing utilities and relies

on the prelude and core. The tests submodule contains unit tests that check for the

correct behavior of the preceding modules.

Prelude Core

Standard modules
(std_mod)

Utilities
(utils)

Tests

Figure 6.1: SNR library submodule dependency directed acyclic graph

6.1 Code Style Principles

SNR’s code style furthers the goal of accessibility for students by using type anno-

tations throughout the library. This enables students to know the type of an object

40

with certainty. This also formalizes the API that users interact with. Typed inter-

faces enable static analyzers such as mypy to check for correctness within the type

system prior to runtime [28]. Mypy is used to check for type system-level correctness

of the SNR library implementation. Pytype is another type checking analyzer for

Python developed by Google [29]. Pytype focuses on accepting the advantages of

duck typing in Python by inferring types later in its analysis.

SNR encourages testing. Utility classes for testing are included. The SNR library

implementation includes tests for many of its components. These tests also serve as

example usages of the components they test.

6.2 Prelude

The prelude contains definitions for interfaces and data types commonly used through-

out the SNR library. This includes Abstract Base Classes (ABCs) that force imple-

mentation of an interface. In the context of ABCs in Python, an interface requires

concrete implementations of abstractly specified method signatures by inheriting sub-

classes. If the end user does not correctly implement the requirements of an ABC, an

error message will be shown. This behavior is complemented by static type checking.

The most important data types defined in the prelude are the Page and Task classes.

6.2.1 Page and Task

The Page structure is implemented as a Python data class. Data classes automatically

implement some methods [30]. The definition of a dataclass provides type informa-

tion to static type checkers, which can be taken advantage of to show correctness. On

top of dataclasses, a library, dataclasses json, is used to automatically generate

41

serialization and deserialization methods for a dataclass. This decouples the imple-

mentation of these methods from the definition of the dataclasses. Similar to Page,

Task is implemented as a Python dataclass and uses dataclasses json.

6.2.2 Type Aliases

Numerous type aliases are defined for working with task objects. The type aliases

TaskName and TaskType are defined to represent identifying fields of a Task object.

The TaskId type alias as described in section 4.4.1 is defined as the union of a

TaskType and a tuple of a TaskType and TaskName.

The type aliases SomeTasks, TaskHandler, TaskHandlerMap, and TaskScheduler

are defined to represent interfaces that handle tasks. SomeTasks is an alias for the

union of a Task object, a list of Task objects, and None. TaskHandler is an alias for

a callable function that takes in a Task object and the TaskID that it was matched

with. It returns SomeTasks. TaskHandlerMap is the alias of the object an endpoint

must provide to register tasks. A TaskScheduler is method that takes SomeTasks as

a parameter and enqueues them in the task queue of an endpoint’s parent node.

Additional type aliases are defined to ease user comprehension. DataDict is a type

alias for a dictionary that stores Pages by string keys. By specifying the datastore

for nodes as a simple Python dictionary, the burden of synchronizing read and write

operations is placed on the Endpoint-Node API (the built-in dictionary does offer

some synchronization safety). This safely requirement restricts access to the data

structure to operations in the main event loop thread.

42

6.2.3 Protocols

Protocols are dynamic typing feature of Python that define a functional interface. A

protocol acts as a type that includes objects that implement the required methods

without referencing the protocol explicitly . Protocols are a form of structural typing

where classes that implement the required methods of a protocol are considered a

subtype of the protocol at runtime [31]. This works without references to the protocol

itself in the definition of the implementing class.

Serialization methods generated by the dataclasses json library are wrapped in

the methods required for the Serializable protocol. The Page and Task classes are

subtypes of the Serializable protocol.

6.2.4 Interfaces

The prelude defines ABCs and Protocols that define the application programming in-

terface that end users interact with and extend. Most importantly, the AbstractNode,

AbstractEndpoint, and AbstractLoop classes are defined.

6.2.5 Precursors

The AbstractConfig and AbstractRunner define abstract base classes for classes

that always precede the instantiation of a node. The runner selects components

from the config and wraps execution of the node. An interface for an additional

variant of a runner is defined by AbstractMultiRunner, which intends to wrap the

execution of multiple nodes within one runner. This can be useful for testing multi-

node systems on one device. AbstractConfig requires the get(role: Role) ->

List[AbstractFactory] and get profiler() -> Optional[AbstractProfiler] meth-

43

ods. The first retrieves the factory objects needed to construct the components of a

node specified by the provided role. The latter permits the config to provide or omit

a diagnostic profiler object.

The AbstractComponent ABC precedes Endpoints and Loops, mandating that they

implement the component interface, generally referred to as the endpoint interface:

• begin() -> None

• join(self) -> None

• halt(self) -> None

• terminate(self) -> None

• store page(self, page: Page) -> None

6.2.6 AbstractNode

The AbstractNode interface is important because it defines the interface for user

implemented components. By exposing on the abstract class to end user programs,

implementation details of the Node class can be hidden or the implementation can be

replaced. Likewise, the AbstractEndpoint class provides an interface to endpoints for

classes implementing a node. While the included node implementation does not treat

loops differently than other endpoints, the AbstractLoop class requires implementing

methods needed to operate a loop. Loop backing implementations should inherit from

this abstract class. This is demonstrated in chapter 5.

The AbstractNode base class specifies that a node implementation must have the

following properties:

44

• role: Role

• config: AbstractConfig

• mode: Mode

• components: Dict[ComponentName, AbstractComponent]

The following methods are used by the runner to control the node’s execution:

Listing 6.1: Pseudo code interface for node control flow

1 loop() -> None

2 set_terminate_flag(reason: str) -> None:

3 terminate () -> None:

4 is_terminated () -> bool:

Task execution is specified by the following methods:

Listing 6.2: Pseudo code interface for task execution

1 get_task_handlers(task: Task) -> List[Tuple[TaskHandler , TaskId]]

2 handle_task(handler: TaskHandler , task: Task , key: TaskId

3) -> Optional[List[Task]]

4 execute_task(t: Task) -> None:

As described in section 4.4.1, the node executes tasks in two phases. First, it queries

all its endpoints using get task handlers(). Then, each found task handler is

wrapped handle task() to collect runtime diagnostics.

The following methods provide an interface for endpoints create and schedule tasks:

Listing 6.3: Pseudo code interface for task scheduling

1 schedule(t: SomeTasks) -> None

2 task_store_page(page: Page) -> Task

3 task_store_data(key: DataKey , data: Any , process: bool) -> Task

45

Finally, the following methods provide an interface for endpoints create, write, and

read datastore pages:

Listing 6.4: Pseudo code interface for datastore access

1 page(key: DataKey , data: Any , process: bool) -> Page

2 store_data(key: DataKey , data: Any , process: bool) -> None

3 get_page(key: DataKey) -> Optional[Page]

4 get_data(key: DataKey) -> Optional[Any]

Each of these methods wraps or unwraps arbitrary data with a page. The process

parameter denotes whether the page requires an additional processing task to be

scheduled after the page has been stored in the datastore. This provides a second

point in time for endpoints to receive data corresponding to a page. First, the store

page task includes the page in the value list of the task. Second, the process data

task occurs once the page is available from the datastore. Thus two task handlers

can be run sequentially as the result of one page.

These methods are implemented by the node because the node provides the creation

timestamp for the page and the name of the node is recorded as the origin of the

page. This origin field is useful when transmitting pages between nodes.

6.2.7 TaskQueue

The task queue is defined separately from the node to force an interface where syn-

chronization can occur. This is necessary because loops belonging to a node may have

access to the node from outside the context of the main thread. An asynchronous

API for scheduling tasks is the main form of communication from asynchronous loops

to the main thread event loop context.

46

The task queue is implemented as a a standard Python collections deque. Synchro-

nization is provided by the standard library implementation.

6.2.8 AbstractEndpoint

abstract endpoint defines an abstract class that all endpoints must fully implement.

If the end user fails to implement a member required by the abstract definition, an

error is displayed at startup and runtime is aborted. End users indirectly implement

this class by inheriting from Endpoint.

6.2.9 AbstractLoop

AbstractLoop defines an abstract class that all loops must fully implement. This

includes setup(), loop(), set terminate flag(), and is terminated(). This

abstract connection

6.2.10 AbstractFactory

Factories provide a degree of separation between configs and components because

endpoints and loops should not be run until the node enter the main event loop. To

prevent this, configs pass factories to the node and the node delegates the construc-

tion of the component to the factory. Keeping information about the node being

construct also permits “hot-reloading” of components. This can be accomplished be-

cause factories keep a reference to the Python module containing the component they

construct. This module reference is passed to importlib.reload() and the source

code is re-read and re-compiled. Then, the component can be reconstructed for the

node.

47

6.3 Core

This module contains the core implementation of the library. This includes concrete

implementations of abstract classes defined in the library prelude.

6.3.1 Node

The Node class implements the main logic that interconnects user components. It

houses the datastore and task queue. All components belonging to a node are main-

tained in a dictionary keyed by the component’s name.

6.3.2 Endpoint

The Endpoint class provides the core synchronous task handler interface that char-

acterizes the SNR model of execution. End users should have their endpoints inherit

from Endpoint.

6.3.3 ThreadLoop

ThreadLoop implements the AbstractLoop abstract base class using the Python stan-

dard library’s threading module. End users should have their endpoints inherit from

the ThreadLoop class.

48

6.4 Standard Modules

The std mod module contains implemented components that can be utilized in an

existing usage of the library. The module is broken down into four submodules:

comms, filters, io, and utils.

6.4.1 Communications

The comms module provides implementations of loops that communicate pages be-

tween nodes. Each of included classes implements a CommsLoop. The comms loop is

provided an abstract connection when it is constructed. The comms loops included

with the library communicate over Unix-style pipes and TCP sockets. A connection

using pipes is useful for test environments where multiple nodes are run by the same

runner. A connection using TCP is useful for devices connected by an IP network.

When transmitting pages over a connection, the page is serialized into JSON text.

6.4.2 Filters

An implementation of moving average filter is provided as an endpoint. This imple-

mentation is demonstrated in listing A.1

6.4.3 Input/Output

The io submodule provides components for human interfaces and disk operations. A

system for communicating from a shell terminal is provided in the CommandProcessorEndpoint,

CommandReceiverFactory, and RemoteConsole classes. The CommandReceiverFactory

constructs both the CommandProcessorEndpoint and a communications loop that

49

receives commands over a TCP connection. The RemoteConsole is a standalone ap-

plication that connects to the node via the communications loop. The console sends

arbitrary commands entered by the user and the CommandProcessorEndoint on the

node responds. The endpoint interprets the following commands:

• exit: Terminate the node and console

• task: Schedule a task

• reload: Reload ’all’ or a specific endpoint

• list: List all ’commands’ or ’endpoints’

• dump: Dump data from ’profiler’ or ’datastore’

• help: List all commands

RecorderEndpoints and ReplayerLoops write and read pages and data from disk

respectively. These standard components are useful for simulating scenarios during

testing.

6.5 Testing Utilities

The implementation of SNR includes a test suite that tests for correctness of the

implementation and demonstrates testing practices. A number of classes are provided

to ease writing tests. First, the SNRTestCase class inherits from the standard unittest

module’s TestCase. SNRTestCase provides quick access to “expectors”, a test runner,

temporary file allocation, and SNR specific assertion statements.

Expectors are way of specifying expected behavior. Expectors are constructed with

a list of expectations that may or may not be ordered. ExpectorEndpoints are

50

implemented so expected tasks can be checked for during tests. Tests can assert

that an expector’s expectations have been satisfied. Coupled with TestRunners,

ExpectorEndpoints allow user implemented components to be tested in the same

way a node is run.

Listing A.3 shows the usage of the SNRTestCase class, a ListReplayerLoop, and

expectors.

51

Chapter 7

LIBRARY EVALUATION

7.1 Prerequisites

SNR is designed to avoid prerequisites of other robotics libraries such as ROS. By

existing as an open-source pure Python library, it is available in a compact package.

The entire SNR library source code occupies less than 500 KB of disk space (depending

on the file system). This makes it easy to develop and use on inexpensive computers

such as the Raspberry Pi. SNR requires a Python interpreter version of at least 3.6.

SNR requires the Pip Python package manager to install itself. This process also needs

packages from the Python Package Index (PyPI) including setuptools and wheel.

The SNR library’s immediate dependencies include dataclasses and dataclasses json.

Python versions 3.7 and 3.6 require the typing extensions package to handle typing

features such as protocols.

The SNR library source also uses the following packages to improve development:

pdoc>=6.1, nox, pytest, pytest-timeout, mypy>=0.800, and flake8>=3.8. They

are useful for developing the library but are not needed for use.

7.2 Discoverability

Discoverability represents a shortcoming of SNR. Limited web presence and documen-

tation make it hard for teachers and students to find. In addition to this, prebuilt

52

binaries for SNR are not yet available, making the source code repository the sole

source.

7.3 Error Messages

SNR uses Python ABCs to require implementation of some important interfaces.

Listing 7.1 shows the message shown to the user when they attempt to run a program

that uses SNR without correctly implementing a used ABC.

Listing 7.1: Example runtime error message

1 Traceback (most recent call last):

2 File "/home/student/SNR/tests/test_loop.py", line 121, in

3 test_invalid_construction_fails

4 construct(InvalidLoopNoHalt)

5 File "/home/sfshaw/git/SNR/tests/test_loop.py", line 107, in

6 construct

7 invalid_constructor(fac , node , None)

8 TypeError: Can ’t instantiate abstract class InvalidLoopNoHalt with

9 abstract methods halt

The benefit of error messages like that shown in listing 7.1 is the error, offending

class, and reason are stated on the final line. The correct location of the call to the

broken class is also given. Despite this brevity, the message presents other issues.

Inexperienced students may be intimidated by the mention of an abstract class when

they have written a concrete class definition. While this inconsistency is correct in

the interpreter’s perspective, students with limited experiences with object-oriented

programming in Python may be confused. This could be remedied by checking of

types at runtime coupled with friendlier error messages.

53

7.4 Openness

The availability of SNR’s source code for inspection, extension, and modification

make the library very open. While prebuilt binaries are not yet available on package

repositories, all users already have the source code from installation.

7.5 Familiarity

SNR should feel familiar to students that have recently taken an object oriented

programming (OOP) course and have some experience with Python3. SNR’s imple-

mentation and API draw on concepts core to OOP classes. Students should feel like

they are a brushing up on OOP concepts.

7.6 Documentation

SNR’s documentation is incomplete. Tooling for automatically generating hypertext

based documentation is experimentally supported using the pdoc tool, an optional

development dependency [32]. pdoc generates web pages based on “doc strings”

embedded in Python source code. pdoc can be configured to run as part of contin-

uous integration (CI). With such a CI setup, documentation can be automatically

published. IDEs such as Visual Studio Code can also source information from doc

strings. An additional benefit of doc strings is their consolidation with source code.

Coupled with CI, online documentation can be kept in sync with library releases.

54

7.7 Misuse Resistance

As shown in section 7.3, SNR can raise exceptions to prevent misuse. Despite this,

no additional guards to prevent the user from misusing task scheduling and handling.

If students do not understand the serial nature of the node’s event loop, they may

find that tasks are not delivered when they expect.

7.8 Growth Paradigms

For students with one course of experience in Python, SNR should promote inter-

mediate topic in Python such as type checking, and packaging. By learning about

type annotations, students can gain a more complete understanding of the behavior

of the Python interpreter. The use of type hints in the implementation of the SNR li-

brary extends the reasoning students can preform about the correctness of a program.

This is a valuable skill. A rudimentary understanding of type checking can prepare

students for the study of discrete structures and more strictly typed programming

languages.

SNR prepares students for robotics libraries used in industry by introducing modu-

lar patterns. Students grasping event driven architectures will have an easier time

understanding patterns such as publisher-subscriber in ROS.

55

Chapter 8

FUTURE WORK

The work presented in this thesis is open for extension in two areas: improvements

to the SNR library and development of curriculum utilizing the SNR library.

8.1 Library Improvements

The SNR software library could be improved. In its current state, single-threaded

operation is well supported. While threaded loops are supported, parallelism is lim-

ited at the level of the Python interpreter. The global interpreter lock (GIL) prevents

more than one thread running at once [33]. The multiprocessing module permits

parallelism through additional interpreter processes. Additional specification of SNR

is needed to safely synchronize data between threads.

Alternatively, additional loop implementations could provide synchronous backing to

the loop interface. This could be accomplished by scheduling loop iterations as tasks

so they are executed synchronously on the main thread.

Another possible library improvement could cache component task handlers for more

efficient look ups when a node executes a task. This would require a consolidated

task handler data structure and synchronization when components modify their task

handlers.

56

8.1.1 Specification Formalization

The specification of the software framework could be further formalized. This would

enable additional implementations SNR to be compatible. For example, communica-

tion between SNR nodes of different implementations must used a specified commu-

nication format.

8.1.2 Publishing

To ease installation for students, SNR should be made available on the PyPi package

repository. This would mark release readiness for the library and enable students to

start working with SNR quickly. Until then, the library source must be downloaded

and installed, requiring two terminal commands instead of one.

8.2 Evaluation Framework

The framework for evaluation educational tools presented in chapter 3 could be im-

proved by developing quantitative methods for assessing software. Then, the frame-

work could be used to make evaluations on a larger scale.

8.3 Curriculum Development

Educational curriculums utilizing SNR could be developed. These course curricu-

lums should outline learning goals and include assignments that follow a incremental

approach in building components for SNR.

57

8.3.1 Introductory Robotics

Pursuant to its purpose, SNR could be used in an undergraduate course introducing

students to programming robots. Robot components can be mapped to SNR compo-

nent modules. This supports focused lessons and assignments. For example, students

can develop different control systems on a weekly cadence. Given a background in

Python, students can begin prototyping components without needing to set up addi-

tional tools. Students can start with a simple proportional controller. Later, students

can build a perception based controller as a drop-in replacement. This modular ap-

proach shows students the advantages of modular software architectures within the

framework of the course.

8.3.2 Advanced Programming Topics

The implementation of SNR can serve as a case study for systems programming top-

ics. Modular architectures in robotics software frameworks are interesting systems

programming problems. Disparate components need to communicate with each other

with coupling of components. For implementation, students can explore multipro-

cessing and synchronization to distribute computation across components. Following

the introduction of synchronization primitives, higher level constructs, such as multi-

producer queues, can be demonstrated.

The modularity of SNR’s internal architecture enables assignment-based implemen-

tations of internal components such as the datastore or node core endpoint. The

available source code is provided for introspection by students.

58

Chapter 9

CONCLUSION

This thesis presents SNR, a software library for undergraduate robotics education that

addresses core concepts in robotics systems, such as modular components. This work

was motivated by the gap between students’ introductory experiences in computer

science and the skills needed to make use of industry standard robotics libraries. The

SNR library introduces students to robotics as a familiar Python package without

additional build systems. The complete source code of the library is freely available

[34].

While having reached an initial level of feature completeness, the SNR library falls

short in documentation and user experience as evaluated in chapter 7. These short-

comings can be improved upon in future work that improves the library implementa-

tion and develops curriculum.

With an introduction to paradigms native to industry standard robotics tools, stu-

dents can accelerate their course of study in the field of robotics.

59

BIBLIOGRAPHY

[1] M. Hagele, “Double-digit growth highlights a boom in robotics [industrial

activities],” IEEE Robotics Automation Magazine, vol. 24, no. 1, pp. 12–14,

2017.

[2] M. Bowen, “Beware hospitality industry: the robots are coming,” Worldwide

Hospitality and Tourism Themes, vol. 10, no. 6, pp. 726–733, 2018.

[3] M. A. Gennert and G. Tryggvason, “Robotics engineering: A discipline whose

time has come,” IEEE Robotics Automation Magazine, vol. 16, no. 2, pp.

18–20, 2009.

[4] M. Gennert, W. Michalson, and M. Demetriou, “A robotics engineering ms

degree,” in 2010 Annual Conference & Exposition, 2010, pp. 15–85.

[5] Z. J. Wood, J. Clements, Z. Peterson, D. Janzen, H. Smith, M. Haungs,

J. Workman, J. Bellardo, and B. DeBruhl, “Mixed approaches to cs0:

Exploring topic and pedagogy variance after six years of cs0,” in

Proceedings of the 49th ACM Technical Symposium on Computer Science

Education, 2018, pp. 20–25.

[6] G. Cooper, “Incorporating a raspberry pi into a computer information systems

initial course,” in 2017 IEEE Frontiers in Education Conference (FIE).

IEEE, 2017, pp. 1–5.

[7] S. Krishnamurthi and K. Fisler, “Programming paradigms and beyond,” The

Cambridge Handbook of Computing Education Research, vol. 37, 2019.

[8] A. H. El-Mousa and A. Al-Suyyagh, “Embedded systems education for multiple

disciplines,” Journal of computer science, vol. 6, no. 2, pp. 186–193, 2010.

60

[9] B. Burns, Designing Distributed Systems: Patterns and Paradigms for Scalable,

Reliable Services. ” O’Reilly Media, Inc.”, 2018.

[10] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many

faces of publish/subscribe,” ACM computing surveys (CSUR), vol. 35,

no. 2, pp. 114–131, 2003.

[11] M. Shannon, “Pep 484 – type hints,”

https://www.python.org/dev/peps/pep-0484/.

[12] C. I. o. T. NASA jet Propulsion Laboratory, “Meet the open-source software

powering nasa’s ingenuity mars helicopter,”

https://www.jpl.nasa.gov/news/meet-the-open-source-software-powering-

nasas-ingenuity-mars-helicopter, 2021.

[13] I. Open Source Robotics Foundation, “Open robotics,”

https://www.openrobotics.org/company.

[14] K. Conley, “Ros/introduction–ros wiki,” ROS Wiki, vol. 3, 2012.

[15] J. M. O’Kane, A gentle introduction to ROS. Jason M. O’Kane, 2014.

[16] C. I. of Technology, “F‘software framework,”

https://nasa.github.io/fprime/Architecture/FPrimeArchitectureShort.pdf,

2018, accessed: 2021–08-02.

[17] C. I. o. T. NASA jet Propulsion Laboratory, “F´ flight software & embedded

systems framework,” https://nasa.github.io/fprime/.

[18] F. Inspiration, R. of Science, and T. (FIRST), “Wpilib github,”

https://wpilib.org/.

[19] ——, “What is first robotics competition?” https:

//www.firstinspires.org/robotics/frc/what-is-first-robotics-competition.

61

https://www.python.org/dev/peps/pep-0484/
https://www.jpl.nasa.gov/news/meet-the-open-source-software-powering-nasas-ingenuity-mars-helicopter
https://www.jpl.nasa.gov/news/meet-the-open-source-software-powering-nasas-ingenuity-mars-helicopter
https://www.openrobotics.org/company
https://nasa.github.io/fprime/Architecture/FPrimeArchitectureShort.pdf
https://nasa.github.io/fprime/
https://wpilib.org/
https://www.firstinspires.org/robotics/frc/what-is-first-robotics-competition
https://www.firstinspires.org/robotics/frc/what-is-first-robotics-competition

[20] ——, “roborio introduction,”

https://docs.wpilib.org/en/stable/docs/software/roborio-info/roborio-

introduction.html.

[21] ——, “First robotics competition control system,” https://wpilib.org/.

[22] D. Kushner, “The making of arduino,” IEEE spectrum, vol. 26, 2011.

[23] B. Fry and C. Reas, “Overview. a short introduction to the processing software

and projects from the community.” https://processing.org/overview/.

[24] “Arduino education,” https://www.arduino.cc/education/about.

[25] D. Willingham, Why Don’t Students Like School?: A Cognitive Scientist

Answers Questions About How the Mind Works and What It Means for the

Classroom. 111 River St, Hoboken NJ, 07030: Wiley, 2021. [Online].

Available: https://books.google.com/books?id=zCQqEAAAQBAJ

[26] “Language reference,” https://www.arduino.cc/reference/en/.

[27] C. S. Dweck, “Mindsets and math/science achievement,” 2014.

[28] the mypy project, “mypy - optional static typing for python,”

http://mypy-lang.org/.

[29] Google, “pytype - a static type analyzer for python code,”

https://google.github.io/pytype/.

[30] E. V. Smith, “Pep 557 – data classes,”

https://www.python.org/dev/peps/pep-0557/, 2017.

[31] I. Levkivskyi, J. Lehtosalo, and Lukasz Langa, “Pep 544 – protocols: Structural

subtyping (static duck typing),”

https://www.python.org/dev/peps/pep-0544/.

62

https://docs.wpilib.org/en/stable/docs/software/roborio-info/roborio-introduction.html
https://docs.wpilib.org/en/stable/docs/software/roborio-info/roborio-introduction.html
https://wpilib.org/
https://processing.org/overview/
https://www.arduino.cc/education/about
https://books.google.com/books?id=zCQqEAAAQBAJ
https://www.arduino.cc/reference/en/
http://mypy-lang.org/
https://google.github.io/pytype/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0544/

[32] M. Hils, “pdoc,” https://github.com/mitmproxy/pdoc.

[33] D. Beazley, “Understanding the python gil,” in PyCON Python Conference.

Atlanta, Georgia, 2010.

[34] S. Shaw, “Snr,” https://github.com/sfshaw-calpoly/SNR.

63

https://github.com/mitmproxy/pdoc
https://github.com/sfshaw-calpoly/SNR

APPENDICES

Appendix A

CODE LISTINGS

Listing A.1: Standard implementation of a moving average filter endpoint

1 from snr.core import *

2 from snr.prelude import *

3

4

5 class MovingAvgEndpoint(Endpoint):

6 def __init__(self ,

7 factory: EndpointFactory ,

8 parent: AbstractNode ,

9 name: str ,

10 input: DataKey ,

11 output: DataKey ,

12 filter: MovingAvgFilter ,

13) -> None:

14 super ().__init__(factory , parent , name)

15 self.input = input

16 self.output = output

17 self.task_handlers = {

18 (TaskType.store_page , self.input): self.update_filter ,

19 }

20 self.filter = filter

21

22 def update_filter(self , task: Task , key: TaskId) -> SomeTasks:

23 if not (task.name == self.input and

24 isinstance(task.val_list [0], Page) and

64

25 (isinstance(task.val_list [0].data , float) or

26 isinstance(task.val_list [0].data , int))):

27 self.warn("Invalid data from %s", task)

28 return None

29 self.filter.update(task.val_list [0]. data)

30 return tasks.store_page(self.page(self.output , self.filter.

avg()))

31

32 def begin(self) -> None:

33 pass

34

35 def halt(self) -> None:

36 pass

37

38 def terminate(self) -> None:

39 pass

Listing A.2: Standard implementation of a factory for MovingAverage-
FilterEndpoint

1 import collections

2 from typing import Deque

3

4 from snr.core import *

5 from snr.core.core_utils import moving_avg_filter

6 from snr.prelude import *

7

8 from . import moving_avg_endpoint

9

10 DEFAULT_FILTER_LENGTH: int = 3

11

12

13 class MovingAvgFilterFactory(EndpointFactory):

14 def __init__(self ,

65

15 input: DataKey ,

16 output: DataKey ,

17 length: int ,

18) -> None:

19 super ().__init__ ([moving_avg_endpoint , moving_avg_filter])

20 self.input = input

21 self.output = output

22 self.backing_deque: Deque[float] = collections.deque(maxlen=

length)

23

24 def get(self ,

25 parent: AbstractNode ,

26) -> moving_avg_endpoint.MovingAvgEndpoint:

27 filter = moving_avg_filter.MovingAvgFilter(self.

backing_deque)

28 return moving_avg_endpoint.MovingAvgEndpoint(

29 self ,

30 parent ,

31 "moving_avg_filter",

32 self.input ,

33 self.output ,

34 filter)

Listing A.3: Example usage of testing facilities using SNRTestCase and
Expector

1 from snr import *

2

3

4 class TestMovingAvgEndpoint(SNRTestCase):

5

6 def test_moving_avg_endpoint(self):

7 input_data = "input_data"

8 output_data = "filtered_Data"

66

9

10 expectations = {

11 (TaskType.store_page , input_data): 4,

12 (TaskType.process_data , input_data): 4,

13 (TaskType.store_page , output_data): 4,

14 (TaskType.process_data , output_data): 4,

15 }

16 with self.expector(expectations) as expector:

17 self.run_test_node ([

18 ListReplayerFactory ([0, 1, 2, 4], input_data),

19 MovingAvgFilterFactory(input_data , output_data , 2),

20 ExpectorEndpointFactory(expector ,

21 exit_when_satisfied=True),

22])

Listing A.4: Example configuration of lunar module landing simulation

1 from typing import Any , Callable

2

3 import snr

4 from snr import (AbstractNode , Endpoint , EndpointFactory ,

LoopFactory ,

5 ThreadLoop , tasks)

6 from snr.prelude import *

7

8

9 class RadarSensorLoop(ThreadLoop):

10

11 fuel: int

12 altitude: float

13 velocity: float

14

15 def __init__(self ,

67

16 factory: LoopFactory ,

17 parent: AbstractNode ,

18 fuel: int ,

19) -> None:

20 super ().__init__(factory , parent ,

21 "radar_sensor_endpoint",

22 max_tick_rate_hz =0.5)

23 self.fuel = fuel

24 self.altitude = 50.0

25 self.velocity = 0.0

26

27 def setup(self) -> None:

28 self.store_data("thruster_data", 0)

29

30 def loop(self) -> None:

31 page = self.get_page("thruster_data")

32 assert isinstance(page , Page) and isinstance(page.data , int)

33 thruster_value: int = page.data

34

35 self.velocity += -9.8 + thruster_value * 0.1

36 self.altitude += self.velocity

37

38 if self.altitude <= 0:

39 # *Attempted Landing*

40 if self.velocity < -1.0:

41 raise Exception("High velocity impact")

42 else:

43 self.schedule(tasks.terminate("Landed Safely"))

44 self.set_terminate_flag ()

45

46 self.store_data("radar_data", (self.altitude , self.velocity)

)

68

47

48 def halt(self) -> None:

49 pass

50

51 def terminate(self) -> None:

52 pass

53

54

55 class RadarSensorLoopFactory(LoopFactory):

56

57 initial_fuel: int

58

59 def __init__(self , initial_fuel: int) -> None:

60 super ().__init__ ()

61 self.initial_fuel = initial_fuel

62

63 def get(self , parent: AbstractNode) -> RadarSensorLoop:

64 return RadarSensorLoop(self , parent , self.initial_fuel)

65

66

67 class QLearningControllerEndpoint(Endpoint):

68

69 def __init__(self ,

70 factory: EndpointFactory ,

71 parent: AbstractNode ,

72 q_function: Callable [[Any , int], float],

73) -> None:

74 super ().__init__(factory , parent , "q_learning_controler")

75 self.task_handlers = {

76 (TaskType.store_data , "radar_data"): self.set_throttle ,

77 }

78 self.q_function = q_function

69

79 self.actions = [0, 1, 2, 3,]

80

81 def set_throttle(self , t: Task , key: TaskId) -> SomeTasks:

82 assert (len(t.val_list) > 0 and

83 len(t.val_list [0]) == 2 and

84 isinstance(t.val_list [0][0] , int) and

85 isinstance(t.val_list [0][0] , float) and

86 isinstance(t.val_list [0][0] , float))

87 radar_data = t.val_list [0]

88 value = self.policy(radar_data)

89 return tasks.store_data("thruster_data", value)

90

91 def policy(self , data: Any) -> int:

92 return max(self.actions , key=lambda a: self.q_function(data ,

a))

93

94

95 class QLearningControllerEndpointFactory(EndpointFactory):

96 def __init__(self) -> None:

97 super ().__init__ ()

98

99 def get(self , parent: AbstractNode) ->

QLearningControllerEndpoint:

100 return QLearningControllerEndpoint(self , parent)

101

102

103 config = snr.Config(factories ={

104 "lunar_module": [

105 RadarSensorLoopFactory(initial_fuel =100) ,

106 QLearningControllerEndpointFactory (),

107],

108 })

70

109

110

111 def main():

112 snr.SynchronousRunner("lunar_module", config).run()

113

114

115 if __name__ == "__main__":

116 main()

Listing A.5: Example implementation of a benchmark test case

1 import logging

2 import unittest

3 from typing import List , Optional

4

5 from snr import *

6

7 STRESS_TASK_NAME: TaskName = "stress"

8

9

10 class StressorEndpoint(Endpoint):

11 def __init__(self ,

12 factory: EndpointFactory ,

13 parent: AbstractNode ,

14 name: ComponentName ,

15) -> None:

16 super ().__init__(factory , parent , name)

17 self.task_handlers = {

18 (TaskType.event , STRESS_TASK_NAME): self.replicate ,

19 }

20

21 def replicate(self , task: Task , key: TaskId) -> SomeTasks:

22 return tasks.add_component(self.factory)

71

23

24 def begin(self) -> None:

25 self.schedule(tasks.event(STRESS_TASK_NAME))

26

27 def halt(self) -> None:

28 pass

29

30 def terminate(self) -> None:

31 pass

32

33

34 class StressorEndpointFactory(EndpointFactory):

35 def __init__(self ,

36 max_endpoints: int = 1000,

37 time_limit_s: float = 0.500,

38) -> None:

39 super ().__init__ ()

40 self.max_endpoints = max_endpoints

41 self.time_limit_s = time_limit_s

42 self.calls = 0

43 self.num_children = 0

44

45 def get(self , parent: AbstractNode) -> Optional[Endpoint]:

46 self.calls += 1

47 if self.is_limited(parent):

48 return None

49 self.num_children += 1

50 return StressorEndpoint(self ,

51 parent ,

52 f"stressor_endpoint_{self.

num_children}")

53

72

54 def is_limited(self , parent: AbstractNode) -> bool:

55 return (self.num_children >= self.max_endpoints or

56 (self.time_limit_s != 0 and

57 parent.get_time_s () >= self.time_limit_s))

58

59

60 class BenchStressEndpointFac(SNRTestCase):

61

62 def test_stress_endpoint_init(self):

63 stressor_fac = StressorEndpointFactory(max_endpoints =1,

64 time_limit_s =0.050)

65 times: List[float] = []

66 node: AbstractNode = Node(

67 "test",

68 self.get_config ([

69 stressor_fac ,

70 TimeoutLoopFactory(seconds =0.010) ,

71 StopwatchEndpointFactory(times ,

72 [TaskType.terminate]),

73], Mode.DEBUG))

74 node.log.setLevel(logging.WARNING)

75 node.loop()

76 self.assertEqual(stressor_fac.num_children , 1)

77 self.assertEqual(len(times), 1)

78

79 def test_stress_endpoint(self):

80 time_target_s: float = 2.000

81 stressor_fac = StressorEndpointFactory(max_endpoints =10000 ,

82 time_limit_s=

time_target_s)

83 times: List[float] = []

84 timer = Timer ()

73

85 node: AbstractNode = Node(

86 "test",

87 self.get_config ([

88 stressor_fac ,

89 TimeoutLoopFactory(

90 seconds=time_target_s),

91 StopwatchEndpointFactory(times ,

92 [TaskType.terminate]),

93], Mode.DEBUG))

94 node.log.setLevel(logging.WARNING)

95 node.loop()

96 t_s = timer.current_s ()

97 print("\nStressed with:\n",

98 f"\t{stressor_fac.num_children} stressor endpoints\n",

99 f"\t{stressor_fac.calls} stressor factory calls\n",

100 f"\tTerminate expected at {time_target_s * 1000:.0f}

ms\n",

101 f"\t{times [0] * 1000:.3f} ms terminate handled\n",

102 f"\t{t_s * 1000:.3f} ms total time\n",

103)

104 if node.profiler:

105 print(node.profiler.dump())

106

107

108 if __name__ == ’__main__ ’:

109 unittest.main()

Listing A.6: Example implementation of a factory for a control input
processor endpoint

1 from snr import *

2

3 import control_processor_endpoint

4

74

5

6 class ControlProcessorFactory(EndpointFactory):

7

8 input_data: DataKey

9

10 def __init__(self ,

11 input_data: DataKey = "controller_input",

12) -> None:

13 super ().__init__(control_processor_endpoint)

14 self.input_data = input_data

15

16 def get(self , parent: AbstractNode) -> Endpoint:

17 return control_processor_endpoint.ControlProcessorEndpoint(

18 self ,

19 parent ,

20 self.input_data)

Listing A.7: Example implementation of a control input processor end-
point

1 from typing import Any , List , Dict

2

3 from snr import *

4

5

6 class ControlProcessorEndpoint(Endpoint):

7

8 input_data: DataKey

9 watch_buttons: List[str] = [

10 "d_pad_tap",

11 "right_stick_press",

12 "A",

13 "B",

14 "X",

75

15 "Y",

16 "left_shoulder",

17 "right_shoulder",

18 "left_trigger",

19 "right_trigger",

20 "left_stick_press",

21 "left_paddle",

22 "right_paddle",

23]

24

25 def __init__(self ,

26 factory: EndpointFactory ,

27 parent: AbstractNode ,

28 input_data: DataKey ,

29) -> None:

30 super ().__init__(factory , parent , "input_processor_endpoint"

)

31 self.input_data = input_data

32 self.task_handlers = {

33 (TaskType.store_page , input_data): self.process_input

34 }

35

36 def process_input(self , task: Task , id: TaskId) -> SomeTasks:

37 page = task.val_list [0]

38 assert isinstance(page , Page)

39 prev_data: Dict[str , Any] = self.get_data(# type: ignore

40 self.input_data+"_prev")

41 if prev_data is None:

42 self.info("No previous input data")

43 return None

44 data: Dict[str , Any] = page.data

76

45 assert isinstance(prev_data , dict) and isinstance(data , dict

)

46 events: List[Task] = []

47 for key , value in data.items():

48 prev = prev_data[key]

49 if value == 0 and prev == 1:

50 events.append(tasks.event("button_released", [key]))

51 if value == 1 and prev == 0:

52 events.append(tasks.event("button_pressed", [key]))

53 return events

54

55 def begin(self) -> None:

56 pass

57

58 def halt(self) -> None:

59 pass

60

61 def terminate(self) -> None:

62 pass

Listing A.8: Example implementation of a loop for reading controller input

1 from typing import Dict , List , Optional

2

3 import pygame

4 from snr import *

5

6

7 class ControllerLoop(ThreadLoop):

8

9 _JOYSTICK_EVENTS: List[int] = [

10 pygame.JOYAXISMOTION ,

11 pygame.JOYBALLMOTION ,

12 pygame.JOYHATMOTION ,

77

13 pygame.JOYBUTTONUP ,

14 pygame.JOYBUTTONDOWN ,

15]

16

17 output_data: DataKey

18 joystick: Optional[pygame.joystick.Joystick]

19 num_axes: int

20 num_buttons: int

21 num_hats: int

22

23 def __init__(self ,

24 factory: LoopFactory ,

25 parent: AbstractNode ,

26 output_data: DataKey ,

27) -> None:

28 super ().__init__(factory , parent ,

29 "controller_loop",

30 max_tick_rate_hz =20)

31 self.output_data = output_data

32 pygame.init()

33 pygame.display.init()

34 pygame.joystick.init()

35 joysticks = [pygame.joystick.Joystick(x)

36 for x in range(pygame.joystick.get_count ())]

37 if len(joysticks) < 1:

38 self.fatal("Controller not found")

39 raise Exception("Controller not found")

40 print(f"Found joysticks: {joysticks}")

41 self.joystick = joysticks [0]

42 self.num_axes = 0

43 self.num_buttons = 0

44 self.num_hats = 0

78

45 self.joystick.init()

46

47 def setup(self) -> None:

48 assert self.joystick is not None

49 self.num_axes = self.joystick.get_numaxes ()

50 self.num_buttons = self.joystick.get_numbuttons ()

51 self.num_hats = self.joystick.get_numhats ()

52 print(f"Using joystick: {self.joystick.get_name ()}",

53 f"with {self.num_axes} axes",

54 f"and {self.num_buttons} buttons",

55 f"and {self.num_hats} d pads")

56

57 def loop(self) -> None:

58 assert self.joystick is not None

59 events: List[pygame.event.Event] = pygame.event.get()

60 if pygame.QUIT in [e.type for e in events]:

61 self.set_terminate_flag ()

62 return

63 if any(event.type in ControllerLoop._JOYSTICK_EVENTS

64 for event in events):

65 raw_input: Dict[str , float] = {}

66 for axis_id in range(self.num_axes):

67 raw_input[f"axis_{axis_id}"] = \

68 self.joystick.get_axis(axis_id)

69 for button_id in range(self.num_buttons):

70 raw_input[f"button_{button_id}"] = \

71 self.joystick.get_button(button_id)

72 for hat_id in range(self.num_hats):

73 raw_input[f"dhat_{hat_id}"] = \

74 self.joystick.get_hat(hat_id)

75 # print(raw_input)

76 self.store_data(self.output_data , raw_input)

79

77 else:

78 pass

79

80 def halt(self) -> None:

81 pygame.joystick.quit()

82 pygame.quit()

83 print("Loop halted")

84

85 def terminate(self) -> None:

86 print("Loop terminated")

Listing A.9: Example implementation of a factory for the controller loop

1 from snr import *

2

3 import controller_loop

4

5

6 class ControllerLoopFactory(LoopFactory):

7

8 output_data: DataKey

9

10 def __init__(self , output_data: DataKey = "raw_controller_input"

) -> None:

11 super ().__init__ ([controller_loop])

12 self.output_data = output_data

13

14 def get(self ,

15 parent: AbstractNode ,

16) -> controller_loop.ControllerLoop:

17 return controller_loop.ControllerLoop(self ,

18 parent ,

19 self.output_data)

80

Listing A.10: Example implementation of a factory for the input mapping
endpoint

1 from snr import *

2

3 import input_mapping_endpoint

4

5

6 class InputMappingFactory(EndpointFactory):

7

8 input_data: DataKey

9 output_data: DataKey

10

11 def __init__(self ,

12 input_data: DataKey = "raw_controller_input",

13 output_data: DataKey = "controller_input",

14) -> None:

15 super ().__init__(input_mapping_endpoint)

16 self.input_data = input_data

17 self.output_data = output_data

18

19 def get(self , parent: AbstractNode) -> Endpoint:

20 return input_mapping_endpoint.InputMappingEndpoint(self ,

21 parent ,

22 self.

input_data ,

23 self.

output_data)

Listing A.11: Example implementation of an input mapping endpoint

1 from typing import Any , Dict

2

3 from snr import *

4

81

5

6 class InputMappingEndpoint(Endpoint):

7

8 output_data: DataKey

9 mapping: Dict[str , str] = {

10 "button_0": "d_pad_tap",

11 "button_1": "right_stick_press",

12 "button_2": "A",

13 "button_3": "B",

14 "button_4": "X",

15 "button_5": "Y",

16 "button_6": "left_shoulder",

17 "button_7": "right_shoulder",

18 "button_8": "left_trigger",

19 "button_9": "right_trigger",

20 "button_13": "left_stick_press",

21 "button_15": "left_paddle",

22 "button_16": "right_paddle",

23 "axis_0": "left_stick_X",

24 "axis_1": "left_stick_Y",

25 "axis_2": "right_stick_X",

26 "axis_3": "right_stick_Y",

27 }

28

29 def __init__(self ,

30 factory: EndpointFactory ,

31 parent: AbstractNode ,

32 input_data: DataKey ,

33 output_data: DataKey ,

34) -> None:

35 super ().__init__(factory , parent , "

controller_input_map_endpoint")

82

36 self.output_data = output_data

37 self.task_handlers = {

38 (TaskType.store_page , input_data): self.map_raw_input

39 }

40

41 def map_raw_input(self , task: Task , id: TaskId) -> SomeTasks:

42 page = task.val_list [0]

43 assert isinstance(page , Page)

44 raw_data: Dict[str , Any] = page.data

45 assert isinstance(raw_data , dict)

46 data: Dict[str , Any] = {}

47 for key , value in raw_data.items():

48 new_key = InputMappingEndpoint.mapping.get(key)

49 if new_key is not None:

50 data[new_key] = value

51 return self.store_data_task(self.output_data , data)

52

53 def begin(self) -> None:

54 pass

55

56 def halt(self) -> None:

57 pass

58

59 def terminate(self) -> None:

60 pass

83

Appendix B

SNR LIBRARY INSTALLATION TUTORIAL

Given a Raspberry Pi running an update installation of Raspberry Pi OS, this chapter

instructs the installation of SNR for use of the library. The library test suite will be

run to verify correct operation. Listing B.1 shows information about the system used

in this example. Specifically, a Raspberry Pi 4 running Raspberry Pi OS Lite released

on May 7th, 2021 is used. Python version 3.7 installed by default. SNR also supports

versions 3.6 through 3.10. Pip, the Python package manager is also needed. Git will

be used to clone the SNR library source code repository. Pip and Git can be installed

using apt as shown in listing B.2.

pi@raspberrypi :~ $ uname -a

Linux raspberrypi 5.10.17 - v7l+ #1414 SMP Fri Apr 30 13:20:47 BST

2021 armv7lpi@raspberrypi :~ $ python3 --version

Python 3.7.3 GNU/Linux

pi@raspberrypi :~ $ python3 --version

Python 3.7.3

Listing B.1: System information for installation example

pi@raspberrypi :~ $ sudo apt update

[output omitted]

pi@raspberrypi :~ $ sudo apt install python3 -pip git

[output omitted]

Listing B.2: Installation of Pip

Now the source code repository can be cloned and entered:

pi@raspberrypi :~ $ git clone https :// github.com/sfshaw -calpoly/SNR

Cloning into ’SNR ’...

84

remote: Enumerating objects: 5317, done.

remote: Counting objects: 100% (2685/2685) , done.

remote: Compressing objects: 100% (1319/1319) , done.

remote: Total 5317 (delta 1857), reused 2128 (delta 1313), pack -

reused 2632

Receiving objects: 100% (5317/5317) , 702.23 KiB | 4.20 MiB/s, done.

Resolving deltas: 100% (3663/3663) , done.

pi@raspberrypi :~ $ cd SNR

pi@raspberrypi :~/ SNR $

Pip can then be used to install the SNR library package. During this step, additional

Python dependencies will be installed from PyPI, the Python Package Index.

pi@raspberrypi :~/ SNR $ python3 -m pip install --user --upgrade .

[output omitted]

SNR can now be used on the system:

pi@raspberrypi :~ $ python3

Python 3.7.3 (default , Jan 22 2021, 20:04:44)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>> import snr

>>>

Two additional dependencies are required to test the full functionality of SNR. They

can be installed as follows:

pi@raspberrypi :~/ SNR $ python3 -m pip install --user --upgrade

pytest pytest

-timeout

[output omitted]

85

Now the library test suite can be run using the built-in unittest module. As the test

run completes in under one second, it can be used to quickly validate modifications

to the library, even on an inexpensive embedded computer such as the Raspberry Pi.

pi@raspberrypi :~/ SNR $ python3 -m unittest

\ 0.12 ms: tests.test_config.TestConfig.test_empty

. 0.12 ms: tests.test_config.TestConfig.test_one_fac

. 0.07 ms: tests.test_config.TestConfig.test_two_facs

. 5.64 ms: tests.test_console.TestConsole.

test_console_fails_to_connect

. 3.15 ms: tests.test_consumer.TestConsumer.test_consumer_put

. 1.50 ms: tests.test_consumer.TestConsumer.

test_consumer_start_join

. 0.07 ms: tests.test_consumer.TestConsumer.test_increment

. 0.13 ms: tests.test_context.TestContext.

test_context_handler_no_profiler

. 5.72 ms: tests.test_datastore_ping.TestDatastorePing.

test_dds_ping

. 6.10 ms: tests.test_endpoint.TestEndpoint.test_endpoint_methods

. 0.74 ms: tests.test_endpoint.TestEndpoint.

test_invalid_construction_fails. 0.16 ms: tests.test_endpoint.

TestEndpoint.test_valid_construction

...... 16.35 ms: tests.test_expector_endpoint.TestExpectorEndpoint.

test_expector_endpoint_empty

. 15.71 ms: tests.test_expector_endpoint.TestExpectorEndpoint.

test_expector_endpoint_terminate

. 1.91 ms: tests.test_factory_reload.TestFactoryReload.

test_factory_swap

. 0.49 ms: tests.test_loop.TestLoop.test_invalid_construction_fails

. 5.85 ms: tests.test_loop.TestLoop.test_loop_methods

. 1.46 ms: tests.test_loop.TestLoop.test_valid_construction

. 6.98 ms: tests.test_moving_avg_endpoint.TestMovingAvgEndpoint.

test_moving_avg_endpoint

86

. 0.12 ms: tests.test_moving_avg_filter.TestMovingAvgFilter.

test_filter

. 39.09 ms: tests.test_multi_proc_runner.TestMultiProcRunner.

test_proc_runner

. 5.21 ms: tests.test_node.TestNode.test_get_task_handlers

. 0.16 ms: tests.test_node.TestNode.test_lookup_proof_of_concept

. 15.97 ms: tests.test_pipe_loop.TestPipeLoop.test_one_pipe

. 6.11 ms: tests.test_pipe_loop.TestPipeLoop.test_pipe_loop_noop

.105.76 ms: tests.test_pipe_loop.TestPipeLoop.test_two_pipe_loops

.... 1.14 ms: tests.test_recorder.TestRecorder.test_invalid_task

. 35.80 ms: tests.test_recorder.TestRecorder.test_recorder_encoding

.111.69 ms: tests.test_replayer.TestReplayer.test_replayer

. 0.11 ms: tests.test_sockets_header.TestSocketsUtils.

test_sockets_utils

. 81.36 ms: tests.test_sockets_listener.TestSocketsLsitener.

test_sockets_listener_recv

. 83.03 ms: tests.test_sockets_listener.TestSocketsLsitener.

test_sockets_listener_send

. 39.46 ms: tests.test_sockets_loop.TestSocketsLoop.

test_sockets_loop

. 2.28 ms: tests.test_sockets_wrapper.TestSocketsLoop.

test_sockets_wrapper

. 1.16 ms: tests.test_text_reader.TestTextReader.test_raw_reader

. 43.28 ms: tests.test_text_replayer.TestTextReplayer.

test_raw_data_replayer_none

. 25.77 ms: tests.test_text_replayer.TestTextReplayer.

test_raw_data_replayer_one

. 41.19 ms: tests.test_text_replayer.TestTextReplayer.

test_raw_data_replayer_two

. 0.79 ms: tests.test_text_replayer.TestTextReplayer.

test_raw_reader

87

. 11.67 ms: tests.test_timeout_loop.TestTimeoutLoop.

test_timeout_loop_ms

. 11.52 ms: tests.test_timeout_loop.TestTimeoutLoop.

test_timeout_loop_s

.

--

Ran 49 tests in 0.810s

OK

88

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF LISTINGS
	1 Introduction
	2 Background
	2.1 Topics for Robotics Software Libraries
	2.1.1 Publisher-Subscriber Paradigm
	2.1.2 Typing Checking in Python

	2.2 Related Work
	2.2.1 ROS
	2.2.2 F'
	2.2.3 WPILib
	2.2.4 Survey Summary

	3 Evaluation Framework
	3.1 The Arduino Platform
	3.2 Characteristics
	3.2.1 Prerequisites
	3.2.2 Familiarity
	3.2.3 Discoverability
	3.2.4 Documentation
	3.2.5 Error Messages
	3.2.6 Misuse Resistance
	3.2.7 Openness
	3.2.8 Growth Paradigms

	4 Library Design
	4.1 Design Goals
	4.2 Architecture
	4.2.1 Runners, Configs, and Roles
	4.2.2 Node Life Cycle

	4.3 Data Objects
	4.3.1 Tasks
	4.3.2 Pages

	4.4 Endpoints
	4.4.1 Task Handling
	4.4.2 Endpoint Life Cycle
	4.4.3 Loops

	5 Example Usage and Library Evaluation
	5.1 Example: Underwater Remote Operated Vehicle
	5.2 Moving Average Filter Endpoint
	5.2.1 Moving Average Filter Endpoint
	5.2.2 Moving Average Filter Endpoint Factory
	5.2.3 Moving Average Endpoint Tests

	5.3 Example: Lunar Module Landing Simulation
	5.4 Example: Benchmark Test
	5.4.1 Game Controller Over Sockets

	6 Library Implementation
	6.1 Code Style Principles
	6.2 Prelude
	6.2.1 Page and Task
	6.2.2 Type Aliases
	6.2.3 Protocols
	6.2.4 Interfaces
	6.2.5 Precursors
	6.2.6 AbstractNode
	6.2.7 TaskQueue
	6.2.8 AbstractEndpoint
	6.2.9 AbstractLoop
	6.2.10 AbstractFactory

	6.3 Core
	6.3.1 Node
	6.3.2 Endpoint
	6.3.3 ThreadLoop

	6.4 Standard Modules
	6.4.1 Communications
	6.4.2 Filters
	6.4.3 Input/Output

	6.5 Testing Utilities

	7 Library Evaluation
	7.1 Prerequisites
	7.2 Discoverability
	7.3 Error Messages
	7.4 Openness
	7.5 Familiarity
	7.6 Documentation
	7.7 Misuse Resistance
	7.8 Growth Paradigms

	8 Future Work
	8.1 Library Improvements
	8.1.1 Specification Formalization
	8.1.2 Publishing

	8.2 Evaluation Framework
	8.3 Curriculum Development
	8.3.1 Introductory Robotics
	8.3.2 Advanced Programming Topics

	9 Conclusion
	BIBLIOGRAPHY
	A Code Listings
	B SNR Library Installation Tutorial

