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ABSTRACT

On the geometry of the moduli space of certain

lattice polarized K3 surface and their

Picard-Fuchs operators

by

Michael T. Schultz, Doctor of Philosophy

Major Professor: Dr. Andreas Malmendier, PhD.
Department: Mathematics and Statistics

We study the moduli space of certain families of lattice polarized K3 surface via

their period integrals and corresponding Picard-Fuchs system, in particular by utiliz-

ing explicit Jacobian elliptic fibrations that realize the lattice polarizations. Moreover,

we study how other data that governs the complex structure of the elliptic fibres of

certain generic fibrations determines global information about a Jacobian elliptic K3

surface in terms of string theoretic and index theoretic terms via holomorphic anoma-

lies.

We demonstrate how the mixed-twist construction of Doran & Malmendier when

applied to a certain family of rational elliptic surfaces yields the famous double sextic

family, equipped with the canonical lattice polarization from the branching locus

of the double cover. We show how restrictions of the moduli produce subvarieties

on which the lattice polarization extends. Moreover, we show how the mixed-twist

construction allows for the explicit computation of the monodromy of the mirror

family of Calabi-Yau n-folds.
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We show that for a certain family of lattice polarized K3 surfaces of Picard rank

ρ ≥ 17, the twisted Legendre pencil, that the moduli space carries an integrable

holomorphic conformal structure. In the language of physics, this is known as a

flat special geometry, whose existence has implications for a certain supersymmetric

quantum field theory associated to the space. This construction is related to Seiberg-

Witten theory via the mixed-twist construction. Implications and future directions

are discussed at the end.

(251 pages)
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PUBLIC ABSTRACT

On the geometry of the moduli space of certain

lattice polarized K3 surface and their

Picard-Fuchs operators

Michael T. Schultz

K3 surfaces have a long and rich study in mathematics, and more recently in

physics via string theory. Often, K3 surfaces come in multiparameter families - the

parameters describing these surfaces fit together to form their own geometric space, a

so-called moduli space. In particular, the moduli spaces of K3 surfaces equipped with

a lattice polarization can sometimes be constructed explicitly, which subsequently

reveals important information about the original K3 surface.

In this work, we construct such families explicitly from certain rational elliptic

surfaces via the so-called mixed-twist construction of Doran & Malmendier, which in

turn produces the moduli space. After identifying the lattice polarization by comput-

ing Jacobian elliptic fibrations, we find a rich differential geometric content imparted

to the moduli space - an integrable holomorphic conformal structure - via quadratic

relations satisfied by the period integrals of the K3 surface. This geometry allows

one to compute crucial data about the K3 surface family, the Picard-Fuchs operators,

by applying a general programme on uniformizing differential equations discovered

by Sasaki & Yoshida. In physics, this differential geometric data is known as a flat

special geometry, and has implications for a type of supersymmetric quantum field

theory associated with the K3 surface. Via the mixed-twist construction, this is re-

lated to Nf = 4 Seiberg-Witten curves from N = 2 SU(2) super Yang-Mills theory

with various mass configurations.

We show as well how one can restrict the moduli, leading to subvarieties of the
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moduli space on which the lattice polarization extends. This can allow one to con-

struct interesting families of Calabi-Yau manifolds, which are of crucial importance in

string theory as well. Moreover, we study how other data that governs the complex

structure of the elliptic fibres of certain generic fibrations determines global infor-

mation about a Jacobian elliptic K3 surface in terms of string theoretic and index

theoretic terms via holomorphic anomalies.
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CHAPTER 1

Introduction

The subject of K3 surfaces traces back to the time of Kummer, who in 1864 published

Über die Flächen vierten Grades mit sechzehn singulären Punkten [82], which made

systematic study of quartic hypersurfaces in P3 with a maximum number of sixteen

nodal singularities. The study of the rich geometry of these surfaces, which can be

traced to the configurations of such nodal singularities, or rational double points,

continues to present day, and pervading algebraic and arithmetic geometry, as well

as more recently mathematical physics.

One may show that the minimal resolution of Kummer’s quartic surface X is sim-

ply connected and possesses a global nonvanishing holomorphic 2-form ηX ∈ H2,0(X)

that trivializes the canonical bundle KX =
∧2 T ∗

CX, which makes X a K3 surface.

Definition 1.0.1. A projective surface X ⊂ Pn is a K3 surface if the canonical bundle

KX
∼= OX is trivial, and h1(X,OX) = 0.

A celebrated result in algebraic geometry - Chow’s Theorem - asserts that smooth,

closed, projective submanifolds of Pn are in fact algebraic, that is, realized as the

zero locus of some collection of homogeneous polynomials. Thus, after resolving

the potential nodal singularities, or rational double points of a K3 surface X, we

may restrict ourselves to studying algebraic K3 surfaces. The algebraicity of the K3

surface is equivalent to choosing a polarization, that is, an quasi-ample line bundle

L → X such that the image of X under the induced embedding has at worst rational
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double points.

Consider a homogeneous quartic polynomial

cijklX
i
0X

j
1X

k
2X

l
3 = 0 , (1.0.1)

with the summation convention implied on the homogeneous coordinates [X0 : X1 :

X2 : X3] ∈ P3 and cijkl ∈ C, i, j, k, l = 0, 1, 2, 3, 4. with i+ j + k + l = 4 representing

an algebraic K3 surface X ⊂ P3. A count of the parameters, accounting for the

rescaling action of C∗ on P3 and PGL(3,C) action reparameterizing the variables,

including one parameter for the embedding X ↪→ P3, yields a total of 19 independent

parameters. These are the moduli of an algebraic K3 surface, and together they

form a 19-dimensional quasiprojective variety, the so-called moduli space of complex

structures of a K3 surface.

The 19-dimensional moduli space is in general quite difficult to study directly, for

one reason simply that the dimension is relatively large. A way to cut down on the

dimension of the moduli space is to impose a lattice polarization, a primitive lattice

embedding into the K3-lattice, L ↪→ ΛK3 ≡ H2(X,Z), the second integral cohomology

lattice of the K3 surface X, such that the lattice embedding contains a pseudo-ample

class. This then specifies the Picard group of algebraic cycles on X, i.e., how the

Nerón-Severi group NS(X) = H1,1(X) ∩H2(X,Z) sits inside H1,1(X).

One such lattice polarization comes from studying Kummer surfaces - after re-

solving the sixteen nodal singularities of a Kummer surface X, we obtain a canonical

lattice polarization on X of a rank ρ ≥ 16 lattice L ↪→ ΛK3. This subsequently

means that the moduli space of complex structures of such a surface has dimension

n ≤ 4 = (19 + 1) − 16. This makes the possibility of detailed study of such spaces

much more feasible.

Another celebrated theorem - the Torelli theorem - asserts that the K3 surface
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X can be recovered up to isomorphism from its period integrals (up to the action

of a certain discrete arithmetic group), that is, integrating the holomorphic 2-form

over suitable integral homology cycles. Stated differently, by studying how the period

integrals ∫
Σ

ηX (1.0.2)

vary as a function of the complex structure moduli cijkl, and Σ ∈ H2(X,Z), we may

study the geometry of the moduli space of complex structures itself. One such way of

studying these period integrals is via systems of linear partial differential equations

that they satisfy, the so-called Picard-Fuchs system.

1.1 Overview and statement of results

In the scope of this dissertation, we study the geometry of certain lattice polarized

K3 surfaces via a multipronged approach.

1. Lattice theoretic analysis, in the form of explicit lattice polarizations

2. Geometry, in the form of simultaneous geometrization of the moduli space and

K3 surface as a Jacobian elliptic fibration

3. Differential equations, in the form of the Picard-Fuchs system that annihilates

the period integrals of the lattice polarized K3 surface

Our approach explicitly constructs the moduli space ML of L-polarized complex

structures - or simply moduli space for short - of algebraic K3 surfaces equipped with

a given lattice polarization L ↪→ ΛK3. The study is enhanced due to the existence

of Jacobian elliptic fibrations on the K3 surfaces, or a surjective holomorphic map

π : X → P1 such that the generic fibre of the map is an elliptic curve and the map

π admits a section σ : P1 → X. At the level of lattice polarizations, the existence of

Jacobian elliptic fibrations is traced to rank-2 sublattices of L isometric to the rank-2
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hyperbolic lattice H. This allows for an explicit construction of the period integrals

of such an L-polarized K3 surface via Weierstrass models compatible with the lattice

polarization. We geometrize the moduli space ML via the program of Sasaki &

Yoshida [123], which imparts an integrable holomorphich conformal structure (HCS)

that decends from the quadric condition imposed by the lattice polarization: the

period integrals satisfy a quadratic relation that is determined completely by the

orthogonal complement of L in the ambient K3 lattice. We determined the HCS

explicitly. Such analysis allows for the direct computation of the Picard-Fuchs system

from the differential geometric data of the HCS. By doing so, we are able to completely

understand the interaction of the moduli space for a special family of Picard rank

ρ ≥ 17 K3 surfaces, the twisted Legendre pencil, which had not previously been done.

Moreover, we show by a different, though explicit, analysis of a certain Jacobian

elliptic surface - the universal bundle of elliptic curves - that the generic Jacobian el-

liptic K3 surface is associated to a type of holomorphic anomaly - one whose existence

and resolution is understood through the lens of physics and string theory.

The novelty of this research is to show that the use of two types of functional

invariants of Jacobian elliptic surfaces, Kodaira’s classical functional invariant [77]

and the generalized functional invariant [38, 40], allow for the study of the geometry

of moduli spaces of families of elliptic curves and lattice polarized K3 surfaces, re-

spectively. These functional invariants can roughly be characterized as those which

“see” quadratic twists, and those that do not, respectively. In the latter case, the

mixed-twist construction allows one to produce Jacobian elliptic K3 surfaces who are

birational to the quadratic twist family of a family of rational elliptic surfaces. It is

well known that the moduli space of lattice polarized K3 surfaces takes the form of a

Hermitian symmetric domain of Type IV, but thus far the HCS of Sasaki & Yoshida

has not been utilized to simultaneously geometrize both the moduli space and the
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K3 surface itself. In this way, we are able to understand a rich interaction between

the moduli space, K3 surface itself, and the period integrals, for example completely

answering questions set forth by Hoyt in [69] about the twisted Legendre family of

Jacobian elliptic K3 surfaces.

Our main results are as follows:

1. The computation of the Quillen anomaly of the ∂̄ operator of the universal

family of elliptic curves in Theorem 3.1.21, and for the generic Jacobian elliptic

surface with only I1 fibres in Corollary 3.2.25.

2. The cancellation of the local anomaly of the ∂̄ operator by use of the

construction of a rank-2 SU(2) bundle over the generic elliptic surface with the

Poincaré line bundle in Theorem 3.2.28.

3. A chain of explicit lattice polarizations and associated moduli spaces to the

family of Yoshida surfaces and restrictions thereof in Theorem 4.2.53. This identifies

up to conjugacy and change of variables, the Picard-Fuchs system and associated

monodromy groups.

4. The periods, Picard-Fuchs operators, and monodromy groups of the univariate

mirror families of Calabi-Yau manifolds from string theory in §4.3.4. In Table 4.1,

the monodromy of the families of mirror Calabi-Yau n-folds, n = 1, 2, 3, 4, are

reproduced via our methods up to conjugacy, matching results known to Candelas

et al. [16] and Chen et al. [17].

5. The calculation of the holomorphic conformal structure g in Equation (6.2.21)

for the twisted Legenedre pencil in Theorem 6.2.85.

6. The computation of the Picard-Fuchs system for the twisted Legendre pencil in

Corollary 6.2.86.
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1.2 Summary of Chapters

In Chapter 2, we review all necessary material. This includes detailed discussion of the

periods and Picard-Fuchs systems of algebraic surfaces, as well as how the existence

of a Jacobian elliptic fibration and associated Weierstrass model may allow one to

glean explicit information about the Picard-Fuchs system and moduli space. We also

review all necessary differential topology and index theory related to Hirzebruch’s

signature to study holomorphic anomalies.

In Chapter 3, we study the vertical signature operator of a Jacobian elliptic sur-

face. This provides an analytic measure - the analytic torsion - of how the com-

plex structure varies on generic rational elliptic surface or Jacobian elliptic surface.

We show that the analytic torsion of the universal bundle of elliptic curves lifts to

the generic rational elliptic or elliptic K3 surface, and that this quantity manifest

a holomorphic anomaly as the generalized first Chern class of the determinant line

bundle of the vertical signature operator. We show furthermore that to “resolve” the

anomaly completely, we need both string theory and the machinery of an algebro-

geometric construction called the Poincaré line bundle, as well as the Riemann-Roch-

Grothendieck-Quillen formula from index theory.

In Chapter 4, we study the mixed-twist construction of Doran & Malmendier of

a certain two-parameter family of rational elliptic surfaces. We show that the mixed-

twist construction yields the celebrated double sextic family of K3 surfaces of Picard

rank ρ ≥ 16. We study the explicit lattice polarizations and moduli spaces, as well

as restrictions of the moduli that extend the lattice polarization, including for the

twisted Legendre pencil. In §4.3, we show how the mixed-twist construction can be

used to study the Picard-Fuchs system of the so-called mirror family of Calabi-Yau

n-folds, and derive the explicit monodromy relations for the family.

In Chapter 5, we study in detail algebraic relationships for the twisted Legendre
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pencil that the periods satisfy - the quadratic period relations that come directly

from the lattice polarization restricted to the transcendental lattice. This allows us

to compute directly some of the Picard-Fuchs operators for the twisted Legendre

pencil, and prepares us to study in detail the differential geometry of the moduli

space in the next chapter.

In Chapter 6, we utilize the relationship between the twisted Legendre pencil and

the double sextic family of K3 surfaces to explicitly study the geometry of the moduli

space of the twisted Legendre pencil. In particular, we show that the moduli space

admits and integrable holomorphic conformal structure. In the language of physics,

such a structure is equivalent to a so-called flat special geometry. This rigid structure,

which is a differential geometric manifestion of the lattice polarization, allows us to

compute the full Picard-Fuchs system via the program of Sasaki & Yoshida. We

also utilize the mixed-twist construction again to study the relationship between the

flat special geometry of the moduli space, and the well known special geometry that

comes from N = 2 supersymmetric gauge theories in Seiberg-Witten theory. This is

done via explicit analysis of the associated elliptic fibrations on the Seiberg-Witten

curves and the K3 surfaces that come from the mixed-twist construction. We show

that the Picard-Fuchs system of the Seiberg-Witten curves, when computed in the

GKZ formalism, can be readily combined to produce the first order RG flow operators

expected from physics for such gauge theories.

Finally, in Chapter 7, we provide an outlook of the future directions of this research

project. This includes a more detailed look at the relationship between Seiberg-

Witten theory and the twisted K3 surfaces and their periods, as well as discussion on

how the mixed-twist construction can be used to build elliptically fibred Calabi-Yau

threefolds that are simultaneously fibred by lattice polarized K3 surfaces. We show

how our understanding of the moduli space of the twisted Legendre pencil puts one
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in the position to build such a threefold fibred by Picard rank ρ = 17 K3 surfaces.

1.3 Relations to published work

Parts of this dissertation research have come from the articles From the Signature

theorem to Anomaly cancellation [88], published in the Rocky Mountain Journal of

Mathematics in 2020, as well as the article On the mixed-twist construction and mon-

odromy of associated Picard-Fuchs systems [89], at the time of writing under review

at the Journal of Number Theory and Physics, both with Dr. Andreas Malmendier.

Parts of sections §2.1.2, 2.2 - 2.3.3, and Chapter 3 can be found in [88]. Section

§2.1.5 and Chapter 4 can be found in [89].
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CHAPTER 2

Preliminary Matter

In this chapter, we review all necessary material for the scope of this dissertation.

This includes detailed discussions of the periods and Picard-Fuchs systems of algebraic

surfaces, as well as how the existence of a Jacobian elliptic fibration and associated

Weierstrass model may allow one to glean explicit information about the Picard-Fuchs

system and moduli space. We also review all necessary differential topology and index

theory related to Hirzebruch’s signature to study holomorphic anomalies.

2.1 Algebraic Surfaces & their Periods

2.1.1 Abelian & K3 Surfaces

Recall that a K3 surface is a smooth, simply connected complex projective surface

with trivial canonical bundle, KX =
∧2 T ∗

CX
∼= OX. If X is a K3 surface, it is well

known that the second integral cohomology with the intersection form is isometric to

the lattice H2(X,Z) ∼= H⊕3 ⊕ E8(−1)⊕2, called the K3 lattice, ΛK3. The lattice ΛK3

is the unique, even, integral lattice of rank 22 with signature (3, 19) Here, H is the

standard rank-two hyperbolic lattice, that is, Z2 together with the quadratic form

2xy, and E8(−1) is the negative definite lattice associated with the exceptional root

system of E8.

For a complex two-dimensional torus Z = C2/Λ, where Λ ⊂ C2 is a rank-four

lattice, it follows that H2(Z,Z) ∼= H⊕3. Moreover, the canonical bundle KZ
∼= OZ
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is trivial, as the natural Euclidean coordinates z1, z2 ∈ C2 are periodic with respect

to Λ. Hence, the nonvanishing holomorphic 2-form dz1 ∧ dz2 ∈ Ω2,0(C2) descends to

the quotient as a well defined holomorphic 2-form, thus providing a global trivializing

section of KZ.

Most complex tori of dimension two are not algebraic. If Z is algebraic, we call

Z = A an abelian surface. For example, we may have A = E1 × E2 as the product

of two elliptic curves, or A = Jac(C) as the Jacobian variety of a curve C of genus

two. Let A be an abelian surface. The minus identity map −I : A → A has sixteen

distinct fixed points - the two-torsion points of A - and hence, A/{−I} is a singular

surface with 16 rational double points,. Then minimal resolution of A/{−I} is a

special type of K3 surface called a Kummer surface, denoted Kum(A).

Let X be an abelian or K3 surface. The class [η] ∈ H2(X,C) of the non-vanishing

holomorphic two-form η ∈ Ω2,0(X) is unique up to scale. The polarized Hodge struc-

ture of weight two will be denoted as follows:

H2(X,C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X)

∥ ∥ ∥

⟨η⟩C ⟨η, η⟩⊥C ⟨η⟩C

A polarization is given by the intersection form, i.e., a non-degenerate, integral, sym-

metric bilinear form on H2(X,Z) extended to H2(X,C) by linearity. A principally

polarized abelian surface is either the Jacobian variety X = Jac(C) of a smooth

projective curve C of genus two, where the polarization is the class of the theta divi-

sor, or X = E1 × E2 is the product of two elliptic curves equipped with the product

polarization.

Recall as well that an algebraic surface Z is said to be rational if it is birational to

the projective plane P2, i.e., there is a birational map Z 99K P2. Any birational map
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can be realized as a sequence of blow-ups and blow-downs of exceptional divisors.

For example, Z = P1 × P1 99K P2 by blowing down an exceptional divisor from the

product structure. Although the canonical bundle KZ of a rational surface is never

trivial (e.g., we have KP2
∼= −3H, a nonzero multiple of the hyperplane class), the

periods and moduli of such surfaces play an important role in this research.

For any smooth algebraic surface X, we have have the so-called exponential short

exact sequence,

0 −→ Z ↪−→ OX
exp(2πi · )−−−−−→ O∗

X −→ 0.

The sequence remains exact on global sections, and hence we get an the induced

sequence in cohomology, which begins as

0 → H1(X,Z) → H1(X,OX) → H1(X,O∗
X)

c1−→ H2(X,Z) → H2(X,OX) → · · · .

The Picard group Pic(X) is the group of Cartier divisors modulo linear equivalence,

and is thus naturally identified with the sheaf cohomology group H1(X,O∗
X). In turn,

elements of Pic(X) are naturally identified with isomorphism classes of holomorphic

line bundles L → X. The kernel of the first Chern class map c1 : Pic(X) → H2(X,Z)

of degree zero line bundles is denoted by Pic0(X) and the quotient Pic(X)/Pic0(X) =

NS(X) is the Néron-Severi group. As usual, we identify NS(X) with its image in

H2(X,Z). Then the Néron-Severi group together with the intersection form is a

Lorentzian lattice by the Hodge index theorem. The Picard number ρ = ρ(X) is the

rank of NS(X), and the Néron-Severi lattice is an even lattice of signature (1, ρ− 1).

For X an algebraic K3 surface, we have h1,0 = 0 as π1(X) = 1, and thus NS(X) is

parameterized by the integral algebraic 2-cycles on X via Poincaré duality.

The first Chern class map restricts to an isomorphism Pic(X) → H2(X,Z) ∩

H1,1(X) by the Lefschetz (1, 1) theorem. Then H1(X,OX) maps onto Pic0(X). If
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X is an elliptic surface over P1, it follows that H1(X,OX) = 0, since all 1-forms on

Z are obtained by pullback from P1 by the elliptic structure. By adjunction, any

rational elliptic or elliptic K3 surface must fibre over P1, and hence, for an elliptic

K3 surface the natural map Pic(X) → NS(X) is an isomorphism.1 The orthogonal

complement T(X) = NS(X)⊥ ⊂ H2(X,Z) is called the transcendental lattice and

carries the induced Hodge structure. Then the lattice T(X) is of rank n = 22 − ρ

with signature (2, n−2), and the plane H2,0(X)⊕H0,2(X) ⊂ T(X)⊗C is the positive

definite subspace. Finally, we say that a mapping on cohomology between two of

abelian or K3 surfaces is a Hodge isometry if it is an isometry of the intersection form

that preserves the Hodge structure.

Both NS(X) and T(X) are independent of the choice of η, and are primitive

sublattices2 of H2(X,Z). Conversely, for every integer ρ = 0, . . . , 20, given primitive

sublattices of H⊕3⊕E8(−1)⊕2 of signature (1, ρ−1) and (2, 20−ρ), respectively, there

exists an algebraic K3 surface that realizes this lattice as Néron-Severi lattice and

transcendental lattice, respectively. Hence, let L ⊆ H⊕3 ⊕ E8(−1)⊕2 be a primitive,

even sublattice of signature (1, r), 0 ≤ r ≤ 19. Then a lattice polarization on X is

given by a primitive lattice embedding L ↪→ H2(X,Z)∩H1,1(X) whose image contains

a pseudo-ample class. In this case, L = NS(X) realizes the Néron-Severi lattice, and

we say that X is L-polarized. Moreover, the Picard-rank of X is ρ = r + 1.

2.1.2 Jacobian elliptic surfaces

Let Z be a smooth, connected algebraic surface. An elliptic fibration over P1 on Z

is a holomorphic map π : Z → P1 such that the general fiber of π−1(t) is a smooth

curve of genus one with t ∈ P1. An elliptic surface is an algebraic surface with a

1We review elliptic fibrations in the following section.
2If Λ is a lattice, we say that a sublattice L ⊆ Λ is primitive if the quotient Λ/L is free. Moreover,

we say that Λ is an overlattice of L.
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given elliptic fibration. We require that the fibration is relatively minimal, meaning

that there are no (−1)-curves in the fibres of π.3 Since a curve of genus one, once

a point has been chosen, is isomorphic to its Jacobian, i.e., an elliptic curve, we call

an elliptic surface a Jacobian elliptic surface if it admits a section σ : P1 → Z that

equips each fiber with a smooth base point. In this way, each smooth fiber is an

abelian group and the base point serves as the origin of the group law.

For elliptically fibered surfaces with a section, the two classes in NS(Z) associated

with the generic elliptic fiber F and section σ span a sub-lattice H = spanZ{σ, F}

isometric to the standard hyperbolic lattice H of rank two. The sublatticeH ⊂ NS(Z)

completely determines the elliptic fibration with section on Z. In fact, on a given K3

surface X there is a one-to-one correspondence between sub-lattices H ⊂ NS(X)

isometric to the standard hyperbolic lattice H that contain a pseudo-ample class, and

elliptic structures with section on X which realize H [21, Thm. 2.3]. In this way,

investigating elliptic fibrations on a given K3 surface X, including whether or not X

admits an elliptic fibrations at all, is purely cohomological in nature.

Again let Z be an arbitrary Jacobian elliptic surface. The distinct ways up to

isometries to embed the standard rank-2 hyperbolic lattice H isometrically NS(Z) are

distinguished by the isomorphism type of the orthogonal complement W of H, such

that the Néron-Severi lattice decomposes as a direct orthogonal sum

NS(Z) = H⊕W .

A sub-lattice Wroot ⊂ W is spanned by the roots, i.e., the algebraic classes of self-

intersection −2 inside W . The singular fibers of the elliptic fibration determine Wroot

uniquely up to permutation. Moreover, there exists a canonical group isomorphism

3The definition of an elliptic surface over an arbitrary base curve C is defined analogously, though
for higher genera the relative minimality may be impossible to impose.
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[105]

W/Wroot ∼=−→ MW(Z, π) , (2.1.1)

where MW(Z, π) is Mordell-Weil group of sections on Z compatible with its elliptic

structure.

To each Jacobian elliptic fibration π : Z → P1 there is an associated Weierstrass

model obtained by contracting all components of fibers not meeting the section - this

is the relative minimality condition. If we choose t ∈ C as a local affine coordinate on

P1 and (x, y) as local coordinates of the elliptic fibers, we can write the Weierstrass

model of an elliptic curve as

y2 = 4x3 − g2(t)x− g3(t), (2.1.2)

where g2 and g3 are polynomials in the affine base coordinate t. When g2, g3 are

of degree eight and twelve, then Z a K3 surface. Since the fibration is relatively

minimal, the total space of Equation (2.1.2) is always singular with only rational

double point singularities and irreducible fibers, and Z is the minimal desingulariza-

tion. The discriminant ∆ = g32 − 27g23 vanishes where the fibers of Equation (2.1.2)

are singular curves. It follows that if the degree of the discriminant ∆ is a polynomial

of degree or 24, considered as a homogeneous polynomial on P1, then the minimal

desingularization of the total space of Equation (2.1.2) is a K3 surface).

In his seminal paper [77], Kodaira realized the importance of elliptic surfaces and

proved a complete classification for the possible singular fibres of the Weierstrass

models. Each possible singular fiber over a point t0 with ∆(t0) = 0 is uniquely

characterized in terms of the vanishing degrees of g2, g3,∆ as t approaches t0. The

classification encompasses two infinite families (In, I
∗
n, n ≥ 0) and six exceptional
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cases (II, III, IV, II∗, III∗, IV ∗).4 Note that the vanishing degrees of g2 and g3 are

always less or equal to three and five, respectively, as otherwise the singularity of

Equation (2.1.2) is not a rational double point.

Closely related is the j-function, a holomorphic map j : H → J ≡ P1 that can be

computed form a Weierstrass model using the formula

j =
g32
∆
. (2.1.3)

This map is called Kodaira’s functional invariant, and was shown by Kodaira [77]

to be a rational map. The codomain J is called the j-line and plays an important

role in studying moduli of elliptic curves. Every smooth elliptic fiber Et = π−1(t) is

a complex torus, and thus can be identified with a rank-two lattice Λ to obtain Et ∼=

C/Λ. However, multiplying the lattice Λ by a complex number, which corresponds to

rotating and scaling the lattice, preserves the isomorphism class of an elliptic curve, so

we can always arrange for the lattice to be generated by 1 and some complex number

τ ∈ H in the upper half plane; we write Λτ = ⟨1, τ⟩. Moreover, two τ -parameters τ1

and τ2 in H belong to isomorphic elliptic curves if and only if

τ2 =
aτ1 + b

cτ1 + d
for some

a b

c d

 ∈ PSL(2,Z) ,

where the modular group PSL(2,Z) acts (projectively) on H. It can be shown that

the action of the modular group on the fundamental domain

D =

{
τ ∈ H

∣∣∣∣ Re(τ) ≤ 1

2
, |τ | ≥ 1

}

generates H [127] such that the moduli space of isomorphism classes of elliptic curves

4In fact, an I0 fibre is just the generic smooth fibre, so all possible fibre types are accounted for.
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is realized as H/PSL(2,Z) ∼= D. The one point compactifaction D ∪ {∞} = P1

is also called the coarse moduli space of elliptic curves. The “corners” of D are of

fundamental importance: these are the numbers ρ = e2πi/3, i, and −ρ = eπi/3.

It can be shown that under the identification Et ∼= C/Λτ the discriminant ∆

becomes a modular form of weight twelve, and g2 one of weight four, so that its third

power is also of weight twelve. For example, we may express the discriminant as

∆τ = e2πiτ
∞∏
r=1

(
1− e2πiτr

)24
. (2.1.4)

Thus, the quotient in Equation (2.1.3) is a modular function of weight zero, in par-

ticular it defines a holomorphic function j : H → P1 invariant under the action of

PSL(2,Z) such that for every smooth elliptic fiber Et ∼= C/Λτ we have j(t) = j(τ)

and ∆(t) = ∆τ . A more careful examination of the behavior at the corners yields

j(ρ) = 0, j(i) = 1, and j(−ρ) = ∞.

Notice that if one has a local affine coordinate t on a base curve B, and one replaces

g2 by g2t
2 and g3 by g3t

3 in Equation (2.1.2), the j-function in Equation (2.1.3) is

left invariant. This operation, called a quadratic twist, does change the nature of

the singular fibers: it switches In and I∗n fibers, as well as II and IV ∗, IV and II∗,

and III and III∗. Therefore, the j-function does not determine the elliptic surface,

not even locally. However, the quadratic twist is the only way that two Jacobian

elliptic surfaces can have the same j-function, and conversely, a Jacobian elliptic

fibration is uniquely determined by the j-function up to quadratic twist. Moreover,

the canonical holomorphic map j : B → J in Equation (2.1.3) can be lifted to a

(rational) map between the elliptic surfaces Z and S themselves. Thus, we have the

following:

Corollary 2.1.2. Let π : Z → B = P1 be a Jacobian elliptic surface. There is a



17

canonical holomorphic map j : B → J that uniquely determines the Jacobian elliptic

surface Z up to quadratic twist. Moreover, there is an induced rational map Z 99K S

between the total spaces. The map j has degree 1 or 2 if Z is a rational or a K3

surface, respectively.

The operation of the quadratic twist will appear again via the mixed-twist con-

struction in §4.1.

Given a Jacobian elliptic surface π : Z → P1, we may use the adjunction formula

to define the relative canonical bundle KZ|P1 of the elliptic surface in terms of the

canonical bundles of Z and P1, respectively, by writing

KZ|P1 = KZ ⊗ (π∗KP1)−1 . (2.1.5)

The bundle KZ|P1 can be identified with the line bundle of vertical (1, 0)-forms of the

fibration π : Z → P1. Using the push-forward operation π∗KZ|P1 , we obtain a bundle

K = π∗KZ|P1 → P1. In fact, we have the following result: on a Jacobian elliptic

surface π : Z → P1 given by Equation (2.1.2) we have K = π∗KZ|P1
∼= O(n) with

n = 2 if Z is a K3 surface. This viewpoint is crucial to our computations and analysis

of the period integrals and Picard-Fuchs operators that annihilate them in §5.1.

We can rephrase the construction of the Weierstrass model in Equation (2.1.2)

in terms of sections of the relative canonical bundle. We will use this point of view

later. Let L → P1 be a holomorphic line bundle, and g2 and g3 sections of L4 and

L6, respectively, such that the discriminant ∆ = g32 − 27 g23 is a section of L12 not

identically zero. Define P := P(O ⊕ L2 ⊕ L3) and let p : P → P1 be the natural

projection and OP(1) the tautological line bundle. We denote by X, Y , and Z the

sections of OP(1)⊗L2, OP(1)⊗L3, and OP(1), respectively, which correspond to the

natural injections of L2, L3, and O into p∗OP(1) = O ⊕ L2 ⊕ L3. We denote by W



18

the projective variety in P defined by the equation

Y 2Z = 4X3 − g2(t)XZ
2 − g3(t)Z

3 . (2.1.6)

A canonical section σ : P1 → W is given by the point [X : Y : Z] = [0 : 1 : 0]

such that Σ := σ(P1) ⊂ W is a divisor on W , and its normal bundle is isomorphic

to the fundamental line bundle by p∗OP

(
−Σ
) ∼= L. In the affine chart Z = 1, and

X = x, Y = y the one-form dx/y is a section of the bundle L−1; hence, the dual of

the normal bundle, also called the conormal bundle, is precisely the relative canonical

bundle introduced above, i.e., L−1 ∼= K.

2.1.3 The period map

Let X be an algebraic K3 surface of Picard rank ρ < 20 with given holomorphic

two-form η ∈ H2,0(X), and let {c1, . . . , cn, . . . , c22} be a Z-basis for H2(X,Z), ordered

so that the first n = 22 − ρ ≥ 3 cycles lie in the transcendental lattice T(X). Then

the period point of X is

per(X) :=
[
Z1 : Z2 : · · · : Z22

]
∈ P21 , (2.1.7)

where for 1 ≤ j ≤ 22, we set Z⃗ = [Z1 : Z2 : · · · : Z22] with

Zj =

∫
cj

η ,

the so-called periods or period integrals of X. The projectifization of the period vector

Z⃗ reflects the fact that η ∈ H2,0(X) is unique up to scale.

For i = n + 1, . . . , 22, we have Zi = 0 as ci ∈ NS(X). Therefore, the period

point is can be taken to lie in P(T(X) ⊗ C) ⊂ Pn−1. In fact, there are two systems
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of transcendental cycles c1, . . . , cn ∈ H2(X,Z) and c′1, . . . , c
′
n ∈ H2(X,Z) such that

c′1, . . . , c
′
n form a Z-basis of T(X), and the cycles c1, . . . , cn are dual to c′1, . . . , c

′
n,

i.e., (ci ◦ c′j) = δij and its intersection matrix Qij = (c′i ◦ c′j) takes the fixed form

of a symmetric, integral, bilinear form Q = (Qij) of signature (2, n − 2). We call a

K3 surface X together with a basis of transcendental cycles c1, . . . , cn a marked K3

surface.

The periods of a marked K3 surface then satisfy the Riemann relation and Rie-

mann inequality

Q(Z⃗, Z⃗) :=
∑
i,j

Qij, Zi Zj = 0 , Q(Z⃗, Z⃗∗) :=
∑
i,j

Qij Zi Zj > 0 , (2.1.8)

where Z⃗∗ = (Z1, . . . , Zn). Thus, the period point Z⃗ ∈ Pn−1 lies on the hyperquadric

Q ⊂ Pn−1 satisfying the first Riemann relation,

Q =

{
[X1 : · · · : Xn] ∈ Pn−1

∣∣∣ ∑
i,j

Qij, XiXj = 0

}
. (2.1.9)

Crucially, the entire discussion above carries through when the K3 surface X belongs

to a suitably well behaved moduli space M, such that the period vector Z⃗ varies

holomorphically with respect to local coordinates in M. For example, we shall be

primarily concerned with the case where M is a complex orbifold. Such is the case

when M is a (coarse) moduli space of lattice polarized K3 surfaces, for example, as

established by Dolgachev [34].

If L is a primitive sublattice of H⊕3 ⊕ E8(−1)⊕2 of signature (1, r), then the

period map (2.1.7) is a holomorphic, multivalued map between the moduli space ML

of isomorphism classes of marked, L-polarized K3 surfaces and the quasiprojective
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variety

DL =

{
Z⃗ = [Z1 : · · · : Z22−r] ∈ P21−r

∣∣∣ 22−r∑
i,j=1

Qij Zi Zj = 0 ,
22−r∑
i,j=1

Qij Zi Zj > 0

}
.

(2.1.10)

The domain DL is isomorphic to two copies of what is called the symmetric homoge-

neous domain of type IV of the form

O(2, 19− r)/SO(2)×O(19− r) . (2.1.11)

In this case, we define the period map ψ : ML → Pn−1 by

ψ ([X]) = per (X) , (2.1.12)

where [X] ∈ ML is the isomorphism class of the L-polarized K3 surface X. It fol-

lows immediately that ψ is well defined, but ψ is multivalued by accruing nontrivial

monodromy around the orbifold singularities in ML. If π : DL → ML is the canon-

ical projection map, then the period map ψ is the multivalued inverse map such that

π◦ψ = idML
. Then we say that ψ : ML → DL is the uniformizing map of the orbifold

ML, and thus, by the general program of Wilczynski [143] established at the end of

the 1800s, and brought into a more modern perspective by Sasaki & Yoshida, and co.

[94, 96, 120, 121, 122, 123], there should be a system of linear differential equations

of rank at most n annihilating ψ. Remarkably, this perspective has its roots founded

in classical uniformization problems dating back to Riemann [118], Fricke, and Klein

[75, 74] and their analysis of second order Fuchsian ODEs in the plane and the Gauss

hypergeometric function. Our analysis of relevant elliptic fibrations reveals that this

classical viewpoint is still very much embedded in the modern framework, at least as

applied to the lattice polarized K3 surfaces in this research.
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In fact, this system is the Picard-Fuchs system in the moduli variables of the

family of K3 surfaces parameterized by ML that annihilates the periods. We will see

in the sequel that considering explicit elliptic fibrations on this family of K3 surfaces

provides a very simple way to obtain some of these equations, and to obtain the

remaining equations, we must employ the differential geometric techniques relevant

to uniformizing differential equations pioneered by Sasaki & Yoshida, thus demon-

strating that the two methods of deriving the Picard-Fuchs equations provide linear

systems that are projectively equivalent. Moreover, the projective gauge factor is

obtained explicitly from the geometry of the elliptic fibration of our analysis.

2.1.4 Picard-Fuchs Equations

For X an L-polarized K3 surface, we want to study the behavior of the holomorphic

2-form η = ηX ∈ H2,0(X) as we vary the complex structure moduli of X. Since

X is equipped with a lattice polarization, we can think of this measuring how the

transcendental lattice T(X) rotates against the fixed cohomology lattice H2(X,Z) ∼=

H⊕3 ⊕ E8(−1)⊕2 ⊂ H2(X,C) while varying the moduli for X in the moduli space

ML discussed in §2.1.3. As T(X) has nonempty intersection with H1,1(X)∪H0,2(X),

it follows that T(X) does not vary holomorphically with complex structure moduli,

so some additional machinery is needed to address the desired behavior of T(X); in

the end, we remain within the complex analytic category. With this in mind, let us

proceed with generalities.

We follow the exposition in [30, §5.1]. Let π : X → S be a smooth morphism of

relative dimension n, with the generic fibre Xt = π−1(t) a complex projective variety,

t ∈ S. Assume that S is quasismooth and quasiprojective. Then the cohomology

groups Hn(Xt,C) patch together to form a locally free sheaf F = Rnπ∗C ⊗C OS,
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where C → X is the locally constant sheaf whose stalks are the abelian group C. 5

By construction, F contains the local system Rnπ∗C. This uniquely determines a

flat connection ∇ : F → F⊗OS
Ω1(S) that annihilates precisely those (local) sections

belonging to the local system. Then ∇ is called the Gauss-Manin connection. One

can see by the definition of F that ∇ operates concretely on local sections as

∇(s⊗ f) = s⊗ df ∈ F ⊗OS
Ω1(S),

where s ∈ Γ(Rnπ∗C, S) is a local section and f ∈ OS is a regular function. Ac-

cordingly, if X is a vector field on S, we have ∇X(s ⊗ f) = s ⊗ df(X) = X(f) s.

The Gauss-Manin connection ∇ determines a variation of Hodge structure, and was

studied extensively in the seminal work by Griffiths [56, 57, 58, 59].

One must consider how the Hodge structure degenerates at singular points of S

Indeed, this is where very interesting and rich behavior becomes manifest; for ex-

ample, mirror symmetry, when X is a family of Calabi-Yau n-folds. Suppose that

π : X → S can be completed to a flat family π̃ : X̃ → S̃, where S̃ is a quasismooth

compactification of S with normal crossing boundary divisor D = ∪iDi = S̃ − S,

meaning that in the compactification S̃, each point of of D looks étale locally like the

transverse intersection of coordinate hyperplanes. Hence, if z1, . . . , zm are local coor-

dinates centered at the boundary divisor D ⊂ S̃, where m = dim S, D is described

by the equation

z1 · · · zk = 0

for some 1 ≤ k ≤ m. Given π : X → S, the construction of such a compactification

S̃ is nontrivial and not guaranteed, especially finding one that is relevant to mirror

5Of course, the analogous construction can be made for any cohomology group Hk(X,C) - in
this research, we are only concerned with the middle cohomology group Hn(X,C), and so focus
exclusively on the construction for that.
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symmetry.

The sheaf F has a canonical extension F̃ on S̃, but the Gauss-Manin connection

∇ does not necessarily extend to a regular connection on F̃ because singularities

may develop. However, these singularities are so-called regular singular points, which

are quite mild. In fact, ∇ extends to a map ∇̃ : F̃ → F̃ ⊗C Ω1
S̃
(logD), where

Ω1
S̃
(logD) → S̃ is the sheaf generated by the differentials

dz1
z1
, . . . ,

dzk
zk
, dzk+1, . . . , dzm .

The presence of singularities induces monodromy around the boundary components

Dj. If γj : [0, 1] → S̃ is a small loop that winds around the boundary compo-

nent Dj, with γj(0) = γj(1) = t ∈ S, then a cohomology class α ∈ Hn(Xt,C) lifts

uniquely to a ∇-flat section α(u) ∈ Hn(Xγj(u),C) such that α(0) = α. We obtain a

monodromy transformation Tα
j ∈ GL (Hn(Xt,C)) by defining Tα

j (α) = α(1). Tak-

ing Tα
1 , . . . , T

α
k ∈ GL (Hn(Xt,C)) as a generating set as α ranges over a basis of

Hn(Xt,C), we obtain the monodromy group G of the family π̃ : X̃ → S̃, which is

determined up to conjugation by the boundary components Dj and not the loops

γj. In fact, the monodromy transformations Tj are quasi-unipotent, with index of

unipotency at most n+ 1.

With this structure, we may describe the Picard-Fuchs equations of the family

π : X → S. Fix a point p ∈ S, and let z1, . . . , zm be local coordinates centered at p.

If

D = COS

[
∂

∂z1
, · · · , ∂

∂zm

]
(2.1.13)

is the ring of linear differential operators whose coefficients are germs of the structure

sheaf OS, then we obtain an OS-homomorphism ϕ : D → F via the Gauss-Manin con-

nection ∇ as follows. For local vector fields X1, . . . , Xj on S, denote by concatenation
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X1 · · ·Xj the j-fold composition of the first order differential operators represented

by X1, . . . , Xj. Furthermore, fix a local section η = η(t) ∈ F at p. Then define ϕ by

ϕ(X1 · · ·Xj) = ∇X1 · · · ∇Xj
η ,

and extending linearly over OS. It is immediate by the definition of ∇ the ϕ is an

OS-homomorphism, giving F the structure of a D-module.

From this data, the Picard-Fuchs ideal Iη is defined as ker(ϕ), the collection of

linear differential operators annihilating η. Then a differential operator D ∈ Iη is

seen to annihilate the a period integral

ω(t) =

∫
Σ

η (2.1.14)

where Σ = Σ(t) ∈ Hn(Xt,Q) is a rational homology n-cycle, as follows. Embed

Hn(Xt,Q) ↪→ Hn(Xt,C) with the inclusion map. Then we have the period sheaf

Π → S, whose stalks are generated by the local regular function

t 7→ ω(t) = ⟨Σ(t), η(t)⟩ ,

where ⟨ , ⟩ is the natural de Rham pairing given in Equation (2.1.14). Since the local

system Rnπ∗C is parallel under ∇, it follows that the dual sheaf (Rnπ∗C)∗, whose

stalks are canonically isomorphic to Hn(Xt,C), is also ∇-flat by insisting that the

pairing ⟨ , ⟩ is compatible with ∇. In particular, this means we may “differentiate

under the integral sign”, and we have

∂

∂zi

∫
Σ

η =

∫
Σ

∇∂zi
η .

Hence, by linearity, we see that an operator D ∈ Iη must annihilate the period
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integral ω(t) in Equation (2.1.14). Moreover, since Σ ∈ Hn(Xt,Q) was arbitrary, it

follows that a differential operator D lies in the Picard-Fuchs ideal Iη if and only if D

annihilates every period integral of η. Finally, we have the definition of Picard-Fuchs

equations.

Definition 2.1.3. Let π : X → S be a smooth map of relative dimension n, with the

generic fibre Xt = π−1(t) a complex projective variety, t ∈ S. Suppose that the middle

rational homology group Hn(Xt,Q) is of rank r. Given η = η(t) ∈ Hn(Xt,C), the

Picard-Fuchs equations for η are the system of homogeneous linear PDEs correspond-

ing to any minimal generating set of the Picard-Fuchs ideal Iη ⊆ D that annihilate

the period integrals

ωi(t) =

∫
Σi(t)

η(t) ,

where Σ1, . . .Σr ∈ Hn(Xt,Q) are a basis.

In particular, based off the discussion above, we see that the Picard-Fuchs equa-

tions for η ∈ Hn(X,C) are Fuchsian, i.e., with at worst regular singular points. The

rank and order of the system depends generically on the nature of the parameter

space S and algebro-geometric data of the generic fibre Xt. In practice, these both

may be difficult to determine, though we will see shortly for our case of interest that

geometric considerations allow us to quickly determine both. Moreover, the mon-

odromy of the Picard-Fuchs system is naturally identified with a subgroup of the

monodromy group generated by the monodromy transformations T η
1 , . . . , T

η
k for the

full Gauss-Manin connection described above.

To end this subsection, we again discuss briefly the case of interest, that for

the Picard-Fuchs equations of η ∈ H2,0(X) for an L-polarized K3 surface X. It

follows from the discussion of this section and of §2.1.3 that the Picard-Fuchs system

of the family π : X → ML of L-polarized K3 surfaces is precisely the system of
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linear PDEs that annihilate the period map a la Wilczynski, Sasaki & Yoshida that

uniformizes the coarse moduli spaceML. This is an example of so-called Picard-Fuchs

uniformization, which was for example studied by Doran in similar contexts [36, 37].

As we shall discuss later in §6.1, the fact that ML is uniformized by the hyperquadric

Q in Equation (2.1.9) has very strong differential geometric consequences for ML; in

particular, it admits an integrable holomorphic conformal structure [123]. This forces

the Picard-Fuchs system for the holomorphic 2-form η ∈ H2,0(X) to be a second order

linear system of rank n = 22− ρ = rank(T(X)) in n− 2 = dimML variables.

2.1.5 Generalities on Weierstrass models and their associated Picard-

Fuchs Operators

In this section we generalize the discussion in §2.1.2 and §2.1.4 to higher dimensional

elliptic fibrations and the associated Weierstrass models, prepare for the discussion

in §4.3 and §7.2. Let X and S be normal complex algebraic varieties and π : X → S

an elliptic fibration, that is, π is proper surjective morphism with connected fibers

such that the general fiber is a nonsingular elliptic curve. Moreover, we assume that

π is smooth over an open subset S0 ⊂ S, whose complement in S is a divisor with at

worst normal crossings. Thus, the local system H i
0 := Riπ∗ZX |S0 forms a variation of

Hodge structure over S0.

Elliptic fibrations possess the following canonical bundle formula: on S, the fun-

damental line bundle denoted L := (R1π∗OX)
−1 and the canonical bundles ωX :=

∧top T ∗(1,0)X, ωS := ∧top T ∗(1,0)S are related by

ωX
∼= π∗(ωS ⊗ L)⊗OX(D), (2.1.15)

where D is a certain effective divisor on X depending only on divisors on S over which

π has multiple fibers, and divisors on X giving (−1)-curves of π. When π : X → S
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is a Jacobian elliptic fibration, that is, when there is a section σ : S → X, the case

of multiple fibers is prevented. We may avoid the presence of (−1)-curves in the

following way: For X an elliptic surface, we assume that the fibration is relatively

minimal, meaning that there are no (−1)-curves in the fibers of π. When X is an

elliptic threefold, we additionally assume that no contraction of a surface is compatible

with the fibration.

Assuming these minimality constraints, we have D = 0, thus the canonical bundle

formula (2.1.15) simplifies to ωX
∼= π∗(ωS⊗L). In particular, for L ∼= ω−1

S we obtain

ωX
∼= OX . Recall that X is a Calabi-Yau manifold if ωX

∼= OX and hi(X,OX) =

0 for 0 < i < n = dim(X). In this present context we will be concerned with

Jacobian elliptic fibrations on Calabi-Yau manifolds. It is well known that for X an

elliptic Calabi-Yau threefold, the base surface can have at worst log-terminal orbifold

singularities. We will take the base surface S to be a Hirzebruch surface Fk (or its

blowup).

It is well known that Jacobian elliptic fibrations admit Weierstrass models, i.e.,

given a Jacobian elliptic fibration π : X → S with section σ : S → X, there is

a complex algebraic variety W together with a proper, flat, surjective morphism

π̂ : W → S with canonical section σ̂ : S → W whose fibers are irreducible cubic

plane curves, together with a birational map X 99K W compatible with the sections

σ and σ̂; see [103]. The map from X to W blows down all components of the fibers

that do not intersect the image σ(S). If π : X → S is relatively minimal, the inverse

map W 99K X is a resolution of the singularities of W .

A Weierstrass model is constructed as follows: given a line bundle L → S, and

sections g2, g3 of L4, L6 such that the discriminant ∆ = g32 − 27g23 as a section of L12

does not vanish, define a P2-bundle p : P → S as P := P (OS ⊕ L2 ⊕ L3) with p the

natural projection. Moreover, let OP(1) be the tautological line bundle. Denoting
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x, y and z as the sections of OP(1)⊗ L2, OP (1)⊗ L3 and OP(1) that correspond to

the natural injections of L2, L3 and OS into π∗OP(1) = OS⊕L2⊕L3, the Weierstrass

model W from above is given by the the sub-variety of P defined by the equation

y2z = 4x3 − g2xz
2 − g3z

3. (2.1.16)

The canonical section σ : S → W is given by the point [x : y : z] = [0 : 1 : 0] in

each fiber, such that Σ := σ(S) ⊂ W is a Cartier divisor whose normal bundle is

isomorphic to the fundamental line bundle L via p∗OP(−Σ) ∼= L. It follows that W

inherits the properties of normality and Gorenstein if S possesses these. Thus, the

canonical bundle formula (2.1.15) reduces to

ωW = π∗ (ωS ⊗ L) . (2.1.17)

The Jacobian elliptic fibration p : W → S then has a Calabi-Yau total space if

L ∼= ω−1
S = OS(−KS) (abusing notation slightly to denote the projection map p the

same way as the projection from the ambient P2-bundle).

For a Jacobian elliptic fibration X the canonical bundle ωX is determined by

the discriminant ∆ = g32 − 27g23. For example, if π : X → S is a Jacobian elliptic

fibration for a smooth algebraic surface X and S = P1 with homogeneous coordinates

[t : s], then X is a rational elliptic surface if the ∆ is a homogeneous polynomial of

degree 12 (meaning that L = O(1)), and X is a K3 surface when ∆ is a homogeneous

polynomial of degree 24 (meaning that L = O(2)); these results follow readily from

adjunction and Noether’s formula. The nature of the singular fibers and their effect

on the canonical bundle was established by the seminal work of Kodaira [78, 79].

Of particular interest are multi-parameter families of elliptic Calabi-Yau n-folds

over a base B, a quasi-projective variety of dimension r, denoted by π : X → B.
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Hence, each Xp = π−1(p) is a compact, complex n-fold with trivial canonical bundle.

Moreover, each Xp is elliptically fibered with section over a fixed normal variety S.

This means that we have a multi-parameter family of minimal Weierstrass models

pb : Wb → S representing a family of Jacobian elliptic fibrations πb : Xb → S. We

denote the collective family of Weierstrass models as p : W → B.

Working within affine coordinates for B and S we set u = (u1, . . . , un−1) ∈ Cn−1 ⊂

S and b = (b1, . . . , br) ∈ Cr ⊂ B. We then may write the Weierstrass model Wb in

the form

y2 = 4x3 − g2(u, b)x− g3(u, b), (2.1.18)

where for each fiber we have chosen the affine chart of Wb given by z = 1 in Equa-

tion (2.1.16).

Part of the utility of a Weierstrass model is the explicit construction of the holo-

morphic n-form on each Xb, up to fiberwise scale, allowing for the detailed study of

the Picard-Fuchs operators underlying a variation of Hodge structure. In fact, con-

sider the holomorphic sub-bundle H → B of the vector bundle V = Rnπ∗CX → B,

whose fibers are given as the line H0(ωXb
) ⊂ Hn(Xb,C). Here, C → X is the con-

stant sheaf whose stalks are C. Griffiths showed [56, 57, 58, 59] that the vector bundle

V = V ⊗C OB carries a canonical flat connection ∇, the Gauss-Manin connection.

Again see §2.1.4 as well. A meromorphic section of H ⊂ V is given fiberwise by the

holomorphic n-form ηb ∈ H0(ωXb
) ⊂ Hn(Xb,C)

ηb = du1 ∧ · · · ∧ dun−1 ∧
dx

y
, (2.1.19)

where we denote the collective section as η ∈ Γ(V , B). It is natural to consider

local parallel sections of the dual bundle H∗; these are represented by transcendental

cycles Σb ∈ Hn(Xb,R) that vary continuously with b ∈ B, writing the collective



30

section as Σ ∈ Γ(V∗, B). The sections are covariantly constant since the vector

bundle V = Rnπ∗CX is locally topologically trivial, and thus local sections of the

dual V ∗ are as well. Utilizing the natural fiberwise de Rham pairing

⟨Σb, ηb⟩ =
∮
Σb

ηb,

we obtain the period sheaf Π → B, whose stalks are given by the local analytic

function b 7→ ω(b) = ⟨Σb, ηb⟩. The function ω(b) is called a period integral (over Σb)

and satisfies a system of coupled linear PDEs in the variables b1, . . . , br – the so called

Picard-Fuchs system.

Given the affine local coordinates (b1, . . . , br) ∈ Cr ⊂ B, fix the meromorphic

vector fields ∂j = ∂/∂bj for j = 1, . . . , r. Then each ∂j induces a covariant derivative

operator ∇∂j on V . Since ∇ is flat, the curvature tensor Ω = Ω∇ vanishes, and hence,

for all meromorphic vector fields U, V on B we have

Ω(U, V ) = ∇U∇V −∇V∇U −∇[U,V ] = 0.

Substituting in the commuting coordinate vector fields ∂i, ∂j, we conclude

∇∂i∇∂j = ∇∂j∇∂i .

This integrability condition is crucial in obtaining a system of PDEs from the Gauss-

Manin connection. Since V has rank m = dimHn(Xb,C), each sequence of parallel

sections ∇i
∂k
∇l

∂j
η, for i + l = 0, 1, 2 and 1 ≤ k, j ≤ r form the linear dependence

relations
m̂∑

i+l=0

r∑
k,j=1

akjil (b)∇
i
∂k
∇l

∂j
η = 0

for some integer 0 < m̂ ≤ m, where akjil (b) are meromorphic. Here, it is understood
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that ∇0 = id. As ∇ annihilates the transcendental cycle Σ and is compatible with

the pairing ⟨Σ, η⟩, we may “differentiate under the integral sign” to obtain

∂

∂bj
ω(b) =

∂

∂bj

∮
Σ

η =

∮
Σ

∇∂jη.

It follows that the period integral ω(b) satisfies the system of linear PDEs of rank

r ≥ 1, given by
m̂∑

i+l=0

r∑
k,j=1

akjil (b)
∂i+l

∂ibk∂lbj
ω(b) = 0. (2.1.20)

Equation (2.1.20) is the Picard-Fuchs system of the multi-parameter family π : X →

B of Calabi-Yau n-folds,. By construction, it is a linear Fuchsian system, i.e., the

system with at worst regular singularities.

The rank r and order m̂ of the system depends on the parameter space B and

algebro-geometric data of the generic fiber Xb. For example, let π : X → B be the

family of Jacobian elliptic K3 surfaces which is polarized by a lattice L of rank ρ ≤ 18

such that B realizes the coarse moduli space of pseudo-ample L-polarized K3 surfaces

as defined by Dolgachev [34]. Then it follows that the Picard-Fuchs system (2.1.20) is

a second order system of rank r = 22−ρ. Naturally, there are sub-loci of such moduli

spaces where the lattice polarization extends to higher Picard-rank and the rank of

the Picard-Fuchs system drops accordingly. This behavior was studied, for example,

by Doran et al. in [39], and coined the differential rank-jump property therein. In the

sequel, we will analyze it by studying corresponding Weierstrass model p : W → B.

Moreover, we will see that the Picard-Fuchs system can be explicitly computed from

the geometry of the elliptic fibrations and the presentation of the associated period

integrals as generalized Euler integrals using GKZ systems [51].

It is commonplace in the literature to study the Picard-Fuchs equations of one

parameter families of Calabi-Yau n-folds; in this case, the base B is a punctured
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complex plane with local affine coordinate t ∈ C ⊂ B, and an analogous construction

leads to a regular Fuchsian ODE of order ≤ m with m = dimHn(Xt,C) for the

general fiber Xt. In the construction of Doran & Malmendier [40], this is the central

focus, with B = P1 − {0, 1,∞} and B = P1 − {0, 1, p,∞}. We will show that the

restriction of the multi-parameter Picard-Fuchs system (2.1.20) above leads to the

Picard-Fuchs ODE operators and families of lattice polarized K3 surfaces of Picard-

rank ρ = 19, for example the mirror partners of the classic deformed Fermat quartic

K3.

2.1.6 Branched double covers of P2 and double sextic K3 surfaces

Each Jacobian elliptic surface in the family of K3 surfaces constructed below is the

minimal smooth model of the two-fold cover of P2 = P(t1, t2, t3) branching along six

lines in general position. Six lines in P2 are considered to be in general position if no

three of them intersect in a point. Let us describe six lines lj in P2 with j = 1, . . . , 6

by setting

ℓj =
{
[t1 : t2 : t3] ∈ P2

∣∣∣ t1v1j + t2v2j + t3v3j = 0
}
. (2.1.21)

Then we can define the so-called double sextic family of K3 surfaces in the weighted

projective space P(1, 1, 1, 3) = P(t1, t2, t3, z) as the minimal resolution of the double

cover of P2 branched along the configuration ℓ = {ℓ1, . . . , ℓ6},

z2 =
6∏

j=1

ℓj . (2.1.22)

Let X be such a minimal resolution for a given configuration ℓ. As noted by

Sasaki [119], X is a K3 surface6; to see this, consider the meromorphic 3-form on

6While Sasaki was certainly not the first to recognize that double sextics are K3 surfaces, the
analysis provided in [119] of the relation of this family to the Aomoto-Gel’fand E(3,6) system is
what is relevant to our analysis in this research.
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P(1, 1, 1, 3) given by Ω = dt1 ∧ dt2 ∧ dt3, and let χ = t1∂t1 + t2∂t2 + t3∂t3 be the Euler

vector field. Then setting

dt = Ω(χ, · , · )

= t1dt2 ∧ dt3 − t2dt1 ∧ dt3 + t3dt1 ∧ dt2 ,

we have a global trivializing section of the canonical bundle KX given by the holo-

morphic 2-form

ηX =
dt

z
≡ dt√∏6

i=1 ℓj

. (2.1.23)

The period integrals of the double sextic family and explicit degenerations to higher

Picard rank are the central focus of this research. With this in mind, let us analyze

the Hodge theoretic data of the double sextics.

It follows from the discussion in the previous subsection §2.1.3 that one may know

the Gram matrix of the restriction of the intersection form to the transcendental

lattice T(X ) by understanding the period domain and the period map. Let X (3, 6) be

the space of ordered systems ℓ of six lines in general position in P2. Following [92] we

can express elements in X (3, 6) as equivalence classes of matrices (vij) ∈ Mat◦(3, 6,C),

i.e., 3 × 6 matrices whose 3 × 3 minors are all non-vanishing, modulo the action of

SL(3,C) on the left and the action of (C∗)6 from the right. Then X (3, 6) is the moduli

space of six line configurations in P2.

Let us denote by [(vij)] the image of the matrix (vij) in the quotient. In fact,

X (3, 6) can be considered to be a Zariski open set of the affine 4-space if we choose
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coordinates (A,B,C,D) such that

(vij) =


1 0 0 1 1 1

1 1 0 0 A C

0 0 1 1 B D

 ∈ Mat◦(3, 6,C) . (2.1.24)

Using the homogeneous coordinates −T = t2/t1 and −x = t3/t1, a two-fold cover of

P2 branching along the six lines (vij) is then given by the following:

y2 = T (T − 1)x (x− 1) (AT +B x− 1) (C T +Dx− 1). (2.1.25)

Let us denote this four parameter family of K3 surfaces by X = XA,B,C,D, which was

studied by Hoyt & Schwarz in [70]. Later, we will also use another set of moduli

denoted as (a, b, c, d), defined in Equation (2.1.33) to describe the same family. When

no confusion will arise, we will denote the four-parameter family asX with parameters

supressed, and freely interchange with the full notation. As we will show in §2.1.7,

the 4-parameter family XA,B,C,D is a family of Jacobian elliptic K3 surfaces that are

polarized by the even lattice L = H⊕E8(−1)⊕A⊕6
1 of rank sixteen that are birational

to the double sextic X . Surfaces in this class have Picard rank ρ taking the possible

values 16, 17, 18, 19 or 20. For generic A,B,C,D, the Picard rank of X is ρ = 16,

and certain values the parameters lead to higher Picard rank degenerations of the

family. We will take up an earnest study of the family X in §4.1.

The authors in [92, 96] use the coordinates (x1, x2, x3, x4) such that

(v̂ij) =


1 0 0 1 1 1

0 1 0 1 x1 x2

0 0 1 1 x3 x4

 ∈ Mat◦(3, 6,C) . (2.1.26)
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Notice that we have


−1 0 0

−1 1 0

0 0 −1

 · (v̂ij) ·



−1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


= (vij) , (2.1.27)

i.e., we set A = 1 − x1, B = x3, C = 1 − x2, D = x4. Hence, we have [(vij)] = [(v̂ij)]

in X (3, 6).

On X there are 16 linearly independent algebraic cycles; 15 exceptional curves

come from blowing up the
(
6
2

)
= 15 rational double points of the branched cover, and

one arises as section of the elliptic fibration. These algebraic curves span the Néron-

Severi lattice NS(X). As discussed in 2.1.3, here are two systems of six transcendental

cycles c1, . . . , c6 ∈ H2(X,Z) and c′1, . . . , c′6 ∈ H2(X,Z) such that c′1, . . . , c
′
6 form a Z-

basis of the transcendental lattice T(X), and the cycles c1, . . . , c6 are dual and its

intersection matrix Qij = (c′i ◦ c′j) is the 6× 6 matrix given by

H(2)⊕2 ⊕ ⟨−2⟩ ⊕ ⟨−2⟩ , (2.1.28)

where H(2) denotes the lattice whose Gram matrix is that of H scaled by 2. The

correspondence sending the six lines (vij) in general position to the periods of the

associated K3 surface X gives a multi-valued period map

ψ : [(vij)] ∈ X (3, 6) 7→ Z⃗ = [Z1 : · · · : Z6] ∈ D+ , (2.1.29)
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where D+ the positively oriented component

D+ =
{
Z⃗ = [Z1 : · · · : Z6] ∈ P5

∣∣∣Q(Z⃗, Z⃗) = 0 , Q(Z⃗, Z⃗∗) , Im

(
Z3

Z1

)
> 0
}
. (2.1.30)

The monodromy group of this multivalued function is generated by the Z-linear trans-

formations of the marking of X caused by the move of the line lj around the point

lk ∩ ll for 1 ≤ j < k < l ≤ 6 [92], and is the principal congruence subgroup

Γ =
{
G ∈ PGL(6,Z)

∣∣∣G(D+) ⊂ D+ , GtQG = Q , G ≡ I(2)
}
. (2.1.31)

For special values of the moduli the Picard number ρ(X) becomes 17, 18, 19, and

the bilinear form will degenerate to a symmetric, integral, bilinear form of signature

(2, 20−ρ). The explicit form of Q in those cases is given in (2.1.45), (2.1.46), (2.1.47).

2.1.7 The Yoshida family of K3 surfaces with Picard rank ρ ≥ 16

Let us examine the presentation of the double sextic surface from Equation (2.1.25).

Consider the open subset of points (A,B,C,D) ∈ C4 such that the right hand side

of the equation

Y 2 = T (T − 1)X (X − 1) (AT +BX − 1) (C T +DX − 1) (2.1.32)

defines six lines in the complex projective plane, no three of which are concurrent.

This space is biholomorphic to the moduli space X (3, 6) of six lines in P2, and we

will use the same character to refer to the moduli space of this suface, as well as any

other space biholomorphic to it.
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Setting T = −B t/A+ 1/A and X = x, we introduce the parameters

a =
1

B
− A

B
, b =

1

B
, c = − A

BC
+

1

B
, d =

AD

BC
,

A = 1− a

b
, B =

1

b
, C =

a− b

c− b
, D =

d

b− c
.

(2.1.33)

Transforming Y 7→
√
−1 y/(a− b), Equation (2.1.25) becomes

y2 =
1

b(b− c)
(t− a) (t− b) (t− c− d x)x (x− 1) (x− t) . (2.1.34)

We denote the minimal nonsingular model of (2.1.34) byXa,b,c,d. This surface is known

as a Yoshida surface, following Hoyt & Schwartz. The open subset of C4 = C(a, b, c, d)

such that Equation (2.1.34) defines a smooth surface is then biholomorphic to X (3, 6).

Then X (3, 6) is realized as an affine subvariety of C4, realized as the C4 minus a union

of hyperplanes

{ a = 0, b = 0, c = 0, d = 0, a− b = 0, . . . , c− d− 1 = 0 } .

Note the normalization factor in front the right hand side of (2.1.34) persists

because the elements b, b − c are not squares in the function field C(X (3, 6)). Then

the nonvanishing holomorphic 2-form η ∈ H2,0(Xa,b,c,d) is given by

η =
√
b(b− c) dt ∧ dx

y
, (2.1.35)

and the normalization factor
√
b(b− c) is the generator of a projective gauge trans-

formation of the Picard-Fuchs system annihilating η.

To transform Equation (2.1.34) into its Weierstrass normal form, we use the fol-
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lowing transformation:

X̃ =
b (t− a) (t− b) (b− c) ((−t2 + (c− d− 1) t+ c)x+ 3 t (t− c))

3x
,

Ỹ = −2y t b2 (t− a) (t− b) (t− c) (b− c)2

x2
.

Then Equation (2.1.34) becomes

Ỹ 2 = 4 X̃3 − g2 X̃ − g3 (2.1.36)

with

g2 =
4

3
(t− a)2 (t− b)2 (b− c)2 b2

×
(
t4 + (−2 c− d− 1) t3 +

(
c2 + cd+ d2 + 2 c− d+ 1

)
t2

− c (c− d+ 2) t+ c2
)
,

g3 = − 4

27
(−t+ a)3 (−t+ b)3 (b− c)3 b3

×
(
−t2 + (c− d+ 2) t− 2 c

) (
−t2 + (c+ 2 d− 1) t+ c

)
,

×
(
−2 t2 + (2 c+ d+ 1) t− c

)
,

∆ = 256b6(b− c)6 t2 (t− 1)2 (t− c)2 (t− (c+ d))2 ((1− d)t− c)2

× (t− a)6 (t− b)6 .

(2.1.37)

Notice that by letting t 7→ 1 − t, x 7→ 1 − x in Equation (2.1.34) one establishes the

symmetry

Xa,b,c,d
∼= X1−a,1−b,1−c−d,d .

One also obtains a symmetry by permuting the parameters a, b, i.e., a ↔ b, as well

as a symmetry by permuting (A,B) ↔ (C,D).
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The transcendental lattice

For generic values of (a, b, c, d), it follows directly from analyzing the singular fibres

of the Weierstrass model in Equation (2.1.36) that the configuration of singular fibres

is 6 I2 + 2 I∗0 , with the six I2 fibres located above t = 0, 1, c + d, c/(1 − d), ∞, and

the two I∗0 fibres above t = a, b. Moreover, we have MW(πX) ∼= (Z/2Z)2. We have

Wroot = D⊕2
4 ⊕ A⊕6

1 . The Néron-Severi lattice NS(X) has signature (1, 15), and the

determinant of the discriminant group is (26) (2 · 2)2/42 = 26. The computation of

the discriminant group shows that it only contains factors of Z2, and it follows easily

that

NS(Xa,b,c,d) = H⊕ E8(−1)⊕ A⊕6
1 . (2.1.38)

It was proved in [70] that

T(Xa,b,c,d) = H(2)⊕ H(2)⊕ ⟨−2⟩ ⊕ ⟨−2⟩ . (2.1.39)

We have the following lemma:

Lemma 2.1.4. The Jacobian elliptic surface Xa,b,c,d → P1 is a K3 surface with a

H⊕ E8(−1)⊕ A6
1-lattice polarization.

Proof. The degree of the polynomials g2 and g3 make Xa,b,c,d a family of K3 surfaces.

For generic values of a, b, c, the Néron-Severi lattice NS(X) has signature (1, 15) and

discriminant 26. In fact, we will show that NS(X) ∼= H ⊕ E8(−1) ⊕ A⊕6
1 and TX =

H(2)2 ⊕ ⟨−2⟩.
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2.1.8 The twisted Legendre pencil of K3 surfaces with Picard rank ρ ≥ 17

The Legendre family is the special case of the Yoshida surface (2.1.34) for d = 0. The

family of Jacobian K3 surfaces Xa,b,c = Xa,b,c,d=0 is given by

Ỹ 2 = 4 X̃3 − g2(t) X̃ − g3(t) (2.1.40)

with

g2(t) = h2(t)G2(t) ,

g3(t) = h3(t)G3(t) ,

h(t) = (t− a) (t− b) (t− c) ,

(2.1.41)

where G2 and G3 are given by the modular elliptic surface for Γ(2) with u = 2t − 1

and rescaled such that

G2(t) =

(
3

2

)2 (
1

3
u2 + 1

)
= 3 t2 − 3 t+ 3 ,

G3(t) =

(
3

2

)3 (
1

27
u (u− 3) (u+ 3)

)
= t3 − 3

2
t2 − 3

2
t+ 1 ,

(2.1.42)

and ∆ = 729
4
h6(t) t2 (t− 1)2 and J = 4

27
(t2−t+1)2

t2 (t−1)2
. This elliptic fibration on X = Xa,b,c

has three I∗0 fibres located at t = a, b, c, and three I2 fibres located at t = 0, 1,∞, so

long as a, b, c are distinct from each other, and not equal to 0, 1,∞. In this case, X

is of Picard rank ρ = 17. Let T ⊂ C3 be the associated moduli space. The study of

the geometry of T is central to this research.

All this is to say, that in the variables of the Yoshida surface (2.1.34), we have the

twisted Legendre pencil studied by Hoyt in [68, 69], given by

y2 = (t− a)(t− b)(t− c)x(x− 1)(t− t) . (2.1.43)
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This form of X will be instrumental to our calculations of Picard-Fuchs for the family

in §5.3. In advance of that section, we have the following result.

Proposition 2.1.5. On the K3 surface X, a global trivializing section of the canonical

bundle KX → X is given by the holomorphic 2-form

ηX = dt ∧ dx

y
≡ dt√

h(t)
∧ dx√

x(x− 1)(x− t)
, (2.1.44)

with h(t) = (t− a) (t− b) (t− c) as above.

Notice that there are symmetries

Xa,b,c
∼= X1−a,1−b,1−c

∼= X1/a,1/b,1/c ,

as well as the symmetry from permuting the parameters a, b, c.

The transcendental lattice

For (a, b, c) ∈ T, we have ρ = 17, and the Mordell-Weil group is MW(X, π) =

(Z/2Z)⊕2. By the Hodge index theorem, the Néron-Severi lattice NS(X) has signature

(1, 16), the configuration of singular fibres as 3I∗0 +3I2 imply that the determinant of

the discriminant group is (23) (2 ·2)3/42 = 25. Moreover, the singular fibres determine

the root lattice Wroot = D⊕3
4 ⊕ A⊕3

1 , and hence the discriminant group is

(
D(Wroot), qWroot

)
=

(Z/2⊕ Z/2
)
⊕ Z/2,

 1 1
2

1
2

1

⊕
[
1

2

]
⊕3

.

We can pick generators are ⟨ā∗1⟩ ∼= Z/2Z and ⟨d̄∗1⟩ ⊕ ⟨d̄∗4⟩ ∼= Z/2Z ⊕ Z/2Z. To find

isotopic subgroups, we need to involve at least two copies in the direct sum. This

could lead to a discriminant group of an overlattice (Z/2Z)⊕5. The computation of
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the discriminant group shows that it only contains factors of Z/2Z, and it follows

easily that the Néron-Severi group of the twisted Legendre pencil is

NS(Xa,b,c) = H⊕ E8(−1)⊕D4 ⊕ A⊕3
1 .

We will show by an explicit computation that the transcendental lattice is given by

T(Xa,b,c) = H(2)⊕ H(2)⊕ ⟨−2⟩ . (2.1.45)

2.1.9 Further degeneration to Picard rank ρ = 18, 19

For a = 0 and b, c generic, the configuration of singular fibers is 2 I2 + 2 I∗0 + I∗2 , and

we have the Mordell-Weil group MW(X, π) = (Z/2Z)⊕2. Hence, we have Picard rank

ρ(X0,b,c) = 18. Moreover, we have Wroot = D6⊕D⊕2
4 ⊕A⊕2

1 . The Néron-Severi lattice

NS(X) has signature (1, 17) by the Hodge index theorem, and the determinant of

the discriminant group is (22) (2 · 2)3/42 = 24. The computation of the discriminant

group shows that

NS(X0,b,c) = H⊕ E8(−1)⊕D6 ⊕ A⊕2
1 .

We will show by an explicit computation that the transcendental lattice is given by

T(X0,b,c) = ⟨2⟩ ⊕ ⟨2⟩ ⊕ ⟨−2⟩ ⊕ ⟨−2⟩ . (2.1.46)

For a = 0 and b = 1, the configuration of singular fibers is I2 + I∗0 + 2 I∗2 , and we

have the Mordell-Weil group MW(X, π) = (Z/2Z)⊕2. This means that the Picard

rank is ρ(X0,1,c) = 19. We have Wroot = D⊕2
6 ⊕ D4 ⊕ A1. The Néron-Severi lattice

NS(X) has signature (1, 18) by the Hodge index theorem, and the determinant of the

discriminant group is (2) (2 · 2)3/42 = 23. The computation of the discriminant group
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shows that

NS(X0,1,c) = H⊕D16 ⊕ A1 .

By an explicit construction, Hoyt proved in [67, Sec. 2] that the transcendental lattice

is given by

T(X0,1,c) = ⟨2⟩ ⊕ ⟨2⟩ ⊕ ⟨−2⟩ . (2.1.47)

This agrees with the result of van Geemen and Top [141]: by changing their vari-

ables according to y → y/
√
bc, x → −x and t → c, z → −t/c their hypersurface is

transformed into the Legendre family investigated by Hoyt for a = 0, b = ∞. The

transcendental lattice obtained in [141] agrees with Eq. (2.1.47).

2.1.10 Relations to Kummer surfaces from curves with full level-two

structure

Let C be a genus two curve. Since C can be realized as a double cover C → P1,

branched over the six points θ1, . . . , θ6 ∈ P1, using a fractional linear transforma-

tion we can move θ4, θ5, θ6 to 0, 1,∞. The resulting location of θ1, θ2, θ3, written as

λ1, λ2, λ, yield the so-called Rosenhain normal form of C, given by

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3) . (2.1.48)

The values λ1, λ2, λ3 ∈ C are called the Rosenhain roots of C. It is straightforward to

establish that C is smooth if and only if (λ1, λ2, λ3) lie on the quasiprojective variety

M[2] = P3 − P , where P ⊂ P3 is the union of planes

{λi ̸= 0, 1, ∞, λi ̸= λj, i, j = 1, 2, 3 }
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Then M[2] is the moduli space of genus two curves with full level-two structure.

This latter quality is determined because the Rosenhain normal form for C marks a

2-torsion point on the principally polarized Jacobian variety Jac(C).

LetM2 = M̃[2] be the double cover, parameterized by l1, l2, l3 that satisify l
2
i = λ′i

for i = 1, 2, 3, where λ′i are the Rosenhain roots of a genus two curve C′ whose

Jacobian variety Jac(C′) is 2-isogenous to C. See Clingher & Malmendier [26] for

more details. Then it follows from results established by Braeger et al. [15], that

there is a dominant rational map ϕ : M2 99K T given by

ϕ : (l1, l2, l3) 7→
(
a =

4 l1l2l3

(l1l3 + l2)
2 , b =

4 l1l2l3

(l1l2 + l3)
2 , c =

4 l1l2l3

(l2l3 + l1)
2

)
, (2.1.49)

that is induced from a dominant, degree two rational map Y′
l1,l2,l3

99K Xa,b,c. Here

Y′ is the Kummer surface obtained the principally polarized abelian surface A′ that

is (2,2)-isogenous to A. Such an explicit map is useful for not only relating results

about the twisted Legendre pencil Xa,b,c and Kummer surfaces, but also because we

are able to connect to known results for the periods and Picard-Fuchs equations that

are of arithmetic interest as we degenerate to higher Picard rank. We take up this

discussion in §6.2.3.

For example, as was shown in [15], we may degenerate the curve C = Cλ′
1,λ

′
2,λ

′
3

using a parabolic type [I4−0−0] degeneration from the Namikawa & Ueno classification

[108] defined by

l1 7→ k1, l2 7→ ϵk2, l3 7→ ϵ (2.1.50)

in the limit that ϵ→ 0 to obtain the generically Picard rank ρ = 18 Kummer surface

Yk21 ,k
2
2 ,0

= Kum(E1 × E2), where Ei is an elliptic curve in the Legendre normal form

Ek2i :
{
(Y,X) | Y 2 = X (X − 1)

(
X − k2i

)}
(2.1.51)



45

whose elliptic modulus is given by k2i , i = 1, 2. In this way, we have restricted to

the boundary component of M2 defined by the vanishing locus of the Siegel modular

form χ10 [72]. Moreover, the degeneration of the 6I2 + 2I∗0 Jacobian fibration on

Kum(Jac(C)) yields the J6 Jacobian fibration on Kum(E1 × E2). However, because

the Legendre normal form in Equation (2.1.51) marks a 2-torsion point on Ei, we

naturally inherit a marked 2-torsion point on the abelian surface E1 × E2.

On the twisted Legendre pencil, this degeneration corresponds to the limit c→ 0,

yielding the two-parameter twisted Legendre pencil Xa,b,0 equipped with the Jacobian

fibration

Xa,b,0 :
{
(x, y, t) | y2 = t(t− a)(t− b)x(x− 1)(x− t)

}
(2.1.52)

with singular fibres 2I∗0 + 2I2 + I∗2 . The I∗0 fibres are located over t = a, b, the I2

fibres are located over t = 0, 1, and the I∗2 fibre is located over t = ∞. In this way,

assuming that a, b /∈ {0, 1,∞}, we recognize that the K3 surface Xa,b,0 is the familiar

quadratic twist family of the rational elliptic surface Z for the Legendre pencil, i.e.,

the modular elliptic surface for the rational curve H/Γ0(2) ∼= P1, where H ⊂ C is

the upper half plane, and Γ0(2) ⊂ SL(2,Z) is the principal congruence subgroup of

level-two. This is simply the total space of the family of elliptic curves

Z :
{
(x, y, t) | y2 = x(x− 1)(x− t)

}
. (2.1.53)

It follows from fundamental results in [23] that the quadratic period relations can be

expressed rather beautifully in terms of the factorization of hypergeometric functions

that represent the period integrals on the K3 surface Xa,b,0 and the Kummer surface

Y′
k21 ,k

2
2 ,0
. We explain this further in §6.2.3.

We can further degenerate to Picard rank ρ = 19 by taking the limit in which
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b→ ∞, yielding the K3 surface Xa,∞,0

Xa,∞,0 :
{
(x, y, t) | y2 = t(t− a)x(x− 1)(x− t)

}
(2.1.54)

that was studied by Hoyt in [67]. This Jacobian fibration is of type I∗0 +2I∗2 +I2, with

an I∗0 fibre over t = a, I∗2 fibres over t = 0,∞, and an I2 fibre over t = 1. On the side

of the Kummer surface Yk1,k2,0, this degeneration corresponds to the limit in which

k1 7→ λ, k2 7→ −1/λ. Then the abelian surface Ek21 × Ek22 degenerates to the product

Eλ2 ×E ′
λ2 , where E ′

λ2 is 2-isogenous to E . Again, the quadratic period relations for this

family are encoded explicitly in terms of factorization of hypergeometric functions.

2.2 The Signature Theorem

In order to study a wider variety of analytical aspects of certain rational elliptic and

elliptic K3 surfaces, we recall some fundamental notions of the differential topology

of manifolds related the signature index.

2.2.1 The Cobordism Ring and Genera

One approach to investigating manifolds is through the construction of invariants. In

this present context, we work to construct topological and geometric invariants in the

category S of smooth, compact, orientable Riemannian manifolds. Given two such

manifolds, we may generate new objects through the operations + (disjoint union), −

(reversing the orientation), and × (Cartesian product). These operations turn S into

a graded commutative monoid, graded naturally by dimension, which decomposes as

the direct sum

S =
∞⊕
n=0

Mn .
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Here Mn ⊆ S is the class of all smooth, compact, oriented Riemannian manifolds

of dimension n. In S, the additive operation is only well defined when restricted to

elements in the same class Mn. Furthermore, if M ∈ Mk and N ∈ Mj, we have the

graded commutativity relationM×N = (−1)kjN×M . The positively oriented point

{∗} serves as the unity element 1S , but S fails to be a (graded) semi-ring because

there is no neutral element 0S and there are no additive inverses. It is reasonable

to attempt to define 0S = ∅ and the additive inverse of M as −M by reversing the

orientation. However, M ∪−M ̸= ∅, so the additive inverse is not well defined. If we

insist that we want such as assignment of additive inverses and 0S to turn S or some

quotient into a ring, we are led naturally to the notion of cobordant manifolds.

Definition 2.2.6. An oriented differentiable manifold V n bounds if there exists a

compact oriented manifold Xn+1 with oriented boundary ∂Xn+1 = V n. Two manifolds

V n,W n ∈ Mn are cobordant if V n−W n = ∂Xn+1 for some smooth, compact (n+1)-

manifold X with boundary, where by V n−W n we mean V n∪ (−W n) by reversing the

orientation on W n.

The notion of “cobordant” is an equivalence relation ∼ on the class Mn; hence we

introduce the oriented cobordism ring Ω∗ as the collection of all equivalence classes

[M ] ∈ Ωn = Mn/ ∼ for all n ∈ N,

Ω∗ =
∞⊕
n=0

Ωn.

Note first that for any boundary V n = ∂Xn+1, V n descends to the zero element

0 = [∅] ∈ Ω∗. Since for any manifold M , we have that M −M = ∂(M × [0, 1]), the

boundary of the oriented cylinder bounded byM , it follows that on Ω∗, [M−M ] = 0.

Thus −[M ] = [−M ] for any manifold M . This in turn shows that the oriented

cobordism ring Ω∗ naturally inherits the structure of a graded commutative ring with
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respect to the operations on S. For a thorough survey of cobordism (oriented and

otherwise) we refer the reader to [135].

To study these structures, we look at nontrivial ring homomorphisms ψ : Ω∗ → C,

i.e., for any two suitable V,W ∈ Ω∗, the morphism ψ satisfies

ψ(V +W ) = ψ(V ) + ψ(W ) , ψ(−V ) = −ψ(V ) ,

ψ(V ×W ) = ψ(V ) · ψ(W ) .

Thus, we are interested in studying the dual space of Ω∗. This prompts the following:

Definition 2.2.7. A genus is a ring homomorphism ψ : Ω∗ → Q. Hence, a genus

ψ ∈ homQ(Ω∗;Q) is an element of the rational dual space to Ω∗.

This implies that if V n = ∂Xn+1 bounds, then necessarily ψ(V n) = 0, as ψ must

be compatible with the ring operations (+,−,×) and constant on the equivalence

classes of manifolds that satisfy V n −W n = ∂Xn+1.

In the following section, we introduce the fundamental notion of the signature of

a manifold of dimension 4k. This quantity constitutes one of the most prominent

examples of a ring homomorphism Ω∗ → Q. In fact, if the dimension of a compact

manifold is divisible by four, the middle cohomology group is equipped with a real

valued symmetric bilinear form ι, called the intersection form. The properties of

this bilinear form allow us to define an important topological invariant, the signature

of a manifold. The Hirzebruch signature theorem asserts that this topological index

equals the analytic index of an elliptic operator onM , ifM is equipped with a smooth

Riemannian structure.

2.2.2 The definition of the signature

LetM be a compact manifold of dimension n = 4k. On the middle cohomology group

H2k(M ;R), a symmetric bilinear form ι called the intersection form, is obtained by
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evaluating the cup product of two 2k-cocycles a, b on the fundamental homology class

[M ] of M . Alternatively, we can obtain ι by integrating the wedge product of the

corresponding differential 2k-forms ωa, ωb overM via the deRham isomorphism. That

is, we define ι and ιdR as follows:

ι : H2k(M ;R) ⊗ H2k(M ;R) → R

(a, b) 7→ ⟨a ∪ b, [M ]⟩

ιdR : H2k
dR(M ;R) ⊗ H2k

dR(M ;R) → R

(ωa, ωb) 7→
∫
M
ωa ∧ ωb .

Notice that ι is in fact symmetric since the dimension is a multiple of four.

Since M is compact, Poincaré duality asserts that for any cocycle a ∈ H2k(M ;R)

there is a corresponding cycle α ∈ H2k(M ;R). If we assume that the two cycles

intersect transversally, then ι(a, b) can be expressed as the intersection number of the

two cycles α and β, i.e., by computing

ι(a, b) = #(α, β) =
∑

p∈α∩β

ip(α, β)

where ip(α, β) is either +1 or −1 depending on whether the orientation of the TpM

induced by the two cycles α, β agrees with the orientation of the manifold or not

[139].

Sylvester’s Theorem guarantees that any non-degenerate, real valued, symmetric

bilinear form on a finite dimensional vector space can be diagonalized with only +1

or −1 entries on the diagonal. Thus, after a change of basis, we have ι ∼= Iu,v, where

Iu,v is the diagonal matrix with u entries +1 and v entries −1. This prompts the

following definition.



50

Definition 2.2.8. Let M be a compact 4k-dimensional manifold with intersection

form ι on the middle cohomology group H2k(M ;R) such that ι ∼= Iu,v. Then the

signature of M is given by sign(M) = u− v. If the dimension of M is not a multiple

of four, the signature is defined to be zero.

It turns out that the signature is a fundamental topological invariant ofM : if two

4k manifolds are homeomorphic, their signature will be equal; in fact, the signature

is an invariant of the oriented homotopy class of M [73, 101]. Furthermore, the

signature is constant on the oriented cobordism classes in Ω∗. We have the following

theorem due to Hirzebruch [61].

Theorem 2.2.9. The signature defines a ring homomorphism sign : Ω∗ → Z. In

particular, for all k ∈ N we have sign(P2k) = 1.

The theorem is proved by checking that the signature is compatible with the ring

operations (+,−,×) on the classes M4k ⊆ S, k = 1, 2, . . . , by using the Künneth

theorem and writing out the definition of the signature on a basis for the middle

cohomology. Furthermore, one can show that sign(M) = 0 for any manifoldM = ∂X

that bounds. This is done by constructing a commutative exact ladder for i : V 4k ↪→

X4k+1, i.e., the embedding of V 4k as the boundary of X4k+1 using Lefschetz and

Poincaré duality. The normalization for the even dimensional complex projective

spaces P2k can be checked as follows: the cohomology ring H∗(P2k;R) is a truncated

polynomial ring in dimension 4k, generated by the first Chern class of the hyperplane

bundle H ∈ H2(P2k;R). It follows that H2k(P2k;R) is generated by Hk, and

ι(Hk,Hk) = H2k[P2k] = 1. (2.2.55)
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2.2.3 The signature as an analytical index

We will identify the signature of an n-dimensional smooth, compact oriented manifold

M with the index of an elliptic operator acting on sections of a smooth vector bundle

over M .7

The operator in question is the Laplace operator acting on smooth, complex valued

differential p-forms onM . Over any oriented closed n-manifoldM we have the exterior

product bundles Λp = ΛpT ∗
CM of the complexified cotangent bundle T ∗

CM = T ∗M⊗C.

The complex-valued p-forms are the smooth sections ω :M → Λp; they form a vector

space which we denote by C∞(M,Λp). The vector spaces can be assembled into

the so-called de Rham complex C∞(M,Λ∗) =
⊕n

p=0C
∞(M,Λp). The summands

are connected by the exterior derivative d : C∞(M,Λp) → C∞(M,Λp+1), extended

linearly over T ∗
CM , with the usual relation d2 = 0.

Moreover, a Riemannian metric on M determines a Hermitian structure (· , ·)

on C∞(M,Λp) via the Hodge-de Rham operator ∗ : C∞(M,Λp) → C∞(M,Λn−p).

The Hodge-de Rham operator is a bundle isomorphism C∞(M,Λp) → C∞(M,Λn−p)

which satisfies ∗2 = (−1)p(n−p)I, where I : C∞(M,Λp) → C∞(M,Λp) is the identity.

Specifically, the Hodge dual of a p-form ω ∈ C∞(M,Λp) is the (n−p)-form denoted by

∗ω ∈ C∞(M,Λn−p) determined by the property that for any p-form µ ∈ C∞(M,Λp)

we have

µ ∧ ∗ω = ⟨µ, ω⟩volM ,

where the Riemannian structure on M induces both the inner product ⟨·, ·⟩ on

C∞(M,Λp) and the volume form volM . A Hermitian structure on C∞(M,Λp) is

7The results of this section can also be phrased in terms of spinors and spin bundles. We have
chosen to leave this viewpoint out as to make the content more accessible.
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then defined by setting

(µ, ω) =

∫
M

µ ∧ ∗ω ,

for any two p-forms µ, ω where ω means complex conjugation. With respect to this

inner product, we obtain an adjoint operator

δ : C∞(M,Λp+1) → C∞(M,Λp)

of the exterior derivative d defined by (dηp, ωp+1) = (ηp, δωp+1) and δ2 = 0. If n = 2m

the adjoint operator is δ = − ∗ d∗.

The operator D = d + δ : C∞(M,Λ∗) → C∞(M,Λ∗) is a first order differential

operator that, by construction, is formally self-adjoint. We call D a Dirac operator,

because it is, in a sense, the square root of the Laplace operator. In fact, the Laplace

operator, also called the Hodge Laplacian, is given as its square by

∆H = (d+ δ)2 = dδ + δd .

The Hodge Laplacian is homogeneous of degree zero, i.e., ∆H : C∞(M,Λp) →

C∞(M,Λp), and is formally self-adjoint, i.e., (∆Hω, µ) = (ω,∆Hµ) for any p-forms

ω, µ. A p-form ω is said to be harmonic if ∆Hω = 0. One then shows that ω is

harmonic if and only if ω is both closed and co-closed, i.e.,

∆Hω = 0 ⇔ dω = 0 , δω = 0 . (2.2.56)

In fact, every η ∈ Hp
dR(M ;C) has a unique harmonic representative ω such that

η = ω + dϕ for some (p− 1)-form ϕ; this is the celebrated Hodge theorem [62]. This

implies that there is an isomorphism H∗
dR(M,C) ∼= ker∆H .
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Let us restrict to the case of an even-dimensional manifoldM , i.e., n = 2m. Then,

for p = 0, . . . , 2m we define the complex operators

αp =
√
−1

p(p−1)+m∗ : C∞(M,Λp) → C∞(M,Λ2m−p),

which for complex-valued differential forms are more natural than the Hodge-deRham

operator. We will denote the operators generically by α : C∞(M,Λ∗) → C∞(M,Λ∗).

One may check that the operators α2m−p and αp are inverses, α2m−pαp = αpα2m−p = I.

Hence, the eigenvalues of αm are ±1, so the de Rham complex splits into the two

eigenspaces of α, given by α(ω) = ±ω, such that

C∞(M,Λ∗) = C∞
+ (M,Λ∗)︸ ︷︷ ︸

eigenvalue: +1

⊕
C∞

− (M,Λ∗)︸ ︷︷ ︸
eigenvalue:−1

.

The projection operators onto the two eigenspaces given by P+ = (I + α)/2 and

P− = (I − α)/2, respectively, and P+ + P− = I, P±P∓ = 0. Since α anti-commutes

with d + δ, i.e., α(d + δ) = −(d + δ)α and because of Equation (2.2.56), we get an

orthogonal, direct-sum decomposition of the entire de Rham cohomology according

to

H∗
dR(M ;C) =

m⊕
p=0

Hp
+(M ;C)⊕Hp

−(M ;C) , (2.2.57)

where Hp
±(M ;C) = {ω ∈ Hp

dR(M ;C)⊕H2m−p
dR (M ;C) | α(ω) = ±ω}. Notice that for

p ̸= m, every element of Hp
±(M ;C) necessarily has the form ω±α(ω) for a non-trivial

element ω ∈ Hp
dR(M ;C), and we have for all p ̸= m the identity

dimHp
+(M,C) = dimHp

−(M,C) . (2.2.58)
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We now recall the notion of an elliptic differential operator, and the notion of

its analytic index [63, 115]. Suppose we have two vector bundles E,F → M and

and a qth-order differential operator /D : C∞(M,E) → C∞(M,F ). Let T ′M be the

cotangent bundle of M minus the zero section and π : T ′M → M be the canonical

projection. Then the principal symbol of the operator /D is a linear mapping σ /D ∈

Hom(π∗E, π∗F ) such that σ /D(x, ρξ) = ρqσ(x, ξ) for all (x, ξ) ∈ T ′M and for all scalars

ρ. The operator /D is elliptic if the principal symbol σ /D is a fiberwise isomorphism for

all x ∈M . It is a classical result that for an elliptic operator, the kernel and cokernel

are finite dimensional [44]. The analytic index of /D is then defined as

ind( /D) = dim(ker /D)− dim(coker /D).

If we restrict the operator D = d+ δ to the ±1-eigenspaces of α, these restrictions

become formal adjoint operators of one another. In physics, they are called chiral

Dirac operators. We denote these operators by

/D := (d+ δ)P+ = P−(d+ δ) : C∞
+ (M,Λ∗) → C∞

− (M,Λ∗) , (2.2.59)

/D
†
:= (d+ δ)P− = P+(d+ δ) : C∞

− (M,Λ∗) → C∞
+ (M,Λ∗) , (2.2.60)

where we again used the fact that α anti-commutes with D = d+ δ. We have that

/D
† /D = ∆HP+ = ∆H

∣∣∣
C∞

+ (M,Λ∗)
,

and that the operators /D and /D
†
are elliptic operators such that ker /D

†
= coker /D. To

see this, we look to the principle symbols of the first order differential operators d and

δ on the vector bundle C∞(M,Λ∗) over M . One computes their principal symbols as

σd(x, ξ) = ext(ξ) and σδ(x, ξ) = − int(ξ), respectively, signifying the exterior algebra
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homomorphisms induced from the exterior product and interior product of forms,

respectively. This implies that /D + /D
†
= D is the Clifford multiplication on the

exterior algebra of forms. Therefore, σ∆H
(x, ξ) = −|ξ|2I. This mapping is invertible,

and it follows that /D, /D
†
, and ∆H are elliptic operators.

For the index of the elliptic operator /D on a compact even-dimensional manifold

Mn with n = 2m we obtain

ind( /D) = dim(ker /D)− dim(ker /D
†
)

=
m∑
p=0

dimHp
+(M ;C)− dimHp

−(M ;C)

= dimHm
+ (M ;C)− dimHm

− (M ;C) ,

where we used ker /D
†
= coker /D and Equation (2.2.58).

For n = 2m with m = 2k + 1 the operator αm is an isomorphism between

Hm
+ (M ;C) and Hm

− (M ;C), thus ind( /D) = 0. In contrast, for n = 4k we have

ind( /D) = dimH2k
+ (M ;C)− dimH2k

− (M ;C) ,

and α maps H2k
± (M ;C) to itself. Moreover, for n = 4k we have α = ∗ and the

decomposition into ±1-eigenspaces of α coincides with the orthogonal, direct-sum

decomposition of H2k
dR(M ;C) into self-dual and anti-self-dual, middle-dimensional,

complex differential forms. Thus, we have

H2k
dR(M ;C) = H2k

+ (M ;C)⊕H2k
− (M ;C) .

On the other hand, using the deRham isomorphism, we can evaluate the intersection
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form ιdR on either two self-dual or anti-self-dual 2k-forms ω, µ, to obtain

ιdR(ω, µ) = (ω, µ) ,

⇒ ιdR(ω, ω)
∣∣
ω∈H2k

± (M,C) = (ω, ω) = ±∥ω∥2 .

This shows that ιdR ∼= Iu,v with u = dimH2k
+ (M ;C) and v = dimH2k

− (M ;C), so that

the index of the Dirac operator is equal to the difference of the number of linearly

independent self-dual and anti-self-dual cohomology classes over C. Hence, we have

the following special case of the Atiyah-Singer index theorem [3, 61]:

Theorem 2.2.10 (Analytic index of signature operator). For all compact, oriented

Riemannian manifolds M of dimension 4k, the (analytic) index of the Dirac operator

defined above equals the signature of M , i.e., ind( /D) = sign(M).

2.3 The structure of the Cobordism ring and its genera

Having shown that the signature of a manifold M is a genus, we now investigate

the structure of the oriented cobordism ring and its rational homomorphisms. In

this spirit, it is beneficial to look at the rational oriented cobordism ring Ω∗ ⊗ Q.

Tensoring with Q kills torsion subgroups; in fact, it is known that the cobordism

groups Ωn are finite and (graded) commutative when n ̸= 4k [139], implying that

each such cobordism group is torsion. We shall see that Ω∗ ⊗ Q has a generator of

degree 4k for all k ∈ N. This implies that the graded commutativity of Ω∗ is erased by

tensoring with Q, leaving an honest commutative ring. Thus, the rational cobordism

ring is of the form

Ω∗ ⊗Q =
∞⊕
k=0

Ω4k ⊗Q
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and forms a commutative ring with unity. We will soon be able to say much more

about the structure of this ring and provide a generating set, along with a complete

description of its dual homQ
(
Ω∗ ⊗ Q,Q

)
. This will allow for a description of the

signature of a 4k-manifold as a topological index in terms of its Pontrjagin classes.

2.3.1 Pontrjagin numbers

We begin with the following motivation for the Pontrjagin classes [102]. Let ξ be a

real vector bundle of rank r over a topological space B. Then the complexification

ξ ⊗C = ξ ⊗R C is a complex rank r vector bundle over B, with a typical fibre F ⊗C

given by

F ⊗ C = F ⊕
√
−1F.

It follows that the underlying real vector bundle (ξ ⊗ C)R is canonically isomorphic

to the Whitney sum ξ⊕ ξ. Furthermore, the complex structure on ξ⊗C corresponds

to the bundle endomorphism J(x, y) = (−y, x) on ξ ⊕ ξ.

In general, complex vector bundles η are not isomorphic to their conjugate bundles

η. However, complexifications of real vector bundles are always isomorphic to their

conjugates: we have ξ ⊗ C ∼= ξ ⊗ C. Let us consider the total Chern class given as

the formal sum

c(ξ ⊗ C) = 1 + c1(ξ ⊗ C) + c2(ξ ⊗ C) + · · ·+ cr(ξ ⊗ C).

We refer the reader to [18] for an introduction to Chern classes. From the above

isomorphism, this expression is equal to the total Chern class of the conjugate bundle,
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that is

c(ξ ⊗ C) = 1− c1(ξ ⊗ C) + c2(ξ ⊗ C)− · · ·+ (−1)rcr(ξ ⊗ C).

Thus, the odd Chern classes c2i+1(ξ ⊗ C) are all elements of order 2, so it is the

even Chern classes of the complexification ξ ⊗ C that encode relevant topological

information about the real vector bundle ξ. This prompts the following definition.

Definition 2.3.11. Let ξ → B be a real vector bundle of rank r. The ith rational

Pontrjagin class of ξ for 1 ≤ i ≤ r is defined as follows:

pi(ξ) = (−1)i c2i(ξ ⊗ C) ∈ H4i(B;Q) .

where c2i is the 2ith rational Chern class of the complexified bundle ξ ⊗ C.The total

rational Pontrjagin class is the formal sum

p(ξ) =
∑
i

pi(ξ) ∈ H∗(B;Q).

The Pontrjagin classes of an oriented manifold M are the Pontrjagin classes of its

tangent bundle TM .

As a practical way to compute the Pontrjagin classes of ξ, let ∇ be a bundle

connection on ξ⊗C, and let Ω be the corresponding curvature tensor. Then the total

Pontrjagin class p(ξ) ∈ H∗
dR(B;R) is a polynomial in the curvature tensor given by

the expansion of the right hand side in the formula

p(ξ) = 1 + p1(ξ) + p2(ξ) + · · ·+ pr(ξ) = det(I + Ω/2π) ∈ H∗
dR(B;R).

As the total Pontrjagin class is defined as a determinant, it is immediately invariant
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under the adjoint action of GL(r,R), and furthermore, that the cohomology classes

of the resulting differential forms are independent of the connection ∇ [19, 20].

Suppose that M is an oriented 4k-dimensional manifold. If (i) = (i1, . . . , im) is

a partition of k, i.e. |(i)| =
∑m

a=1 ia = k, then we define the corresponding rational

Pontrjagin number of M to be

p(i)[M ] =
(
pi1(TM) ∪ · · · ∪ pim(TM)

)
[M ] ∈ Q , (2.3.61)

and, if the dimension is not a multiple of four, all Pontrjagin numbers ofM are defined

to be zero. When working with the Pontrjagin classes in the de Rham cohomology

of M , the Pontrjagin numbers are given by integrating the top-dimensional form

p(i) = pi1 ∧ pi2 ∧ · · · ∧ pim over the fundamental cycle [M ], i.e.,

p(i)[M ] =

∫
M

pi1 ∧ pi2 ∧ · · · ∧ pim . (2.3.62)

Let us compute the Pontrjagin number for the class p1/3 on P2. Equip the tangent

bundle of P2 with the Fubini-Study metric [48, 136]. Then in the affine coordinate

chart [z1 : z2 : 1], a computation with the curvature tensor shows that

1

3
p1 =

2

π2(|z1|2 + |z2|2 + 1)3
dz1 ∧ dz1 ∧ dz2 ∧ dz2.

Integrating this form over the fundamental cycle yields

∫
P2

1

3
p1 = 1.

As we shall see in Section 2.3.3, this is consistent with sign(P2) = 1 by Theorem

2.2.9.

The following explains the importance of the Pontrjagin classes [116]:
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Proposition 2.3.12 (Theorem of Pontrjagin). The evaluation of the Pontrjagin

classes are compatible with the operations (+,−,×) on Ω∗ ⊗ Q. Furthermore, all

Pontrjagin numbers vanish if a manifold bounds. Thus, the Pontrjagin numbers de-

fine rational homomorphisms Ω∗ ⊗Q → Q.

In Proposition 2.3.12 compatibility with + is trivial and compatibility with −

follows from the fact that the Pontrjagin numbers are independent of the orientation

[112, 113]. For multiplicativity, notice that the total Pontrjagin class of the Whitney

sum satisfies p(ξ1 ⊕ ξ2) = p(ξ1)p(ξ2) up to two-torsion [116]. As we are working over

Q, this equality always holds.

2.3.2 The rational cohomology ring and genera

We have seen in Proposition 2.3.12 that the Pontrjagin numbers constitute prototypes

of the rational homomorphisms Ω∗ ⊗ Q → Q. It turns out that every genus can be

constructed in this way [139]. This follows from a remarkable relationship between

the rational oriented cobordism ring Ω∗⊗Q and the cohomology ring of the classifying

space BSO for oriented vector bundles.

We assume that M is a smooth, compact n-manifold and recall the notion of a

classifying space for oriented vector bundles.

Definition 2.3.13. For every oriented rank r vector bundle π : E → M , there is

a topological space BSO(r) and a vector bundle ESO(r) → BSO(r) together with a

classifying map f : M → BSO(r) such that f ∗ ESO(r) = E. The space BSO(r)

is called a classifying space, and the vector bundle ESO(r) → BSO(r) is called the

universal bundle of oriented r-planes over BSO(r).

It is known that the isomorphism class of the vector bundle E determines the

classifying map f up to homotopy. Moreover, the classifying space and the universal
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bundle can be constructed explicitly as the Grassmannian of oriented r-planes over

R∞, denoted by BSO(r) = Grr(R∞), and the tautological bundle of oriented r-planes

over it, denoted by ESO(r) = γr → BSO(r) respectively [99, 100].

For any oriented rank r vector bundle E → M we can form the sphere bundle

Σ(E) → M by taking the one-point compactification of each fiber Ep of the vector

bundle over each point p ∈ M and gluing them together to get the total space. We

then construct the Thom space T (E) [138] as the quotient by identifying all the new

points to a single point t0 = ∞, which we take as the base point of T (E). Since M

is assumed compact, T (E) is the one-point compactification of E. Associated to the

universal bundle ESO(r) is the universal Thom space, denoted by MSO(r).

Moreover, thinking of M as embedded into E as the zero section, there is a class

u ∈ H̃r(T (E);Z), called the Thom class, such that for any fiber Ep the restriction

of u is the (orientation) class induced by the given orientation of the fiber Ep. This

class u is naturally an element of the reduced cohomology [138]

H̃r(T (E);Z) ∼= Hr(Σ(E),M ;Z) ∼= Hr(E,E −M ;Z) .

It turns out that the map

H i
(
E;Z

)
→ H̃ i+r

(
T (E);Z

)
, z 7→ z ∪ u ,

is an isomorphism for every i ≥ 0, called the Thom isomorphism [138]. Since the

pullback map π∗ : H∗(M ;Z) → H∗(E;Z) is a ring isomorphism as well, we obtain an

isomorphism

H i
(
M ;Z

)
→ H̃ i+r

(
T (E);Z

)
, x 7→ π∗(x) ∪ u , (2.3.63)
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for every i ≥ 0 which sends the identity element of H∗(M ;Z) to u. The following

result of Thom is crucial [139]:

Theorem 2.3.14. (Pontrjagin-Thom) For r ≥ n+2, the homotopy group πn+r(MSO(r),∞)

is isomorphic to the oriented cobordism group Ωn.

Proof. We offer only a sketch, and refer the reader to [138, 139, 102] for more details.

Let M be an arbitrary smooth, compact, orientable n-manifold, and let E → M

be a smooth, oriented vector bundle of rank r. The base manifold M is smoothly

embedded in the total space E as the zero section, and hence in the Thom space

T = T (E). In particular, note that M ⊂ T − {t0}. Note that T itself is not a

smooth manifold – it is singular precisely at the base point t0. Results in [102] show

that every continuous map f : Sn+r → T is homotopic to a map f̂ that is smooth on

f̂−1(T−{ t0}). It follows that the oriented cobordism class of f̂−1(M) depends only on

the homotopy class of f̂ . Hence, the mapping f̂ 7→ f̂−1(M) induces a homomorphism

πn+r(T, t0) → Ωn. We will argue that this homomorphism is surjective. We refer the

reader to [139] for the proof of injectivity.

A theorem of Whitney [142] shows that M can be smoothly embedded in Rn+r.

Identifying M with its image in Euclidean space, we choose a neighborhood U of

M in Rn+r, diffeomorphic to the total space E(νr) of the normal bundle νr to M .

Let m, q ≥ n and γmq be the tautological bundle of oriented m-planes over Rm+q,

and let E(γma ) be the total space of γma , a = n, q. Applying the Gauss map for

Grassmannians, we obtain

U ∼= E(νr) → E(γrn) ⊆ E(γrq ).

We compose this mapping with the canonical mapping E(γrn) → T (γrq ), and let B ⊆

T (γrq ) be the smooth n-manifold identified with the zero section in the Thom space.
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We have obtained a map fq : U → T (γrq ) such that f−1
q (B) = M . Hence, if tq is

the base point of the Thom space T (γrq ), it follows from above that fq is homotopic

to a smooth map f̂q that is smooth on T (γrq ) − {tq}. Thus, we obtain a surjective

homomorphism πn+r(T (γ
r
q ), tq) → Ωn. Taking a direct limit on q the claim follows.

Using the argument above, we can embed a representative manifold M ∈ Ωn into

MSO(r) for some r ≥ n + 2. By taking the direct limit, we make the construction

independent of the embedding [139] and obtain a canonical isomorphism

Ωn
∼= lim−→

r→∞
πn+r

(
MSO(r),∞

)
.

Another crucial result is a theorem by Serre [128] that asserts that in the range

less or equal two times the connectivity of a space, rational homotopy is the same as

rational cohomology. As shown in [138], the connectivity of the Thom space MSO(r)

is (r − 1). Therefore, there are isomorphisms for all r ≥ n+ 2 of the form

πn+r

(
MSO(r),∞

)
⊗Q

∼=−→ H̃n+r
(
MSO(r);Q

)
.

From Equation (2.3.63) we also have the Thom isomorphisms

Hn
(
BSO(r);Q

)
−→ H̃n+r

(
MSO(r);Z

)
.

Thus, for all n ≥ 0 it follows that

Hn
(
BSO(r);Q

) ∼= πn+r

(
MSO(r),∞

)
⊗Q ∼= Ωn ⊗Q. (2.3.64)

Equation (2.3.64) together with BSO = limr→∞ BSO(r) yields – after taking the
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appropriate limits on n – an isomorphism

Ω∗ ⊗Q
∼=−→ H∗(BSO;Q

)
. (2.3.65)

Equation (2.3.65) shows that the study of genera is equivalent to studying rational

homomorphisms H∗(BSO;Q) → Q. However, the cohomology ring H∗(BSO;Q) =

Q[p1,p2, . . . ] is easy to understand: it is a polynomial ring over Q generated by the

Pontrjagin classes {pi} of the universal classifying bundle ESO → BSO [139]. The

ring isomorphism Ω∗ ⊗ Q → H∗(BSO;Q) identifies for all 1 ≤ i ≤ k the Pontrjagin

classes of a 4k-manifold M by pull-back pi(M) = f ∗pi under the classifying map

f :M → BSO for the tangent bundle TM .

Thus, the structure of the ring Ω∗ ⊗ Q and its dual space of rational homomor-

phisms homQ(Ω∗ ⊗ Q;Q) is now easily understood: the latter consists of sequences

of homogeneous polynomials in the Pontrjagin classes with coefficients in Q. In

fact, given a genus ψ ∈ homQ(Ω∗ ⊗ Q;Q), there exists a homogeneous polynomial

Lk ∈ Q[p1, . . . ,pk] for every degree 4k such that for any manifold M ∈ Ω4k we have

ψ([M ]) = Lk(p1, . . . , pk)[M ] ∈ Q , (2.3.66)

where the evaluation is carried out according to Equation (2.3.61) and Equation (2.3.62)

[139]. Hence, the homomorphism ψ is associated to a sequence of homogeneous poly-

nomials {L1, L2, . . . } ⊆ Q[p1,p2, . . . ], where Lk is homogeneous of degree 4k.

We summarize the results of this section in the following:

Theorem 2.3.15 (Rational cobordism ring). The rational oriented cobordism ring

Ω∗⊗Q is isomorphic to the cohomology ring H∗(BSO;Q). In particular, each element

of homQ(Ω∗ ⊗Q;Q) is determined by a sequence of homogeneous polynomials in the

Pontrjagin classes.
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The rich structure of H∗(BSO;Q) also tells us how to find a suitable sequence of

generators for Ω∗ ⊗Q. Such a sequence is given by the cobordism classes of the even

dimensional complex projective spaces (thought of as real 4k-manifolds) [139]. Thus,

each homomorphism is completely determined by its values on the even dimensional

complex projective spaces, i.e., the generators of Ω∗ ⊗Q.

2.3.3 The Hirzebruch L-genus

We now have the perspective to characterize the signature in terms of the Pontr-

jagin numbers. Theorem 2.2.9 asserts that the signature is a cobordism invariant

sign(·) ∈ homQ(Ω∗ ⊗ Q;Q). Therefore, there must be a collection of polynomials

{Lk(p1, . . . , pk)}k∈N such that for any smooth, compact, oriented manifold of dimen-

sion 4k the signature is

sign(M) = Lk(p1, p2, . . . , pk)[M ] ,

where the evaluation is carried out according to Equation (2.3.61) and Equation (2.3.62).

The right hand side is called the Hirzebruch L-genus [61]. By Theorem 2.3.15, the

polynomials Lk have the general form

Lk = Lk(p1, p2, . . . , pk) =
∑

|(i)|=k

ℓ
(i)
k pi1 · · · pim . (2.3.67)

Let us explain how to compute a few of these L-polynomials: Theorem 2.2.9

asserts that the signature takes the value 1 on all even dimensional complex projective
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spaces. Thus, we have the sequence of equations

1 = sign(P2) = ℓ
(1)
1 p1[P2]

1 = sign(P4) = ℓ
(1,1)
2 p21[CP 4] + ℓ

(2)
2 p2[P4] ,

...

and relations arising from the multiplicativity. The total Pontrjagin class of the even

complex projective spaces are given by p(P2k) = (1 + H2)2k+1 with H2k+1 ≡ 0. Thus,

p1(P2) = 3H2 and using Equation (2.2.55) we obtain ℓ
(1)
1 = 1/3. Compare this result

with Example 2.3.1.

To find the polynomial L2, we observe that generators of Ω8 are given by P4 and

P2 × P2, with total Pontrjagin classes

p(P4) = 1 + 5H2 + 10H4 p(P2 × P2) = (1 + 3H2
1)(1 + 3H2

2) ,

where H2
1,H

2
2 are the generators of the respective copies of H4(P2;Z). Then we have

the following system of linear equations

1 = ℓ
(1,1)
2 p21[P4] + ℓ

(2)
2 p2[P4]

1 = ℓ
(1,1)
2 p21[P2 × P2] + ℓ

(2)
2 p2[P2 × P2] ,

which evaluates to the system

1 = 25ℓ
(1,1)
2 + 10ℓ

(2)
2 , 1 = 18ℓ

(1,1)
2 + 9ℓ

(2)
2 .

The solution is ℓ
(1,1)
2 = − 1

45
, ℓ

(2)
2 = 7

45
. Thus we can conclude

L1 =
1

3
p1 , L2 =

1

45
(7p2 − p21) .
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In general, the homogeneous polynomials Lk are found by solving a system of

linear equations on the generators of Ω4k. These are the products P2i1 × · · · × P22im

where (i1, . . . , im) ranges over all partitions of k. The calculation can be formalized

with the help of the so called multiplicative sequences. Results in [61] show that the

coefficients of all polynomials {Lk}k∈N can be efficiently stored in a formal power

series Q(z) =
∑∞

i=0 biz
i with b0 = 1 that satisfies Q(zw) = Q(z)Q(w).

To find the multiplicative sequence from a formal power series Q(z), first de-

fine the Pontrjagin roots by the formal factorization of the total Pontrjagin class∑k
i=1 piz

i =
∏k

i=1(1 + tiz), that is, consider the Pontrjagin classes the elementary

symmetric functions in variables t1, . . . , tk of degree 2. Thus, given a 4k-manifold M ,

we have the formal factorization of the total Pontrjagin class

p(M) = 1 + p1 + p2 + . . . pk = (1 + t1)(1 + t2) · · · (1 + tk),

whence

p1 = t1 + · · ·+ tk , p2 = t1t2 + t1t3 + · · ·+ tk−1tk , . . .

Then from the multiplicative property of Q we obtain

Q
(
p(M)

)
= Q(1 + t1)Q(1 + t2) · · ·Q(1 + tk).

Putting the formal variable z back into the equation, it turns out that the equation

k∑
i=0

Li(p1, . . . , pi) z
i +O(zk+1) =

r∏
i=1

Q(1 + tiz)

can be used to calculate the polynomial Lk recursively. The following result is crucial:
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Lemma 2.3.16 ([61, 102]). The coefficient of pi1 · · · pim in Lk in Equation (2.3.67)

corresponding to the partition (i) = (i1, . . . , im) with i1 ≥ · · · ≥ im and
∑
ia = k is

calculated as follows: let s(i)(p1, . . . , pk) be the unique polynomial such that

s(i)(p1, . . . , pk) =
∑

ti11 · · · timm .

Then the coefficient of pi1 · · · pim in Lk is s(i)(b1, . . . , bk), where Q(z) =
∑∞

i=0 biz
i is

the formal power series of the genus. Furthermore, the polynomial Lk is given by

Lk(p1, . . . , pk) =
∑
(i)

s(i)(b1, . . . , bk) p(i) ,

where the sum is over all partitions (i) of k and p(i) = pi1 · · · pim.

Lemma 2.3.16 allows one to compute the multiplicative sequence of polynomials

{Lk(p1, . . . , pk)}k∈N from a formal power series Q(z), and conversely, from a given for-

mal power seriesQ(z), the multiplicative sequence of polynomials {Lk(p1, . . . , pk)}k∈N.

This leads to the following [61]:

Theorem 2.3.17 (Hirzebruch signature theorem). Let {Lk(p1, . . . , pk)}k∈N be the

multiplicative sequence of polynomials corresponding to the formal power series

Q(z) =

√
z

tanh
√
z
= 1 +

1

3
z − 1

45
z2 +

2

945
z3 − 1

4725
z4 + . . . .

For any smooth, compact, oriented manifold M of dimension 4k the signature is

sign(M) = Lk(p1, p2, . . . , pk)[M ] .

Let us illustrate the use of the theorem in the following: A computation with the
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first two symmetric polynomials gives

s2(p1, p2) = p21 − p2 = t21 + t22 , s1,1(p1, p2) = p2 = t1t2 .

Hence, we have

L2 = s2(1/3,−1/45)p2 + s1,1(1/3,−1/45)p21 =
1

45
(7p2 − p21) ,

which confirms the computation for L2 above. Similarly, one checks that

s3(p1, p2, p3) = p31 − 3p1p2 + 3p3 = t31 + t32 + t33 ,

s2,1(p1, p2, p3) = p1p2 − 3p3 = t21t2 + t1t
2
2 + . . . ,

s1,1,1(p1, p2, p3) = p3 = t1t2t3 ,

and one obtains

L3 =
1

945

(
62p3 − 13p2p1 + 2p31

)
.

For P6 we have p1 = 7H2, p2 = 21H4, p3 = 35H6 so that L3[P6] = 1 when using

Equation (2.2.55).

We close this section with several remarks on the Hirzebruch signature theorem:

• The signature is an integer, so the Hirzebruch signature theorem imposes

non-trivial integrality constraints on the rational combinations of the Pontrjagin

numbers determined by the L-polynomials.

• The signature is an oriented homotopy invariant, whereas the L-polynomials are

expressed in terms of Pontrjagin classes that rely heavily on the tangent bundle,

and thus on the smooth structure, and orientation. This fact was used by Milnor to
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detect inequivalent differentiable structures on the 7-sphere [101]. According to a

theorem of Kahn [73], the L-genus is (up to a rational multiple) the only rational

linear combination of the Pontrjagin numbers that is an oriented homotopy

invariant.

• Combining Theorem 2.2.10 and Theorem 2.3.17 implies that for a compact,

oriented Riemannian manifold M of dimension 4k, the index of the chiral Dirac

operator /D is given by

ind( /D) = Lk(p1, . . . , pk)[M ] =

∫
M

Lk . (2.3.68)

This statement is a special case of the celebrated Atiyah-Singer index theorem,

which proves that for an elliptic differential operator on a compact manifold, the

analytical index equals the topological index defined in terms of characteristic

classes [3].

•The signature complex can be twisted by a complex vector bundle ξ →M of rank

r [1, 41]. The coupling of the complexified signature complex to the vector bundle ξ

yields a twisted chiral Dirac operator

/D
ξ
: C∞

+ (M,Λ∗ ⊗ ξ) → C∞
− (M,Λ∗ ⊗ ξ) .

For simplicity, we will assume c1(ξ) = 0 and that the dimension of the manifold M

is 4. Then the effect of the twisting on the index is as follows:

ind( /D
ξ
) = r · ind( /D)−

∫
M

c2(ξ) , (2.3.69)

where c2(ξ) is the second Chern class of the complex bundle ξ →M of rank r.
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CHAPTER 3

The fibrewise signature operator on elliptic surfaces

The focus of this chapter is to study aspects of elliptic curves E that depend only on

their complex structure

τ =

∫
α
ω∫

β
ω

∈ H

by use of Kodaira’s functional invariant in Equation (2.1.3). Here α, β ∈ H1(E ,Z) is

a symplectic basis.

As was discussed in §2.1.2, the functional invariant determines a Jacobian elliptic

fibration up to quadratic twist of the Weierstrass model. The functional invariant is

still quite powerful, as it provides reference to a universal family of elliptic curves,

described by an explicit Weierstrass model in Equation (3.1.8). The total space of this

family is a singular rational elliptic surface such that a map between two Jacobian

elliptic surfaces factor through their functional invariants.

Using the explicit form of this universal family, we study how the signature of a

smooth elliptic curve varies as a function of its complex structure. From more or less

the definition of the signature in §2.2, the signature of E vanishes, sign(E) = 0. Thus,

a more refined quantity is required to investigate this behavior.

The primary object of study is that of the determinant line bundle Det ∂̄ → J∗

associated to the Hodge de Rham Laplacian ∆H = −4∂∂̄ from a choice of conformal

class of flat Riemannian metric, introduced in §3.1.1. This line bundle, defined over

the base J∗ of the universal family of elliptic curves, is equipped with a certain smooth



72

metric, the Quillen metric, that smooths out the potential jumps in dimension of

kernel and cokernel of ∆H . We compute the Quillen norm of a holomorphic trivializing

section s : J∗ → Det ∂̄ in Proposition 3.1.19.

This computation allows us to compute the generalized first Chern class c1(Det ∂̄),

which is done in Theorem 3.1.21 from the Quillen norm computed in 3.1.19 via

Quillen’s anomaly theorem 3.1.20. This is a concrete instance of the Riemann-Roch-

Grothendieck-Quillen (RRGQ) formula, and provides a measure of the so-called local

and global anomaly associated to the ∂̄ operator in physics. The computation uses

known techniques for computing such anomalies from determinant line bundles, but

to our knowledge this computation had not been previously carried out. Using the

functional invariant, the anomaly is pulled back to a generic rational elliptic surface

/ elliptic K3 π : Z → B surface with only I1 fibres, to which the ∂̄ operator can be

extended to the entire fibration.

To resolve this anomaly, we utilize the algebro-geometric construction of the

Poincaré line bundle in §3.2.2, constructing a rank-2 SU(2) bundle that soaks up

the zero modes of the ∂̄ operator by use of the twisted RRGQ formula. This result,

Theorem 3.2.28, is the main result of this chapter. In the case of the generic elliptic

K3 surface with 24 I1 fibres, the global anomaly is resolved via the insertion of D7

branes, as is required in generic 8D F theory compactifications. In this way, we see

that our analysis connects with known examples of anomaly cancellations in physics,

and can be in fact viewed as the genesis of D7 brane insertions.

3.1 Vertical signature operator on the j-line

In this section we consider the family of (complexified) signature operators { /Dg} –

where we denote the operators as chiral Dirac operators defined in Section 2.2.3 –

acting on sections of suitable bundles over a fixed even-dimensional manifoldM , with
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the operators being parameterized by (conformal classes of) Riemannian metrics g.

We will focus on the simplest case, when M is a flat two-torus, and g varies over the

moduli space M of flat metrics.

Given a two-torus M equipped with a complex structure τ ∈ H, we identify

M = C/⟨1, τ⟩ where ⟨1, τ⟩ is a rank-two lattice in C. This is done by identifying

opposite edges of each parallelogram spanned by 1 and τ in the lattice to obtain

M = C/⟨1, τ⟩. We endow M with a compatible flat torus metric g that descends

from the flat metric on C. Following Section 2.2.3 we define an operator D = d + δ

on the even dimensional manifold M . The complexified signature operator, written

as chiral Dirac operator /Dτ , is obtained from D in Equation (2.2.59). The subscript

τ reminds us of the dependence on the metric in the definition of δ. We ask: as τ

varies, what is the behavior of the family of Dirac operators (acting on complexified

differential forms)

/Dτ : C∞
+ (M,Λ∗) → C∞

− (M,Λ∗) ?

A more refined question is the following: consider a Jacobian elliptic surface, given

as a holomorphic family of elliptic curves Et (some of them singular) over the complex

projective line P1 ∋ t; the exact definition and the relation between τ and t will be

discussed below. The numerical index of the chiral Dirac operator /Dt vanishes since

the signature of each smooth fiber Et, is zero – a smooth torus forms the boundary of a

smooth compact 3-manifold. Thus, the numerical index does not yield any interesting

geometric information.

As a more refined invariant, we are interested in the determinant line bundle

Det /D → P1 associated with the family of Dirac operators /Dt, and its first Chern

class c1(Det /D). As a generalized cohomology class, this class will measure the so-

called local and global anomaly, revealing crucial information about the family of
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operators /Dt, and it is this quantity that we will be studying for the remainder of

this chapter.

3.1.1 The determinant line bundle

For an elliptic differential operator /D on a compact manifold M , the kernel and

cokernel are finite dimensional vector spaces; thus, one can define the one-dimensional

vector space

Det /D = (Λmax ker /D)∗ ⊗ (Λmax coker /D). (3.1.1)

The vector space Det /D is the dual of the maximal exterior power of the index Ind /D

of D, that is, the formal difference of ker /D and coker /D, given by

Ind /D = ker /D − coker /D.

Let π : Z → B be a smooth fibre bundle with compact fibers, and E and F be

smooth vector bundles on Z, with a smooth family of elliptic operators /D = ( /Dt)t∈B

acting on the fibers π−1(t) as

/Dt : C
∞(π−1(t), E) → C∞(π−1(t), F ) .

Even though the dimensions of the kernel and cokernel of /Dt can jump, it turns out

that that there is a canonical structure of a differentiable line bundle on the family

of one-dimensional vector spaces {Det /Dt}t∈B [14]. Equivalently, we can say that the

one-dimensional vector spaces {Det /Dt}t∈B patch together to form a line bundle by

Det /D → B. We remark that the formal difference used to define the index Ind /D

also makes sense in the context of K-theory, i.e., as a well-defined index bundle, an
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element of the K-theory group K(B) [2].

We choose a smooth family of Riemannian metrics on the fibers π−1(t), and smooth

Hermitian metrics on the bundles E and F . Then, for any t ∈ B, the adjoint operator

/D
†
t is well defined, and the vector spaces ker /Dt and ker /D

†
t have natural L2 metrics,

which in turn define a metric ∥.∥L2 on Det /Dt. However, because of the jumps in

the dimensions of the kernel and cokernel, this does not define a smooth metric on

the line bundle Det /D → B. Instead, a way to assign a smooth metric is the Quillen

metric, which uses the analytic torsion of the family ( /Dt)t∈B to smooth out these

jumps [14]. The Quillen metric on Det /D → B is given by

∥.∥Q = (det′ /D
†
t
/Dt)

1
2 ∥.∥L2 ,

where det′ /D
†
t
/Dt is the analytic torsion of the family of operators ( /Dt)t∈B. It is crucial

that the operators ∆t = /D
†
t
/Dt form a family of positive, self-adjoint operators acting

on sections of a vector bundle over compact manifolds.

The analytic torsion, or regularized determinant of a positive, self-adjoint operator

∆ acting on sections over a compact manifold is defined as follows: by the hypotheses

on ∆, it follows that the operator ∆ has a pure point spectrum of eigenvalues, denoted

by {λj} ⊂ R≥0. If there were only finitely many eigenvalues, then we could write down

the identity

d

ds

∑
λj ̸=0

λ−s
j

∣∣∣∣∣
s=0

= −
∑
λj ̸=0

log λj,

and compute the product of eigenvalues, i.e., the determinant of the operator ∆, as

∏
λj ̸=0

λj = exp

∑
λj ̸=0

log λj

 .
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Since there are infinitely many eigenvalues, we define a ζ-function instead, given by

ζ∆(s) =
∑
λj ̸=0

λ−s
j .

It turns that ζ∆(s) is a well defined holomorphic function for Re(s) ≫ 0 with a

meromorphic continuation to C such that s = 0 is not a pole of ζ∆ [14, 117]. Then,

the regularized determinant det′ ∆ of ∆ is defined as

det′∆ = exp
(
− ζ ′∆(0)

)
, (3.1.2)

where the prime indicates that the zero eigenvalue has been dropped.

3.1.2 The analytic torsion for families of elliptic curves

Let us compute the analytic torsion for the Laplacian ∆H = (d+δ)2 from Section 2.2.3

in the special situation where the even dimensional manifold M is an elliptic curve

E , i.e., a flat two-torus equipped with a complex structure. We use the identification

E ∼= C/Λτ , the local coordinate z = x+ iy on C, and the notation ∂ = ∂z and ∂̄ = ∂z.

We have the following:

Lemma 3.1.18. Let E ∼= C/Λτ be a smooth elliptic curve endowed with the compatible

flat torus metric g. The Laplacian when restricted to C∞(E) equals ∆H = −4∂∂̄, and

its analytic torsion is given by

det′∆H =

(
Im(τ)

2π

)2

|∆τ |
1
6 , (3.1.3)

where ∆τ is the modular discriminant of the elliptic curve E in Equation (2.1.4).

Moreover, the same answer holds for ∆H restricted to C∞(E , T ∗
CE (1,0)).

Proof. On E the operator −∆H is a positive, self adjoint operator. Endowing Eτ with
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its canonical flat metric shows that for a local coordinate z = x + iy, we have the

scalar Laplacian as

∆H = −(∂2x + ∂2y) = −4

(
1

2
(∂x − i∂y)

1

2
(∂x + i∂y)

)
= −4∂z∂z = −4∂∂̄.

The equality holds for the Laplacian acting on k-forms since one checks that

∆H : f 7→ −4∂z∂zf , f ∈ C∞(E) ,

∆H : ϕ = (fdz + gdz) 7→ −4(∂z∂zfdz + ∂z∂zgdz) , ϕ ∈ C∞(E ,Λ1) ,

∆H : ω = fdz ∧ dz 7→ −4∂z∂zfdz ∧ dz , ω ∈ C∞(E ,Λ2) .

A function φ with a periodicity given by

φ(x+ 1, y) = φ(x, y) , φ(x+Reτ, y + Imτ) = φ(x, y) ,

descends to a well defined function on E . For n1, n2 ∈ N such a function is given by

φn1,n2(x, y) = exp 2πi

(
n1x+

(n2 − n1Reτ)

Imτ
y

)
.

In fact, the functions φn1,n2 constitute a complete system of eigenfunctions for ∆H

with the eigenvalues

λn1,n2 =

(
2π

Imτ

)2

|n1τ − n2|2 .

Notice that we have ∆Hφn1,n2 = λn1,n2φn1,n2dz ∧ dz and then use the Kähler form to
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identify dz ∧ dz with 1. We define a ζ-function ζ(s) by setting

ζ(s) =
∑′

n1,n2

1

|n1τ − n2|2s
, (3.1.4)

where the prime indicates that the summation does not include n1 = n2 = 0. One

checks that ζ(s) is absolutely convergent for Re(s) > 1, has a meromorphic extension

to C, and 0 is not a pole. It was shown in [117] that ζ(0) = −1. The regularized

determinant of ∆H is then given by

ln det∆H = −

[
1(

2π
Imτ

)2s ζ(s)
]′

= −ζ ′(0) + ln

(
2π

Imτ

)2

ζ(0) .

It was shown in [117] that exp [−ζ ′(0)] = |η(τ)|4 using the Kronecker limit formula

where the Dedekind η-function is given by

η(τ) = e
πi τ
12

∞∏
r=1

(
1− e2πiτr

)
. (3.1.5)

It follows from Equation (2.1.4) that

det′ ∆H =

(
Im(τ)

2π

)2

|∆τ |
1
6 . (3.1.6)

A similar argument can be repeated for the sections

φn1,n2(z) dz ∈ C∞(E , T ∗
CE (1,0)) . (3.1.7)

Applying ∂̄ we obtain

−
( π

Imτ

)
(n1τ − n2) φn1,n2(z) dz ∧ dz .
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Contracting with the Kähler form and applying ∂ shows that the sections in Equa-

tion (3.1.7) form a complete system of eigenfunctions for ∆H restricted to the vector

space C∞(E , T ∗
CE (1,0)).

It follows from the definitions in Section 2.2.3 that

/D = (d+ δ)P+ = ∂̄† + ∂̄
∣∣∣
C∞

+ (M,Λ∗)
, /D

†
= (d+ δ)P− = ∂† + ∂

∣∣∣
C∞

− (M,Λ∗)
.

Recall that the kernel and cokernel of the chiral Dirac operator /D in Equation (2.2.59)

are given by selfdual and anti-selfdual generators of the deRham cohomology classes,

respectively, i.e., by elements of H∗
±(E ;C) = {ω ∈ H∗(E ;C) | α(ω) = ±ω}. On an

elliptic curve E , the forms 1− 1
2
dz∧dz and dz are selfdual; similarly the forms 1+ 1

2
dz∧

dz and dz are anti-selfdual where dz and dz are section of the holomorphic cotangent

bundle T ∗
CE (1,0) = KE , also called the canonical bundle, and the bundle T ∗

CE (0,1) = KE ,

respectively. These (anti-)selfdual differential forms descend to generators ofHr
+(E ;C)

and Hr
−(E ;C), respectively, for r = 0, 1.

We now consider the Jacobian elliptic surface π : S → P1 given by the Weierstrass

model

y2 = 4x3 − 27t(t− 1)3x− 27t(t− 1)5 , (3.1.8)

where t is the affine coordinate on the base curve with [t : 1] ∈ P1. This family was

considered in [133], and it can easily be shown to satisfy

∆(t) = 273t2(t− 1)9 , j(t) =
g32
∆

= t . (3.1.9)

The fibers over t = 0, 1,∞ are singular; in the language of Kodaira’s classification

result, the singular fibers over t = 0, 1,∞ correspond to fibers of type II, III∗, and
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I1, respectively. The total space S of Equation (3.1.8) is singular, and its minimal

desingularization is the rational elliptic surface S. It is a rational Jacobian elliptic

surface whose j-function is the coordinate on the base curve itself, it is also called

the universal family of elliptic curves. We call the base curve the j-line and denote

it by J = P1.

The elliptic fiber Et = π−1(t) given by Equation (3.1.8) is a smooth elliptic curve

with discriminant ∆(t) for t ∈ J∗ = J − {0, 1,∞}. The chiral Dirac operator /Dt

in Equation (2.2.59) on each smooth elliptic fiber Et is the sum /Dt = ∂̄t ⊕ ∂̄†t of the

operators

∂̄t : C
∞(Et)→ C∞(Et, KEt

)
, ∂̄†t : C

∞(Et, KEt
)
→ C∞(Et) ,

where KEt denotes the dual of the canonical bundle of Et. For our purposes, it is not

necessary to investigate both components of the operator /Dt; this follows from the

factorization of the Laplacian in Lemma 3.1.18. Thus, we will focus on the operator

∂̄t and its determinant line bundle Det ∂̄ → J∗.

It turns out that the vector spaces Hr
+(Et;C) and Hr

−(Et;C), respectively, for

r = 0, 1, all patch together to form smooth line bundles over J∗ with a smooth

Hermitian metrics. The vector spaces H0
+(Et;C) and H0

−(Et;C) each form a trivial

line bundle C → J∗. Similarly, the vector spaces KEt generated by dz on each elliptic

curve Et patch together to generate the bundle of vertical (1, 0)-forms KS|J → J in

§ 2.1.2. Since we have described the kernel and cokernel of the chiral Dirac operator

∂̄t, it follows from Equation (3.1.1) that for each t ∈ J∗ = J − {0, 1,∞} we have

fiberwise an identification

Det ∂̄t ∼= KS|J

∣∣∣
t
.
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Moreover, the Quillen metric induces a canonical holomorphic structure on the de-

terminant line bundle Det ∂̄ → J∗; see [14]. We have the following:

Proposition 3.1.19. Let s be the canonical holomorphic section of Det ∂̄ → J∗. For

each t ∈ J∗ = J − {0, 1,∞} the Quillen norm of the section s is given by

∥s∥2Q =
Im(τ)2

4π2
|∆(t)|

1
6 . (3.1.10)

Proof. For each t ∈ J∗ = J − {0, 1,∞} we identify Et = C/⟨1, τ⟩ such that j(τ) =

j(t) = t and ∆τ = ∆(t). We identify the one-form dx/y in §2.1.2 with dz in each

smooth fiber Et generating coker ∂̄t. Similarly, the constant function 1 generates ker ∂̄t.

We have ∥1∥2L2 = ∥dz∥2L2 = 2Im(τ), thus the canonical section s of ker ∂̄∗ ⊗ coker ∂̄

satisfies ∥s∥L2 = 1 and

∥s∥2Q = det′ ∂̄†t ∂̄t ∥s∥2L2 =
Im(τ)2

4π2
|∆τ |

1
6 ,

where we used Equation (3.1.3).

3.1.3 The RRGQ formula

We observe that since ∆(t) = 0 for t = 0, 1,∞, we have that the Quillen norm

vanishes at the punctures on J∗. The holomorphic determinant line bundle Det ∂̄ →

J∗ = P1 − {0, 1,∞} is locally trivial by means of the section s in Theorem 3.1.19

and in general does not extend to a bundle on the entire j-line J ∼= P1. Using the

section s we can compute the first Chern class of the bundle Det ∂̄ → J∗. We can

then extend the curvature form representing the first Chern class to the entire j-line

J by allowing so-called currents. These currents reflect the monodromy of s around

the punctures of J∗.

In general, let (ξ, ∥.∥) be a holomorphic vector bundle over a complex algebraic
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variety, equipped with a smooth Hermitian metric. Then there exists a unique con-

nection on ξ compatible with the holomorphic structure and the metric ∥.∥. From

Chern-Weil theory, there is a differential form that in the deRham cohomology rep-

resents the first Chern class c1(ξ, ∥.∥). We have the following result [12]:

Lemma 3.1.20. The representative in the de Rham cohomology of the first Chern

class c1(ξ, ∥.∥) is given by

c1
(
ξ, ∥.∥

)
=

1

2πi
∂∂̄ log ∥s∥2 (3.1.11)

where s is a nonzero holomorphic section of ξ.

Trying to extend the bundle from J∗ to J , the points where s vanishes can cause

problems, since for these points we might obtain current contributions to the cur-

vature, which are distribution-valued differential forms. Currents are defined as dis-

tribution forms arising from the classical Cauchy integral formula for single variable

complex analysis [55], such as

∂̄

(
1

2πi

dt

t

)
= δ(t=0) (3.1.12)

where δ(t=0) is the Dirac delta function centered at t = 0. The current contributions

in a generalized first Chern class encode the holonomy of the trivializing section

σ of the holomorphic determinant line bundle around the punctures of J∗. The

computation of the generalized first Chern class is achieved by the so-called Riemann-

Roch-Grothendieck-Quillen formula or RRGQ formula for short; see [7, 8, 13, 83]. In

the special situation of the Jacobian elliptic surface π : S → J ∼= P1 given by

Equation (3.1.8) and the holomorphic determinant line bundle Det ∂̄ → J∗ = J −

{0, 1,∞} constructed above, we have the following:
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Theorem 3.1.21 (RRGQ). In the situation described above, the generalized first

Chern class of the determinant line bundle Det ∂̄ → J∗ is given by

c1
(
Det ∂̄, ∥.∥Q

)
= − 1

12

(
2 δ(t=0) + 9 δ(t=1) + δ(t=∞)

)
+ c1(K) (3.1.13)

where c1(K) is the first Chern class of the line bundle K = π∗KS|J ∼= O(1) → J .

Proof. Recall that the Quillen norm of the canonical holomorphic section σ in Propo-

sition 3.1.19 is given by ∥s∥2Q = Im(τ)2

4π2 |∆(t)| 16 . The discriminant ∆(t) of the Weier-

strass equation defining the Jacobian elliptic surface π : S → J ∼= P1 was given in

Equation (3.1.9) where we found ∆(t) = 273t2(t−1)9 which vanishes at t ∈ {0, 1,∞}.

Plugging the canonical section s of Theorem 3.1.19 into Equation (3.1.11) and

applying the argument principle of Equation (3.1.12) yields

1

2πi
∂∂̄ log ∥s∥2Q = − 1

12

(
2δ(t=0) + 9δ(t=1) + δ(t=∞)

)
+ j∗

(
i

4πIm(τ)2
dτ ∧ dτ

)
,

where we used the j-function j : H/PSL(2,Z) → J with j(τ) = t. Since the Poincaré

metric on the hyperbolic upper half plane is given by

i

2πIm(τ)2
dτ ∧ dτ =

dx ∧ dy
πy2

,

and the j-function is a complex diffeomorphism, it follows that

j∗
(

i

2πIm(τ)2
dτ ∧ dτ

)
= c1

(
TCJ

(1,0)
)
.

We have J ∼= P1 and TCJ
(1,0) ∼= O(2). Since the first Chern class of products of

line bundles on J is additive, i.e., c1(ξ1 ⊗ ξ2) = c1(ξ1) + c1(ξ2) it follows that the

continuous part of c1(Det ∂̄) is the first Chern class of O(1). Using the construction
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of the relative canonical bundle in §2.1.2, the claim follows.

3.1.4 Extension as a meromorphic connection

The RRGQ formula is the key to studying the anomalies of the fiberwise Cauchy-

Riemann operator ∂̄t on a Jacobian elliptic surface. In particular, in the smooth

category the local anomaly is the first Chern class of the determinant line bundle

[14], and it is computed as the line bundle’s curvature tensor. Hence if the curvature

vanishes, then the bundle has no local anomaly. Conversely, Theorem 3.1.21 proves

that the determinant line bundle of the fiberwise Cauchy-Riemann operators ∂̄t on

the Jacobian elliptic surface π : S → J ∼= P1 given by Equation (3.1.8) has a non-

vanishing local anomaly.

Moreover, the current contributions encode the holonomy of the trivializing section

σ for the bundle Det ∂̄ → J∗ = J − {0, 1,∞} around the punctures over which the

Weierstrass model has singular fibers. This represents the global anomaly of the

bundle. To analyze the holonomy group we have the following:

Lemma 3.1.22. There is a flat holomorphic line bundle M∗ → J∗ with a Z12-

holonomy such that Det ∂̄ ∼= K ⊗M∗.

Proof. Since the first Chern class of products of line bundles on J∗ is additive, i.e.,

c1(ξ1 ⊗ ξ2) = c1(ξ1) + c1(ξ2), it follows from Equation (3.1.13) that Det ∂̄ ∼= K⊗M∗

where K is (the restriction of) the bundle K ∼= O(1) → J ∼= P1. The discriminant

∆(t) = 273t2(t − 1)9 vanishes at t0 ∈ {0, 1,∞}. At each point t0, we compute

the holonomy of ∆(t)1/12 (after fixing a base point of a smooth fiber) by encircling

the point t0 via the path t = t0 +
1
2
e2πiϵ and calculating the result as ϵ goes from

0 → 1. At t0 = 0, we obtain ∆1/12
(
t0 +

1
2

)
7→ eπi/3∆1/12

(
t0 +

1
2

)
. Similarly, at

t0 = 1, we obtain ∆1/12
(
t0 +

1
2

)
7→ eπi/2∆1/12

(
t0 +

1
2

)
, and at t0 = ∞, we obtain

∆1/12
(
t0 +

1
2

)
7→ eπi/6∆1/12

(
t0 +

1
2

)
. The smallest subgroup of U(1) that contains
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these generators is Z12. Furthermore, this holonomy is not present in the holomorphic

cotangent bundle on P1, we conclude that there is a flat line bundle M∗ with Z12-

holonomy.

We offer the following interpretation of the anomalies: when t ̸= 0, 1,∞, the

automorphism group of the elliptic curve Et is isomorphic to Z2. When j = 0, 1,∞,

the automorphism group is is isomorphic to Z4,Z6, and Z4, respectively [127]. These

points give rise to the global anomaly. The jumping behavior in the symmetry of the

elliptic fibre is also called the holomorphic anomaly ; see [14].

The flat holomorphic line bundle M∗ → J∗ can be extended to a line bundle

M → J with a flat meromorphic connection ∂̄t that has only regular singular points.

This follows from the Riemann-Hilbert correspondence which asserts that the restric-

tion to J∗ is an equivalence of categories between the category of flat meromorphic

connections on J with only regular singular points and holomorphic on J∗ and the

category of flat holomorphic connections on J∗ [32]. Here, it simply means that there

exists a trivialization on a flat line bundle M → J so that, when restricted to a

punctured disc D∗
t0
around any point t0 ∈ J − J∗, the ∂̄t-operator on M is given by

∂̄t

∣∣∣
D∗

t0

= ∂̄ − a dt

t− t0
+ η , (3.1.14)

where a ∈ C and η ∈ Ω1 is a holomorphic one-form on Dt0 . We have the following:

Proposition 3.1.23. The flat holomorphic line bundle M∗ → J∗ extends to a line

bundle M → J with a flat meromorphic connection and regular singular points over

J − J∗.

Proof. Let (M∗, ∂̄) be the flat holomorphic flat connection on J∗. When restricted

to a punctured disc D∗
t0

around a point t0 ∈ J − J∗, it is therefore determined by

some monodromy matrix A ∈ U(1). Taking logarithms, there exists a ∈ u(1) such
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that A = exp (2πia). Then, the meromorphic connection on Dt0 given by ∂̄− a dt
t−t0

has

flat sections of the form t 7→ v exp (a log (t− t0)) for any v ∈ C∗. These sections have

monodromy around t0 given by A = exp (2πia), so have their restriction to D∗
t0
.

.

3.2 Twisting and anomaly cancellation on generic elliptic K3 surfaces

The Riemann-Roch-Grothendieck-Quillen (RRGQ) formula has a twisted analogue,

similar to the twisted version of the signature theorem in Equation (2.3.69). However,

to state this formula we will replace the Jacobian elliptic surface S → J given by

Equation (3.1.8) with a Jacobian elliptic surface π : Z → B whose Weierstrass model

has only nodes, i.e., fibers of Kodaira-type I1; we will explain below how such a

surface can be constructed using Corollary 2.1.2. This setup has the advantage that

the total space of Equation (3.1.8) is smooth, and no additional blowups are needed

to move from its total space to Z.

Let ξ → Z be a holomorphic vector bundle of rank r with a smooth Hermitian

metric. Then, there is a unique unitary connection on ξ compatible with its holo-

morphic structure. Using this connection we can compute the Chern classes cj(ξ) for

j = 1, 2. We also obtain a twisted Cauchy-Riemann operator ∂ξt on any smooth ellip-

tic curve Et in the fibration π : Z → B coupled to the restriction of the holomorphic

bundle ξ given by

∂ξt : C
∞(Et, ξ∣∣∣

Et

)
→ C∞(Et, KEt ⊗ ξ

∣∣
Et

)
. (3.2.15)

For the family of twisted operators {∂̄ ξ
t }t∈B a determinant line bundle Det ∂̄ ξ → B

together with a Quillen metric ∥.∥Q can be constructed as before; see [1, 14]. The

analogue of Theorem 3.1.21 is the following:
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Theorem 3.2.24 (tRRGQ). In the situation described above, the generalized first

Chern class of the determinant line bundle Det ∂̄ ξ is given by

c1
(
Det ∂̄ ξ, ∥.∥Q

)
= r · c1

(
Det ∂̄, ∥.∥Q

)
−
∫
X|B

c2(ξ) , (3.2.16)

where c2(ξ) is the second Chern class of the holomorphic vector bundle ξ → Z of rank

r assumed to satisfy c1(ξ) = 0. Here,
∫
X|B c2(ξ) is understood as integrating a the

four-form c2(ξ) over the vertical fibers of π : Z → B.

Notice that Equation (3.2.16) is the generalization of Equation (2.3.69) for fam-

ilies. However, the last term on the right hand side of Equation (3.2.16) now yields

upon integration a two-form on the base of the fibration. As we will show, Theo-

rem 3.2.24 implies that we can choose the holomorphic vector bundle ξ in such a way

that we can cancel the local anomaly of the determinant line bundle.

3.2.1 The generic elliptic surface

As an application of Corollary 2.1.2, we will consider the case of the most generic

rational Jacobian elliptic surface Z → B ∼= P1. This is, a Jacobian elliptic fibration

whose only singular fibers are twelve nodes, i.e., fibers of Kodaira-type I1. This means

that the discriminant ∆(t) has 12 distinct simple roots, and we have

∆(t) =
12∏
j=1

(t− tj) , (3.2.17)

for the distinct points t1, . . . , t12 ∈ B, and we set B∗ = B − {t1, . . . , t12}. It was

shown in [114] that this Jacobian elliptic surface exists; it was denoted by #1 in the

complete classification of rational Jacobian elliptic surfaces in [114]. It follows from

general arguments in [77] that the total space of Equation (2.1.2) is rational and

smooth. Similarly, there is the Jacobian elliptic surface where g2 and g3 are generic
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polynomials of degree 8 and 12, respectively, and the total space of Equation (2.1.2)

is a smooth K3 surface. In this case, the singular fibers are 24 nodes, i.e., fibers of

Kodaira-type I1, and one has a discriminant ∆(t) with 24 distinct simple roots, i.e.,

∆(t) =
24∏
j=1

(t− tj) , (3.2.18)

for the distinct points t1, . . . , t24 ∈ B, and we set B∗ = B − {t1, . . . , t24}. We can

adopt the construction of the holomorphic determinant line bundle from Section 3.1.3

to obtain Det ∂̄ → B∗ in both cases. The only difference between the case n = 1

(rational surface) and n = 2 (K3 surface) is that the degree of the holomorphic

map j(t) = j(τ) is 1 or 2, respectively. We adopt the proofs of Theorem 3.1.21,

Lemma 3.1.22 and Proposition 3.1.23 to obtain the following:

Corollary 3.2.25. Let Z → B ∼= P1 be the Jacobian elliptic surface whose Weier-

strass model has 12n singular fibers of Kodaira-type I1 for n = 1 (rational surface) or

n = 2 (K3 surface). The generalized first Chern class of the determinant line bundle

Det ∂̄ → B∗ is given by

c1
(
Det ∂̄, ∥.∥Q

)
= − 1

12

(
12n∑
j=1

δ(t=tj)

)
+ c1(K) (3.2.19)

with K = π∗KZ|B ∼= O(n) → B. Moreover, there is a flat holomorphic line bundle

M∗ → B∗ with a Z12-holonomy such that Det ∂̄ ∼= K ⊗ M∗. In turn, the flat

holomorphic line bundle M∗ → B∗ extends to a line bundle M → B with a flat

meromorphic connection ∂̄t for t ∈ B∗ given by

∂̄t = ∂̄ − 1

12

12n∑
j=1

dt

t− tj
. (3.2.20)

Roughly speaking, pulling back the curvature from Det ∂̄ → J∗ has the effect of
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spreading out the current contributions over different points on the elliptic fibration,

while the total flux of the current contributions is fixed by deg∆ = 12n. In fact, the

canonical section s in Theorem 3.1.19 has a holonomy given by ∆1/12 7→ eπi/6∆1/12.

Hence, the nontrivial holonomy group is Z12 ⊆ U(1). We also make the following

remark.

It follows from results in [125, 85] that for a Jacobian elliptic surface Z → B ∼= P1

with only nodes in its Weierstrass model a suitable notion of a ∂̄-operator and its

regularized determinant can be established for all fibers, including the nodes, so that

the meromorphic connection in Equation (3.2.20) arises naturally as the meromorphic

connection of the extended determinant line bundle over B.

3.2.2 The Poincaré line bundle

Let π : Z → B ∼= P1 be the Jacobian elliptic surface with a zero-section denoted by

σ : B → Z and a Weierstrass model with 12n singular fibers of Kodaira-type I1 for

n = 1, 2. Then, Z is the total space of Equation (2.1.2), is smooth, and a rational

surface for n = 1 and a K3 surface for n = 2. This is important because it means

that we can simply ignore all singularities when constructing the fiber product of Z.

We also assume that the group of sections for the Jacobian elliptic surface Z admits

no two-torsion. This is to avoid that the restriction of a holomorphic SU(2)-bundle

ξ → Z of rank two to every fiber Et = π−1(t) can be an extension bundle.

We first build a rank-two SU(2)-bundle over a smooth elliptic curve E . It follows

from results in [4] that a rank-two vector bundle V → E is a (semi-stable) holomorphic

SU(2)-bundle if and only if V ∼= N1⊕N2 for two holomorphic line bundlesN1,N2 → E

with N1 ⊗ N2
∼= O. For simplicity, we assume that the line bundles N1,N2 have

degree zero. Then, there are unique points q1, q2 ∈ E such that N1,N2 each have a

holomorphic section vanishing at a point q1 and q2 respectively, and a simple pole at
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p = ∞, i.e., the neutral point of the elliptic group law. Using the group law on E ,

the condition N1 ⊗ N2 = O implies q1 + q2 = 0. Hence, we write q1 = q, q2 = −q,

and V = O(q − p) ⊕ O(−q − p). For each such a pair (q,−q) ∈ E × E , there is a

meromorphic function w = a0 − a2x on E given by Equation (2.1.2) with a0, a2 ∈ C

that vanishes at q and −q and has a simple pole at p. That is, we think of the points

±q ∈ E as given by the coordinates

x =
a2
a0
, y = ±

√
4

(
a2
a0

)3

− g2
a2
a0

− g3 .

We also introduce the Poincaré line bundle: for a smooth elliptic curve E , the

degree-zero holomorphic line bundles over a smooth elliptic curve E are parameterized

by E itself since each point q ∈ E corresponds to the line bundle O(q− p). We denote

by ∆ the diagonal in E × E . The Poincaré line bundle P → E × E is obtained from

the divisor

D = ∆− E × {p} − {p} × E ,

by setting P = OE×E(D) so that P|{q}×E ∼= P|E×{q} ∼= O(q − p).

Now let the elliptic curve E vary over the elliptic fibers Et of the Jacobian elliptic

surface Z → B ∼= P1 with t ∈ B such that the point at infinity in each fiber is given

by the zero section p = σ(t). Next, we consider a pair of points ±q which are the

solutions of w = a0−a2x = 0 where the coefficients ai are sections ai ∈ Γ(B,R⊗L−i)

for a non-trivial holomorphic line bundle R → B and the normal bundle L → B.

In this way, the vanishing locus of w ∈ Γ(B,R) defines a ramified double covering

CR ⊂ Z of B, called a spectral double cover.
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From the total space Z we form the fibre product, given by

Z ×B Z = {(z1, z2) ∈ Z × Z |π(z1) = π(z2)},

with a holomorphic projection map π̃ : Z ×B Z → B given by π̃(z1, z2) = π(z1); this

is well defined by virtue of the definition of Z ×B Z and π(z1) = π(z2). For t ∈ B, we

have π̃−1(t) = Et × Et with Et = π−1(t). From the spectral cover CR ⊂ Z we obtain,

by using the fibre product, the topological subspace CR×B Z ⊂ Z×B Z with z1 ∈ C.

The map π2 : CR ×B Z → Z obtained by forgetting z1 is a two-fold covering.

The equation z1 = z2 forms a divisor ∆ ⊂ Z ×B Z. The Poincaré line bundle

P → Z ×B Z on the Jacobian elliptic surface π : Z → B with section σ is obtained

from the divisor

D = ∆− Z × σ − σ × Z ,

by setting P = O(D) ⊗ π̃∗L where L → B is the aforementioned normal bundle of

the Jacobian elliptic fibration π : Z → B. By restriction, we obtain the restricted

Poincaré line bundle PR → C ×B Z. Using results of [47], we have the following:

Proposition 3.2.26. Given a spectral double cover CR ⊂ Z → B corresponding to

a non-trivial holomorphic line bundle R → B, the bundle

ξ = π2∗
(
PR
)
→ Z (3.2.21)

is a stable rank-two holomorphic SU(2) bundle over Z.

Proof. For any z ∈ Z which is not in the branching locus of π2 with t = π(z) ∈ B,
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we have CR,t = {y1, y2} and

ξz = P(y1,z) ⊕ P(y2,z) .

Thus, the restriction of ξ to Et = π−1(t) is a sum of degree-zero line bundles given by

ξ
∣∣∣
Et
= O

(
− q(t) + σ(t)

)
⊕O

(
q(t) + σ(t)

)
,

where ±q(t) are obtained as the solutions with x-coordinate given by w = a0(t) −

a2(t)x = 0. The restriction of ξ to any such fiber Et = π−1(t) carries a flat SU(2)

connection. At the branching points of π2 the preimage of t ∈ B is a point of

multiplicity two. Thus, the restriction ξ|Et is a non-trivial extension of a line bundle

by a second isomorphic line bundle. This restriction bundle admits no flat SU(2)

connection. To fit these two types of bundles together to form a holomorphic bundle

on Z we replace some of the flat bundles by non-isomorphic, S-equivalent bundles. It

follows from the results in [46] that after fitting these bundles together, we obtain a

stable bundle with a Hermitian SU(2) connection.

The following is a crucial computation in [47] which we cite without proof:

Lemma 3.2.27. In the situation of Proposition 3.2.26 we have π∗c2(ξ) = c1(R).

3.2.3 Cancelling the local anomaly

We now prove our main theorem:

Theorem 3.2.28. Let Z → B ∼= P1 be the Jacobian elliptic surface whose Weierstrass

model has 12n singular fibers of Kodaira-type I1 over {tj}12nj=1 for n = 1 (rational

surface) or n = 2 (K3 surface). Let CR ⊂ Z → B be the spectral double cover

corresponding to the line bundle R = O(2n) → B that yields the stable rank-two
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holomorphic SU(2) bundle ξ = π2∗
(
PR
)
→ Z. Then, the generalized first Chern class

of the determinant line bundle Det ∂̄ ξ → B∗ is given by

c1
(
Det ∂̄ ξ, ∥.∥Q

)
= −1

6

(
12n∑
j=1

δ(t=tj)

)
. (3.2.22)

In particular, there is no local anomaly.

Proof. In Theorem 3.2.24 we use the rank-two (r = 2) bundle ξ → Z constructed in

Proposition 3.2.26 with the contribution coming from the twist computed in Lemma 3.2.27

and Corollary 3.2.25. The continuous part of the first Chern class of the determinant

line bundle Det ∂̄ ξ → B∗ is given by

r · c1(K)− π∗c2(ξ) = r · c1(K)− c1(R) .

It follows from Corollary 3.2.25 that for R ∼= O(2n) the continuous part of the first

Chern class vanishes. Notice that a global section w ∈ Γ(B,R) (defining the rank-two

holomorphic SU(2) bundle ξ → Z) exists because the bundle O(2) is already very

ample and defines an embedding P1 ↪→ P2 by [z0 : z1] 7→ [z20 : z0z1 : z
2
1 ].

The global anomaly, represented by the current contributions in Equation (3.2.22),

is of critical importance in string theory. The traditional approach to producing

low-dimensional physical models out of high-dimensional theories such as the string

theories and M-theory has been to use a specific geometric compactification of the

“extra” dimensions and derive an effective description of the lower-dimensional theory

from the choice of geometric compactification. However, it has long been recognized

that there are other possibilities: for example, one can couple perturbative string

theory to an arbitrary superconformal two-dimensional theory (geometric or not) to

obtain an effective perturbative string compactification in lower dimensions. One way
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of making an analogous construction in non-perturbative string theory is to exploit

the nonperturbative duality transformations which relate various compactified string

theories (and M-theory) to each other. This idea was the basis of the construction of

F-theory [140].

In a standard compactification of the type IIB string, τ is a constant and D7-

branes are absent. Vafa’s idea in proposing F-theory [140] was to simultaneously allow

a variable τ and the D7-brane sources, arriving at a new class of models in which

the string coupling is never weak. Thus, one of the fundamental interpretations of

F-theory is in terms of the type IIB string, where it depends on three ingredients: an

PSL(2,Z) symmetry of the theory, a complex scalar field τ (the axio-dilaton) with

positive imaginary part (in an appropriate normalization) on which PSL(2,Z) acts

by fractional linear transformations, and D7-branes, which serve as a source for the

multi-valuedness of τ if τ is allowed to vary. To do so, one needs to know what

types of seven-branes have to be inserted. It turns out that there is a complete

dictionary between the different types of seven-branes which must be inserted and

the the possible singular limits in one-parameter families of elliptic curves given by

the work of Kodaira [77] and Néron [110].

The total space of the Jacobian elliptic surface π : Z → B ∼= P1 in the case

n = 2 (K3 surface) in Theorem 3.2.28 can now be interpreted as such an F-theory

background with 24 disjoint D7-branes inserted into the physical theory. In the

context of the physical description of the corresponding compactification of the type

IIB string theory, Theorem 3.2.28 provides an explanation why and where these D7-

branes have to be inserted: they had to be inserted at the points where ∆(t) = 0 in

order to cancel the current contributions of the generalized first Chern class of the

determinant line bundle which plays a key role in the description of the path integral

description of the physical theory.



95

CHAPTER 4

The Mixed-Twist Construction for Lattice Polarized K3 surfaces

In this chapter, we begin the study of Jacobian elliptic surfaces π : X → B via a

more refined functional invariant than Kodaira’s functional invariant j : B → P1, the

generalized functional invariant. As j is determined by the ramification data over

0, 1,∞ ∈ J , Kodaira’s functional invariant does not “see” the quadratic twist of the

fibration; the quadratic twist of X has the Weierstrass model

y2 = 4x3 − p(t)2g2x− p(t)3g3 ,

and shares the same functional invariant j. The generalized functional invariant,

introduced in 4.1.1, is a triple of numbers {i, j, α} that keeps track of the ramification

data over other points, and is fine enough to detect the quadratic twist.

This results in the mixed-twist construction, and is fundamental for the remain-

ing chapters in the dissertation. Starting with the Weierstrass model of a rational

elliptic surface, the mixed-twist construction associated to the generalized functional

invariant {i, j, α} = {1, 1, 1} returns the quadratic twist family after quotienting by

a canonical Nikulin involution. The resulting Weierstrass model is that of an elliptic

K3 surface, which is the primary object of study through the first half of this chapter.

In particular, we study the mixed-twist construction for a two parameter family

of rational elliptic surfaces Sc,d → P1 that results in the four parameter family Xa,b,c,d

of Yoshida surfaces (Lemma 4.1.32). This allows us in Theorem 4.1.34 to explicitly
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identify the lattice polarization L ↪→ ΛK3 and construct the moduli space ML. This

family is birational to the famous double sextic family Xx1,x2,x3,x4 introduced in §2.1.7

(Proposition 4.1.33), which extends to a biholomorphism of the respective moduli

spaces (Corollary 4.1.35).

Subsequently, we produce convenient restrictions of the moduli a, b, c, d that result

in extensions of the lattice polarization to Picard rank ρ = 17, 18, 19 in §4.2. The

explicit lattice polarization L′,L′′,L′′′ is identified in each subsequent case, as well as

the moduli space ML′ ,ML′′ ,ML′′′ . We identify as well the monodromy group in each

subsequent case. The latter two cases, in Picard rank ρ = 18, 19, are identified with

previous work of Clinger, Doran, and Malmendier [23] and Hoyt [67], respectively.

The main result of this section is Theorem 4.2.53, which summarizes the relations

described here.

Ultimately, our primary motivation is to study the Picard rank ρ = 17 case - that

of the twisted Legendre pencil, introduced in §2.1.8 - which was partially analyzed

by Hoyt in [69]. Our analysis in this chapter sets the stage for the remainder of the

dissertation, where we in subsequent chapters complete the analysis initialized by

Hoyt by geometrizing the moduli space ML′ .

The second half of the chapter begins in §4.3, where use the GKZ formalism

to study the univariate families of mirror manifolds of the deformed Fermat family

of hypersurfaces in string theory using the generalized functional invariant. In this

case, while the initial GKZ data produced is resonant (and thus more difficult to

study directly), we show how the mixed-twist construction can be used to produce a

secondary set of non-resonant GKZ data that allows us to computed the Picard-Fuchs

operators.

The utility of this non-resonant data is the explicit computation of the monodromy

matrices for the mirror family, which is done in §4.3.4. This computation reproduces
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the monodromy computed by Candelas et al. [16] and Chen et al. [17] up to conjugacy.

4.1 Mixed-twist construction for multi parameter K3 surfaces

In this section, we use the mixed-twist construction to obtain a multi-parameter fam-

ily of K3 surfaces of Picard-rank ρ ≥ 16. Upon identifying a particular Jacobian

elliptic fibration on its general member, we find the corresponding lattice polariza-

tion, the moduli space, and the Picard-Fuchs system for the family with its general

monodromy group. We construct a sequence of restrictions that lead to extensions

of the polarization keeping the polarizing lattice two-elementary. We show that the

Picard-Fuchs operators under these restrictions coincide with well-known hypergeo-

metric systems, the Aomoto-Gel’fand E(3, 6) system (for ρ = 16, 17), Appell’s F2

system (for ρ = 18), and Gauss’ hypergeometric functions of type 3F2 (for ρ = 19).

4.1.1 The generalized functional invariant

We first recall the generalized functional invariant of the mixed-twist construction

studied by Doran & Malmendier [40], first introduced by Doran [38]. A generalized

functional invariant is a triple (i, j, α) with i, j ∈ N and α ∈
{

1
2
, 1
}
such that 1 ≤ i, j ≤

6. To this end, the generalized functional invariant encodes a 1-parameter family of

degree i + j covering maps P1 → P1, which is totally ramified over 0, ramified to

degrees i and j over ∞, and simply ramified over another point t̃. For homogeneous

coordinates [v0 : v1] ∈ P1, this family of maps (parameterized by t̃ ∈ P1 − {0, 1,∞})

is given by

[v0, v1] 7→ [cijv
i+j
1 t̃ : vi0(v0 + v1)

j], (4.1.1)

for some constant cij ∈ C×. For a family π : X → B with Weierstrass models given

by Equation (2.1.18) with complex n-dimensional fibers and a generalized functional
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invariant (i, j, α) such that

0 ≤ degt(g2) ≤ min

(
4

i
,
4α

j

)
, 0 ≤ degt(g3) ≤ min

(
6

i
,
6α

j

)
, (4.1.2)

Doran & Malmendier showed that a new family π̃ : X̃ → B can be constructed

such that the general fiber X̃t̃ = π̃−1(t̃) is a compact, complex (n + 1)-manifold

equipped with a Jacobian elliptic fibration over P1 × S. In the coordinate chart

{[v0 : v1], (u1, . . . , un−1)} ∈ P1 × S the family of Weierstrass models Wt̃ is given by

ỹ2 = 4x̃3 − g2

(
cij t̃v

i+j
1

vi0(v0 + v1)j
, u

)
v40v

4−4α
1 (v0 + v1)

4αx̃

− g3

(
cij t̃v

i+j
1

vi0(v0 + v1)j
, u

)
v60v

6−6α
1 (v0 + v1)

6α

(4.1.3)

with cij = (−1)iiijj/(i + j)i+j. The new family is called the twisted family with

generalized functional invariant (i, j, α) of π : X → B. It follows that conditions

(4.1.2) guarantee that the twisted family is minimal and normal if the original family

is. Moreover, they showed that if the Calabi-Yau condition is satisfied for the fibers

of the twisted family if it is satisfied for the fibers of the original.

The twisting associated with the generalized functional invariant above is referred

to as the pure twist construction; we may extend this notion to that of a mixed

twist construction. This means that one combines a pure twist from above with a

rational map B → B, thus allowing one to change locations of the singular fibers

and ramification data. This was studied in [40, Sec. 8] for linear and quadratic

base changes. We may also perform a multi-parameter version of the mixed twist

construction for a generalized functional invariant (i, j, α) = (1, 1, 1). For us, it will
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be enough to consider the two-parameter family of ramified covering maps given by

[v0 : v1] 7→ [4av0(v0 + v1) + (a− b)v21 : 4v0(v0 + v1)], (4.1.4)

such that for a, b ∈ P1 − {0, 1,∞} with a ̸= b the map in Equation (4.1.4) is totally

ramified over a and b. We will apply the mixed twist construction to certain (families

of) rational elliptic surfaces X → P1. In [40, Sec. 5.5] the authors showed that the

twisted family with generalized functional invariant (1, 1, 1) in this case is birational

to a quadratic twist family of X → P1. We will explain the relationship in more

detail and utilize it in the construction of the associated Picard-Fuchs operators in

the next section.

4.1.2 Quadratic twists of a rational elliptic surface

A two-parameter family of rational elliptic surfaces Sc,d → P1 is given by the affine

Weierstrass model

y2 = 4x3 − g2(t)x− g3(t), (4.1.5)

where g2(t) and g3(t) are the respective degree four and degree six polynomials

g2 =
4

3

(
t4 − (2c+ d+ 1)t3 + (c2 + cd+ d2 + 2c− d+ 1)t2 − c(c− d+ 2)t+ c2

)
,

g3 =
4

27

(
t2 − (c− d+ 2)t+ 2c

) (
t2 − (c+ 2d− 1)t− c

) (
2t2 − (2c+ d+ 1)t+ c

)
.

Assuming c, d ̸= 0, 1,∞, and c ̸= −d, Equation (4.1.5) defines a rational elliptic

surface with six singular fibers of Kodaira type I2 occurring at t = 0, 1,∞, c, c + d,

and c/(d− 1). We have the following:

Lemma 4.1.29. The rational elliptic surface S = Sc,d in Equation (4.1.5) is bira-
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tionally equivalent to the twisted Legendre pencil given by

ỹ2 = x̃(x̃− 1)(x̃− t)(t− c− dx̃). (4.1.6)

Proof. The proof follows by direct computation using the transformation:

x =
3t (t− c)

3x̃+ t2 + (d+ 1− c) t− c
, y =

3ỹt (t− c)

2 (3x̃+ t2 + (d+ 1− c) t− c)2
.

A standard quadratic twist applied to a rational elliptic surface can be identified

with Doran & Malmendier’s mixed-twist construction with generalized functional

invariant (i, j, α) = (1, 1, 1). The two-parameter family of ramified covering maps in

Equation (4.1.4) is totally ramified over a, b ∈ P1 − {0, 1,∞}. We also require that

a, b ̸∈ {c, c+ d, c/(d− 1)}, a ̸= b. We now apply the mixed-twist construction to the

rational elliptic surface S:

Proposition 4.1.30. The mixed-twist with generalized functional invariant (i, j, α) =

(1, 1, 1) applied to the rational elliptic surface in Equation (4.1.5) yields the family of

Jacobian elliptic K3 surfaces Xa,b,c,d → P1 given by

ŷ2 = 4x̂3 − (t− a)2(t− b)2g2(t)x̂− (t− a)3(t− b)3g3(t). (4.1.7)

Proof. In affine base coordinates [v : 1] ∈ P1, the map f : P1 → P1 from the mixed-

twist construction with generalized functional invariant (i, j, α) = (1, 1, 1) in Equa-

tion (4.1.4) is given by

f(v) = a+
a− b

4v(v + 1)
.

The pullback of the Weierstrass model for the two-parameter family of the rational
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elliptic surfaces in Equation (4.1.5) along the map t = f(v) is easily checked to yield

a four-parameter family of Jacobian elliptic K3 surfaces X̃a,b,c,d → P1. On X̃ =

X̃a,b,c,d, we have the anti-symplectic involution ı induced by the base transformation

v 7→ −v − 1, and the fiberwise hyper-elliptic involution −id. The composition map

ȷ = −id ◦ ı leaves the holomorphic two-form ηX̃ ∈ H0(ωX̃) invariant, ȷ∗ηX̃ = ηX̃.

Hence, ȷ : X̃ → X̃ is a Nikulin involution and the minimal resolution of the quotient

X̃/ȷ is the four parameter family X = Xa,b,c,d → P1 of Jacobian elliptic K3 surfaces

given by the Weierstrass model in Equation (4.1.7).

A direct computation yields the following:

Lemma 4.1.31. Equation (4.1.7) defines a Jacobian elliptic fibration π : X → P1

on a general X = Xa,b,c,d with two singular fibers of Kodaira type I∗0 over t = a, b,

six singular fibers of Kodaira type I2 over t = 0, 1,∞, c, c+ d, and c/(d− 1), and the

Mordell Weil group MW(X, π) = (Z/2Z)2.

The following echoes Lemma 4.1.29 and provides a convenient normal form for

the family of K3 surfaces:

Lemma 4.1.32. The family in Equation (4.1.7) is birationally equivalent to the fam-

ily of Yoshida surfaces given by

y2 = x(x− 1)(x− t)(t− a)(t− b)(t− c− dx). (4.1.8)

Proof. By direct computation, with the following transformation:

x̂ =
3t (t− a) (t− b) (t− c)

3x+ (t− a) (t− b) (t2 + (d+ 1− c) t− c)
,

ŷ =
3yt (t− a) (t− b) (t− c)

2 (3x+ (t− a) (t− b) (t2 + (d+ 1− c) t− c))2
.
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The family of Yoshida surfaces was studied by Hoyt & Schwarz in [70], where

the authors analyzed how certain restrictions and degenerations of the parameters

increase the Picard-rank. There is a close connection between their full analysis and

Dolgachev’s mirror symmetry for K3 surfaces; this will be the subject of a forthcoming

article.

Recall the family of double-sextic K3 surfaces from §2.1.7, i.e., the K3 surfaces

obtained as the minimal resolution of the double cover of the projective plane P2

branched along a configuration of the six lines, denoted by ℓ = {ℓ1, . . . , ℓ6} and given

in weighted homogeneous coordinates [t1 : t2 : t3 : z] ∈ P(1, 1, 1, 3) by the equation

z2 =
6∏

i=1

(ai1t1 + ai2t2 + ai3t3), (4.1.9)

where ℓi = {[t1 : t2 : t3] | ai1t1 + ai2t2 + ai3t3 = 0} ⊂ P2 for parameters aij ∈ C, i =

1, . . . , 6, j = 1, 2, 3 which are assumed to be general. The coordinates x1, x2, x3, x4 ∈

X (3, 6) are moduli parameterizing the family of K3 surfaces for a configuration ℓ

of six lines in general position, and in the following we will denote this family by

X = Xx1,x2,x3,x4 . We have the following:

Proposition 4.1.33. The family in Equation (4.1.8) is birationally equivalent to the

family of double-sextic surfaces.

Proof. In the affine coordinate system {t1 = −1, t2 = t̃, t3 = u, z = z} ⊂ P(1, 1, 1, 3),

a birational transformation φ : P1 × P1 99K P2 is given by

φ : t̃ =
x3t− 1

x3t− x1
, u =

x(1− x1)

x3t− x1
,
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where we are also using the identification of the moduli given by

x1 =
a

b
, x2 =

a− c

b− c
, x3 =

1

b
, x4 =

d

b− c
, (4.1.10)

Hence, the birational map φ : P1×P1 99K P2 induces a birational equivalence between

the K3 surfaces X and X by the natural extension on the Weierstrass models, where

X is identified with the (scaled) Yoshida surface

y2 =
1

b(c− b)
x(x− 1)(x− t)(t− a)(t− b)(t− c− dx)

of Lemma 4.1.32 and §2.1.7.

The double sextic family is a well studied, for example by Matsumoto [93], and

Matsumoto et al. [94, 95, 96]. One takeaway from their work is that the family of

double sextic K3 surfaces is in many ways analogous to the Legendre pencil of elliptic

curves, realized as double covers of the line P1 branching over four points. More

recently, the double sextic family X and closely related K3 surfaces have been studied

further in the context of string dualities [87, 90, 28, 86, 24]. In Clingher et al. [28],

the authors showed that four different elliptic fibrations on X have interpretations in

F-theory/heterotic string duality. In [24] the authors classified all Jacobian elliptic

fibrations on the Shioda-Inose surface associated with X . Hosono et al. in [65, 65]

constructed compactifications of M6 from GKZ data and toric geometry, suitable for

the study of the Type IIA/Type IIB string duality.

In the following we will use the following standard notations for lattices: L1 ⊕L2

is orthogonal sum of the two lattices L1 and L2, L(λ) is obtained from the lattice L

by multiplication of its form by λ ∈ Z, ⟨R⟩ is a lattice with the matrix R in some

basis; An, Dm, and Ek are the positive definite root lattices for the corresponding root

systems, H is the unique even unimodular hyperbolic rank-two lattice. A lattice L is
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two-elementary if its discriminant groupAL is a two-elementary abelian group, namely

AL
∼= (Z/2Z)ℓ with ℓ being the minimal number of generators of the discriminant

group AL, also called the length of the lattice L. Even, indefinite, two-elementary

lattices L are uniquely determined by the rank ρ, the length ℓ, and the parity δ –

which equals 1 unless the discriminant form qL(x) takes values in Z/2Z ⊂ Q/2Z for

all x ∈ AL in which case it is 0; this is a result by Nikulin [111, Thm. 4.3.2].

Dolgachev defined the notion of a lattice polarization for a K3 surface [34]. If L

is an even lattice of signature (1, ρ − 1) with ρ ≥ 1, then an L-polarization on a K3

surface X is a primitive embeddings ı : L ↪→ NS(X) into the Néron-Severi lattice such

that ı(L) contains a pseudo-ample class, i.e., a numerically effective class of positive

self-intersection in the Néron-Severi lattice NS(X). If we assume that the lattice L

has a primitive embeddings ı : L ↪→ ΛK3 into the K3 lattice ΛK3
∼= H⊕3 ⊕E8(−1)⊕2,

then Dolgachev proves that there exists a coarse moduli space ML of L-polarized K3

surfaces and an appropriate version of the global Torelli theorem holds; see [34]. We

have the following:

Theorem 4.1.34. The family in Equation (4.1.8) forms the 4-dimensional moduli

space ML of L-polarized K3 surfaces where L has the following isomorphic presenta-

tions:

L ∼= H ⊕ E8(−1)⊕ A1(−1)⊕6 ∼= H ⊕ E7(−1)⊕D4(−1)⊕ A1(−1)⊕3

∼= H ⊕D6(−1)⊕D4(−1)⊕2 ∼= H ⊕D6(−1)⊕2 ⊕ A1(−1)⊕2

∼= H ⊕D10(−1)⊕ A1(−1)⊕4 ∼= H ⊕D8(−1)⊕D4(−1)⊕ A1(−1)⊕2.

(4.1.11)

In particular, L is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. For a configuration ℓ in general position the K3 surface X has the transcen-

dental lattice T(X) ∼= H(2)⊕H(2)⊕⟨−2⟩⊕2; see [70]. Using Lemma 4.1.30 it follows

that the family in Equation (4.1.5) forms a four-dimensional moduli space ML of
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pseudo-ample L-polarized K3 surfaces where the lattice L has rank ρ = 16. From

Lemma 4.1.31 we see that L is two-elementary such that AL
∼= (Z/2Z)ℓ with ℓ = 6. It

follows that in our case the lattice L is the unique two-elementary lattice with ρ = 16,

ℓ = 6, δ = 1 (for ρ = 16 the two-elementary lattice must have δ = 1; see [111]). We

then use results in [76, Table 1] to read off the isomorphic presentations of L from

the Jacobian elliptic fibrations on X with trivial Mordell Weil group.

Combining Proposition 4.1.33 and Theorem 4.1.34 yields the following result:

Corollary 4.1.35. The moduli spaces ML and X (3, 6) are isomorphic.

It is well known that X (3, 6) is a quasi-projective variety, with orbifold singularities

arising from the quotient construction. This is part of the difficulty when attempting

to study classical mirror symmetry for the family of double-sextic surfaces X or,

equivalently, for the family X of Yoshida surfaces from the mixed-twist construction.

Yet another pressing difficulty is that M6 does not carry, as a quasi-projective variety

itself, domains known as large scale structure limits (LCSLs) where mirror symmetry

is manifest. Although a compactification was constructed in the work of Matsumoto

et al., the construction was insufficient for the purposes of mirror symmetry. This

problem was solved completely by the Hosono et al. papers above, by constructing

LCSLs as intersecting normal crossing divisors as the blowups of singular loci in a

sequence of compactifications of X (3, 6). We summarize the situation as follows:

Proposition 4.1.36. Let Σ ∈ T(X) be a transcendental cycle on a general K3 surface

X, ηX the holomorphic two-form induced by dt ∧ dx/y in Equation (4.1.8), and ω =∮
Σ
ηX a period. The Picard-Fuchs system annihilating ω′ = ω/

√
b(c− b) is the rank-

six Aomoto-Gel’fand system E(3, 6) of [94, 95, 96] in the variables

x1 =
a

b
, x2 =

a− c

b− c
, x3 =

1

b
, x4 =

d

b− c
.
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Proof. In [119] Sasaki showed that the period integral

ω′ = ω′(x1, x2, x3, x4) =

∮
Σ′
ηX =

∮
Σ′
dt̃ ∧ du

z

of the holomorphic two-form for Equation (4.1.12) over a transcendental cycle Σ′ ∈

T(X ) satisfies the rank-six Aomoto-Gel’fand system E(3, 6) in the variables x1, x2, x3, x4.

Let Σ = (φ−1)∗Σ
′ where φ was constructed in the proof of Proposition 4.1.33. In the

affine coordinate system {t1 = −1, t2 = t̃, t3 = u, z = z} ⊂ P(1, 1, 1, 3) the non-

vanishing holomorphic two-form ηX ∈ H0(ωX ) is given by

ηX = dt̃ ∧ du

z
=

dt̃ ∧ du√
t̃u(t̃+ u− 1)(x1t̃+ x3u− 1)(x2t̃+ x4u− 1)

. (4.1.12)

For the pullback of ηX , a direct computation shows that

φ∗ηX =

√
b(c− b) dt ∧ dx√

x(x− 1)(x− t)(t− a)(t− b)(t− c− dx)
≡
√
b(c− b) dt ∧ dx

y
.

The moduli a, b, c, d parameterizing the Yoshida surfaces are different from the

coordinate systems constructed near the LCSLs of Hosono et al. Nevertheless, the

relation of the E(3, 6) system with the Picard-Fuchs system constructed near the LC-

SLs in the compactification still allows us to conclude the behavior of the monodromy

group around the LCSLs for the double sextic family. Let X (3, 6) be the compactifi-

cation of the moduli space X (3, 6) constructed in [65], and let p : X (3, 6) → P be the

period mapping, where P ⊂ P5 is the period domain generated by the Hodge-Riemann

relations of the six linearly independent period integrals. We have the following:

Corollary 4.1.37. Let A be the Gram matrix of the lattice H(2) ⊕H(2) ⊕ ⟨−2⟩⊕2.
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The global monodromy group G of the period map is, up to conjugacy, given by

G =
{
M ∈ GL(6,Z) |MTAM = A, M ≡ I6 mod 2

}
⊂ O(A,Z).

Proof. Because of Proposition 4.1.36 the global monodromy group G of the period

map coincides with the monodromy group of the Aomoto-Gel’fand E(3, 6) system.

The statement follows from [65, Thm. 7.1], since the Picard-Fuchs system centered

around the LCSLs constructed by Hosono et al. is a GKZ A-hypergeometric system,

to which the Aomoto-Gel’fand E(3, 6) system restricts near the LCSLs. Moreover, it

follows from [64] that the solutions around different LCSLs in the compactified moduli

space X (3, 6) are all analytic continuations of each other with trivial monodromy.

4.2 Extending the lattice polarization and monodromy groups

Using the four-parameter family of Yoshida surfaces in Lemma 4.1.32 we can efficiently

study certain extensions of the lattice polarization and identify the corresponding

lattice polarizations, monodromy groups, and Picard-Fuchs operators. Moreover, it

will follow from Corollary 4.1.37 above that the restricted monodromy groups extend

to the LCSLs.

4.2.1 Picard-rank ρ = 17

We consider the extension of the lattice polarization for d = 0. In this case the

Yoshida surface X′
a,b,c = Xa,b,c,0 becomes the twisted Legendre Pencil

y2 = x(x− 1)(x− t)(t− a)(t− b)(t− c). (4.2.13)

The general member has Picard-rank 17, and was studied by Hoyt in [69]. We have

the following:
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Lemma 4.2.38. Equation (4.2.13) defines a Jacobian elliptic fibration π : X′ → P1

on a general X′ = X′
a,b,c with three singular fibers of Kodaira type I∗0 over t = a, b, c,

three singular fibers of Kodaira type I2, and the Mordell Weil group MW(X′, π) =

(Z/2Z)2.

Proof. The proof is similar to the ones given in the preceding section. The statement

about Picard-rank and the Mordell Weil group can be found in Hoyt [69].

In particular, X′ is birational to the three-parameter quadratic twist family of the

classical Legendre pencil of elliptic curves and hence, it is equivalently described by

the mixed-twist construction with generalized functional invariant (i, j, α) = (1, 1, 1).

We have the following:

Theorem 4.2.39. The family in Equation (4.2.13) forms the 3-dimensional moduli

space ML′ of L′-polarized K3 surfaces where L′ has the following isomorphic presen-

tations:

L′ ∼= H ⊕ E8(−1)⊕D4(−1)⊕ A1(−1)⊕3 ∼= H ⊕ E7(−1)⊕D4(−1)⊕2

∼= H ⊕D12(−1)⊕ A1(−1)⊕3 ∼= H ⊕D10(−1)⊕D4(−1)⊕ A1(−1)

∼= H ⊕D8(−1)⊕D6(−1)⊕ A1(−1).

(4.2.14)

In particular, L′ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We use the same strategy as in the proof of Theorem 4.1.34. Using Lemma 4.2.38

it follows that the two-elementary lattice L′ must have ρ = 17 and ℓ = 5. Applying

Nikulin’s classification [111] it follows that there is only one such lattice admitting a

primitive lattice embedding into ΛK3, and it must have δ = 1. We then go through

the list in [129] to find the isomorphic presentations.

In [27] it was shown that the configuration of six lines ℓ in X′ is specialized to one

where three lines intersect in one point. The pencil of lines through the intersection
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point induces precisely the elliptic fibration of Proposition 4.2.38. Thus, the general

K3 surface X′ is not a Jacobian Kummer surface. Rather, it arises as the relative

Jacobian of a Kummer surface associated with an abelian surface with a polarization

of type (1, 2); this was proved in [27, 29].

Setting d = 0 in Proposition 4.1.36 we obtain the following:

Proposition 4.2.40. Let Σ ∈ T(X′) be a transcendental cycle on a general K3

surface X′, ηX′ the holomorphic two-form induced by dt∧ dx/y in Equation (4.2.13),

and ω =
∮
Σ
ηX′ a period. The Picard-Fuchs system annihilating ω′ = ω/

√
b(b− c) is

the restricted rank-five Aomoto-Gel’fand system E(3, 6) of [94, 95, 96] with x4 = 0.

It then follows:

Corollary 4.2.41. The global monodromy group of the period map in Proposition 4.2.40

is, up to conjugacy, the Siegel congruence subgroup of level two Γ2(2) ⊂ Sp(4,Z).

Proof. Using Proposition 4.2.38 the statement follows from results of Hoyt [69], Mat-

sumoto et al. [94, 95, 96], Hara et al. [60], Sasaki and Yoshida [124], and Braeger et

al. [15].

One can ask what configurations of six lines ℓ yield total spaces that are Kummer

surfaces. In [11] the authors gave geometric characterizations of such six-line configu-

rations. Here, we focus on the case of a Kummer surface associated with a principally

polarized abelian surface. We have the following:

Proposition 4.2.42. The general K3 surface in Equation (4.1.8) is a Jacobian Kum-

mer surface, i.e., the Kummer surface associated with the Jacobian of a general genus-

two curve if and only if a, b, c are generic and d = (a−c)(b−c)
ab−c

.

Proof. Using the methods of [28] we compute the square of the degree-two Dolgachev-

Ortland R2. It vanishes if and only if the six lines are tangent to a common conic.
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It is well known that this is a necessary and sufficient criterion for the total space to

be a Jacobian Kummer surface; see for example [26]. A direct computation of R2 for

the six lines in Equation (4.1.8) yields the result.

We also have the following:

Lemma 4.2.43. Equation (4.1.8) with a, b, c generic and d = (a−c)(b−c)
ab−c

defines a

Jacobian elliptic fibration π : X̃ → P1 with the singular fibers 2I∗0 + 6I2 and the

Mordell Weil group MW(X̃, π) = (Z/2Z)2 ⊕ ⟨1⟩.

The connection between the parameters a, b, c and the moduli of genus-two curves

was exploited in [91, 9]. We have the following:

Theorem 4.2.44. The family in Equation (4.1.5) with d = (a−c)(b−c)
ab−c

forms the three-

dimensional moduli space ML̃ of L̃-polarized K3 surfaces where L̃ has the following

isomorphic presentations:

L̃ ∼= H ⊕D8(−1)⊕D4(−1)⊕ A3(−1) ∼= H ⊕D7(−1)⊕D4(−1)⊕2 . (4.2.15)

In particular, L̃ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We established in Proposition 4.2.42 that the K3 surface obtained from the

Weierstrass model in Equation (4.1.8) is a Jacobian Kummer surface if and only if

the parameters a, b, c, d satisfy a certain relation. In [81] Kumar classified all Jaco-

bian elliptic fibrations on a generic Kummer surface. Among them are exactly two

fibrations that have a trivial Mordell Weil group, called (15) and (17). The types of

reducible fibers in the two fibrations then yield Equation (4.2.15).

It was shown in [27] that the general K3 surface X̃a,b,c in Theorem (4.2.44) arises

as the rational double cover of a general K3 surface in Proposition (4.2.38). The
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double cover X̃a,b,c 99K X′
a′,b′,c′ is branched along an even eight on X′ consisting of

the non-central components of two reducible fibers of type D4.

4.2.2 Picard-rank ρ = 18

We consider the extension of the lattice polarization for c = d = 0. In this case the

Yoshida surface X′′
a,b = Xa,b,0,0 becomes the two-parameter twisted Legendre pencil

given by

y2 = x(x− 1)(x− t)t(t− a)(t− b). (4.2.16)

The general member of this family has Picard-rank 18. We have the following:

Lemma 4.2.45. Equation (4.2.16) defines a Jacobian elliptic fibration π : X′′ → P1

on a general X′′ = X′′
a,b with the singular fibers I∗2 + 2I∗0 + 2I2 and the Mordell Weil

group MW(X′′, π) = (Z/2Z)2.

We then have the following:

Theorem 4.2.46. The family in Equation (4.2.18) forms the 2-dimensional mod-

uli space ML′′ of L′′-polarized K3 surfaces where L′′ has the following isomorphic

presentations:

L′′ ∼= H ⊕ E8(−1)⊕D6(−1)⊕ A1(−1)⊕2 ∼= H ⊕ E7(−1)⊕2 ⊕ A1(−1)⊕2

∼= H ⊕ E7(−1)⊕D8(−1)⊕ A1(−1) ∼= H ⊕D14(−1)⊕ A1(−1)⊕2

∼= H ⊕D10(−1)⊕D6(−1).

(4.2.17)

In particular, L′′ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We use the same strategy as in the proof of Theorem 4.1.34. Using Lemma 4.2.45

it follows that the two-elementary lattice L′′ must have ρ = 18 and ℓ = 4. Applying

Nikulin’s classification [111] it follows that there are two such lattices admitting a
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primitive lattice embedding into ΛK3, namely the ones with δ = 0, 1. An extra com-

putation shows that we have δ = 1. We then go through the list in [129] to find the

isomorphic presentations.

From results in [23, 54] the Picard-Fuchs system can now be determined explicitly:

Proposition 4.2.47. Let Σ ∈ T(X′′) be a transcendental cycle on a general K3

surface X′′, ηX′′ the holomorphic two-form induced by dt∧dx/y in Equation (4.2.16),

and ω =
∮
Σ
ηX′′ a period. The Picard-Fuchs system annihilating ω′ = ω/

√
a(a− b)

is Appell’s hypergeometric system F2(
1
2
, 1
2
, 1
2
; 1, 1|z1, z2) with z1 = 1/a, z2 = 1− b/a.

It then follows:

Corollary 4.2.48. The global monodromy group of the period map in Proposition 4.2.47

is, up to conjugacy, the outer tensor product Γ(2)⊠Γ(2) where Γ(2) ⊂ SL(2,Z) is the

principal congruence subgroup of level two.

4.2.3 Picard-rank ρ = 19

We consider the extension of the lattice polarization for c = d = 0 and b→ ∞. In this

case the Yoshida surface X′′′
a = Xa,∞,0,0 becomes the one-parameter twisted Legendre

pencil given by

y2 = x(x− 1)(x− t)t(t− a). (4.2.18)

This family was studied in detail by Hoyt [67]; the general member has Picard-rank

ρ = 19. We have the following:

Lemma 4.2.49. Equation (4.2.18) defines a Jacobian elliptic fibration π : X′′′ → P1

on a general X′′′ = X′′′
a with the singular fibers 2I∗2 + I∗0 + 2I2 and the Mordell Weil

group MW(X′′′, π) = (Z/2Z)2.

We then have the following:



113

Theorem 4.2.50. The family in Equation (4.2.18) forms the 1-dimensional mod-

uli space ML′′′ of L′′′-polarized K3 surfaces where L′′′ has the following isomorphic

presentations:

L′′′ ∼= H ⊕ E8(−1)⊕ E7(−1)⊕ A1(−1)⊕2 ∼= H ⊕ E7(−1)⊕D10(−1)

∼= H ⊕ E8(−1)⊕D8(−1)⊕ A1(−1) ∼= H ⊕D16(−1)⊕ A1(−1).

(4.2.19)

In particular, L′′′ is a primitive sub-lattice of the K3 lattice ΛK3.

Proof. We use the same strategy as in the proof of Theorem 4.1.34. Using Lemma 4.2.49

it follows that the two-elementary lattice L′′′ must have ρ = 19 and ℓ = 3. Applying

Nikulin’s classification [111] it follows that there is only one such lattice admitting a

primitive lattice embedding into ΛK3, and it must have δ = 1. We then go through

the list in [129] to find the isomorphic presentations.

We have the following:

Proposition 4.2.51. Let Σ ∈ T(X′′′) be a transcendental cycle on a general K3

surface X′′′, ηX′′′ the holomorphic two-form induced by dt∧dx/y in Equation (4.2.18),

and ω =
∮
Σ
ηX′′′ a period. The Picard-Fuchs operator is the operator annihilating

the Gauss hypergeometric function 3F2(
1
2
, 1
2
, 1
2
; 1, 1| 1

a
) , i.e., the univariate third-order

linear differential operator given by

8a2 (a− 1)
d3ω

da3
+ 12a (3a− 2)

d2ω

da2
+ (26a− 8)

dω

da
+ ω = 0. (4.2.20)

Proof. The period integral is given by the classical Gauss integral representation of

the hypergeometric function 3F2

(
1
2
, 1
2
, 1
2
; 1, 1| 1

a

)
, that is

ω(a) =

∮
Σ

ηX′′′ =

∮
Σ

dt ∧ dx√
t(t− a)x(x− 1)(x− t)

= 3F2

(
1

2
,
1

2
,
1

2
; 1, 1

∣∣∣1
a

)
. (4.2.21)



114

The well known differential equation for 3F2 yields Equation (4.2.20).

It then follows:

Corollary 4.2.52. The global monodromy group of the period map in Proposition 4.2.51

is, up to conjugacy, Γ(2)∗ := ⟨Γ(2), w⟩ where w =
(
0 − 1

2
2 0

)
is the Fricke involution.

Proof. Equation (4.2.21) proves that the monodromy group of the ODE annihilating

3F2(
1
2
, 1
2
, 1
2
; 1, 1|, · ) can be obtained from the monodromy group of the ODE annihi-

lating 2F1(
1
2
, 1
2
; 1|, · ) by adjoining the involution that is generated by the monodromy

operator for loops around the singular fiber at t = a or, equivalently, t = 0. One

checks that in terms of the modular parameter the action is conjugate to w.

In summary, we have the following main result:

Theorem 4.2.53. Restricting (i) d = 0, (ii) c = d = 0, (iii) c = d = 0, b → ∞ in

the family of K3 surfaces in Equation (4.1.8), the lattice polarization L extends in a

chain of even, indefinite, two-elementary lattices given by

L ⩽ L′ ⩽ L′′ ⩽ L′′′ , (4.2.22)

where the lattice are given by Equations (4.1.11), (4.2.14), (4.2.17), (4.2.19) and are

uniquely determined by (rank, length, parity) with (ρ, ℓ, δ) = (16 + k, 6 − k, 1) for

k = 0, 1, 2, 3. The corresponding moduli spaces form a chain of sub-varieties

ML′′′ ⊂ ML′′ ⊂ ML′ ⊂ ML ,

each of them admitting an appropriate version of the global Torelli theorem, with the

Picard-Fuchs systems determined in Propositions 4.1.36, 4.2.40, 4.2.47, 4.2.51.
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Proof. The theorem collect statements from Theorems 4.1.34, 4.2.39, 4.2.46, 4.2.50

and their respective proofs, as wells as from Propositions 4.1.36, 4.2.40, 4.2.47, 4.2.51.

4.3 GKZ Description of the Univariate Mirror Families

In this section we will show that the generalized functional invariant of the mixed-

twist construction captures all key features of the one-parameter mirror families for

the Fermat pencils. In particular, we will show that the mixed-twist construction

allows us to obtain a non-resonant GKZ system for which a basis of solutions in

the form of absolutely convergent Mellin-Barnes integrals exists whose monodromy is

computed explicitly.

4.3.1 The Mirror Families

Let us briefly review the construction of the mirror family for the deformed Fermat

hypersurface. Let Pn(n+1) be the general family of hypersurfaces of degree (n+1) in

Pn. The general member of Pn(n+1) is a smooth hypersurface Calabi-Yau (n−1)-fold.

Let [X0 : · · · : Xn] be the homogeneous coordinates on Pn. The following family

Xn+1
0 + · · ·+Xn+1

n + nλX0X1 · · ·Xn = 0 (4.3.23)

determines a one-parameter single-monomial deformation X
(n−1)
λ of the classical Fer-

mat hypersurface in Pn(n+ 1). Cox and Katz determined [30] what deformations of

Calabi-Yau hypersurfaces remain Calabi-Yau. For example, for n = 5 there are 101

parameters for the complex structure, which determine the coefficients of additional

terms in the quintic polynomials. Starting with a Fermat-type hypersurfaces V in Pn,

Yui [145, 144, 137] and Goto [52] classified all discrete symmetries G such that the
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quotients V/G are singular Calabi-Yau varieties with at worst Abelian quotient sin-

gularities. A theorem by Greene, Roan, & Yau [53] guarantees that there are crepant

resolutions of V/G. This is known as the Greene-Plesser orbifolding construction.

For the family (4.3.23), the discrete group of symmetries needed for the Greene-

Plesser orbifolding is readily constructed: it is generated by the action (X0, Xj) 7→

(ζnn+1X0, ζn+1Xj) for 1 ≤ j ≤ n and the root of unity ζn+1 = exp ( 2πi
n+1

). Since the

product of all generators multiplies the homogeneous coordinates by a common phase,

the symmetry group is Gn−1 = (Z/(n+1)Z)n−1. One checks that the affine variables

t =
(−1)n+1

λn+1
, x1 =

Xn
1

(n+ 1)X0 ·X2 · · ·Xn λ
, x2 =

Xn
2

(n+ 1)X0 ·X1 ·X3 · · ·Xn λ
,

and similar equations hold for x2, . . . , xn, are invariant under the action ofGn−1, hence

coordinates on the quotient X
(n−1)
λ /Gn−1. A family of special hypersurfaces Y

(n−1)
t is

then defined by the remaining relation between x1, . . . , xn, namely the equation

fn(x1, . . . , xn, t) = x1 · · ·xn
(
x1 + · · ·+ xn + 1

)
+

(−1)n+1 t

(n+ 1)n+1
= 0 . (4.3.24)

Moreover, it was proved by Batyrev & Borisov in [5] that the family of special

Calabi-Yau hypersurfaces Y
(n−1)
t of degree (n + 1) in Pn given by Equation (4.3.24)

is in fact the mirror family of a general hypersurface Pn(n+ 1) of degree (n+ 1) and

co-dimension one in Pn. For n = 2, 3, 4 the mirror family is a family of elliptic curves,

K3 surfaces, and Calabi-Yau threefolds, respectively.

Each mirror family can be realized as a fibration of Calabi-Yau (n − 2)-folds

associated with a generalized functional invariant. The following was proved by Doran

& Malmendier:

Proposition 4.3.54. For n ≥ 2 the family of hypersurfaces Y
(n−1)
t in Equation (4.3.24)

is a fibration over P1 by hypersurfaces Y
(n−2)

t̃
constructed as mixed-twist with the gen-
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eralized functional invariant (1, n, 1).

Proof. For each xn ̸= 0,−1 substituting x̃i = xi/(xn + 1) for 1 ≤ i ≤ n − 1 and

t̃ = −nn t/((n+ 1)n+1xn (xn + 1)n) defines a fibration of the hypersurface (4.3.24) by

fn−1(x̃1, . . . , x̃n−1t̃) = 0 since

fn(x1, . . . , xn, t) = xn (xn + 1)n fn−1(x̃1, . . . , x̃n−1, t̃ ) = 0 . (4.3.25)

This is the mixed-twist construction with generalized functional invariant (1, n, 1).

4.3.2 GKZ data of the mirror family

In the GKZ formalism, the construction of the family Y
(n−1)
t is described as follows:

from the homogeneous degrees of the defining Equation (4.3.23) and the coordinates

of the ambient projective space for the family X
(n−1)
λ we obtain the lattice L′ =

Z(−(n + 1), 1, 1, . . . , 1) ⊂ Zn+2. We define a matrix A′ ∈ Mat(n + 1, n + 2;Z) as a

matrix row equivalent to the (n+1)×(n+2) matrix with columns of the (n+1)×(n+1)

identity matrix as the first (n+ 1) columns, followed by the generator of L′:



1 0 0 . . . (n+ 1)

0 1 0 . . . −1

0
. . . . . . . . . −1

...
...

0 0 . . . 0 1 −1


∼ A′ =



1 1 1 . . . 1

0 1 0 . . . −1

0
. . . . . . . . . −1

...
...

0 0 . . . 0 1 −1


, (4.3.26)

and let A′ = {a⃗′1, . . . , a⃗′n+2} denote the columns of the right-handed matrix obtained

by a basis transformation in Zn+1 from the matrix on the left hand side. The finite

subset A′ ⊂ Zn+1 generates Zn+1 as an abelian group and can be equipped with

a group homomorphism h′ : Zn+1 → Z, in this case the projection onto the first

coordinate, such that h′(A′) = 1. This means that A′ lies in an affine hyperplane
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in Zn+1. The lattice of linear relations between the vectors in A′ is easily checked

to be precisely L′ = Z(−(n + 1), 1, 1, . . . , 1) ⊂ Zn+2. From A′ we form the Laurent

polynomial

PA′(z1, . . . , zn+1) =
∑
a⃗′∈A′

ca⃗ z
a1
1 · za22 · · · zan+1

n+1

= c1 z1 + c2 z1 z2 + c3 z1 z3 + · · ·+ cn+2z1 z
−1
2 · · · z−1

n+1 ,

and observe that the dehomogenized Laurent polynomial yields

x1 · · ·xn
c1

PA′

(
1,
c1x1
c2

,
c1x2
c3

, . . . ,
c1xn
cn+1

)
= fn

(
x1, . . . , xn, t = (−1)n+1 (n+ 1)n+1 c2 · · · cn+2

cn+1
1

)
.

In the context of toric geometry, this is interpreted as follows: a secondary fan is

constructed from the data (A′,L′). This secondary fan is a complete fan of strongly

convex polyhedral cones in L′∨
R = Hom(L′,R) which are generated by vectors in the

lattice L′∨
Z = Hom(L′,Z). As the coefficients c1, . . . , cn+2 – or effectively t – vary, the

zero locus of PA′ sweeps out the family of hypersurfaces Y
(n−1)
t in (C∗)n+1/C∗ = (C∗)n.

Both (C∗)n and the hypersurfaces can then be compactified. The members of the

family Y
(n−1)
t are Calabi-Yau varieties since the original Calabi-Yau varieties had

codimension one in the ambient space; see Batyrev & van Straten [6].

4.3.3 Recurrence relation between holomorphic periods

We now describe the construction of the period integrals. A result of Doran & Mal-

mendier – referenced below as Lemma 4.3.55 – shows that the fibration on Y
(n−1)
t →

P1 by Calabi-Yau hypersurfaces Y
(n−2)

t̃
allows for a recursive construction of the period

integrals for Y
(n−1)
t by integrating a twisted period integral over a transcendental ho-
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mology cycle. It turns out that the result can be obtained explicitly as the Hadamard

product of certain generalized hypergeometric functions. Recall that the Hadamard

of two analytic functions f(t) =
∑

k≥0 fkt
k, g(t) =

∑
k≥0 gkt

k is the analytic function

f ⋆ g given by

(f ⋆ g)(t) =
∞∑
k=0

fkgkt
k.

The unique holomorphic (n− 1)-form on Y
(n−1)
t is given by

η
(n−1)
t =

dx2 ∧ dx3 ∧ · · · ∧ dxn
∂x1fn(x1, . . . , xn, t)

. (4.3.27)

The formula is obtained from the Griffiths-Dwork technique (see, for example, Mor-

rison [106]). One then defines an (n− 1)-cycle Σn−1 on Y
(n−1)
t by requiring that the

period integral of η
(n−1)
t over Σn−1 corresponds by a residue computation in x1 to

the integral over the middle dimensional torus cycle Tn−1(⃗r) := S1
r1
× · · · × S1

rn−1
∈

Hn−1(Y
n−1
t ,Q) with S1

rj
= {|x| = rj} ⊂ C and r⃗n−1 = (r1, . . . , rn−1) ∈ Rn−1

+ , i.e.,

∫
. . .

∫
︸ ︷︷ ︸
Σn−1

dx2 ∧ · · · ∧ dxn
∂x1fn(x1, . . . , xn, t)

=
c1
2πi

∫
. . .

∫
︸ ︷︷ ︸
Tn−1(r)

PA

(
1,
c1x1
c2

,
c1x2
c3

, . . . ,
c1xn
cn+1

)−1
dx2
x2

∧ · · · ∧ dxn
xn

. (4.3.28)

The right hand side of Equation (4.3.28) is a resonant A-hypergeometric integral in

the sense of [51, Thm. 2.7] derived from the data (A′,L′) and

α⃗′ = ⟨α′
1,−β′

1 − 1, . . . ,−β′
n − 1⟩t = ⟨−1, 0, . . . , 0⟩t =

n+2∑
i=1

γ′i a⃗
′
i (4.3.29)

with γγγ′0 = (γ′1, . . . , γ
′
n+2) = (−1, 0, . . . , 0). We will denote the period integral by

ωn−1(t) =
∮

Σn−1
η
(n−1)
t .
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We recall the following result, which connects the GKZ data above to the iterative

twist construction of Doran & Malmendier:

Proposition 4.3.55. [40, Prop. 7.2] For n ≥ 1 and |t| ≤ 1, there is a family of

transcendental (n− 1)-cycles Σn−1 on Y
(n−1)
t such that

ωn−1(t) =

∮
Σn−1

η
(n−1)
t = (2πi)n−1

nFn−1

(
1

n+1
. . . n

n+1

1 . . . 1

∣∣∣∣ t) . (4.3.30)

The iterative structure in Proposition 4.3.54 induces the iterative period relation

ωn−1(t) = (2πi) nFn−1

(
1

n+1
. . . n

n+1
1
n
. . . n−1

n

∣∣∣∣∣ t
)
⋆ ωn−2(t) for n ≥ 2. (4.3.31)

Here, the symbol ⋆ denotes the Hadamard product. The cycles Σn−1 are determined

by T̃n−1(⃗rn−1) :=
n

n+1
·
(
Tn−2(⃗rn−2)× S1

rn−2

)
as in (4.3.28), with rj = 1− j

j+1
, and

n
n+1

·
(
Tn−2(⃗rn−2)× S1

rn−1

)
indicates that coordinates are scaled by a factor of n

n+1
.

Hence, the iterative structure in Proposition 4.3.54, namely, the generalized func-

tional invariant (1, n, 1), determines the iterative period relations of the mirror family

and the corresponding A-hypergeometric data (A′,L′,γ ′
0) in the GKZ formalism.

The mirror family of K3 surfaces

Narumiya and Shiga [109] showed that the mirror family of K3 surfaces in Equa-

tion (4.3.24) with n = 3 is birationally equivalent to a family of Weierstrass model.

In fact, if we set

x1 = −(4u2λ2 + 3Xλ2 + u3 + u) (4u2λ2 + 3Xλ2 + u3 − 2u)

6λ2u (16u3λ2 − 3 iY λ2 + 12Xuλ2 + 4u4 + 4u2)
,

x2 = − 16u3λ2 − 3 iY λ2 + 12Xuλ2 + 4u4 + 4u2

8u (4u2λ2 + 3Xλ2 + u3 − 2u)
,

x3 =
u2 (4u2λ2 + 3Xλ2 + u3 − 2u)

2λ2 (16u3λ2 − 3 iY λ2 + 12Xuλ2 + 4u4 + 4u2)
,

(4.3.32)
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in Equation (4.3.24), we obtain the Weierstrass equation

Y 2 = 4X3 − g2(u)X − g3(u) , (4.3.33)

with coefficients

g2 =
4

3λ4
u2
(
u4 + 8λ2u3 + (4λ2 − 1)(4λ2 + 1)u2 + 8λ2u+ 1

)
,

g3 =
4

27λ6
u3
(
u2 + 4λ2u+ 1

) (
2u4 + 16λ2u3 + (32λ4 − 5)u2 + 16λ2u+ 2

)
.

(4.3.34)

For generic parameter λ, Equation (4.3.33) defines a Jacobian elliptic fibration

with the singular fibers 2I∗4+4I1 and the Mordell-Weil group Z/2Z⊕⟨1⟩, generated by

a two-torsion section and an infinite-order section of height pairing one; see [109, 15].

Using the Jacobian elliptic fibration one has the following:

Proposition 4.3.56 ([109]). The family in Equation (4.3.33) forms the moduli space

MM2 of M2-polarized K3 surfaces with M2
∼= H ⊕ E8(−1)⊕ E8(−1)⊕ ⟨−4⟩.

Proposition 4.3.56 shows why the family (4.3.33) can be called the mirror family

of K3 surfaces. Dolgachev’s mirror symmetry for K3 surfaces identifies marked defor-

mations of K3 surfaces with given Picard lattice N with a complexified Kähler cone

K(M) = {x+ iy : ⟨y, y⟩ > 0, x, y ∈ MR} for some mirror lattice M ; see [34]. In the

case of the rank-one lattice Nk = ⟨2k⟩, one can construct the mirror lattice explic-

itly by taking a copy of H out of the orthogonal complement N⊥
k in the K3 lattice

ΛK3. It turns out that the mirror lattice Mk
∼= H ⊕ E8(−1) ⊕ E8(−1) ⊕ ⟨−2k⟩ is

unique if k has no square divisor. In our situation, the general quartic hypersurfaces

in Equation (4.3.23) with n = 3 have a Néron-Severi lattice isomorphic to N2 = ⟨4⟩,

and the mirror family in Equation (4.3.33) is polarized by the lattice M2 such that

N⊥
2
∼= H ⊕M2.
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It turns out that the holomorphic solution of the Picard-Fuchs equation governing

the family of K3 surfaces in Equation (4.3.33) equals

ω2 =

(
2F1

(
1
8
, 3

8

1

∣∣∣∣ 1

λ4

))2

= 3F2

(
1
4
, 1
2
, 3
4

1, 1

∣∣∣∣ t) . (4.3.35)

The first equality was proved by Narumiya and Shiga, and the second equality is

Clausen’s formula, found by Thomas Clausen, expressing the square of a Gaussian

hypergeometric series as a generalized hypergeometric series.

4.3.4 Monodromy of the mirror family

We will now show how the monodromy representations for the mirror families for

general n are computed. The Picard-Fuchs operators of the periods given in Proposi-

tion 4.3.55 are the associated rank n-hypergeometric differential operators annihilat-

ing nFn−1. But yet more is afforded by pursuing the GKZ description of the period

integrals. In fact, the Euler-integral formula for the hypergeometric functions nFn−1

generates a second set of non-resonant GKZ data (A,L, γγγ0) from the resonant GKZ

data (A′,L′, γγγ′0) by integration. The GKZ data (A,L, γγγ0) determines local Frobenius

bases of solutions around t = 0 and t = ∞. Their Mellin-Barnes integral representa-

tion determines the transition matrix between them by analytic continuation.

We will always assume that we have n rational parameters, namely ρ1, . . . , ρn ∈

(0, 1) ∩Q, and consider the generalized hypergeometric function

nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) ,

which include all periods from Propositions 4.3.55 and 4.2.51. The Euler-integral
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formula then specializes to the identity

[
n−1∏
i=1

Γ(ρi) Γ(1− ρi)

]
nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t)
=

[
n−1∏
i=1

∫ 1

0

dzi

z1−ρi
i (1− zi)ρi

]
(1− t z1 · · · zn−1)

−ρn . (4.3.36)

The rank-n hypergeometric differential equation satisfied by nFn−1 is given by

[
θn − t (θ + ρ1) · · · (θ + ρn)

]
F (t) = 0 (4.3.37)

with θ = t d
dt
, and it has the Riemann symbol

P



0 1 ∞

0 0 ρ1

0 1 ρ2
...

...
...

0 n− 2 ρn−1

0 n− 1−
∑n

j=1 ρj ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t


. (4.3.38)

In particular, we read from the Riemann symbol that for each n ≥ 1, the periods

from Proposition 4.3.55 have a point of maximally unipotent monodromy at t = 0.

This is well known to be consistent with basic considerations for mirror symmetry

[107].

From the Euler-integral (4.3.36), using the GKZ formalism, we immediately read

off the left hand side matrix, and convert to the A-matrix A ∈ Mat(2n − 1, 2n;Z)
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given by



1 1 0 0 . . . 0 0

0 0 1 1 . . . 0 0

...
. . .

...

0 0 0 0
. . . 1 1

0 1 0 0 . . . 0 1

0 0 0 1 . . . 0 1

...
. . .

...

0 0 0 0
. . . 0 1



∼ A =



1 0 . . . 0 0 1 0 . . . 0 0

0 1 0 0 0 1 0 0

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 0 . . . 1 0

0 0 . . . 0 1 0 0 . . . 0 1

0 0 . . . 0 1 1 0 . . . 0 0

0 0 0 1 0 1 0 0

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 1 0 0 . . . 1 0



, (4.3.39)

using elementary row operations, as in §4.3.2. Let A = {a⃗1, . . . , a⃗2n} denote the

columns of the matrix A. The entries for the matrix on the left hand side of (4.3.39)

are determined as follows: the first n entries in each column label which of the n

terms (1− zi)
ρi or (1− t z1 · · · zn−1)

−ρn in the integrand of the Euler-integral (4.3.36)

is specified. For each term, two column vectors are needed and the entries in rows

n+1, . . . , 2n− 1 label the exponents of variables zi appearing. For example, the last

two columns determine the term (1 − t z1 · · · zn−1)
−ρn . The finite subset A ⊂ Z2n−1

generates Z2n−1 as an abelian group and is equipped with a group homomorphism

h : Z2n−1 → Z, in this case the sum of the first n coordinates such that h(A) = 1.

The lattice of linear relations between the vectors in A is easily checked to be

L = Z(1, . . . , 1,−1, . . . ,−1) ⊂ Z2n. The toric data (A,L) has an associated GKZ sys-

tem of differential equations which is equivalent to the differential equation (4.3.37).

Equivalently, the right hand side of Equation (4.3.36) is the A-hypergeometric inte-

gral in the sense of [51, Thm. 2.7] derived from the data (A,L) and the additional
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vector

α⃗ = ⟨α1, . . . , αn−1,−β1 − 1, . . . ,−βn − 1⟩t

= ⟨−ρ1, . . . ,−ρn,−ρ1, . . . ,−ρn−1⟩t =
2n∑
i=1

γi a⃗i,

where we have set γγγ0 = (γ1, . . . , γ2n) = (0, . . . , 0,−ρ1, . . . ,−ρn) ⊂ Z2n. We always

have the freedom to shift γγγ0 by elements in L ⊗ R while leaving α⃗ and any A-

hypergeometric integral unchanged. Thus we have the following:

Proposition 4.3.57. The GKZ data (A,L, γγγ0) is non-resonant.

Proof. We observe that αi, βj ̸∈ Z for i = 1, . . . , n− 1 and j = 1, . . . , n and
∑

i αi +∑
j βj ≡ −ρn mod 1 ̸∈ Z. It was proved in [51, Ex. 2.17] that this is equivalent to

the non-resonance of the GKZ system.

Construction of convergent period integrals

In this section, we show how from the toric data of the GKZ system convergent

period integrals can be constructed. We are following the standard notation for GKZ

systems; see, for example, Beukers [10].

Let us define the B-matrix of the lattice relations L for A as the matrix containing

its integral generating set as the rows. Since the rank of L is 1, we simply have

B = (1, . . . , 1,−1, . . . ,−1) ∈ Mat(1, 2n;Z) ∼= HomZ(Z2n,Z). Of course, the B-matrix

then satisfies A · Bt = 0, as this is the defining property of the lattice L. The space

L⊗R ⊂ R2n is clearly a line, and is parameterized by the tuple (s, . . . , s,−s, . . . ,−s) ∈

R2n with s ∈ R. To be used later in this subsection, the polytope ∆A defined as convex

hull of the vectors contained in A is the primary polytope associated with A. Also

for later, we may also write B =
∑
biêi in terms of the standard basis {êi}2ni=1 ⊂ Z2n.
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We can obtain a short exact sequence

0 −→ L −→ Z2n −→ Z2n−1 → 0

by mapping each vector ℓℓℓ =
∑
liêi ∈ Z2n to the vector

∑
li a⃗i ∈ Z2n−1. As the linear

relations between vectors in A are given by the lattice L, this sequence is exact. The

corresponding dual short exact sequence (over R) is given by

0 −→ R2n−1 −→ R2n π−→ L∨
R
∼= R −→ 0,

with π(u1, . . . , u2n) = u1 + · · · + un − un+1 − · · · − u2n. Restricting π to the positive

orthant in R2n and calling it π̂, we observe that for each s ∈ R the set π̂−1(s) is

a convex polyhedron. For s ∈ L∨
R, there are two maximal cones C+ and C− in the

secondary fan of A for positive and negative real value s, respectively. The lists of

vanishing components for the vertex vectors in each π̂−1(s) are given by

TC+ =
n⋃

k=1

{
{1, . . . , k̂, . . . , n, n+ 1, . . . 2n}︸ ︷︷ ︸

=:Ik

}
,

TC− =
n⋃

k=1

{
{1, . . . , n, n+ 1, k̂ + n, . . . . . . 2n}︸ ︷︷ ︸

=:Ik+n

}
.

The symbol k̂ indicates that the entry k has been suppressed. For each member I of

TC± , we define γγγI = γγγ0 − µIB such that γγγIi = 0 for i ̸∈ I. We then have

γγγI =

 γγγ0 for I ∈ TC+ , µI = 0,

(−ρk, . . . ,−ρk, ρk − ρ1, . . . , 0, . . . , ρk − ρn) for I = In+k ∈ TC− , µIn+k = ρk.
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Then for Ik ∈ TC± we denote the convergence direction by

νννIk = (ν1, . . . , ν2p) = (δki )
2p
i=1 ∈ L⊗ R, (4.3.40)

where δki is the Kronecker delta, such that π̂(νννIk) = ±1.

Using the B-matrix, one defines the zonotope

ZB =

{
1

4

2n∑
i=1

µi bi

∣∣∣∣∣µi ∈ (−1, 1)

}
=
(
−n
2
,
n

2

)
⊂ L∨

R
∼= R.

The zonotope contains crucial data about the nature and form of the solutions to the

GKZ system above. A crucial result of Beukers [10, Cor. 4.2] can then be phrased as

follows:

Proposition 4.3.58. [10, Cor. 4.2] Let uuu,τττ be the vector with uuu = (u1, . . . , u2n),

uj = |uj| exp (2πiτj), and τττ = (τ1, . . . , τ2n). For any uuu with τττ such that
∑
biτi ∈ ZB

and any γγγ equivalent to γγγ0 up to elements in L ⊗ R with γn+i < σ < −γi for all

i = 1, . . . , n, the Mellin-Barnes integral given by

Mτττ (u1, . . . , u2n) =

∫
σ+iR

[
2n∏
i=1

Γ(−γi − bis) u
γi+bis
i

]
ds , (4.3.41)

is absolutely convergent and satisfies the GKZ differential system for (A,L).

A toric variety VA can be associated with the secondary fan by gluing together

certain affine schemes, one scheme for every maximal cone in the secondary fan.

Details can be found in [132]. In the situation of the hypergeometric differential

equation (4.3.37), the secondary fan has two maximal cones C+ and C−, and one can

easily see that the toric variety VA is the projective line VA = P1 which is the the

domain of definition for the variable t in Equation (4.3.36). Each member in the list

for a maximal cone contains 2n− 1 integers and define a subdivision of the primary
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polytope ∆A by polytopes generated by the subdivision, called regular triangulations.

In our case, these regular triangulations are unimodular, i.e.,

for all Ik ∈ TC± :
∣∣∣ det (⃗ai)i∈Ik ∣∣∣ = ∣∣∣ bk∣∣∣ = 1 .

GivenA and its secondary fan, we define a ringRA by dividing the free polynomial

ring in 2n variables by the ideal IA generated by the linear relations of A and the

ideal IC± generated by the regular triangulations. In our situation, we obtain RA

from the list of generators given by

ϵϵϵ = (ϵ1, . . . , ϵ2n) = ϵ (1, . . . , 1,−1, . . . ,−1) ∈ RA

with relation ϵn = 0, i.e., RA = Z[ϵ]/(ϵn) is a free Z-module of rank n. Thus, we have

the following:

Corollary 4.3.59. A solution for the hypergeometric differential equation (4.3.37) is

given by restricting to u2 = · · · = u2n = 1 and u1 = (−1)nt in Equation (4.3.41).

In the case of the hypergeometric differential equation (4.3.37), it follows crucially

from Beukers [10, Prop. 4.6] that there is a basis of Mellin-Barnes integrals since the

zonotope ZB contains n distinct points {−n−1
2

+ k}n−1
k=0 whose coordinates differ by

integers.

A basis of solutions around zero

Using the toric data, we may now derive a local basis of solutions of the differential

equation (4.3.37) around the point t = 0 [132]. For the convergence direction νννI1 in
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TC+ , the Γ-series is a series solutions of the GKZ system for (L, γγγ0) and given by

ΦL,γγγ0(u1, . . . , u2n) =
∑
ℓℓℓ∈L

uγ1+ℓ1
1 · · ·uγ2n+ℓ2n

2n

Γ(γ1 + ℓ1 + 1) · · ·Γ(γ2n + ℓ2n + 1)
. (4.3.42)

We have the following:

Lemma 4.3.60. For the convergence direction νννI1 in TC+, the Γ-series for (L, γγγ0)

equals

ΦL,γγγ0(u1, . . . , u2n) =

[
n∏

i=1

1

Γ(1− ρi)u
ρi
n+i

]
nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) (4.3.43)

for t = (−1)nu1 · · ·un/(un+1 · · ·u2n) > 0. Moreover, convergence of Equation (4.3.43)

in the convergence direction νννI1 = (ν1, . . . , ν2p) is guaranteed for all u1, . . . , u2n with

|ui| = tνi and 0 ≤ t < 1.

Proof. We observe that

ΦL,γγγ0(u1, . . . , u2n)
∑
k≥0

uk1 · · ·ukn · u
−ρ1−k
n+1 · · ·u−ρn−k

2n

(k!)n Γ(−ρ1 − k + 1) · · ·Γ(−ρn − k + 1)

=

[
n∏

i=1

1

Γ(1− ρi)u
ρi
n+i

]∑
k≥0

(ρ1)k · · · (ρn)k
(k!)n

tk .

(4.3.44)

The summation over L reduces to non-negative integers as the other terms vanish

when 1/Γ(k + 1) = 0 for k < 0. Using the identities

(ρ)k = (−1)k
Γ(1− ρ)

Γ(1− k − ρ)
, Γ(z) Γ(1− z) =

π

sin (πz)
, (4.3.45)

we obtain Equation (4.3.43). Equation (4.3.42) shows that restricting the variables

u2 = · · · = u2n = 1 to a base point, the convergence of the Γ-series ΦL,γγγ0((−1)nt, 1 . . . , 1)

is guaranteed for |u1| = t with t sufficiently small.
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We obtain the same Γ-series for all convergence directions νννIr with 1 ≤ r ≤ n in

TC+ . This is due to the fact that in the Riemann symbol (4.3.38) at t = 0 the critical

exponent 0 has multiplicity n.

However, from the maximal cone C+ of the secondary fan of A, we can still con-

struct a local basis of solutions of the GKZ system around t = 0 by expanding

the twisted power series ΦL,γγγ0+ϵϵϵ(u1, . . . , u2n) over RA; see [132]. Similarly, a twisted

hypergeometric series can be introduced, for example, by defining the following renor-

malized generating function:

f(ϵ, t) = tϵnF
(ϵ)
n−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) =
∑
k≥0

(ρ1 + ϵ)k · · · (ρn + ϵ)k
(1 + ϵ)nk

tk+ϵ. (4.3.46)

We have the following:

Lemma 4.3.61. For |t| < 1, choosing the principal branch of tϵ = exp (ϵ ln t) the

twisted power series over RA is given by

ΦL,γγγ0+ϵϵϵ(u1, . . . , u2n) =
e2πiϵ

Γ(1 + ϵ)n

[
n∏

i=1

1

Γ(1− ρi − ϵ)uρin+i

]
tϵ nF

(ϵ)
n−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) .
(4.3.47)

Proof. The proof uses 1/(1+ϵ)nk = O(ϵn) = 0 for k < 0, where (a)k is the Pochammer

symbol, because for k ∈ Z we have

1

(1 + ϵ)k
=

Γ(1 + ϵ)

Γ(k + 1 + ϵ)
=


ϵ(ϵ− 1) · · · (ϵ+ k + 1) if k < 0,

1 if k = 0,
1

(1 + ϵ)(2 + ϵ) · · · (k + ϵ)
if k > 0.
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For r = 0, . . . , n− 1, we also introduce the functions

yr(t) =
1

r!

∂r

∂ϵr

∣∣∣∣
ϵ=0

nF
(ϵ)
n−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) , y0(t) = f(0, t) = nFn−1

( ρ1 . . . ρn
1 . . . 1

∣∣∣ t) .
We have the following:

Lemma 4.3.62. For |t| < 1, the following identity holds

f(ϵ, t) =
n−1∑
m=0

(
2πiϵ

)m
fm(t) =

n−1∑
m=0

(
2πiϵ

)m m∑
r=0

1

r!

(
ln t

2πi

)r
ym−r(t)

(2πi)m−r
, (4.3.48)

where fm(t) =
1

(2πi)mm!
∂m

∂ϵm
|ϵ=0f(ϵ, t) for m = 0, . . . , n− 1.

As proved in [132], the functions {fr}n−1
r=0 form a local basis of solutions around

t = 0, and the functions yr(t) with r = 0, . . . n − 1 are holomorphic in a neighbor-

hood of t = 0. The local monodromy group is generated by the cycle (u1, . . . , u2n) =

(R1 exp (iφ), R2, . . . , R2n) based at the point (R1, . . . , R2n) for φ ∈ [0, 2π]. Equiv-

alently, we consider the local monodromy of the hypergeometric differential equa-

tion generated by t = t0 exp (iφ) for 0 < t0 < 1 and φ ∈ [0, 2π] (by setting

|u2| = · · · = |u2n| = 1 and |u1| = t). The monodromy of the functions {fr}n−1
r=0

can be read off Equation (4.3.48) immediately. We have the following:

Proposition 4.3.63. The local monodromy of the basis fff t = ⟨fn−1, . . . , f0⟩t of solu-

tions to the differential equation (4.3.37) at t = 0 is given by

m0 =



1 1 1
2

. . . 1
(n−2)!

0 1 1 . . . 1
(n−3)!

...
. . . . . .

...

...
. . . . . . 1

0 . . . . . . 0 1


. (4.3.49)
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Proof. Lemma 4.3.62 proves that

fm(t) =
m∑
r=0

1

r!

(
ln t

2πi

)r
ym−r(t)

(2πi)m−r
.

The functions yk(t) are invariant for t = t0 exp (iφ) for 0 < t0 < 1 and φ → 2π. The

result then follows.

Corollary 4.3.64. The monodromy matrix m0 is maximally unipotent.

A basis of solutions around infinity

We assume 0 < ρ1 < · · · < ρn < 1. Using the toric data we can derive a local

basis of solutions of the differential equation (4.3.37) around the point t = ∞. For

the convergence direction νννIn+r in TC− , the Γ-series is a series solutions of the GKZ

system for (L, γγγIn+r) and given by

ΦL,γγγIn+r (u1, . . . , u2n) =
∑
ℓℓℓ∈L

uγ1−µIr+n+ℓ1
1 · · ·uγ2n+µIr+n+ℓ2n

2n

Γ(γ1 − µIr+n + ℓ1 + 1) · · ·Γ(γ2n + µIr+n + ℓ2n + 1)
.

(4.3.50)

We have the following:

Lemma 4.3.65. For the convergence direction νννIn+r in TC− Equation (4.3.50) is a

series solution for (L, γγγIn+r). The following identity holds

ΦL,γγγIn+r (u1, . . . , u2n) =
eπinρr

Γ(1− ρr)n

[
n∏

i=1

1

Γ(1 + ρr − ρi)u
ρi
n+i

]

× t−ρr
nFn−1

(
ρr . . . . . . ρr

1 + ρr − ρ1 . . . 1̂ . . . 1 + ρr − ρn

∣∣∣∣ 1t
) (4.3.51)

for t = (−1)nu1 · · ·un/(un+1 · · ·u2n) > 0. The symbol 1̂ indicates that the entry

1+ρr−ρi for i = r has been suppressed. In particular, restricting variables u1 = · · · =



133

ûn+r = · · · = u2n = 1 the convergence of the Γ-series ΦL,γγγIn+r (1, . . . , (−1)n/t, . . . , 1)

is guaranteed for t > 1.

Proof. A direct computation shows that the Γ-series satisfies

ΦL,γγγIn+r (u1, . . . , u2n) =
eπinρr

Γ(1− ρr)n

[
n∏

i=1

1

Γ(1 + ρr − ρi)u
ρi
n+i

](
un+1 · · ·u2n

(−1)nu1 · · ·un

)ρr

×
∑
k≥0

(ρr)
n
k

(1 + ρr − ρ1)k · · · (1 + ρr − ρn + 1)k

(
un+1 · · ·u2n

(−1)nu1 · · ·un

)k

.

The result follows.

Based on the assumption that 0 < ρ1 < · · · < ρn < 1, we have the following:

Lemma 4.3.66. There are n different Γ-series for the convergence directions νννIn+r

with 1 ≤ r ≤ n in TC−.

The local monodromy group is generated by the cycle based at (R1, . . . , R2n)

given by (u1, . . . , un+r, . . . , u2n) = (R1, . . . , Rn+r exp (−iφ), . . . , R2n) for φ ∈ [0, 2π]

Equivalently, we consider the local monodromy generated by t = t0 exp (iφ) for t0 ≫ 1

and φ ∈ [0, 2π] (by setting |u1| = · · · = |u2n| = 1 and |un+r| = 1/t). We have the

following:

Proposition 4.3.67. The local monodromy of the basis FFF t = ⟨Fn, . . . , F1⟩t of solu-

tions to the differential equation (4.3.37) at t = ∞ is given by

M∞ =


e−2πiρn

. . .

e−2πiρ1

 . (4.3.52)

Proof. From the Riemann symbol (4.3.38), we observe that the functions

Fr(t) = Ar t
−ρr

nFn−1

(
ρr . . . . . . ρr

1 + ρr − ρ1 . . . 1̂ . . . 1 + ρr − ρn

∣∣∣∣ 1t
)

(4.3.53)
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for r = 1, . . . , n and any non-zero constants Ar, form a Frobenius basis of solutions

to the differential equation (4.3.37) at t = ∞. The claim follows.

The transition matrix

The solution (4.3.46) has an integral representation of Mellin-Barnes type [10] given

by

f(ϵ, t) =
tϵ

2πi

Γ(1 + ϵ)n

Γ(ρ1 + ϵ) · · ·Γ(ρn + ϵ)

∫
σ+iR
ds

Γ(s+ ρ1 + ϵ) · · ·Γ(s+ ρn + ϵ)

Γ(s+ 1 + ϵ)n
· π (−t)

s

sin (πs)
,

(4.3.54)

where σ ∈ (−ρ1, 0). For |t| < 1 the contour integral can be closed to the right. We

have the following:

Lemma 4.3.68. For |t| < 1, Equation (4.3.54) coincides with Equation (4.3.46).

Proof. For |t| < 1 the contour integral can be closed to the right, and the Γ-series in

Equation (4.3.46) is recovered as a sum over the enclosed residua at r ∈ N0 where we

have used

for all r ∈ N0 : Ress=r

(
π (−t)s

sin (πs)

)
= tr.

For |t| > 1 the contour integral must be closed to the left. The relation to the

local basis of solutions at t = ∞ can be explicitly computed:

Proposition 4.3.69. For |t| > 1, we obtain for f(ϵ, t) in Equation (4.3.54)

f(ϵ, t) =
n∑

r=1

Br(ϵ)Fr(t) (4.3.55)
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where Fr(t) is given by

Fr(t) = Ar t
−ρr

nFn−1

(
ρr . . . . . . ρr

1 + ρr − ρ1 . . . 1̂ . . . 1 + ρr − ρn

∣∣∣∣ 1t
)

(4.3.56)

and

Ar = −e−πiρr

n∏
i=1
i ̸=r

Γ(ρi − ρr)

Γ(ρi) Γ(1− ρr)
, Br(ϵ) = e−πiϵ

[
n∏

i=1

Γ(ρi) Γ(1 + ϵ)

Γ(ρi + ϵ)

]
sin (πρr)

sin (πρr + πϵ)
,

(4.3.57)

such that Br(0) = 1 for r = 1, . . . , n.

Proof. For |t| > 1 the contour integral in Equation (4.3.54) must be closed to the

left. Using 1/(1 + ϵ)nk = O(ϵn) = 0 for k < 0, we observe that the poles are located

at s = −ϵ− ρi − k for i = 1, . . . , n and k ∈ N0. Using

∀r ∈ N0 : Ress=−r

(
Γ(s) (−t)s

)
=
t−r

r!
.

and Equations (4.3.45) the result follows.

Equation (4.3.55) allows to compute the transition matrix between the Frobenius

basis ⟨fn−1, . . . , f0⟩t of solutions for the differential equation (4.3.37) at t = 0 with

local monodromy given by the matrix (4.3.49) and the Frobenius basis ⟨Fn, . . . , F1⟩t

of solutions at t = ∞ with local monodromy given by the matrix (4.3.52). We obtain:

Corollary 4.3.70. The transition matrix P between the analytic continuations of the
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bases fff t = ⟨fn−1, . . . , f0⟩t at t = 0 and FFF t = ⟨Fn, . . . , F1⟩t at t = ∞ is given by



fn−1

...

f1

f0


=



B
(n−1)
n (0)

(2πi)n−1(n−1)!
. . .

B
(n−1)
1 (0)

(2πi)n−1(n−1)!

...
. . .

...

B
′
n(0)
2πi

. . .
B

′
1(0)

2πi

1 . . . 1


·



Fn

...

F2

F1


(4.3.58)

with Br(ϵ) given in Equation (4.3.57).

Proof. The transition matrix P between the analytically continued Frobenius basis of

solutions fff t = ⟨fn−1, . . . , f0⟩t at t = 0 and the analytic continuation of the Frobenius

basis FFF t = ⟨Fn, . . . , F1⟩t at t = ∞ is obtained by first comparing the expression of

f(ϵ, t) from Equation (4.3.46) as a linear combination of the solutions FFF at t = ∞

from Equation (4.3.55), and subsequently applying Lemma 4.3.62 to find the explicit

linear relations between fff and FFF . By differentiation of the functions Br(ϵ) in Equa-

tion (4.3.57) and evaluating at ϵ = 0, we recover the matrix (4.3.58).

We can now compute the monodromy of the analytic continuation of fff around

any singular point:

Corollary 4.3.71. The monodromy of the analytic continuation of fff around t = 0,

t = ∞, and t = 1 is given by m0 in (4.3.49), m∞ = P ·M∞ · P−1 for M∞ in (4.3.52),

and m1 = m∞ ·m−1
0 , respectively.

Monodromy after rescaling

For C > 0 the rescaled hypergeometric differential equation satisfied by F̃ (t) =

nFn−1(Ct) is given by

[
θn − C t (θ + ρ1) · · · (θ + ρn)

]
F̃ (t) = 0 . (4.3.59)



137

For |t| < 1/C we introduce f̃(ϵ, t) = C−ϵf(ϵ, Ct) such that

f̃(ϵ, t) =
n−1∑
m=0

(
2πiϵ

)m
f̃m(t) with f̃m(t) =

1

(2πi)mm!

∂m

∂ϵm

∣∣∣∣
ϵ=0

f(ϵ, Ct) (4.3.60)

for j = 0, . . . , n−1. The local monodromy around t = 0 with respect to the Frobenius

basis ⟨f̃n−1, . . . , f̃0⟩t is still given by the matrix m0 in (4.3.49). Similarly, for |t| > 1/C

we introduce F̃k(t) = Fk(Ct) for k = 1, . . . , n. The local monodromy (around t = ∞)

with respect to the Frobenius basis ⟨F̃n, . . . , F̃1⟩t is given by the matrixM∞ in (4.3.52).

We obtain:

Proposition 4.3.72. The transition matrix P̃ between the analytic continuation of

f̃̃f̃f and F̃̃F̃F such that f̃̃f̃f = P̃ · F̃̃F̃F is given by

P̃ =
(
P̃n−j,n+1−k

)n−1,n

j=0,k=1
with P̃n−j,n+1−k =

1

(2πi)jj!

∂j

∂ϵj

∣∣∣∣
ϵ=0

[
C−ϵBk(ϵ)

]
.

(4.3.61)

The monodromy of the analytic continuation of f̃̃f̃f around t = ∞ and t = 1/C is given

by m∞ = P̃ ·M∞ · P̃−1 and m1/C = m∞ ·m−1
0 , respectively.

Proof. One emulates the proof of Corollaries 4.3.70 and 4.3.71 directly with new

analytic continuations f̃̃f̃f and F̃̃F̃F around t = 0 and t = ∞, respectively. In this case,

one finds that the functions Br(ϵ) appearing in Equation (4.3.55) acquire a factor of

C−ϵ. The result then follows suit as claimed.

In summary, we obtained the monodromy matrices m0 in (4.3.49), m∞ = P̃ ·

M∞ · P̃−1 for M∞ in (4.3.52) and P̃ in Equation (4.3.61), and m1/C = m∞ · m−1
0 for

the hypergeometric differential equation (4.3.59). Thus, we have the following main

result:

Theorem 4.3.73. For the family of hypersurfaces Y
(n−1)
t in Equation (4.3.24) with

n ≥ 2 the mixed-twist construction defines a non-resonant GKZ system. Then a
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basis of solutions exists given as absolutely convergent Mellin-Barnes integrals whose

monodromy around t = 0, 1/C,∞ is, up to conjugation, m0,m1/C ,m∞, respectively,

for ρk = k/(n+ 1) with k = 1, . . . , n and C = (n+ 1)n+1.

Proof. The theorem combines the statements of Propositions 4.3.57, 4.3.58, 4.3.63,

4.3.67, 4.3.72 that were proven above.

We have the following:

Corollary 4.3.74. Set κ4 = −200 ζ(3)
(2πi)3

, and κ5 = 420 ζ(3)
(2πi)3

. The monodromy matri-

ces of Theorem 4.3.73 for 2 ≤ n ≤ 5 are given by Table 4.1.

Proof. We obtain from the multiplication formula for the Γ-function, i.e.,

m−1∏
k=0

Γ

(
z +

k

m

)
= (2π)

1
2
(m−1)m

1
2
−mz Γ(mz),

the identity

C−ϵBk(ϵ) =
Γ(1 + ϵ)n+1

Γ
(
1 + (n+ 1)ϵ

) sin (πρk)

sin (πρk + πϵ)
e−πiϵ .

We then compute the monodromy of the analytic continuation of f̃̃f̃f around t =

0, 1/C,∞ where we have set κ4 = −200 ζ(3)
(2πi)3

and κ5 = 420 ζ(3)
(2πi)3

. We obtain the

results listed in Table 4.1.

The case n = 4, reproduces up to conjugation the monodromy matrices for the

quintic threefold case by Candelas et al. [16] and Chen et al. [17].
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n Y
(n−1)
t m0 m1/C m∞

2 EC

 1 1

0 1


 1 0

−3 1


 1 1

−3 −2



3 K3


1 1 1

2

0 1 1

0 0 1




0 0 −1
4

0 1 0

−4 0 0




0 0 −1
4

0 1 1

−4 −4 −2



4 CY3



1 1 1
2

1
6

0 1 1 1
2

0 0 1 1

0 0 0 1





1 + κ4 0 5κ4

12

κ2
4

5

−25
12

1 −125
144

−5κ4

12

0 0 1 0

−5 0 −25
12

1− κ4





1 + κ4 1 + κ4
1
2
+ 11κ4

12
1
6
+ 7κ4

12
+

κ2
4

5

−25
12

−13
12

−131
144

−103
144

− 5κ4

12

0 0 1 1

−5 −5 −55
12

−23
12

− κ4



5 CY4



1 1 1
2

1
6

1
24

0 1 1 1
2

1
6

0 0 1 1 1
2

0 0 0 1 1

0 0 0 0 1





75
64

0 55
512

−11κ5

384
− 121

24576

−κ5 1 −5κ5

8

κ2
5

6
11κ5

384

−15
4

0 −43
32

5κ5

8
55
512

0 0 0 1 0

−6 0 −15
4

κ5
75
64





75
64

75
64

355
512

−11κ5

384
+ 155

512
−11κ5

384
+ 2399

24576

−κ5 −κ5 + 1 −9κ5

8
+ 1 (4κ5−3)(κ5−4)

24

κ2
5

6
− 125κ5

384
+ 1

6

−15
4

−15
4

−103
32

5κ5

8
− 63

32
5κ5

8
− 369

512

0 0 0 1 1

−6 −6 −27
4

κ5 − 19
4

κ5 − 61
64



Table 4.1: Monodromy matrices for the mirror families with 2 ≤ n ≤ 5
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CHAPTER 5

Quadratic period relations for K3 surfaces of high Picard-rank

We study in this chapter aspects of the quadratic period relations for the twisted

Legenedre pencil π : Xa,b,c → P1,

Xa,b,c : y
2 = x(x− 1)(x− t)(t− a)(t− b)(t− c) .

The existence of a quadratic relation amoung the period integrals follows by virtue of

the lattice polarization; equipping a K3 surfaceX with a lattice polarization L ↪→ ΛK3

determines the transcendental lattice T(X) := L⊥ ⊂ ΛK3, upon which the Riemann

relations hold, see §2.1.3. The investigation of these quadratic period relations is

crucial for the geometrization of the moduli space, which we undertake in Chapter 6.

This analysis is undertaken in §5.1, where we construct the parabolic cohomology

from the homological marking defined on the punctured base of the fibration. The

explicit quadratic relations given in §5.1.4 comes from parabolic cusp forms realizing

such cohomology classes, based off Endo’s analysis of generalized Eichler type [43].

Such a relation implies that the period domain is uniformized by a hyperquadric in

P4 defined by the quadratic form.

Our understanding of the parabolic cohomology of the fibration allows us to com-

pute some of the Picard-Fuchs equations for the twisted Legendre pencil in §5.3. Since

we now have an understanding of the transcendental cycles, this is done by a relatively

elementary method: Fubini’s theorem for multiple integrals, and integration by parts.
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Roughly speaking, we are “twisting” the second order Picard-Fuchs operator for the

Legendre pencil of elliptic curves, the second order Fuchsian operator annihilating

2F1(1/2, 1/2; 1|t), by the twist factor 1/
√
h(t) = 1/

√
(t− a)(t− b)(t− c).

Except for restrictions of the twisted Legendre pencil to Picard rank rho ≥ 19

(§5.3.3 and §5.3.4) method does not allow us to produce all of the Picard-Fuchs

equations, but only some. However, the method is sufficient for generating higher

order differential relations, and we use this method in §7.2 to determine a generic

fifth order Picard-Fuchs ODE operator for the twisted Legendre pencil.

5.1 Quadratic period relations for ρ ≥ 17

5.1.1 The homological invariant

The elliptic fibration on π : Xa,b,c → P1 has singular fibers of Kodaira type I2 over

the points t = 0, 1,∞, and singular fibers of Kodaira type I∗0 over t = a, b, c. With

the singular locus of the elliptic fibration being Σ = {0, 1, a, b, c,∞} ⊂ P1, we set

C = P1\Σ. Let t0 be a fixed point in C, and denote the fundamental group of C

bases at t0 by Γ = π1(C, t0). Generators for Γ are suitable simple loops αv around the

base points of the singular fibers with v ∈ Σ such that the following relation holds

[αc] ∗ [αb] ∗ [αa] ∗ [α1] ∗ [α0] ∗ [α∞] = 1 , (5.1.1)

where [ · ] denotes a homotopy equivalence class and ∗ the group multiplication of loops

up to homotopy. Denote by t : C̃ → C the universal cover of C with meromorphic

functions on C regarded as quotients of polynomials in t. We also let C̃∗ denote

the union of C̃ and the set of cusps for Γ on C̃. Let D the polygonal fundamental

domain for Γ on C̃∗ with pair of edges Av and αvAv lying over the paths t(Av) that

extend from cusps ∞∗ to 0∗ to α0∞∗ to 1∗ to α1α0∞∗ to a∗ to αaα1α0∞∗ to b∗ to
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αbαaα1α0∞∗ to c∗ to ∞∗ and with covering transformations αv which generate Γ,

stabilize the vertices v∗, and satisfy Equation (5.1.1). The boundary of D is

∂D = A0 − α0A0 + A1 − α1A1 + · · ·+ Ac − αcAc . (5.1.2)

We will now fix a so-called homological marking on Xa,b,c. For an elliptic surface

π : X → C, a homological invariant G is obtained by defining a locally constant sheaf

over C whose generic stalk is isomorphic to H1(Et,Z) ∼= Z⊕ Z, where Et = π−1(t) is

a generic smooth fibre. A monodromy representation

M : Γ → SL(2,Z) (5.1.3)

defines the transition functions for this sheaf. Then G = M(Γ) ⊆ SL(2,Z) is the

homological invariant of the fibration (X, π). From Kodaira’s classification [78, 79],

it follows thatM(α0),M(α1),M(α∞) are conjugate to T 2, andM(αa),M(αb),M(αc)

are conjugate to −I where we used the following SL(2,Z)-generators

T =

 1 1

0 1

 , S =

 0 −1

1 0

 . (5.1.4)

We fix the homological invariant of the Jacobian elliptic K3 surface π : Xa,b,c → P1

by fixing the boundary ∂D in Eq. (5.1.2) and setting

M∞ = TS T 2 (TS)−1 , M0 = S T 2 S−1 , M1 = T 2 , Ma =Mb =Mc = −I , (5.1.5)

where M(αv) = Mv for v ∈ Σ. Notice that the matrices (5.1.5) are conjugate to the

elements of SL(2,Z) required by the Kodaira-type of the singular fibers and satisfy
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the condition

Mc ·Mb ·Ma ·M1 ·M0 ·M∞ = I . (5.1.6)

5.1.2 The Picard-Fuchs equation and differentials of the second kind

For the twisted Legendre pencil X = Xa,b,c, let

Y 2 = 4X3 − g2X − g3

denote the Weierstrass form of the elliptic fibres. Let ∆ = g32 − 27g23 be the modular

discriminant. We will use dX/Y ∈ H1,0(Et) as the holomorphic one form on each

regular fiber Et = π−1(t). This is called an analytic marking of the elliptic surface

X. The Picard-Fuchs equation for the Weierstrass elliptic surface is given by the

Fuchsian system (see for example [37])

d

dt

 ω

a

 =


− 1

12

d ln∆

dt

3 δ

2∆

−g2 δ
8∆

1

12

d ln∆

dt

 ·

 ω

a

 , (5.1.7)

where

ω =

∫
γ

dX

Y
, a =

∫
γ

X dX

Y
, (5.1.8)

for a one-cycle γ and δ = 3 g3 g
′
2 − 2 g2 g

′
3. The Picard-Fuchs equations are equivalent

to the following second-order ordinary differential equation of hypergeometric type

1√
h(t)

(
t(t− 1)

d2

dt2
+ (2t− 1)

d

dt
+

1

4

) (√
h(t)ω(t)

)
= 0 . (5.1.9)

Kummer found all six solutions to the underlying hypergeometric differential equation

which account for all possible behaviors at the three regular singular points 0, 1,∞.
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Using the family of an ordered basis γ1 and γ2 for H1(Et,Z) that changes analytically

in t, we obtain the two solutions near t = 0 for the periods

ω1 =

∫
γ1

dX

Y
=

r√
h(t)

2F1

(
1

2
,
1

2
; 1; t

)
,

ω2 =

∫
γ2

dX

Y
= − π r√

h(t)
2F1

(
1

2
,
1

2
; 1; 1− t

)
,

(5.1.10)

where r = 2π/
√
6. We have the following asymptotic expansions of the hypergeomet-

ric functions

2F1

(
1

2
,
1

2
; 1; t

)
= 1 +

1

4
t+O(t2) ,

−π 2F1

(
1

2
,
1

2
; 1; 1− t

)
= ln (t) 2F1

(
1

2
,
1

2
; 1; t

)
+ (terms holomorphic in t) .

(5.1.11)

We set τ = 1
2πi

ω2

ω1
: C → H and q = exp (2πiτ) such that

J = J ◦ τ : C → H → P1 ∼= PSL(2,Z)\H∗ , (5.1.12)

where J = E3
4(τ)/[E

3
4(τ)−E2

6(τ)] and J = j/1728 where j = q−1+ . . . is the classical

modular function. Moreover, the comparison with the the modular elliptic surface

for Γ(2) implies that t = −tΓ(2)/16 where tΓ(2) is the canonical Hauptmodul for Γ(2)

tΓ(2) = 28
η8(2τ)

η8(τ/2)
= 28

√
q (1 +O(

√
q)) . (5.1.13)

It follows that √
h(t)

c
ω1 =

η4(τ/2)

η2(τ)
= 1− 4

√
q +O(q)
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and

∆ =
729

4
h6(t) t2 (t− 1)2 =

(2π)12 η24(τ)

ω12
1

=
64π12 [E4

4(τ)− E2
6(τ)]

27ω12
1

, (5.1.14)

in accordance with the expansions in Equations (5.1.11) and (5.1.13).

There are covering maps, a period map τ̃ : C̃ → H and a non-vanishing holomor-

phic ω̃1 on C̃ such that

J ◦ t = J ◦ τ̃ , (5.1.15a)

τ̃ ◦ α =M(α) · τ̃ for all α ∈ Γ , (5.1.15b)

and

ω̃1 ◦ α = (c τ̃ + d) ω̃1 for all α ∈ Γ andM(α) =

 a b

c d

 , (5.1.16)

and

g2 ◦ t =
4 π4E4(τ̃)

3 ω̃4
1

, g3 ◦ t =
8 π6E6(τ̃)

27 ω̃6
1

,

∆ ◦ t = 64 π12 [E4
4(τ̃)− E2

6(τ̃)]

27 ω̃12
1

, J ◦ t = E3
4(τ̃)

[E3
4(τ̃)− E2

6(τ̃)]
.

(5.1.17)

We also set ω̃2 = τ̃ ω̃1. Letting C̃∗ denote the union of C̃ and the set of cusps for Γ

on C̃ (H resp.), we can extend τ̃ and J to surjective maps τ̃ ∗ : C̃∗ → H∗ such that

Equations (5.1.15)-(5.1.17) remain valid.

The period map pd maps from the space of vector-valued meromorphic one-form

on C̃∗ to the space of vector-valued meromorphic functions on C̃∗ by setting

pd : ξ⃗ 7→ Ξ⃗(u) =

∫ u

c∗
ξ⃗ , (5.1.18)
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for any vector-valued meromorphic differential ξ⃗ on C̃∗ and u ∈ C̃∗. Since η = dt∧ dX
Y

is a two-form on Xa,b,c we obtain a vector-valued one-form by integrating over every

non-singular fiber  ω2

ω1

 dt , with ωi dt =

∫
γi

η . (5.1.19)

Using the lift to the universal cover described above, we obtain a meromorphic vector-

valued one-form of on C̃∗ as follows

w⃗ =

 ω̃2

ω̃1

 dt . (5.1.20)

If we set W⃗ (u) := pd(w⃗)(u) where W⃗ (u) = (wu, zu)
t, it follows that W⃗ (u) converges

as u approaches any cusp in D. The convergence of the integrals at cusps can be

inferred from expansions of the integrand. From now on, we will not distinguish

between ω̃1 and ω1 any further to simplify notation. Hence, we have

wu =

∫ u

c∗
dt ω2 ,

zu =

∫ u

c∗
dt ω1 .

(5.1.21)

5.1.3 Generalized cusp forms

The construction of the Hodge structure on the parabolic cohomology is based on

the results by Hoyt [66] and its extension by Endo [43]. The results concerns families

of Weierstrass equations Y 2 = 4X3 − g2X − g3 with transcendental invariant J

with g2, g3 in an arbitrary finite algebraic extension K of C(J ). In the situation of

Equations (5.1.17) we use the period ω1 to define the space of generalized modular

forms of weight three relative to τ to be the one-dimensional K-module Kω3
1 =

{(f ◦ t)ω3
1 | f ∈ K} generated by ω3

1. One can ask whether the multi-valued modular
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form ω3
1 of weight three is a generalized cusp form of the second kind. This means

that ω3
1 is a cusp form at the parabolic cusps, the cusps where J ◦t = ∞, and satisfies

a second kind condition at the cusps which are not parabolic. We denote the space

of generalized cusp forms of the second kind of weight three by T . Hoyt proves in

[69] that ω3
1 in Equation (5.1.10) is a generalized cusp form of the second kind with

parabolic cusps at t = 0, 1,∞ and non-parabolic cusps at t = a, b, c.

In fact, every element of T is a two-form on Xa,b,c that is of the second kind and

holomorphic on singular fibers and has the form w⃗f = f dt ∧ dX/Y for a suitable

f ∈ C(t). On T , a quadratic form Q is defined by

Q(w⃗f ) =

∫
∂D

W⃗ t
f · S · w⃗f , (5.1.22)

where S is defined in Eq. (5.1.4) and the boundary ∂D is given in Equation (5.1.2).

A theorem by Endo [43] then proves that the quadratic form is well defined provided

one modifies w⃗f by adding a suitable exact w⃗g with pd(w⃗g) = 0 if necessary to ensure

that the integrals converge. Endo proves that for each f ∈ T there is a generalized

Eichler integral F of f such that f = d2

dτ2
F . On T , there is a well-defined quadratic

form for f ∈ T

Q(f) = 2πi
∑
v∈C∗

R̃esv

(
F · f

)
dτ̃ . (5.1.23)

Here, R̃es is an extended residue, and the quadratic form (5.1.23) is the pull-back

of the quadratic form in (5.1.22). In particular, Endo’s theorem implies that the

following equations hold

0 =

∫
∂D

W⃗ t · S · w⃗ , (5.1.24a)

0 <

∫
∂D

Re
(
W⃗ t
)
· S · Re

(
w⃗
)
. (5.1.24b)
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These equations are special cases of relations in Shimura [131] and are called the

Hodge-Riemann relations

Q(w⃗) = 0 , Q(Re(w⃗)) > 0 . (5.1.25)

5.1.4 The construction of the parabolic cocycle

For the marked elliptic surface Xa,b,c one defines the parabolic cohomology group

H1
par(Γ,M) associated to the monodromy representation M : Γ → SL(2,Z) of the

elliptic surface π : Xa,b,c → P1. We refer to [134, 71] for its definition and for the

relation to the parabolic cohomology group as originally defined by Shimura [131]

and Eichler [42]. Cox and Zucker [31] showed that the natural Hodge structures

on H2(P1, R1π∗Z) and the parabolic cohomology H1
par(Γ,M) are isomorphic. The

isomorphism between the parabolic cohomology group and the space T is given by

the period map (5.1.18). We describe the natural Hodge structure on H2(P1, R1π∗Z)

following [66, 43]. The vector-valued function W⃗ defines a parabolic cocyle Y⃗ by

Y⃗ (α) = W⃗ ◦ α−M(α) · W⃗ (5.1.26)

for α ∈ Γ. Immediate consequences of the definition are

Y⃗ (αβ) = Y⃗ (α) +M(α) · Y⃗ (β) , (5.1.27a)

0⃗ = Y⃗
(
αcαbαaα1α0α∞

)
. (5.1.27b)

We can then compute quadratic relations between the periods of the two-form η.

The following is based on a similar computation in [69]. For v ∈ Σ we set

Y⃗v := Y⃗ (αv) =
(
I−M(αv)

)
· W⃗ (v∗) . (5.1.28)
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It follows from Equations (5.1.28) and (5.1.5) that

Y⃗∞ =

 2w∞ − 2 z∞

2w∞ − 2 z∞

 , Y⃗0 =

 0

2w0

 , Y⃗1 =

 −2 z1

0

 ,

Y⃗v =

 2wv

2 zv

 for v = a, b, c .

The linear relation (5.1.27b) now becomes

 0

0

 =

 2wc − 2wb + 2wa + 2 z1 − 4w0 + 2w∞ − 2 z∞

2 zc − 2 zb + 2 za − 2w0 + 2w∞ − 2 z∞

 . (5.1.29)

The period integrals
∫
Av
w⃗ can be be simplified as follows

∫
A0

w⃗ = W⃗ (0∗)− W⃗ (∞∗) ,∫
A1

w⃗ = W⃗ (1∗)−
[
Y⃗0 +M(α0) W⃗ (∞∗)

]
,∫

Aa

w⃗ = W⃗ (a∗)−
{
Y⃗1 +M(α1)

[
Y⃗0 +M(α0) W⃗ (∞∗)

]}
,

and similar relations hold for
∫
Av
w⃗ with v = b, c. We introduce the following linear

combinations of the periods

Z1 = za + z∞ − w∞ ,

Z2 = z1 − 2 za + wa ,

Z3 = −w∞ + z∞ + w0 − z1 + 2 za − wa ,

Z4 = w∞ − z∞ ,

Z5 = za − z1 ,

(5.1.30)
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where zv =
∫ v∗

c∗

∫
γ1
dt ∧ dX/Y =

∫ v∗

c∗
dt ω1 for v ∈ {0, 1, a,∞}. Using the variables in

(5.1.38) and the quadratic form

Q
(
Z1, Z2, Z3, Z4, Z5

)
= 2Z2

1 + 2Z2
2 − 2Z2

3 − 2Z2
4 − 2Z2

5 , (5.1.31)

the Hodge-Riemann relations (5.1.24a) and (5.1.24b) on Xa,b,c become the following

quadratic period relations:

Q
(
Z1, Z2, Z3, Z4, Z5

)
= 0 , (5.1.32a)

Q
(
Re(Z1),Re(Z2),Re(Z3),Re(Z4),Re(Z5)

)
> 0 . (5.1.32b)

Here, we have used that zc = 0 and wc = 0 and the linear relation (5.1.29) to express

all wb, zb in terms of the other variables.

Alternate choice of variables

If we use the following linear combinations of the periods

Z ′
1 = za ,

Z ′
2 = −z∞ + z1 + w∞ − 2w0 ,

Z ′
3 = wa ,

Z ′
4 = z∞ − w∞ + w0 ,

Z ′
5 = z∞ − z1 − w∞ + w0 ,

(5.1.33)

and the quadratic form

Q′
(
Z ′

1, Z
′
2, Z

′
3, Z

′
4, Z

′
5

)
= 4Z ′

1 Z
′
2 + 4Z ′

3 Z
′
4 − 2 (Z ′

5)
2 , (5.1.34)
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the Hodge-Riemann relations (5.1.24a) and (5.1.24b) on Xa,b,c become the following

quadratic period relations:

Q′
(
Z ′

1, Z
′
2, Z

′
3, Z

′
4, Z

′
5

)
= 0 , (5.1.35a)

Q′
(
Re(Z ′

1),Re(Z
′
2),Re(Z

′
3),Re(Z

′
4),Re(Z

′
5)
)
> 0 . (5.1.35b)

Degeneration of Hodge-structures

For a → 1 the singular fiber of Kodaira type I∗0 will coalesce with the singular fiber

of Kodaira type I2 at 1 to form a fiber of Kodaira type I∗2 . The elliptic fibration then

has four singular fibers of Kodaira type I1 over the points t1, . . . , t4; For a → 1 it

follows za → z1 and Z5 → 0. In terms of the period relation if follows that

Q
(
Z1, Z2, Z3, Z4, Z5

)
→ 2Z2

1 + 2Z2
2 − 2Z2

3 − 2Z2
4 . (5.1.36)

For a→ 1 and c→ ∞ the singular fibers of Kodaira type I∗0 at t = a and t = c will

coalesce with the singular fiber of Kodaira type I2 at t = 1 and t = ∞, respectively,

to form fibers of Kodaira type I∗2 . It follows that za → z1, wa → w1 and z∞, w∞ → 0,

hence Z4, Z5 → 0. In terms of the period relation, it follows that

Q
(
Z1, Z2, Z3, Z4, Z5

)
→ 2Z2

1 + 2Z2
2 − 2Z2

3 . (5.1.37)

So, in this case we have

Z1 = z1 ,

Z2 = −z1 + w1 ,

Z3 = w0 − w1 + z1 ,

(5.1.38)
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where zv =
∫ v∗

∞∗

∫
γ1
dt ∧ dX/Y =

∫ v∗

∞∗ dt ω1 for v ∈ {0, 1}. Notice that in this

normalization the boundary does not depend on the remaining parameter b.

5.2 The period maps for Picard rank ρ ≥ 17

For Xa,b,c the transcendental lattice is T(Xa,b,c) = H(2)⊕2 ⊕ ⟨−2⟩. We look at the

period domain

D =
{
Z⃗ ∈ P(T⊗ C) | Q(Z⃗, Z⃗) = 0 , Q(Z⃗, Z⃗∗) > 0

}
. (5.2.39)

Based on the exposition in [21] we give a description of D in Narain coordinates.

One starts with a fixed choice of a sublattice V of T(Xa,b,c) which has rank 2 and is

primitive and isotropic. For any Z⃗ representing a class in D, the homomorphism

Q(Z⃗, · ) : V ⊗ R → C (5.2.40)

is an isomorphism of real vector spaces. If an orientation is chosen on V⊗R, then the

map (5.2.40) is either orientation preserving or orientation reversing depending on the

component in which [Z⃗] lies. We pick an orientation on D by choosing a connected

component D+ such that for all [Z⃗] ∈ D+ the map (5.2.40) is orientation reversing.

We select linearly independent isotropic elements {x1, x2, y1, y2, u} such that

T(Xa,b,c) = Z y1 ⊕ Z y2 ⊕ Zx1 ⊕ Zx2 ⊕ Zu ,

with and Q(xi, yi) = 4 for i = 1, 2, Q(u, u) = −2. {y1, y2} forms an oriented basis

of V. The choice of {x1, x2, y1, y2, u} is the same as defining an embedding of H(2)⊕2

into T(Xa,b,c) such that the image contains a sublattice V of rank 2 which is primitive
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and isotropic. With respect to the basis ⟨y1, y2, x1, x2, u⟩ the intersection form is

Q =



0 0 2 0 0

0 0 0 2 0

2 0 0 0 0

0 2 0 0 0

0 0 0 0 −2


. (5.2.41)

For any class in D+ there is a normalized representative Z⃗ such that Q(Z⃗, y2) = 1,

hence Z⃗ = (τ1, 1)(τ2, v)(µ) for some τ1, τ2, v, µ ∈ C∗. The first Hodge-Riemann rela-

tion Q(Z⃗, Z⃗) = 0 becomes

4(τ1 τ2 + v)− 2µ2 = 0 ⇒ v = −τ1 τ2 +
1

2
µ2 .

The second Hodge-Riemann relation Q(Z⃗, Z⃗∗) > 0 becomes

4 Imτ1 Imτ2 − 4 (Imµ)2 > 0 .

In the above convention [Z⃗] ∈ D+ means Imτ1 > 0. Hence we have

2 Imτ1 Imτ2 > (Imµ)2 > 0 .

We then have the following lemma:

Lemma 5.2.75. There is a C∞-isomorphism D+ → H×H×C∗ which associates to
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a period line [Z⃗] the triple (τ1, τ2, µ). The isomorphism is given by

τ1 =
z1 − z∞ − 2w0 + w∞

za
,

τ2 =
z∞ − w∞ + w0

za
,

µ =
−z1 + z∞ + w0 − w∞

za
,

(5.2.42)

where for v ∈ {0, 1, a,∞} we have used the K3 periods of Xa,b,c

zv =

∫ v∗

c∗

∫
γ1

dt ∧ dX/Y =

∫ v∗

c∗
dt ω1 ,

wv =

∫ v∗

c∗

∫
γ2

dt ∧ dX/Y =

∫ v∗

c∗
dt ω2 .

(5.2.43)

Proof. Comparison of η = (τ1, 1)(τ2, v)(µ) with Equation (5.1.34) leads to

τ1 =
Z ′

2

Z ′
1

, τ2 =
Z ′

4

Z ′
1

, µ =
Z ′

5

Z ′
1

, (5.2.44)

where Z ′
1, Z

′
2, Z

′
4, Z

′
5 where defined in Equations (5.1.33).

5.3 Some Picard-Fuchs equations for the twisted Legendre pencil

The quadratic period relations for the twisted Legendre pencil X = Xa,b,c in §5.1 are

manifest in the structure of the Picard-Fuchs operators annihilating their periods. In

this section, we will see how some of the quadratic relations can be discovered by

applying a very simple method: Fubini’s theorem for multiple integrals, and integra-

tion by parts. In order to obtain the full Picard-Fuchs system, we appeal in §6.1

to a differential geometric structure on the period domain that is inherited by the

existence of the quadratic period relations.
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5.3.1 The Picard-Fuchs equations for ρ ≥ 17

Recall that the Picard-Fuchs equation for the periods of the elliptic fibers on X was

given in Equation (5.1.9) by the twisted second order hypergeometric operator

1√
h(t)

(
t(t− 1)

d2

dt2
+ (2t− 1)

d

dt
+

1

4

) (√
h(t)ω(t)

)
= 0 ,

where h(t) = (t − a)(t − b)(t − c) is the twist factor for X. A basis of solutions is

given by

ω1 =

∫
γ1

dX

Y
=

r√
h(t)

2F1

(
1

2
,
1

2
; 1; t

)
,

ω2 =

∫
γ2

dX

Y
= − π r√

h(t)
2F1

(
1

2
,
1

2
; 1; 1− t

)
,

(5.3.45)

where r = 2π/
√
6. It follows from the explicit form Eqn (5.3.45) of the solution that

∂m

∂cm
ω(t) =

(
1

2

)
m

1

(t− c)m
ω(t) , (5.3.46)

where (1/2)m = 1/2 · (1/2 + 1) · · · (1/2 + m). We also have similar equations for

derivatives with respect to a, b. Thus, for the period Z =
∫ 1

0
dt ω(t) we obtain

∂2Z

∂b∂c
=

1

2(b− c)

(
∂Z

∂b
− ∂Z

∂c

)
, (5.3.47)

and similar equations in volving (a, b) and (a, c). In other words, multiplying the

period integral by rational functions in t of the type 1/(t−a)m, 1/(t− b)m, 1/(t− c)m,

where m ∈ N is the same as differentiating the period integral m times with respect

to that variable. This simple observation allows us to quickly compute differential

relations, and hence, Picard-Fuchs operators, for the twisted Legendre pencil. We

have the following easy computational result.
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Proposition 5.3.76. Let Z =
∫ 1

0
dt ω(t) be a period integral on the twisted Legendre

pencil X, and let Za = ∂Z/∂a, Zab = ∂2Z/∂a∂b, etc. Then we have the following

relations:

1

t− a
=
2Za

Z
,

1

t− b
=

2Zb

Z
,

1

t− c
=

2Zc

Z
,

1

(t− a)2
=
4

3

Za,a

Z
,

1

(t− b)2
=

4

3

Zb,b

Z
,

1

(t− c)2
=

4

3

Zc,c

Z
.

(5.3.48)

Similar relations hold for higher powers of 1/(t− a), 1/(t− b), 1/(t− c).

We invite the reader to verify these easy computations themselves.

The second order equation in (5.3.47) is a differential equation of Euler-Poisson-

Darboux type for N = 1/2. The relationship of these equations, especially as related

to the hypergeometric differential operator, was studied for example, by Miller in

[98]. In addition to these three equations, we can obtain one more differential relation

from the twisted hypergeometric opertator in Equation (5.1.9) as follows. We rewrite

Equation (5.1.9) (
R2(t)

d2

dt2
+R1(t)

d

dt
+R0(t)

)
ω(t) = 0 , (5.3.49)

where by allowing the hypergeometric differential operator to interact with the twist

factor
√
h(t). By integrating by parts, we obtain

0 =

∫ 1

0

dt
(
R2(t)

d2

dt2
+R1(t)

d

dt
+R0(t)

)
ω(t)

=

∫ 1

0

dt
(
R′′

2(t)−R′
1(t) +R0(t)

)
ω(t)

+
[
R2(t)ω

′(t) +
(
−R′

2(t) +R1(t)
)
ω(t)

]1
0
.

(5.3.50)

A careful expansion around the boundary points yields

[
R2(t)ω

′(t) +
(
−R′

2(t) +R1(t)
)
ω(t)

]1
0
= 0 . (5.3.51)



157

We conclude then that R′′
2(t) − R′

1(t) + R0(t) = 0. A partial fraction decomposition

yields

R′′
2(t)−R′

1(t) +R0(t)

= 1 +
α2

(t− a)2
+

α1

t− a
+

β2
(t− b)2

+
β1
t− b

+
γ2

(t− c)2
+

γ1
t− c

,

(5.3.52)

where the coefficients γ1, γ2, β1, β2, α1, α2 depend only on the parameters a, b, c. Upon

substitution of the relations in Proposition 5.3.76, we obtain the following second

order equation for the periods:

0 = (a− 1)a
∂2Z

∂a2
+ b(b− 1)

∂2Z

∂b2
+ c(c− 1)

∂2Z

∂c2

+
(6a3 − 4a2b− 4a2c+ 2abc− 5a2 + 3ab+ 3ac− bc)

2(a− b)(a− c)

∂Z

∂a

+
(4ab2 − 2abc− 6b3 + 4b2c− 3ab+ ac+ 5b2 − 3bc)

2(b− c)(a− b)

∂Z

∂b

+
(2abc− 4ac2 − 4bc2 + 6c3 − ab+ 3ac+ 3bc− 5c2)

2(b− c)(a− c)

∂Z

∂c
+ Z

(5.3.53)

We are allowed to multiply the differential operator in Equation (5.1.9) by alge-

braic functions f(t) ∈ O∗
C - choosing f(t) carefully allows us to obtain higher order

equations using Proposition 5.3.76. For example, consider the following, where we

have chosen f(t) = t(t− 1)/(t− c)2:

t(t− 1)

(t− c)2
√
h(t)

(
t(t− 1)

d2

dt2
+ (2t− 1)

d

dt
+

1

4

) (√
h(t)ω(t)

)
= 0 . (5.3.54)
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Following the steps above, a partial fraction decomposition yields

R′′
2(t)−R′

1(t) +R0(t)

= 1 +
α2

(t− a)2
+

α1

t− a
+

β2
(t− b)2

+
β1
t− b

+
γ4

(t− c)4
+

γ3
(t− c)3

+
γ2

(t− c)2
+

γ1
t− c

,

(5.3.55)

where the coefficients γ1, . . . , γ4, β1, β2, α1, α2 depend only on the parameters a, b, c.

We then obtain the partial differential equation

0 =
4 γ4
35

Zcccc +
2 γ3
5

Zccc + γ2 Zcc +
3 γ1
2

Zc

+α2 Zaa +
3α1

2
Za + β2 Zbb +

3 β1
2

Z +
3

4
Z ,

(5.3.56)
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with

4 γ4
35

=c2 (c− 1)2 ,

2 γ3
5

=
c(c− 1) (8abc− 9ac2 − 9bc2 + 10c3 − 4ab+ 5ac+ 5bc− 6c2)

(a− c)(b− c)
,

γ2 =
55a2c2 − 138ac3 + 76c4 − 55a2c+ 152ac2 − 83c3 + 9a2 − 32ac+ 16c2

4(c− a)2

− 7

4

c2 (c2 − 2c+ 1)

(c− b)2
− c (14ac2 − 15c3 − 21ac+ 23c2 + 7a− 8c)

2(b− c)(a− c)
,

3 γ1
2

=
3

8

10a3c− 54a2c2 + 62ac3 − 22c4 − 5a3 + 39a2c− 39ac2 + 13c3 − 4a2

(a− c)3

− 3

2

c2 (c2 − 2c+ 1)

(b− c)3
− 3c (8ac2 − 9c3 − 12ac+ 14c2 + 4a− 5c)

4(c− b)2(a− c)

+
−36a2c2 + 84ac3 − 45c4 + 36a2c− 90ac2 + 48c3 − 6a2 + 18ac− 9c2

4(b− c)(a− c)2
,

α2 =
3

4

a2 (a− 1)2

(a− c)2
,

3α1

2
=
3

4

a2 (a− 1)2 (3a− 2b− c)

(a− c)3(a− b)
,

β2 =
3

4

b2 (b− 1)2

(b− c)2
,

3 β1
2

=
3

4

b2 (b− 1)2 (3b− 2a− c)

(b− c)3(b− a)
.

(5.3.57)

The utility of these complicated expressions will become evident through the rest of

this section.
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5.3.2 The Picard-Fuchs equation for ρ ≥ 18

Setting a = 1, we start with the Picard-Fuchs equation for the periods of the elliptic

fibers

(t− 1)(t− b)

(t− c)
√
h(t)

(
t(t− 1)

d2

dt2
+ (2t− 1)

d

dt
+

1

4

)(√
h(t)ω(t)

)
= 0 ,

(t− 1)(t− c)

(t− b)
√
h(t)

(
t(t− 1)

d2

dt2
+ (2t− 1)

d

dt
+

1

4

)(√
h(t)ω(t)

)
= 0 ,

(t− 1)√
h(t)

(
t(t− 1)

d2

dt2
+ (2t− 1)

d

dt
+

1

4

)(√
h(t)ω(t)

)
= 0 .

(5.3.58)

We have chosen a factor in front which make the boundary contribution disappear.

We can then employ the same strategy of integrating by part and evaluating the

boundary contributions as before. From those we only need the last one. The two

equation we get are then the following:

Zbc =
1

2(b− c)

(
Zb − Zc

)
, (5.3.59)

and

0 =
b(b− 1)2

2
Zbb +

c(c− 1)2

2
Zcc

+
(b− 1)(5b2 − 3bc− 3b+ c)

4(b− c)
Zb +

(c− 1)(5c2 − 3bc− 3c+ b)

4(c− b)
Zc

+
2b+ 2c− 3

8
Z .

(5.3.60)

5.3.3 The Picard-Fuchs equation for ρ ≥ 19

For a = 1, b = 0 and Picard rank ρ ≥ 19 the differential equation (5.3.56) becomes

0 = c2 (c− 1)2Zcccc + 5c(2c− 1)(c− 1)Zccc

+

(
99

4
c2 − 99

4
c+ 4

)
Zcc +

57

8
(2c− 1)Zc +

3

4
Z .

(5.3.61)
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This can be simplified to

0 =
d

dc

(
c2 (c− 1)2Zccc + 3c(2c− 1)(c− 1)Zcc

+
1

4

(
27c2 − 27c+ 4

)
Zc +

3

8
(2c− 1)Z

)
.

(5.3.62)

We could have obtained the differential equation

0 = c2 (c− 1)2Zccc + 3c(2c− 1)(c− 1)Zcc +
1

4

(
27c2 − 27c+ 4

)
Zc +

3

8
(2c− 1)Z ,

(5.3.63)

by starting from the differential equation for the periods of the elliptic fiber

t(t− 1)

(t− c)
√
h(t)

(
t(t− 1)

d2

dt2
+ (2t− 1)

d

dt
+

1

4

)(√
h(t)ω(t)

)
= 0 , (5.3.64)

integrating by parts and evaluating the boundary contributions. In turn, the differ-

ential operator

Ô2 := c2 (c− 1)2
d3

dc3
+ 3c(2c− 1)(c− 1)

d2

dc2
+

1

4

(
27c2 − 27c+ 4

) d

dc
+

3

8
(2c− 1)

(5.3.65)

is the symmetric square Ô2 = Ô⊗2
1 of the differential operator

Ô1 := c(c− 1)
d2

dc2
+ (2c− 1)

d

dc
+

3

16
. (5.3.66)

The periods of the K3 surface X0,1,c satisfy the differential equation Ô2Z = 0 and

its projective solution is the period map. The K3 surface X0,1,c is related to the

K3 surface Y0,1,c by a Shioda-Inose structure. The K3 surface Y0,1,c is the Kummer
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surface Kum(Ec × Ec) where the elliptic curve Ec is given by

Ec :
{
(y, x) | y2 = 4x3 − 3

(
1− 3 c

4

)
x+

(
1− 9 c

8

)}
. (5.3.67)

The periods of the elliptic curve Ec satisfy die Picard-Fuchs equation Ô2 ω(c) = 0.

5.3.4 The case of ρ ≥ 19 with full level-two structure

Lastly in this section we consider the Picard rank ρ = 19 K3 surface Xa,∞,0. By

following the methods above, we arrive at the Picard-Fuchs equation

0 = 2(a− 1)a2Zaaa + 3a(3a− 2)Zaa +

(
13

2
a− 2

)
Za +

1

4
Z . (5.3.68)

This operator is, in fact, the Fuchsian operator that annihilates the hypergeometric

function 3F2(1/2, 1/2, 1/2; 1, 1 | a). Similar to above, the operator

Õ2 := 2(a− 1)a2
d3

da3
+ 3a(3a− 2)

d2

da2
+

(
13

2
a− 2

)
d

da
+

1

4
(5.3.69)

is the symmetric square Õ2 = Õ⊗2
1 of the second order Fuchsian operator

Õ1 := 2a(a− 1)
d2

da2
+ (3a− 2)

d

da
+

1

8
. (5.3.70)

This is the hypergeometric operator for 2F1(1/4, 1/4; 1/2 | 1 − a). For reasons that

will be explained in §6.2.3, this operator is naturally associated to the elliptic curve

Eλ2 :

{
(y, x) | y2 = 1

(λ2 − 1)
x(x− 1)

(
x− λ2

)}
, (5.3.71)

where a = −4λ2/(λ2 − 1)2. The K3 surface Xa,∞,0 is related to the Kummer surface

Y′
λ2,λ′2,0 = Kum(Eλ2 × E ′

λ2), where E ′
λ2 is 2-isogenous to Eλ2 and λ′2 is the elliptic
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modulus of E ′
λ2 , by Shioda-Inose structure and underlying (2, 2)-isogeny of Kummer

surfaces [26].
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CHAPTER 6

Special geometry of the moduli space

In the previous sections, we have seen that the presentation of theXa,b,c as the twisted

Legendre pencil

Xa,b,c : y2 = (t− a)(t− b)(t− c)x(x− 1)(x− t)

allows one to compute differential relations satisfied by the period integral by simply

applying Fubini’s theorem for multivariable integrals, and integration by parts. Due to

rank considerations of the Picard-Fuchs system for ρ = 19, this method is completely

sufficient to capture the entire differential system annihilating the period integrals,

and also for finding higher order differential relations for univariate restrictions of the

twisted Legendre pencil. However, the case of primary interest is that of Picard rank

ρ = 17, for which there is only an incomplete story known in current literature to

the best of our knowledge. The method employed above only captures part of the

full rank 5 system. However, the work expended by computing the quadratic period

relations in §5.1 pays off greatly, since we know that the solutions of the Picard-Fuchs

system are quadratically related, or satisfies the quadric condition.

This imposes very strong geometric consequences on the moduli space T for Xa,b,c.

By employing the differential geometric techniques of Sasaki & Yoshida [123], com-

bined with their work with Matsumoto for the double sextic family [96], we will

compute the full Picard-Fuchs system of the family Xa,b,c. Moreover, by utilizing the
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dominant rational map ϕ : M2 99K T from Equation (2.1.49), where M2 is the double

cover of the moduli space M[2] of genus 2 curves C with level-2 structure parameter-

ized by the Rosenhain roots of a 2-isogenous curve C′, we recover the uniformizing

Picard-Fuchs equations for the Kummer surface Kum(Jac(C)), which were computed

in [123]. Here Jac(C) is equipped with full level-two structure. This differential

system, being the Picard-Fuchs system of a family of lattice polarized K3 surfaces,

also satisfies the quadric condition - in this case, the quadric condition is explicitly

manifest, as the Picard-Fuchs system was computed in [60] to be the exterior product

of the Lauricella FD system that annihilates the hyperelliptic period integrals of the

genus 2 curve C. In this way, the work in this dissertation completely answers the

questions posed by Hoyt in [69]. Moreover, we show how restricting this system in

the limit c → 0 recovers exactly previous work of Clingher, Doran, and Malmendier

[26] in the Picard rank ρ = 18 case.

6.1 Geometry of certain uniformizing differential equations

In this section, we recall the theory of orbifold uniformizing differential equations of

Sasaki & Yoshida [123], and the connection to holomorphic conformal geometry. We

show that such an integrable holomorphic conformal structure can be realized as a

“flat” special geometry on the moduli space, as in physics.

6.1.1 Linear differential equations associated to projective hypersurfaces

Let M be a connected, complex n-dimensional orbifold.1 We recall the fundamental

construction of linear differential equations of rank n + 2 in n variables that are

associated to immersed hypersurfaces ψ : M → Pn+1. The case of n = 2 for surfaces

1This construction carries over in its entirety to the real category, where perhaps the geometric
content is more directly recognizable. We remark that the geometric content of this section is not
reflective of the hermitian geometry of M; rather, it describes the algebro-geometric nature of M,
realized as an immersed hypersurface of Pn+1.
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was classically treated by Wilczynski [143], and n ≥ 3 by Sasaki [120] and Sasaki

& Yoshida [123]. We are exclusively concerned with the latter case, in fact solely

for n = 3, but present the general story. Let z1, . . . , zn ∈ M be local coordinates,

and Pn+1 = P(t0, . . . , tn+1) be homogeneous coordinates. Assume that for some fixed

1 ≤ α, β ≤ n, the n + 2 vectors {ψ, ψ1, . . . , ψn, ψαβ} ⊂ J2(Cn+2,Pn+1) form a rank

n+ 2 linear subbundle S ⊆ J2(Cn+2,Pn+1), where ψµ = ∂ψ/∂zµ, ψµν = ∂2ψ/∂zµ∂zν ,

etc, and J2(Cn+2,Pn+1) is the second jet bundle of the trivial (n + 2)-plane bundle

Cn+2 → Pn+1. Then after projecting into S, the remaining second order derivatives

ψµν satisfy linear dependence relations, which we express in the form

∂2ψ

∂zµ∂zν
= Gµν

∂2ψ

∂zα∂zβ
+ Aγ

µν

∂ψ

∂zγ
+ A0

µνψ (6.1.1)

where we utilize the summation convention for repeated indices, for some meromor-

phic functions Gµν , A
k
µν , A

0
µν . Moreover, we assume the indices µ, ν are symmetric,

and we set Gαβ = 1, Ak
αβ = 0 = A0

αβ.

A crucial behaviour of the system above is the how the components behave un-

der projective rescaling ψ 7→ fψ, where f ∈ O∗
M is a suitable regular function. We

call such a transformation on ψ a projective gauge transformation, because of how

the connection matrix representing the linear system in Equation (6.1.1) transforms

under this transformation. One may verify directly that under any projective gauge

transformation, the coefficients Gµν of ψαβ are invariant. This suggests heavily that

they are actually the components of a symmetric tensor G = Gµν dz
µ⊗ dzν ∈ S2(M)

that determines a conformal structure on M. We will see shortly that this conformal

structure G is actually the driving force behind the theory of these differential equa-

tions, and is indispensable in our study of Picard-Fuchs equations for the the twisted

Legendre pencil. Because of their prominent role, the components Gµν are called the

principal part of the Equation (6.1.1).



167

Consider the following rank four system in n = 2 variables, with (α, β) = (1, 2),

given by

∂2ψ

∂z21
=

z2
1− z1

∂2ψ

∂z2∂z1
− (1− 2z1)

z1 (1− z1)

∂ψ

∂z1
+

z2
2z1 (1− z1)

∂ψ

∂z2
+

1

4z1 (1− z1)
ψ ,

∂2ψ

∂z22
=

z1
1− z2

∂2ψ

∂z1∂z2
− (1− 2z2)

z2 (1− z2)

∂ψ

∂z2
+

z1
2z2 (1− z2)

∂ψ

∂z1
+

1

4z2 (1− z2)
ψ .

This Fuchsian system is that which annihilates Appell’s bivariate hypergeometric

function F2 (1/2, 1/2, 1/2 ; 1, 1 |z1, z2), and is defined on the quasiprojective variety

M = P2 − L, where L ⊂ C2 is the union of the lines

{ z1 = 0, z1 = 1, z1 = ∞, z2 = 0, z2 = 1, z2 = ∞, z1 + z2 = 1 } .

In this case, the principal part of the equation is given by G1,1 = z2/(1−z1) and G2,2 =

z1/(1− z2). Let f ∈ O∗
M be any function. Then the projective gauge transformation

ψ 7→ fψ yields the new system

∂2ψ

∂z21
=

z2
1− z1

∂2ψ

∂z2∂z1
+
z2
(
2
(

∂f
∂z1

)
z1 + f

)
2fz1 (1− z1)

∂ψ

∂z2
+ · · · ,

∂2ψ

∂z22
=

z1
1− z2

∂2ψ

∂z1∂z2
+
z1
(
2
(

∂f
∂z2

)
z2 + f

)
2fz2 (1− z2)

∂ψ

∂z1
+ · · ·

which shows that the principal part G1,1, G2,2 of the equations remains unchanged.

When ψ : M → Pn+1 takes M to its universal cover U ⊂ Pn+1, then the map ψ

is called the developing map of the orbifold M, and the system (6.1.1) is called the

system of uniformizing differential equations for M. When the system (6.1.1) is the

Picard-Fuchs system for a family of complex projective varieties parameterized by M,

we have Picard-Fuchs uniformization. This phenomena was studied for example by

Doran in [36, 37].
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For the cases we are interested in, we will see in Theorem 6.1.78 below that the

universal cover U is contained in a hyperquadric Q ⊂ Pn+1. This is, at the very least,

feasible, since all hyperquadrics are simply connected over C. In this case, we say

that the map ψ - and equivalently, the system (6.1.1) - satisfies the quadric condition.

We have mentioned an algebraic incarnation of the quadric condition above - the one

described here is geometric. They are equivalent.

Definition 6.1.77. A system (6.1.1) of rank n + 2 satisfies the quadric condition

if its solutions are quadratically related. This is equivalent to projectivized vector of

solutions ψ : M → Pn+1 lying on a hyperquadric Q ⊂ Pn+1. In this case, the universal

cover π : U → M of the orbifold M is the image of the multivalued developing map

ψ, ψ(M) = U ⊆ Q, and the linear system (6.1.1) is the system of uniformizing

differential equations for M. Moreover, the solution ψ of (6.1.1) is the multivalued

inverse of π, π ◦ ψ = idM. We may say equivalently that ψ,M or Equation (6.1.1)

satisfies the quadric condition.

From this point forward, we assume that M satisfies the quadric condition. There

is a strong analogy between the intrinsic conformal geometry of M, induced by pull-

back of the canonical (holomorphic) conformal metric γ = δµν dt
µ ⊗ dtν ∈ S2(Pn+1)

by the developing map, and the classical hypersurface geometry of a Riemannian n-

manifold immersed in Rn+1. Here, δµν is the Kronecker delta. Let g = ψ∗γ ∈ S2(M),

which is a nondegenerate, symmetric tensor uniquely determined up to conformal

transformation. This allows one to realize the coefficients of the linear equations in

Equation (6.1.1) purely in terms of the holomorphic conformal geometry of M. In

particular, there are analogues of the classical Gauss and Codazzi equations that ex-

press the compatibility of the intrinsic holomorphic conformal geometry ofM with the

natural holomorphic conformal geometry induced by the immersion ψ. This is fortu-

nate, because we can detect the quadric condition purely from the intrinsic geometry
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of M. The primary notion is that of conformally flat.

For the purpose of computations, recall that any symmetric, nondegenerate tensor

g ∈ S2(M) defines a linear, g-compatible torsion free connection ∇ on the tangent

bundle TM by ∇ν∂µ = Γρ
µν∂ρ, where ∂µ = ∂/∂zµ and ∇µ = ∇∂µ . The coefficients -

the Christoffel symbols Γρ
µν - are computed explicitly from g = gµν dz

µ ⊗ dzν as

Γρ
µν =

1

2
gρλ
(
∂gµλ
∂zν

+
∂gνλ
∂zµ

− ∂gµν
∂zλ

)
, (6.1.2)

where gµν are the components of the inverse tensor to g. The curvature tensor

R(g) = Rµ
νκλ∂µ ⊗ dzν ⊗ dzκ ⊗ dzλ ∈ T 1

3 (M) is defined in terms of ∇ as

R(g)(X, Y ) = [∇X ,∇Y ]−∇[X,Y ] .

for (local) vector fields X, Y on M. In this way, R(g) can be thought of as a section

of the bundle Λ2(End(TM)) of TM-endomorphism valued 2-forms. Then the com-

ponents of the curvature tensor can be expressed in terms of the Christoffel symbols

as

Rµ
νκλ = ∂κΓ

µ
λν − ∂λΓ

µ
κν + Γµ

καΓ
α
λν − Γµ

λαΓ
α
κν , (6.1.3)

and the Ricci curvature tensor Ric(g) = Rµν dz
µ ⊗ dzν ∈ S2(M) is the contraction

Rµν = Rρ
µρν . (6.1.4)

Contracting Ric(g) with g yields the scalar curvature s(g)

s(g) = gµνRµν . (6.1.5)

The curvature tensor R(g) can be decomposed into a conformally invariant piece, the
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conformal curvature tensor or Weyl tensor W(g) such that

W µ
νκλ = Rµ

νκλ + Sνκδ
µ
λ − Sνλδ

µ
κ + gνκg

µαSαλ − gνλg
µαSακ , (6.1.6)

where Sµν are the components of the Schouten tensor S(g) = Sµν dz
µ⊗dzν ∈ S2(M),

defined as

Sµν =
1

n− 2

(
Rµν −

s(g)

2(n− 1)
gµν

)
. (6.1.7)

The conformal class [g] of the tensor g is a linear subbundle of S2(M)×C∗ generated

by ray through g. Hence, [g] is given by the collection of all exp(θ)g such that

exp(θ) ∈ O∗
M is a global nonvanishing regular function. We say (M,g) is conformally

flat if there is a exp(θ) ∈ O∗
M such that the tensor ĝ = exp(θ)g is flat, R(ĝ) = 0. If

n ≥ 4, M is conformally flat if and only if the conformal curvature tensor W(g) = 0.

If n = 3, the failure of M to be conformally flat is measured by the Cotton tensor

C(g) = Cµνλ dz
µ ⊗ dzν ⊗ dzλ ∈ T 0

3 (M), which is defined in terms of the Schouten

tensor S(g) as

Cµνλ = (∇µ S(g))νλ − (∇ν S(g))µλ . (6.1.8)

We have that (M,g) is conformally flat in n = 3 if and only if C(g) = 0.

We have the following primordial example. [The case that M = Q, ψ : M = Q ↪→

Pn+1 is the inclusion map] Let Q ⊂ Pn+1 by a hyperquadric as in Equation (2.1.9).

Hence Q is the locus of the equation Qµν t
µtν = 0, where (Qµν) ∈ Mat(n + 2,C) is

a square, nondegenerate, symmetric matrix. After a change of basis by an automor-

phismX ∈ GL(n+2,C) ofQ, we can always write the equation as−t0tn+1+Q̃µν t
µtν =

0. Then we obtain a canonical conformal on Q by utilizing local coordinates. Take,
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for example, a local coordinate chart f : Cn ↪→ Q ⊂ Pn+1 is given by

f : (z1, . . . , zn) 7→
[
t0 = 1 : t1 = z1 : · · · : tn+1 = Q̃µν t

µtν
]
∈ Pn+1 .

Then pulling back the holomorphic tensor γ = δµν dt
µ⊗dtν by the chart map f gives

the nondegenerate, symmetric tensor

φ = f ∗γ = Q̃µν dt
µ ⊗ dtν ∈ S2(M) . (6.1.9)

Note that φ flat, and hence, conformally flat. Moreover, this construction is clearly

induced by the inclusion mapQ ↪→ Pn+1. We call φ the canonical conformal structure

of the hyperquadric Q.

We utilize an old result of Kuiper, phrased it in slightly more modern language.

Theorem 6.1.78 (Kuiper [80], Theorem 4′, Theorem 4′′). Suppose that (M,g) is a

connected, conformally flat orbifold of dimension n, π : U → M be the universal cover,

and ψ : M → U be the developing map. Then there is a hyperquadric (Q,φ) ⊂ Pn+1

equipped with the canonical conformal structure φ and an embedding ı : U ↪→ Q,

unique up to ambient conformal transformations, such that g = (ı ◦ψ)∗φ. In particu-

lar, M is conformally immersed in a hyperquadric Q. Conversely, if ψ : M → (Q,φ)

is an immersion, then (M, ψ∗φ) is conformally flat.

We will be slightly sloppy from this point forward and not distinguish between

the developing map ψ : M → U and the map ı ◦ ψ : M → Q, and simply say “the

developing map ψ : M → Q”.

We have established that the period map ψ : T → P4 for the twisted Legendre

family Xa,b,c lies on the hyperquadric Q ⊂ P4 from the matrix in Equation (5.2.41),
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given in the variables of this section by the locus of the equation

2t1t3 + 2t2t4 − (t5)2 = 0 (6.1.10)

If we knew explicitly the conformal metric g = ψ∗φ, we could directly appeal to the

following result that allows us to compute the Picard-Fuchs system directly.

Theorem 6.1.79 (Sasaki & Yoshida [123], Theorem 2.5). Assume n ≥ 3, and let

M be an n-manifold with local coordinates z1, . . . , zn ∈ M. Let g = gµν dz
µ ⊗ dzν ∈

S2(M) be a symmetric, nondegenerate tensor that is conformally flat. Then the linear

system

gµν

(
ψκλ − Γρ

κλψρ +
1

n− 2
Rκλψ

)
= gκλ

(
ψµν − Γρ

µνψρ +
1

n− 2
Rµνψ

)
(6.1.11)

is of rank n + 2 and satisfies the quadric condition for some hyperquadric Q. The

vector of solutions ψ : M → Q is the developing map.

While the analysis of Endo & Hoyt utilized in §5.1 allows one to know the explicit

quadratic period relations of the family X, the period map as described therein does

not provide a very useful way to know the explicit relationship between the moduli

(a, b, c) the hyperquadric Q in Equation (6.1.10). Using the GKZ formalism (under

appropriate restriction) for the period integral of the twisted Legendre pencil [50],

one may compute an analytic, and thus, transcendental, expression for the period

map, but we would like a suitable algebro-geometric description. Thus, we seek out

another method to find the explicit conformal structure g on T. Fortunately, as might

be guessed from the explicit geometric content of the linear equations in Equation

(6.1.11), it turns out that any rank n + 2 linear system in n variables of the form

given in Equation (6.1.1) carries differential geometric content. We have the following

result.
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Theorem 6.1.80 (Sasaki & Yoshida [123], Theorem 2.4). Assume n ≥ 3. Fix indices

1 ≤ α, β ≤ n. Let G = Gµν dz
µ⊗dzν ∈ S2(M) be a symmetric, nondegenerate tensor

that is conformally flat, scaled such that Gαβ = 1. Define θ so that det Ĝ = 1, where

Ĝ = exp(θ)G. Define functions Aλ
µν , A

0
µν by

Aλ
µν = Γλ

µν −GµνΓ
λ
αβ,

A0
µν = −Sµν +GµνSαβ

with the Christoffel symbols and Schouten tensor computed according to the tensor

Ĝ. Then the linear system

∂2ψ

∂zµ∂zν
= Gµν

∂2ψ

∂zα∂zβ
+ Aγ

µν

∂ψ

∂zγ
+ A0

µνψ

from Equation (6.1.1) is of rank n + 2 and satisfies the quadric condition for some

hyperquadric Q ⊂ Pn+1. The converse is true, in the sense the following sense:

given a linear system of the form (6.1.1) of rank n+2 in n variables that satisfies the

quadric condition for some hyperquadric Q ⊂ Pn+1, then G = Gµν dz
µ⊗dzν ∈ S2(M)

is conformally flat, and the coefficients Aλ
µν , A

0
µν of the system are realized in terms of

the normalized tensor Ĝ, its Christoffel symbols, and Schouten tensor as above. The

vector of solutions ψ : M → Q is the developing map.

One should think of Theorem 6.1.80 as the differential equations version of the

geometric incarnation in Theorem 6.1.78 of Kuiper above.

6.1.2 The quadric condition and special geometry

There is an additional piece of geometric data that allows one to conclude that M

satisfies the quadric condition, the vanishing of the so-called Wilczynski-Fubini-Pick

form Φ = Φijk dz
i ⊗ dzj ⊗ dzk ∈ S3(M). The components Φijk are obtained from
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the conformal structure Gµν on M and the connection matrix ω from writing the

differential system (6.1.1) as a Pfaffian system, dψ = ωψ, where ω = (ωi
j) is the

(n + 2) × (n + 2) matrix of 1-forms obtained from the linear system. See Sasaki,

Sasaki & Yoshida [120, 123]. The following result is crucial.

Theorem 6.1.81 (Sasaki [120]). Let M be a connected piece of a hypersurface in

Pn+1. Assume the quadratic form G is nondegenerate and the Wilczynski-Fubini-

Pick form Φ vanishes identically. Then M is contained in a hyperquadric.

Sasaki & Yoshida utilized the holomorphic cubic form Φ in order to connect with

the classical work of Wilczynski, as well as to demonstrate that the quadric condition

can be detected from the intrinsic algebro-geometric data of M, i.e., an ample line

bundle L → M yielding the embedding ψ : M ↪→ Pn+1, and an intrinsic rank-(n+ 2)

holomorphic SL(n + 2,C)-bundle E → M on which ω is an integrable connection.

This perspective is equivalent to the discussion at the beginning of this section. In

particular, one may think of Φ as measuring the failure of the linear system (6.1.1)

to satisfy the quadric condition.

Since the orbifolds that we are interested in satisfy the quadric condition, we do not

need to compute Φ directly to check that the conclusion of Theorem 6.1.81 holds. We

conclude this indirectly by showing that (M,g) is conformally flat directly by using

either the Weyl tensor W(g) or the Cotton tensor C(g) depending on the dimension

of M. In this way, we conclude that Φ = 0 on M. This allows us to characterize M

in terms of so-called special geometry, which is well known to physicists in the context

of string theory and Seiberg-Witten theory.

Special geometry specifies a stringent differential geometric condition on M - a

certain flat symplectic connection ∇ on the underlying real tangent sheaf of M -

that is governed by a symmetric, holomorphic cubic form Ξ ∈ S3(M) that measures
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the failure of ∇ to preserve a given fixed complex structure on M.2 See Freed [45].

As was discussed by Donagi & Witten [35], there are crucial connections of special

geometry, their physical interpretations in N = 2 supersymmetric Yang-Mills theory

via Seiberg-Witten theory, algebraic integrable systems, and families of polarized

abelian varieties that is quite pertinent to the scope of this research. We take up

some of that analysis in §6.3.

In particular, we identify the holomorphic cubic form Ξ arising in special geometry

and the Wilczynski-Fubini-Pick formΦ. This is natural to do, as we will show through

the course of this chapter that such algebraic integrable systems are a geometric

incarnation of the Picard-Fuchs equations we study, via a generalization of the Shioda-

Inose structure provided by Mehran [97]. As explained in Freed [45], it can be shown

that there is a local holomorphic function F ∈ O(M) such that Ξ can be expressed

as

Ξ =
∂3F

∂zi∂zj∂zk
dzi ⊗ dzj ⊗ dzk (6.1.12)

in certain local coordinates {zi} ⊂ M related to the flat symplectic structure spec-

ified by ∇. The function F is called the holomorphic prepotential, which actually

determines the local hermitian and Riemannian geometry of M. It can be shown

that Im(∂i∂jF) is a potential function for the canonical (1,1)-class obtained from

the Fubini-Study metric, and moreover determines the associated Riemannian metric

g. In fact, Ξ can be used, together with a given symplectic (1,1)-class, associated

Riemannian metric g, and Levi-Civita connection ∇̃ to generate the flat symplectic

connection ∇ [45].

Let us end this introductory section with a statement about the physical signif-

icance of special geometry. Although one can obtain a classical lagrangian from a

special coordinate system, the special geometry of M does not yield a classical field

2Since M is quasiprojective, the choice of complex structure is naturally inherited from Pn
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theory. The local change of special coordinates must be accompanied by a duality

transformation on the gauge field in the vector multiplet, and this has only a quantum

interpretation. In fact, the holonomy group of∇ lies in some integral symplectic group

Sp(2n,Z) - we find for all examples in this research that the monodromy groups of

the Picard-Fuchs equations can be embedded in an integral symplectic group. Hence,

the special geometry on M is naturally associated with symplectic automorphisms

of an integral lattice Λ that determines a quantum field theory, which locally has

a semiclassical description in terms of N = 2 vector multiplets. Then M acts as

the moduli space of quantum vacua. Such descriptions are specified by an algebraic

integrable system, whose fibres consist of polarized abelian varieties.

Physically, this determines an abelian description of the low energy behavior of

the Coulomb branch of nonabelian N = 2 supersymmetric gauge theories, that may

or may not have matter multiplets. In the simplest case, initially studied by Seiberg

& Witten [126], the gauge group is SU(2) and no matter content is specified. Then

M is the rational elliptic surface Z → B, with B = Γ0(2)\H ∼= P1 as the modular

curve for the principle congruence subgroup Γ(2) ⊂ PSL(2,Z) of level-two structure.

We refer to the fibration Z → B as a Seiberg-Witten curve. In classical algebraic

geometry, this is simply the Legendre pencil of elliptic curves, given by the equation

y2 = (x2 − Λ4)(x− u) , (6.1.13)

with u ∈ P1. Here Λ ∈ P1 is the dynamically generated scale of the quantum field

theory, and the location u = 0,±Λ2 of the singular fibres of the elliptic fibration

are where the hypermultiplets become massless. The description of Z as a Jacobian

elliptic fibration is the algebraic integrable system defining the model. In fact, we shall

see that this Seiberg-Witten curve plays a cruicial role in the analysis we undertake

in §6.3.
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6.2 Holomorphic conformal geometry from the twisted Legendre pencil

Our strategy for computing the Picard-Fuchs system for the twisted Legendre family

X has been reduced, in the section preceding, to computing the holomorphic confor-

mal structure on the moduli space T induced from the quadratic period relations. We

shall obtain the explicit conformal structure by utilizing the previous work of Mat-

sumoto, Sasaki, & Yoshida [96] for the double sextic family, and then pulling back to

the twisted Legendre pencil.

6.2.1 Holomorphic Conformal geometry of the moduli space X (3, 6)

In [96], the authors computed the uniformizing differential equations of the four di-

mensional moduli space X (3, 6) of six lines in P2 in general position using the GKZ

formalism [50, 49] for functions on Grassmannians, putting the equations in the form

of Equation (6.1.1). Thus, they have explicitly obtained the conformal structure on

X (3, 6). In the variables x1, x2, x3, x4 of Equation (2.1.26), this conformal structure
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is given explicitly by the tensor G ∈ S2(X (3, 6)) given by

G =

(
x2x3 − x4

x1 (−x1 + 1)
− x3 (−x2 + x4)

x1 (x1 − x3)
− x2 (−x3 + x4)

x1 (x1 − x2)

)
dx1 ⊗ dx1

−
(
x3 − x4

x1 − x2

)
(dx1 ⊗ dx2 + dx2 ⊗ dx1)−

(
x2 − x4

x1 − x3

)
(dx1 ⊗ dx3 + dx3 ⊗ dx1)

+

(
x1x4 − x3

x2 (−x2 + 1)
− x1 (x3 − x4)

x2 (−x1 + x2)
− x4 (−x1 + x3)

x2 (x2 − x4)

)
dx2 ⊗ dx2

−
(
x1 − x3

x2 − x4

)
(dx2 ⊗ dx4 + dx4 ⊗ dx2) + (dx2 ⊗ dx3 + dx3 ⊗ dx2)

+

(
x1x4 − x2

x3 (−x3 + 1)
− x1 (x2 − x4)

x3 (−x1 + x3)
− x4 (−x1 + x2)

x3 (x3 − x4)

)
dx3 ⊗ dx3

+

(
x1 − x2

x3 − x4

)
(dx3 ⊗ dx4 + dx4 ⊗ dx3) + (dx1 ⊗ dx4 + dx4 ⊗ dx1)

+

(
x2x3 − x1

x4 (−x4 + 1)
− x3 (x1 − x2)

x4 (−x3 + x4)
− x2 (x1 − x3)

x4 (−x2 + x4)

)
dx4 ⊗ dx4

(6.2.14)

We now may analyze this tensor in the context of Picard-Fuchs uniformization for

the double sextic family.

Lemma 6.2.82. The orbifold (X (3, 6),G) is conformally flat. In particular, the com-

ponents Gµν are the principal part of the rank six system of uniformizing differential

equations (6.1.1) which satisfies the quadric condition.

Proof. By direct computation the Weyl tensor vanishes, W(G) = 0.

Lemma 6.2.83. The rank six differential system in Lemma 6.2.82 is the Picard-Fuchs

system for the double sextic family of K3 surfaces Xx1,x2,x3,x4 in Equation (2.1.22).

Proof. On X , we have the nonvanishing holomorphic 2-form ηX from Equation (2.1.23),

given in the affine coordinate chart [ t1 = 1 : t2 = T : t3 = X : z = z ] ⊂ P(1, 1, 1, 3)

by

ηX =
1√

TX(1 + T +X) (x3T + x1X + 1) (x4T + x2X + 1)
dT ∧ dX . (6.2.15)
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In [119], Sasaki showed that the period integral

ω(x1, x2, x3, x4) =

∫
Σ

ηX ,

satisfies the differential system in Lemma 6.2.82, where Σ ∈ T(X) is a transcendental

cycle. Since the Picard-Fuchs system for X is also of rank six in four variables, the

claim follows.

6.2.2 Embedding the moduli space T as a boundary component of X (3, 6)

One may compute the explicit Picard-Fuchs system for the double sextic family from

the conformal structure G using Theorem 6.1.80, but the system not particularly

inspiring, and more importantly is not needed for this dissertation. Since the double

sextic family is birational to the family Xa,b,c,d of Yoshida surfaces, we can find a re-

striction of the double sextic family that yields the twisted Legendre pencil (2.1.43);

after pulling back the conformal structure G to the moduli space T of the twisted

Legendre pencil, we will implement Theorem 6.1.79 and compute the system explic-

itly. However, we will see that one must use the elliptic fibration in Equation (2.1.43)

and the induced projective gauge transformation on the holomorphic 2-form (2.1.44)

to obtain the equations that we computed in §5.3.

Lemma 6.2.84. Let us write X = Xx1,x2,x3,x4 for the double sextic family, and X =

Xa,b,c the twisted Legendre pencil. Then the birational map Φ : P1×P1 99K P2 defined

by

Φ : ([t, 1], [x, 1]) 7→
[
1 : T = − x1t− 1

x1t− x3
: X =

x (x3 − 1)

x1t− x3

]
(6.2.16)

together with the rational map σ : T 99K X (3, 6) defined by

σ : (a, b, c) 7→
(
x1 =

1

a
, x2 = 0 , x3 =

c

a
, x4 =

b− c

b− a

)
(6.2.17)
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takes the restricted Yoshida surface Xx1,x2=0,x3,x4 to the (scaled) twisted Legendre pencil

Xa,b,c

y2 =
1

a(a− b)
(t− a)(t− b)(t− c)x(x− 1)(x− t) . (6.2.18)

At the level of holomorphic 2-forms, we have

Φ∗ ηX =
√
a(a− b) dt ∧ dx

y
≡
√
a(a− b) ηX . (6.2.19)

Proof. By direct computation using the maps Φ and σ. The scaling factor 1/a(a− b)

persists because a, a− b are not squares in the function field C(T).

Using a natural variation of the map σ : T 99K X (3, 6), we may pullback the

conformal structure (X (3, 6),G) to obtain the conformal structure (T,g). In this

way, we realize T as birational to the three-dimensional boundary component P2 of

X (3, 6) determined by the hyperplane x2 = 0.

Theorem 6.2.85. Define a one-parameter family of rational maps σϵ : T 99K X (3, 6)

by

σϵ : (a, b, c) 7→
(
x1 =

1

a
, x2 = ϵ , x3 =

c

a
, x4 =

b− c

b− a

)
. (6.2.20)

Then the symmetric tensor g = limϵ→0 σ
∗
ϵ G ∈ S2(T) is nondegenerate, and is given

up to conformal scaling by

g =
(1− b)(b− c)

a2 (a− b)2(a− 1)
da⊗da+ a− c

ab (a− b)2
db⊗db+ 1− b

ac (c− 1)(a− b)
dc⊗dc (6.2.21)

Then g determines a conformal structure on T that is conformally flat. Moreover, the

family of maps σϵ factors through the inclusion map ȷ : P2 ↪→ X (3, 6) that restricts the

fourfold down to the boundary hyperplane P2 defined by the equation x2 = 0 and the

birational map σ̂ : T 99K P2 assigning the values to x1, x3, x4 appearing in Equation
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6.2.20 above:
P2 X (3, 6)

T

ȷ

ϕ σϵ

The conformal structure on the boundary hyperplane P2 induced by the inclusion map

is given by the symmetric tensor

h = − x4(x3 − 1)

(x1 − 1)(x1 − x3)
dx1 ⊗ dx1 +

x4

x1 − x3
(dx1 ⊗ dx3 + dx3 ⊗ dx1)

+
x4x1 (x1x4 − (x3)2 − x1 + 2x3 − x4)

x3(x3 − 1)(x3 − x4)(x1 − x3)
dx3 ⊗ dx3 − x1

x3 − x4
(dx3 ⊗ dx4 + dx4 ⊗ dx3)

+ (dx1 ⊗ dx4 + dx4 ⊗ dx1) +
x1(x3 − 1)

(x4 − 1)(x3 − x4)
dx4 ⊗ dx4 ,

(6.2.22)

which is conformally flat.

Proof. By direct computation of g = limϵ→0 σ
∗
ϵ G, one finds the tensor presented

in Equation (6.2.21). This shows that the diagram above commutes. A subsequent

computation reveals that the Cotton tensor vanishes, C(g) = 0. Thus (T,g) is

conformally flat. To compute the conformal structure on P2 induced by the inclusion

map, as given, the conformal structure G on X (3, 6) blows up along P2, and this can

not be scaled away without sacrificing nondegeneracy. One then obtains the conformal

structure h on P2 induced by the inclusion map by computing h = (σϵ ◦ ϕ−1)∗G,

yielding the tensor in Equation 6.2.22. Similarly, one computes that h has vanishing

Cotton tensor C(h) = 0, so (P2,h) is conformally flat.

Now with the explict conformal structures (T,g) and (P2,h) in hand, we may

compute the full Picard-Fuchs system that annihilates the period map ψ : T → Q for

the twisted Legendre family by appealing to Theorem 6.1.79.
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Corollary 6.2.86. The Picard-Fuchs system for the twisted Legendre pencil the rank

five system in the variables a, b, c is given by the following linear equations. Three

equations are hyperbolic equations of so-called Euler-Poisson-Darboux type for N = 1/2

[98]

∂2ψ

∂a∂b
=

1

2(a− b)

(
∂ψ

∂a
− ∂ψ

∂b

)
, (6.2.23)

∂2ψ

∂a∂c
=

1

2(a− c)

(
∂ψ

∂a
− ∂ψ

∂c

)
, (6.2.24)

∂2ψ

∂b∂c
=

1

2(b− c)

(
∂ψ

∂b
− ∂ψ

∂c

)
, (6.2.25)

and the remaining two equations are given by

∂2ψ

∂b2
=
a (1− a)(a− c)

b (b− c)(b− 1)

∂2ψ

∂a2
− (5a3 − 3a2b− 4a2c+ 2abc− 4a2 + 2ab+ 3ac− bc)

2b (b− c)(b− 1)(a− b)

∂ψ

∂a

− (3ab2 − 2abc− 5b3 + 4b2c− 2ab+ ac+ 4b2 − 3bc)

2b (b− c)(b− 1)(a− b)

∂ψ

∂b
+

c(c− 1)

2b (b− c)(b− 1)

∂ψ

∂c

− (2a− 2c− 1 + 2b)

4b (b− c)(b− 1)
ψ ,

(6.2.26)

∂2ψ

∂c2
=
a (a− b)(a− 1)

c(c− 1)(b− c)

∂2ψ

∂a2
+

(5a3 − 4a2b− 3a2c+ 2abc− 4a2 + 3ab+ 2ac− bc)

2c (c− 1)(b− c)(a− c)

∂ψ

∂a

− b(b− 1)

2c (c− 1)(b− c)

∂ψ

∂b
− (2abc− 3ac2 − 4bc2 + 5c3 − ab+ 2ac+ 3bc− 4c2)

2c (c− 1)(b− c)(a− c)

∂ψ

∂c

+
(2a− 2b+ 2c− 1)

4c (c− 1)(b− c)
ψ .

(6.2.27)

Proof. Using the conformal structure (P2,h) from Theorem 6.2.85 with (α, β) = (1, 4)

and

θ =
1

3
log

(
(x3 − 1) (x4 − 1) (x4 − x3)x3 (x1 − 1) (x1 − x3)

x4 ((x4 − 1)x1 + x3 − x4)2 x1

)
,

for an appropriate branch of the logarithm, one writes out the five equations from



183

Theorem 6.1.80 after computing the Christoffel symbols and Schouten tensor with

respect to the ĥ = exp(θ)h. These equations are projectively equivalent to the rank

5 system given in [96, Equation 0.15.1], using the projective gauge factor

f(x1, x3, x4) =
(
x3
(
x3 − 1

))1/6 (−x3 + x4
)1/6 (

x4 − 1
)1/6

(x1x4)(1/3)
(
x1 − x3

)1/6
(
x1 − 1

)1/6 ((
x4 − 1

)
x1 + x3 − x4

)1/6 ∈ O∗
P2
.

After changing variables defined by the map ϕ in Theorem 6.2.85, one solves for the

second order derivatives in terms of ∂2ψ/∂a2, ∂ψ/∂a, ∂ψ/∂b, ∂ψ/∂c, and ψ. That

the equations must be expressed in terms of ∂2ψ/∂a2 was anticipated by Hoyt [69].

Afterwards, one makes the projective gauge transformation ψ 7→
√
a(a− b)ψ to yield

the equations above. Alternatively, one may use Theorem 6.1.79 on the conformal

structure (T,g), and use the projective gauge factor

f̃(a, b, c) =

√
(b− 1)(a− c)(b− c)

a(a− b)
∈ O∗

T

to yield the same equations. It follows then from Lemma 6.2.83 and Lemma 6.2.84

that the system is the Picard-Fuchs system the annihilates the period integral of the

twisted Legendre pencil

ω(a, b, c) =

∫
Σ

ηX =

∫
Σ

dt ∧ dx

y
,

where Σ ∈ T(X) is a transcendental cycle.

Note that the Euler-Poisson-Darboux equations in Equation (6.2.23) are precisely

what was computed by directly differentiating the period integral in Equation (5.3.47).

We verify the harmony of these different perspectives for the remaining two equations

(6.2.26,6.2.27) by showing that a simple linear combination of the Picard-Fuchs oper-



184

ators for these equations yields the second order Picard-Fuchs operator in Equation

(5.3.53).

Corollary 6.2.87. The Picard-Fuchs equations for the twisted Legendre pencil ob-

tained from the differential geometric method of Sasaki & Yoshida matches the dif-

ferential relations obtained by differentiating the period integral directly.

Proof. For each sequential Picard-Fuchs equation in Corollary 6.2.86, let Li denote

the corresponding second order differential operator, i = 1 . . . 5. As noted above,

the operators L1,L2,L3 from Equation (6.2.23) match directly to those computed in

Equation (5.3.47). Similarly let D denote the second order operator from Equation

(5.3.53), given by

D = (a− 1)a
∂2

∂a2
+ b(b− 1)

∂2

∂b2
+ c(c− 1)

∂2

∂c2

+
(6a3 − 4a2b− 4a2c+ 2abc− 5a2 + 3ab+ 3ac− bc)

2(a− b)(a− c)

∂

∂a

+
(4ab2 − 2abc− 6b3 + 4b2c− 3ab+ ac+ 5b2 − 3bc)

2(b− c)(a− b)

∂

∂b

+
(2abc− 4ac2 − 4bc2 + 6c3 − ab+ 3ac+ 3bc− 5c2)

2(b− c)(a− c)

∂

∂c
+ 1

It is straightforward then to see that the operators L4 from 6.2.26 and L5 from 6.2.27

satisfy

b(b− 1)L4 + c(c− 1)L5 = D .
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6.2.3 Picard-Fuchs operators for Kummer surfaces with level-two struc-

ture

In [96], Matsumoto, Sasaki, & Yoshida found a rational map ı : M[2] 99K XQ ⊂

X (3, 6) given by

ı : (λ1, λ2, λ3) 7→
(
x1 =

1− λ1
1− λ2

, x2 =
1− λ1
1− λ3

, x3 =
λ1
λ2
, x4 =

λ1
λ3

)
, (6.2.28)

where XQ ⊂ X (3, 6) is the subvariety parameterizing configurations of six lines in P2

that are tangent to a smooth conic. Then the pullback gQ = ı∗G of the conformal

structure (X (3, 6),G) is easily checked to be conformal to the following tensor:

gQ =(λ1 − λ2)λ3 (λ3 − 1) (dλ1 ⊗ dλ2 + dλ2 ⊗ dλ1)

+ (λ2 − λ3)λ1 (λ1 − 1) (dλ2 ⊗ dλ3 + dλ3 ⊗ dλ2)

+ (λ3 − λ1)λ2 (λ2 − 1) (dλ3 ⊗ dλ1 + dλ1 ⊗ dλ3) .

(6.2.29)

Recall that the Siegel upper half space of degree two H2 is given by


 τ1 τ2

τ2 τ3

 | (Im τ1) (Im τ3)− (Im τ2)
2 > 0, Im τ1 > 0

 .

Let Γ(2) ⊂ Sp(4,Z) be the Siegel modular group of level-two, i.e., the principal

congruence subgroup of level-two. Then as in Example 6.1.1, H2 is a quasiprojective

variety, realized as a part of a nondegenerate hyperquadric Q : t0t4 = t1t3 − (t2)
2
in

P4 by

ı :

 τ1 τ2

τ2 τ3

 7→
[
1 : τ1 : τ2 : τ3 : τ1τ3 − (τ2)

2] ∈ Q ⊂ P4 .
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Hence, H2 carries a canonical conformally flat structure given by

φH2
= dτ1 ⊗ dτ3 + dτ3 ⊗ dτ1 − 2dτ2 ⊗ dτ2 .

Moreover, the quotient H2/Γ(2) is known to be the space M[2]. Sasaki & Yoshida

proved the following result.

Theorem 6.2.88 (Sasaki & Yoshida [123], Theorem 3.1). Let
(
H2,φH2

)
be the Siegel

upper half space equipped with the canonical conformal structure. Let Γ(2) ⊂ Sp(4,Z)

be the Siegel modular group of level-two. Then tensor gQ ∈ S2(M[2]) is conformal to

π∗φH2
, where π : H2 → H2/Γ(2) ∼= M[2] is the canonical projection. Then (M[2],gQ)

is conformally flat, and hence the rank 5 EQ system obtained from applying Theorem

6.1.79 to gQ is the system of uniformizing differential equations for M[2].

In this way, we recognize that the differential system EQ built from (M[2],gQ)

is the Picard-Fuchs system for the family of Picard rank ρ = 17 Kummer surfaces

Kum(Jac(C)) equipped with level-two structure. Since (M[2],gQ) is conformally

flat, this rank 5 system satisfies the quadric condition. In this case, it was explicitly

computed by Hara, Sasaki, & Yoshida that EQ is gauge equivalent to the exterior

product ED ∧ ED, where ED is the rank 4 system annihilating the Lauricella func-

tion FD(1/2; 1/2, 1/2, 1/2; 1 | λ1, λ2, λ3) [60]. This is a rather beautiful result, as

the system ED is the Picard-Fuchs system for the genus two curve Cλ1,λ2,λ3 , and

the construction of the Kummer surface Kum(Jac(C)) involves the explicit exterior

product of holomorphic differentials in H1,0(C) to trivialize the canonical bundle of

the Kummer surface.

We may connect the conformal structure (T,g) of the twisted Legendre pencil

with that of the double cover M2 of M[2], as in section §2.1.10, using the dominant

rational map ϕ : M2 99K T from Equation (2.1.49). Recall that we are parameterizing
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M2 with the squares of Rosenhain roots λ′i from a curve C′ that is 2-isogenous to C.

This is simply for ease of presentation, as the Picard-Fuchs operators of Kum(Jac(C))

and Kum(Jac(C′)) are identical. This relationship completely answers the questions

set forth by Hoyt [69].

Theorem 6.2.89. Let π : M2 → M[2] be the projection map from the double cover,

and ϕ : M2 99K T be the dominant rational map from Equation (2.1.49). Let gQ be the

conformally flat structure on M[2] from Equation (6.2.29) and g be the conformally

flat structure on T from Equation (6.2.21). Then the orbifolds (M2, π
∗gQ) and (T,g)

are conformally isomorphic.

Proof. It is straightforward to show that ϕ∗g is conformal to π∗gQ.

Hence, we have the following result, whose proof is immediate.

Corollary 6.2.90. The uniformizing Picard-Fuchs equations for the twisted Legendre

pencil in Corollary 6.2.86 are equivalent to the uniformizing Picard-Fuchs equations

for Kum(Jac(C′)) with full level-two structure, in the variables

a =
4 l1l2l3

(l1l3 + l2)
2 , b =

4 l1l2l3

(l1l2 + l3)
2 , c =

4 l1l2l3

(l2l3 + l1)
2 .

Degeneration to Picard rank ρ ≥ 18

In this section, we explain quadratic period relations for the higher Picard rank restric-

tions discussed in §2.1.10. Fundamental to this discussion the integral representation

of the classical Gauss hypergeometric function 2F1(1/2, 1/2; 1), which we state here

for convenience:

2F1

 1
2
, 1
2

1

∣∣∣t
 =

1

π

∫ 1

0

dx√
x(1− x)(1− tx)

. (6.2.30)
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The periods of the two-parameter twisted Legendre pencil Xa,b,0 was studied by

Clingher, Doran, & Malmendier in [23], where they showed the following result (we

have specialized their more general result for the situation at hand).

Proposition 6.2.91 (Clingher, Doran, & Malmendier [23], Corollary 2.2). The fol-

lowing integral relation between Gauss’ hypergeometric function 2F1 and Appell’s hy-

pergeometric function F2 :

1√
a
F2

 1
2
, 1
2
, 1
2

1, 1

∣∣∣ 1
a
, 1− b

a

 = − 1

π

∫ b

a

dt√
t(a− t)(t− b)

2F1

 1
2
, 1
2

1

∣∣∣ 1
t

 .

Hence, we infer that for the twisted Legendre pencil Xa,b,0, there exists a tran-

scendental cycle Σ ∈ T(Xa,b,0), homologous to [a, b]× [0, 1], such that

ω(a, b) =

∫
Σ

dt ∧ dx

y
=

−π√
a
F2

 1
2
, 1
2
, 1
2

1, 1

∣∣∣ 1
a
, 1− b

a

 (6.2.31)

This means that the Picard-Fuchs system of Xa,b,0 is the rank 4 system annihiliating

Appell’s hypergeometric function F2 given in Example 6.1.1, in the variables

(z1, z2) =

(
1

a
, 1− b

a

)
.

These equations are easily then computed to be the following system:

Proposition 6.2.92. The Picard-Fuchs operators of the twisted Legendre pencil Xa,b,0

is given by

∂2ω

∂b∂a
=

1

2(a− b)

(
∂ω

∂a
− ∂ω

∂b

)
, (6.2.32)
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∂2ω

∂b2
=− (a− 1)a

b(b− 1)

∂2ω

∂a2
− (4a2 − 2ab− 3a+ b)

2b(b− 1)(a− b)

∂ω

∂a

− (2ab− 4b2 − a+ 3b)

2b(b− 1)(a− b)

∂ω

∂b
− 1

4b(b− 1)
ω .

(6.2.33)

This system of equations satisfies the quadric condition, as originally noted by

Sasaki & Yoshida in [121]. However, it was not until the work of Clingher, Doran,

& Malmendier [23] that the geometric underpinnings of the quadric condition was

realized. Therein, the authors showed the following, where again, we have specialized

to the situation at hand:

Theorem 6.2.93 (Clingher, Doran, & Malmendier [23], Theorem 2.5 (Multivariate

Clausen Identity)). For |z1|+ |z2| < 1, |k21| < 1, and |1− k22| < 1, Appell’s hypergeo-

metric series factors into two hypergeometric functions according to

F2

 1
2
, 1
2
, 1
2

1, 1

∣∣∣z1, z2
 = (k1 + k2) 2F1

 1
2
, 1
2

1

∣∣∣k21
 2F1

 1
2
, 1
2

1

∣∣∣1− k22

 (6.2.34)

with

(z1, z2) =

(
4k1k2

(k1 + k2)
2 ,−

(k21 − 1) (k22 − 1)

(k1 + k2)
2

)
. (6.2.35)

This is the explicit quadratic period relation for the twisted Legendre pencilXa,b,0,

which demonstrates the relationship between this K3 surface and Shioda-Inose part-

ner, the Kummer surface Y′
k21 ,k

2
2 ,0

= Kum(Ek21 × Ek22) from section §2.1.10. Moreover,

by explicit computation, one shows that that Appell’s hypergeometric system from

Example 6.1.1 in the variables from Equation (6.2.38), or eqivalently, the differential

system from Propositon 6.2.92 in the variables

a =
4k1k2

(k1 + k2)
2 , b =

4k1k2

(k1k2 + 1)2
(6.2.36)

decomposes into the tensor product 2F1 ⊠ 2F1, where the hypergeometric operators
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annihilating the system are given by the rank 2 ordinary differential operators

ki(k
2
i − 1)

d2

dk2i
+
(
3k2i − 1

) d

dki
+ ki , (6.2.37)

and hence are associated to 2F1(1/2, 1/2, 1/2; 1 | k2i ), i = 1, 2. Although the argu-

ment of the second factor of 2F1 in Theorem 6.2.93 contains 1 − k22, one can verify

directy that 2F1(1/2, 1/2, 1/2; 1 | k22) and 2F1(1/2, 1/2, 1/2; 1 | 1−k22) satisfy the same

differential equation.

Degeneration to Picard rank ρ ≥ 19

As in §2.1.10, we may further degenerate the twisted Legendre pencil in the limit

b→ ∞ to obtain the Picard rank ρ = 19 K3 surface Xa,∞,0 studied by Hoyt in [67].

We can see from Equation (6.2.36) that this corresponds to the limit in which

k1 7→ λ , k2 7→ −1/λ ,

which moreover yields

a =
−4λ2

(λ2 − 1)2
. (6.2.38)

We showed in §5.3.4 that the Picard-Fuchs operator for Xa,∞,0 is the third order

hypergeometric operator Õ2 for 3F2(1/2, 1/2, 1/2; 1, 1 | a), given in Equation (5.3.69).

Moreover, Õ2 = Õ⊗2
1 is the symmetric square of the second order hypergeometric

operator Õ1 for 2F1(1/2, 1/2; 1 | 1 − a). Transforming the operator Õ1 according to

Equation (6.2.38), we arrive at the operator

O1 :=
d2

dλ2
+

1

λ

d

dλ
+

1

(λ2 − 1)2
(6.2.39)
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which is checked directly to annihilate the periods of the elliptic curve

Eλ2 :

{
(y, x) | y2 = 1

(λ2 − 1)
x(x− 1)

(
x− λ2

)}
,

from Equation (5.3.71). This verifies the claims that the Picard rank ρ = 19 Kummer

surface Y′
λ2,λ′2,0 = Kum(Eλ2 × E ′

λ2) is the Shioda-Inose partner of Xa,∞,0.

Similarly to the Picard rank ρ = 18 case studied in §6.2.3, we may obtain explict

analytic expressions for the periods in terms of hypergeometric functions. In this

case, we have the classical Gauss representation of 3F2(1/2, 1/2, 1/2; 1, 1 | a) given by

3F2

 1
2
, 1
2
, 1
2

1, 1

∣∣∣ a
 =

1

π

∫ 1

0

dt√
t(1− t)

2F1

 1
2
, 1
2

1

∣∣∣ at
 . (6.2.40)

As before, we infer that there exists a transcendental cycle Σ ∈ T(Xa,∞,0), homologous

to [0, 1]× [0, 1], such that

ω(a) =

∫
Σ

dt ∧ dx

y
= π 3F2

 1
2
, 1
2
, 1
2

1, 1

∣∣∣ a
 .

In this case, there is also a factorization of the hypergeometric function 3F2, given by

a specialization of the Multivariate Clausen Identity in Theorem 6.2.93:

3F2

 1
2
, 1
2
, 1
2

1, 1

∣∣∣ a
 =

(
1− λ2

)
2F1

 1
2
, 1
2

1

∣∣∣λ2


2

,

where again a = −4λ2/(λ2−1)2. This exact analytic expression shows the connection

between the periods of Xa,∞,0 and the generalized Shioda-Inose partner Y′
λ2,λ′2,0 from

section §2.1.10.



192

6.3 Relations to N = 2 supersymmetric gauge theories

In this section, we connect the analysis of the mixed-twist construction of section §4.1

and the special geometry of the moduli space T with a celebrated example in physics:

the four dimensional N = 2 supersymmetric gauge theories of Seiberg and Witten

[126]. Therein, the authors constructed multi-parameter families of rational elliptic

surfaces π : Z → P1 with certain configurations of singular fibres of type I∗n, Ik for

n = 0, . . . , 4 and k = 1, 2, 3, 4 based off of electric-magnetic duality considerations

for BPS states in the 4-dimensional supersymmetric quantum field theory. Here, the

gauge group of the is SU(2) and we have n = 4 − Nf , where Nf = 0, . . . , 4 is the

number of SU(2) hypermultiplets, or flavors of quarks. The classification of possible

configurations of singular fibres is given in [85], whose locations encode locations in

the moduli space P1 − {singular fibers} of quantum vacua where the hypermultiplets

become massless. The base coordinate u ∈ P1 is given by u = ⟨Trϕ2⟩, where ϕ is

the complex scalar of the adjoint representation of SU(2); accordingly, u is invariant

under the action of the Weyl group Z/2Z of SU(2).

The most familiar such rational elliptic surface is given by the Legendre like pencil

π : Z → P1 given in Equation (6.1.13)

y2 = (x2 − Λ4)(x− u) ,

where Λ is the dynamically generated mass scale of the quantum theory. The fibra-

tion Z describes a quantum SU(2) super Yang-Mills theory with Nf = 2 massless

hypermultiplets. This fibration is the natural geometric manifestation of the the

τ -parameter of the theory, which is defined as [84]

τ = τ(a) =
θ(a)

π
+

8πi

g2(a)
∈ H , (6.3.41)
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where a is the Higgs field and θ = θ(a) is the θ angle of the low energy effective La-

grangian, as in quantum chromodynamics, and g = g(a) is the effective, renormalized

gauge coupling. In terms of the geometry of the fibration, τ is defined as usual as the

ratio of the periods of the elliptic fibre,

τ =

∫
α

dx
y∫

β
dx
y

where α, β ∈ H1(Eu,Z) is a symplectic basis and dx/y ∈ H1,0(Eu) is the analytic

marking of the surface Z.

Hence, the elliptic fibration has singular fibres of type I2 over u = ±Λ2, and an

I∗2 fibre over u = ∞, the latter of which is the so-called semi-classical limit of the

theory. The realm in which u lies close to ±Λ2 is where nonperturbative quantum

effects dominate.

It is straightforward to see that Z is birational to the honest Legendre pencil

y2 = x(x− 1)(x− t),

by applying a Möbius transformation to the singular fibres and simultaneously rescal-

ing x, y, u to remove all factors of Λ. In this way, we conclude that the Mordell-Weil

group MW(Z, π) = Z/2Z and P1 ∼= Γ0(2)\H = X0(2), so that Z is the modular

elliptic surface over the modular curve X0(2).

While this is useful from an arithmetic or algebraic perspective, it does little to

explain the physical significance played by the fibration in equation (6.1.13). Indeed,

we have eliminated the only relevant piece of data, Λ from the fibration, by utilizing

the honest geometry of the elliptic surface. This is further evidenced by the fact that

MW(Z, π) = Z/2Z; the scale Λ does not contribute to the algebro-geometric data of

the elliptic fibration. It does not parameterize any moduli of the surface, since the
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Legendre pencil has no moduli.

However, the scale Λ plays a crucial role in the quantum field theory determined

by (6.1.13). In the limit Λ → 0, we obtain the classical limit, in which both I2 fibers

coalesce and the moduli space of vacua becomes singular. Moreover, Λ is a fundamen-

tal independent parameter in the so-called renomalization group flow equation (RG)

of the quantum theory, which describes how the gauge coupling runs with the scale

of the theory. It is therefore in our interest to keep Λ in the picture, even though it

does not describe in this case the intrinsic moduli of the fibration.

As is well known, Seiberg &Witten showed that there is a natural special geometry

on the base curve P1 − {singular fibres} of the fibration Z, defined in terms of a

meromorphic differential 1-form λ (defined in the following section) on the fibres of

the π, such that the holomorphic prepotential FSW can be expressed as [84]

FSW (A) =
1

2
τ0A

2 +
i

π
A2 log

[
A2

Λ2

]
+

1

2πi
A2

∞∑
ℓ=1

cℓ

(
Λ

A

)4ℓ

, (6.3.42)

where A is a super SU(2) gauge field. Physically, τ0 is the bare coupling constant,

the coefficients cℓ are instanton corrections to the theory, and the multivaluedness of

FSW is determined by charges of the BPS states near the semi-classical limit. The

general form of the prepotential had been previously surmised by the considerations

of supersymmetry in the low energy effective lagrangian, but the power of Seiberg &

Witten’s analysis was to show how to explicitly compute all of the instanton terms in

terms of the geometry of the elliptic fibration. From this expression, upon knowing

the dependence of A on the quantum vacua u, one may compute the holomorphic

cubic form ΞSW in Equation (6.1.12). Then in general ΞSW ̸= 0 unless the quantum

theory is free, i.e., noninteracting.

One may twist the massless Nf = 2 Seiberg-Witten curve in Equation (6.1.13) to
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the twisted Legendre pencil via the mixed-twist construction, and attempt to relate

the special geometry of the Seiberg-Witten curve to the flat special geometry of the

K3 moduli space T. We thus see that any attempt to connect these two special

geometries must retain the physical parameters of the Seiberg-Witten data, even if

they do not determine moduli of the fibration, since the holomorphic prepotential

FSW depends nontrivially on Λ.

In the following subsections, we will review the connection between the Seiberg-

Witten data and period integrals & Picard-Fuchs equations. Then it will be shown

that the GKZ method discussed in §4.3.1 allows one to compute the Picard-Fuchs op-

erators of certain Seiberg-Witten curves, and that some of these differential operators

can be combined in a straightforward way to yield the homogeneous components of

the expected first order RG flow operators for N = 2 supersymmetric gauge theories

from physics [33].

From this point, we will show how to twist fibrations on rational elliptic surfaces

corresponding to certain mass configurations of the Nf = 4 Seiberg-Witten curve to

obtain pencils of Picard rank ρ = 17 and ρ = 16 K3 surfaces, the familiar twisted

Legendre pencil and double sextic K3. We will then make a comment on the mathe-

matical and physical interpretations of these constructions.

6.3.1 The Seiberg-Witten differential and periods of rational elliptic sur-

faces

The primary reference for this section is Shimizu [130]. In Seiberg & Witten’s analysis

of the exact solution, the meromorphic differential 1-form obtained from Equation

(6.1.13) given by

λ =
y dx

1− x2
= (u− x)

dx

y
(6.3.43)
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plays a crucial role in the following way. Let π : Z → P1 be a Seiberg-Witten curve,

and α, β be a symplectic basis for the first integral homology group H1(Eu,Z) of the

generic fibre Eu = π−1(u). Then define quantities a, aD as

a = a(u) =

∫
α

λ , aD = aD(u) =

∫
β

λ . (6.3.44)

Then the pair (aD, a) determines a holomorphic section of an SL(2,Z)-bundle over the

punctured line P1−{singular fibres}. We recognize such quantities as a twisted fibre-

wise period integral on the rational elliptic surface Z; in physics, theN = 2 supersym-

metry algebra acts on (aD, a) and determines a U(1) gauge multiplet where a is related

to the semiclassical photon and aD its dual, the magnetic photon. As such, both a, aD

are gauge fields of the associated SU(2) super Yang-Mills theory, and determine holo-

morphic local expressions of the prepotential function FSW from Equation (6.3.42)

that are related by SL(2,Z) on the quantum moduli space P1−{singular fibres} [84].

Moreover, the pair (aD, a) determine the holomorphic prepotential F as

aD =
∂

∂a
FSW (a)

Additionally, the Seiberg-Witten differential λ is required to have residues in terms

of the masses of the hypermultiplets [126, 130]. The masses form flat sections of the

variation of Hodge structure naturally determined by the elliptic fibration. We have

the following definition.

Definition 6.3.94 (Shimizu [130], 3.1.4). Let ∇ be the Gauss-Manin connection on

the elliptic fibration π : Z → P1 from §2.1.4. Let Ω = −du∧dx/y ∈ H0(Z,Ω2
Z(log Eu))

be the rational 2-form on Z corresponding to the analytic marking dx/y on the generic
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fibre Eu. Then the Seiberg-Witten equation is the following equality of 2-forms on Z:

∇(λ) = Ω . (6.3.45)

According to Shimizu, the masses of the hypermultiplets are flat sections of∇, and

so may be included on the left hand side without altering the solutions of the equation.

Hence, we have the following result, whose proof follows from this discussion.

Lemma 6.3.95. Let π : Z → P1 be a Seiberg-Witten curve, with or without mat-

ter. Then the period integrals of Z can be expressed in terms of the Seiberg-Witten

differential as

−
∫
Σ

Ω =

∫
Σ

du ∧ dx

y
= −

∫
Σ

dλ . (6.3.46)

Moreover, the prepotential FSW satisfies an inhomogeneous differential equation de-

termined by the Picard-Fuchs operators of Z.

With this in mind, let us compute the Picard-Fuchs systems of some particular

Seiberg-Witten curves relevant to the our goals in this section.

6.3.2 The Nf = 4 curve with two massive hypermultiplets

Our primary Seiberg-Witten curve of study will be the Nf = 4 curve, which is deter-

mined by a configuration of (m1,m2,m3,m4) of four masses. A generic configuration

results in a rational elliptic surface π : Z → P1 with an I∗0 fibre at u = ∞ and six I1

fibres elsewhere. In addition to the four mass parameters, Z is also parameterized by

three other parameters e1, e2, e3 whose significance are as follows.

The Nf = 4 SU(2)-super Yang-Mills theory is very closely related to the four

dimensional N = 4 super Yang-Mills theory, since the latter can be regarded as

N = 2 with an additional matter field hypermultiplet that transforms in the adjoint

representation of SU(2) [126]. Both theories are scale invariant, and in fact form
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superconformal field theories in the absence of bare masses. Once a bare mass is

given to the additional hypermultiplet in the N = 4 theory, the supersymmetry is

explicitly broken to N = 2.

Hence, regarding the Nf = 4 theory as a mass deformed N = 4 theory, the

parameters e1, e2, e3 are artifacts from the pure N = 4 theory that can be used to

label a choice of spin structure on the generic fibre Eu = π−1(u) of Z; in fact, due

to the exact SL(2,Z) symmetry of the N = 4 theory, the parameters e1, e2, e3 are

related naturally to Jacobi theta functions. The Nf = 4 theory can be seen to possess

SL(2,Z) symmetry as follows: the modular symmetry that permutes the ei parameters

can be combined with the Spin(8) triality symmetry acting on the extended Dynkin

diagram D̃4 of the I∗0 fibre at u = ∞ to yield full modular invariance of the Nf = 4

theory. This symmetry is broken for Nf < 4.

Bearing these considerations in mind, the Seiberg-Witten curve Z with mass con-

figuration (m1,m2, 0, 0) is described by the elliptic fibration

y2 = W1W2W3 + A (W1t1 (e2 − e3) +W2t2 (e3 − e1) +W3t3 (e1 − e2))− A2N ,

(6.3.47)

where

Wi = x− eiu− e2iR

A = (e1 − e2) (e2 − e3) (e3 − e1)

R =
1

2

(
m2

1 +m2
2

)
t1 =

1

12
m2

2m
2
1 −

1

24
m4

1 −
1

24
m4

2

t2 = − 1

24
m2

2m
2
1 +

1

48
m4

1 +
1

48
m4

2

t3 = − 1

24
m2

2m
2
1 +

1

48
m4

1 +
1

48
m4

2

N =
1

96
m6

1 −
1

96
m2

2m
4
1 −

1

96
m2

1m
4
2 +

1

96
m6

2 .
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Then the fibration has generically a singular fibre of type I∗0 at u = ∞, two sin-

gular fibres of type I2, and two singular fibres of type I1 at various finite values of

u, as the effect of two hypermultiplets becoming massless coalesces two pairs of I1

fibres together, forming the I2 fibres. Furthermore, following Oguiso & Shioda [114],

Table Entry 34, we see that the Mordell-Weil lattice is of rank two and is given by

MW(Z, π) = (A∗
1)

⊕2⊕Z/2Z, where A∗
1 is the dual root lattice of the Dynkin diagram

A1.

Notice that this curve has only bare masses, and no scaling parameter Λ, as was

seen in the massless Nf = 2 curve in Equation (6.1.13). In particular, m1,m2 deter-

mine honest moduli of the surface Z, while e1, e2, e3 do not. To simplify the analysis,

we choose to set these parameters as e1 = 0, e2 = 1, e3 = −1, which corresponds to a

some weak coupling limit in the Nf = 4 theory [126].

In this case, it is straightforward to write the resulting Weierstrass model from

Equation (6.3.47) in the form

Y 2 = X(X2 + bX + ac) , (6.3.48)

where b = − (m2
1 +m2

2), a = u+m1m2, c = u−m1m2. As indicated by Lemma 6.3.95,

we can study the Seiberg-Witten equation for this mass configuration by finding the

Picard-Fuchs system. We write the fibrewise period integral as

ω̂ = ω̂(u,m1,m2) =
√
u−m1m2

∫
σ

dX

Y
, (6.3.49)

where σ ∈ H1(Eu,Z) is some integral cycle, and the normalization factor has been cho-

sen for convenience that will be shown shortly. In the GKZ formalism for generalized
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Euler integrals [50], we write ω as

ω =

∫
σ

P (X)αXβdX , (6.3.50)

where P (X) = u3X
2 + u2X + u1, α = β = −1/2. This corresponds to the A-

hypergeometric system with

A =


1
0

 ,
1
1

 ,
1
2


 ⊂ Z2 (6.3.51)

whose lattice relations are given by L = spanZ {[1,−2, 1]} ⊂ Z3∗. the resulting GKZ

equations are given by

∂2

∂u1∂u3
Φ− ∂2

∂u22
Φ = 0

u1

(
∂

∂u1
Φ

)
+ u2

(
∂

∂u2
Φ

)
+ u3

(
∂

∂u3
Φ

)
+

Φ

2
= 0

u2

(
∂

∂u2
Φ

)
+ 2u3

(
∂

∂u3
Φ

)
+

Φ

2
= 0 .

(6.3.52)

Then upon transforming the system (6.3.52) by the transformation
{
u1 = a, u2 =

b
c
, u3 =

1
c

}
,

we find the following system annihilates the honest period integral

ω = ω(u,m1,m2) =

∫
Σ

du ∧ dX

Y
(6.3.53)

with Σ ∈ H2(Z,Z) a transcendental cycle:

0 = m2m1

(
∂

∂u
ω

)
−

um2

(
∂

∂m1
ω
)

(m1 −m2) (m1 +m2)
+

m1u
(

∂
∂m2

ω
)

(m1 −m2) (m1 +m2)
+
ω

2
(6.3.54)
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0 = (m2m1 − u)

(
∂

∂u
ω

)
−

(m3
1 −m2

2m1 + 2um2)
(

∂
∂m1

ω
)

2 (m1 −m2) (m1 +m2)

+
(−m2m

2
1 +m3

2 + 2m1u)
(

∂
∂m2

ω
)

2 (m1 −m2) (m1 +m2)
+
ω

2

(6.3.55)

0 =
(−m2m1 + u)2

(
∂2

∂u2ω
)

4
+
m1 (m

2
1 +m2

2) (−m2m1 + u)
(

∂2

∂u∂m1
ω
)

4 (m1 −m2) (m1 +m2)

−
m2 (m

2
1 +m2

2) (−m2m1 + u)
(

∂2

∂u∂m2
ω
)

4 (m1 −m2) (m1 +m2)
−

(−m2m1 + u)u (m2
1 +m2

2)
(

∂2

∂m2
1
ω
)

4 (m1 −m2)
2 (m1 +m2)

2

+
(−m2m1 + u) (m4

1 − 2m2
2m

2
1 +m4

2 + 4um1m2)
(

∂2

∂m1∂m2
ω
)

4 (m1 −m2)
2 (m1 +m2)

2

−
(−m2m1 + u)u (m2

1 +m2
2)
(

∂2

∂m2
2
ω
)

4 (m1 −m2)
2 (m1 +m2)

2

+
(−m2m1 + u) (m4

1m2 − 2m2
1m

3
2 +m5

2 + 2um3
1 + 6um1m

2
2)
(

∂
∂m1

ω
)

4 (m1 −m2)
3 (m1 +m2)

3

−
(−m2m1 + u) (m5

1 − 2m3
1m

2
2 +m1m

4
2 + 6um2

1m2 + 2um3
2)
(

∂
∂m2

ω
)

4 (m1 −m2)
3 (m1 +m2)

3

(6.3.56)

Combining together (6.3.54),(6.3.55), we arrive at the differential equation

0 = u

(
∂

∂u
ω

)
+
m1

(
∂

∂m1
ω
)

2
+
m2

(
∂

∂m2
ω
)

2
(6.3.57)

which is the homogeneous part of the RG flow operator for the Seiberg-Witten curve

expected from physics [33].

6.3.3 The isomassive Nf = 4 curve with two massless hypermultiplets

We deem the Nf = 4 curve with mass configuration (m,m, 0, 0) the isomassive curve

with two massless hypermultiplets. In the same weak coupling limit as in §6.3.2, the

Seiberg-Witten curve in Equation (6.3.47) can be written in the following convenient
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form:

y2 = (x− 1)

(
x− 1− m

2
− t

2

)(
x− 1− m

2
+
t

2

)
. (6.3.58)

This Weierstrass model determines an elliptic fibration π̃ : Z̃ → P1 three singular

fibres of type I2 at t = 0,±m and an I∗0 fibre at t = ∞. From Oguiso & Shioda [114],

Table Entry 57, the Mordell-Weil lattice is given by MW(Z̃, π̃) = A∗
1 ⊕ (Z/2Z)2.

Then fibrewise period integral of (Z̃, π̃) is naturally expressed in terms of Appell’s

F1 function as

ω̃ = ω̃(t,m) =

∫ 1

0

dx

y

=

∫ 1

0

dx√
(x− 1)(x− 1−m/2− t/2)(x− 1−m/2 + t/2)

= F1

(
1

2
;
1

2
,
1

2
; 1
∣∣∣ 1 +m/2 + t/2, 1 +m/2− t/2

)
.

(6.3.59)

Accordingly, using the well known differential system for F1, the rank three Picard-

Fuchs system annihilating ω̃ is given by

∂2

∂m2
ω̃ =−

t
(

∂2

∂m∂t
ω̃
)

2 +m
−

(3m2 + 2mt− 3t2 + 6m+ 4t)
(

∂
∂t
ω̃
)

2(2 +m)(m− t)(m+ t)

−
(m2 − 3t)

(
∂
∂m
ω̃
)

(2 +m)(m− t)(m+ t)
− mω̃

2(2 +m)(m− t)(m+ t)
,

(6.3.60)

∂2

∂t2
ω̃ =−

(2 +m)
(

∂2

∂m∂t
ω̃
)

t
+

(t2 + 2m+ 3t)
(

∂
∂t
ω̃
)

(m+ t)t(m− t)

−
(3m2 − 2mt− 3t2 + 6m)

(
∂
∂m
ω̃
)

2(m+ t)t(m− t)
+

ω̃

2(m+ t)(m− t)
.

(6.3.61)

6.3.4 Flowing to the isomassive Nf = 2 curve

Seiberg & Witten showed originally in their analysis that in certain weak coupling

limits - meaning, taking particular values for the constants e1, e2, e3, and taking vari-
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ous degenerative limits on the mass configurations of the Nf = 4 curve, one recovers

the Nf < 4 curves.

To illustrate the robustness of the analysis in the previous section §6.3.2, we show

how the GKZ computation for the Picard-Fuchs system of the Nf = 4 curve with two

massive hypermultiplets exactly reproduces the homogeneous component of the RG

flow operator for the isomassive Nf = 2 curve, i.e., with mass configuration (m,m).

Indeed, it was shown in [126] that taking the Nf = 4 curve with generic mass

configurations can be flowed to the massive Nf = 2 curve in the limit τ → i∞,

m3,m4 → ∞ while keeping Λ2 := 64q1/2m3m4 fixed, where q1/2 = exp(πiτ) is the

single instanton contribution to the Nf = 4 curve.

The resulting elliptic fibration π̂ : Ẑ → P1 can be described by the Weierstrass

model

Y 2 = X(X2 + b̂X + âĉ) , (6.3.62)

with b̂ = 3Λ2/8 − u, â = Λ2/32, and ĉ = Λ2 + 8m2 − 8u, which describes an elliptic

fibration with an I∗2 fibre at u = ∞, an I2 fibre at u = m2 + Λ2/8, and I1 fibres at

u = −Λ2/8−mΛ,−Λ(Λ− 8m)/8. The Mordell-Weil lattice is given by MW(Ẑ, π̂) =

A∗
1⊕Z/2Z [114], Table Entry 48. In this way, the exact GKZ system given in Equation

(6.3.52) can be seen to annihilate the period integral

ω̂ = ω̂(u,m,Λ) =
Λ

4
√
2

∫
Σ

du ∧ dX

Y
. (6.3.63)

In the coordinates u,m,Λ, the Picard-Fuchs system becomes

0 =
Λ
(

∂
∂Λ
ω̂
)

2
+

(Λ2 − 8m2 + 8u)
(

∂
∂m
ω̂
)

16m
+

3Λ2
(

∂
∂u
ω̂
)

8
+
ω̂

2
(6.3.64)

0 =
(Λ2 − 16m2 + 8u)

(
∂
∂m
ω̂
)

16m
+

(
3Λ2

8
− u

)(
∂

∂u
ω̂

)
+
ω̂

2
(6.3.65)
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0 =−
(Λ2 + 8m2 − 8u) (Λ2 − 16m2 + 8u)

(
∂
∂m
ω̂
)

4096m3

+
(Λ2 + 8m2 − 8u) (Λ− 2m)(Λ + 2m)

(
∂2

∂Λ∂m
ω̂
)

512mΛ

+
(3Λ2 − 8u) (Λ2 + 8m2 − 8u)

(
∂2

∂Λ∂u
ω̂
)

512Λ

+
(Λ2 + 8m2 − 8u) (Λ2 − 16m2 + 8u)

(
∂2

∂m2 ω̂
)

4096m2

+
(Λ2 + 8m2 − 8u) (Λ2 − 7m2 + 2u)

(
∂2

∂m∂u
ω̂
)

512m

+
(Λ2 + 8m2 − 8u) (7Λ2 − 16m2 − 8u)

(
∂2

∂u2 ω̂
)

2048
.

(6.3.66)

Once again, combining the first two Picard-Fuchs operators, we arrive at the homo-

geneous component of the RG flow operator expected from physics [33],

0 =
Λ
(

∂
∂Λ
ω̂
)

2
+
m
(

∂
∂m
ω̂
)

2
+ u

(
∂

∂u
ω̂

)
(6.3.67)

6.3.5 The mixed-twist construction for the isomassive Nf = 4 curve

We return now to the isomassive Nf = 4 curve with two massless hypermultiplets, i.e.,

mass configuration given by (m,m, 0, 0). Instead of the weak coupling limit considered

in §6.3.3, we impose the restriction e1 = 0, e2 = α/m2, e3 = β/m2 with α, β ∈ C∗ and

α ̸= β. After simultaneously rescaling X, Y , we arrive at the Weierstrass model

ỹ2 = 4x̃3 − g2(u, α, β)x̃− g3(u, α, β) , (6.3.68)

where g2, g3 are given by

g2 =
4

3

((
α2 − αβ + β2

)
u2 − (α + β)

(
2α2 − 3αβ + 2β2

)
u+ α4 − α2β2 + β4

)
,
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g3 =
4

27

(
α2 − αu− 2β2 + 2βu

) (
2α2 − 2αu− β2 + βu

) (
α2 − αu+ β2 − βu

)
.

The Weierstrass model determines an elliptic fibration π̃ : Z̃ → P1 with a singular

fibre of type I∗0 at u = ∞, and three singular fibres of type I2 at u = α, β, α+β. Using

a Möbius transformation that moves the I∗0 fibre from u = ∞, we write the elliptic

fibration as a twisted Legendre pencil over the quadratic field extension C
(√

α− β
)

y2 = (t− c)x(x− 1)(x− t) (6.3.69)

with c = α/(α − β). This defines a rational elliptic surface birational to (Z̃, π̃) that

has three singular fibres of type I2 at t = 0, 1,∞, and a singular fibre of type I∗0 at

t = c.

Applying the mixed-twist construction to this fibration, branched over a, b ̸=

0, 1,∞, c yields the full twisted Legendre of Picard rank ρ ≥ 17,

y2 = (t− a)(t− b)(t− c)x(x− 1)(x− t) .

We thus surmise that the mixed-twist construction applied to this particular con-

figuration of the isomassive Nf = 4 curve lifts the special geometry of the Seiberg-

Witten curve to the special geometry of the moduli space T of the twisted Legendre

pencil, the latter of which is flat by the analysis of Theorem 6.2.85. Physically, this

is consistent with the general notion that 10D string compactifications on K3 × T 2

have N = 4 supersymmetry, which is free from instanton corrections.

One could say roughly that “the mixed-twist construction twists away the in-

stanton contributions”, leaving a free super Yang-Mills theory. Mathematically, this

corresponds to an explicit immersion of the ball quotient corresponding to the moduli

of rational elliptic surfaces to the Type IV symmetric domain of the lattice polarized
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K3 moduli space, where the extra parameters of the Seiberg-Witten data manifest

in certain configurations as isomonodromic deformation parameters. Proof of a more

general statement is given in Theorem 6.3.96.

6.3.6 The mixed-twist construction for the Nf = 4 curve with two massive

hypermultiplets

Based off of the observations at the end of the last section, we would like to construct

a relationship between an elliptic fibration representing an Nf = 4 curve and the

double sextic family of K3 surfaces with Picard rank ρ ≥ 16. A similar statement

would then hold about the special geometry on the Seiberg-Witten curve and the flat

special geometry on the moduli space M6 of six line configurations in P2.

In this case, we begin with the Nf = 4 curve with two massless hypermultiplets,

so the generic mass configuration is (m1,m2, 0, 0). Again, this is an elliptic fibration

with one I∗0 fibre, two singular fibres of type I2, and two I1 fibres. Since the analogous

conclusion will hold in terms of lifting the special geometry, at least over some finite

degree field extension for the accessory parameters from the Seiberg-Witten data, for

the purposes of this construction, we care only about starting with some isomorphic

model of the Seiberg-Witten curve.

So our starting point will be the isomorphic model, abusing notation slightly by

denoting it as π : Z → P1

y2 = x
(
x2 + 4s ((K2 − L2) t− (K1 − L1) s)x+ 4s2

(
K2

1 − 4K2

) (
s2 − L1st+ L2t

2
))

(6.3.70)

with K1 = γ1 + γ2, K2 = γ1γ2, L1 = δ1 + δ2, and L2 = δ1δ2, and [s : t] ∈ P1 are

homogeneous coordinates. The fibration has the required singular fibre structure:

there is an I∗0 fibre at s = 0, two singular fibres of type I2 at s = δ1, δ2, and two
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singular fibres of type I1 at s = δ3, δ4 with

δ3 =
δ1δ2 − γ21

δ1 + δ2 − 2γ1
, δ4 =

δ1δ2 − γ22
δ1 + δ2 − 2γ2

. (6.3.71)

In this case, since the Mordell-Weil lattice is given by MW(Z, π) = (A∗
1)

⊕2 ⊕ Z/2Z,

there are two honest moduli of the fibration. The only pair of parameters that do not

parameterize moduli of (Z, π) are (δ1, δ2). This can be verified in the following way.

The fibration in (6.3.71) is of the form

y2 = x(x2 + bx+ ac)

with b = 4s ((K2 − L2) t− (K1 − L1) s), a = 4s2 (K2
1 − 4K2), c = (s2 − L1st+ L2t

2).

Hence, this is of the form we have previously considered in (6.3.48), and we can

compute the Picard-Fuchs system of the fibration using the GKZ system (6.3.52) by

selecting u and two other parameters - choosing (u, δ1, δ2) does not yield an invertible

transformation, and hence δ1, δ2 do not parameterize moduli. This shows that we have

a two parameter family of Picard-Fuchs systems that annihilate the period integrals

of (6.3.70).

We connect (Z, π) with the six-line configuration as follows. First, applying

the mixed-twist construction to (6.3.70), branched over s = 0,∞ yields the four-

parameter family of K3 surfaces π̂ : X → P1, given by the elliptic fibration (again in

homogeneous base coordinates [s : t])

y2 =x
(
x2 − 4s(s− t)t ((K1 − L1) s− (K2 − L2) t)x

+4s2(s− t)2t2
(
K2

1 − 4K2

) (
s2 − L1st+ L2t

2
)) (6.3.72)

The fibration is then has three I∗0 fibres, at s = 0, 1,∞, and the same configuration

of I2 and I1 fibres as the rational elliptic surface (Z, π).
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The K3 surface X admits a special Nikulin involution ı : X → X, a Van Geemen-

Sarti involution, which results in translating the elliptic fibration (6.3.72) by the

two-torsion section (x = 0, y = 0). Crucially, Nikulin involutions are symplectic

involutions, which preserve the holomorphic 2-form. It is a standard result (see, for

example [25]) that the resulting elliptic fibration π̃ : Y → P1 given by

Y 2 = X(X2 − 2bX + b2 − 4ac) (6.3.73)

yields a K3 surface after resolving the eight isolated fixed points of of ı, Y = X/⟨ı⟩.

In this case, the the K3 surface Y is given by the fibration

Y 2 =X
(
X2+ 2s(s− t)t ((K1 − L1) s− (K2 − L2) t)X

+ s2(s− t)2t2
(
(δ1 + δ2 − 2γ1) s−

(
δ1δ2 − γ22

)
t
)

(
(δ1 + δ2 − 2γ1) s−

(
δ1δ2 − γ21

)
t
)) (6.3.74)

One checks that the fibration structure is the same, except the location of the I1 and

I2 fibres have swapped. Then Y can be realized as a double cover of P1×P1 branched

over a divisor of bidegree (4, 4) as follows. Let the branching divisor be written as

3D1,0+2D0,1+D1,2, where Di,j indicates the bidegree of the divisor. In homogeneous

coordinates ([s : t], [x̃ : ỹ]) on P1 × P1, the double cover is given by

z̃2 = s(s− t)t
(
x̃2 −K1x̃ỹ +K2ỹ

2
) ((

x̃2 − L2ỹ
2
)
t− (2x̃− L1ỹ) ỹs

)
(6.3.75)

Regarded as an elliptic fibration over [s : t] ∈ P1, Equation (6.3.75) is isomorphic to

(6.3.74), since the functional invariants of each fibration agree.
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Introduce parameters r1, r2, r3, r4 such that

L2 =
(r1 + r2)

2

(r2 − 1)2
, L1 =

2 (r1r2 + r22 + r1 − r2)

(r2 − 1)2
, γ1 =

r2 + r1 − 2r3
r2 − 1

, γ2 =
r2 + r1 − 2r4

r2 − 1

(6.3.76)

After a linear shift in the fibre variables, one arrives at the model

z2 = s(s− t)t (x− r3y) (x− r4y) ((x− (r1 + r2) y)xt− ((1− r2)x− r1y) ys) ,

(6.3.77)

which allows one to blow down the exceptional divisor −sy+ tx, yielding a birational

map P1 × P1 99K P2 and the arrive at the K3 surface π̂ : X̂ → P1, elliptically fibred

in homogeneous coordinates as

y2 = (t̃− x)(z − x)x
(
t̃− r3z

) (
t̂− r4z

) (
t̃− r1x− r2z

)
. (6.3.78)

This is clearly the four parameter family of Yoshida surfaces obtained in Lemma

4.1.8, by setting r3 = a, r4 = b, r2 = c, r1 = d. As such, the fibration (6.3.78)

has two singular fibres of type I∗0 over t̂ = r3, r4 and six fibres of type I2 over t̂ =

0, 1,∞, r2, r1 + r2, r2/(r1 − 1), with Mordell-Weil given by MW(X̂, π̂) = (Z/2Z)2.

We have thus demonstrated that X̂ can be realized as the quadratic twist of the

rational elliptic surface Sr1,r2 from Lemma 4.1.29 with six singular fibres of type I2

at the same values as X̂. Hence, the Picard-Fuchs system and monodromy group of

X̂ are the same as that of the family of Yoshida surfaces; since all of the operations

described here preserve the holomorphic 2-form up to scale, the same holds for the

quadratic twist X of the Nf = 4 Seiberg-Witten curve with two massless hypermulti-

plets. Moreover, since the Yoshida surface X is birational to the double sextic surface

X from Equation (2.1.22), we conclude that the quadratic twist operation lifts the

nontrivial special geometry of the Seiberg-Witten curve to the flat special geometry
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of the double sextic.

We have arrived at the following result.

Theorem 6.3.96. The quadratic twist X of the rational elliptic surface Z corre-

sponding to the Nf = 4 Seiberg-Witten curve with two massless hypermultiplets is

birational to the double sextic family X of Picard rank ρ ≥ 16. The Picard-Fuchs

system of X and subsequent monodromy group is identified with the Aomoto-Gel’fand

E(3, 6) hypergeometric system, with monodromy group G from Corollary 4.1.37, in

the variables

γ1 =
2x1x2 − x4x1 − x1 − x2 + x4

x3x2 + x1 − x2 − x3
, γ2 = −x4x1 − x1 − x2 − x4 + 2

x3x2 + x1 − x2 − x3
,

δ1δ2 =
(x4x1 − x1 + x2 − x4)

2

(x3x2 + x1 − x2 − x3)
2 ,

δ1 + δ2 = −2
(
−x1x2x3x4 + x21x4 − x1x2x3 − x1x2x4 + x1x3x4 + x22x3 + x2x3x4

−x21 + 2x1x2 + x1x3 − x4x1 − x22 − x3x2 + x2x4 − x4x3
)
/(x3x2 + x1 − x2 − x3)

2

(6.3.79)

Here x1, x2, x3, x4 are the moduli of the double sextic surface X . As such, over

some quadratic field extension of C(γ1, γ2, δ1, δ2) the nontrivial special geometry of

the Nf = 4 Seiberg-Witten curve lifts via the mixed-twist construction to the flat

special geometry of the moduli space X (3, 6) of six lines in P2.

Proof. The proof follows from the fact that all maps

X 99K Y 99K X̂ 99K X

preserve the holomorphic 2-form up to scale. One obtains the expressions in (6.3.79)

by subsituting the moduli for the Yoshida surface in terms of the double sextic moduli

and combining with the expressions in (6.3.76).
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CHAPTER 7

Outlook

In this final chapter, we describe the outlook and future directions of the research of

this dissertation.

7.1 RG flow operators and the Picard-Fuchs system twisted K3 surfaces

It is interesting, though perhaps not a surprise that the GKZ method pursued in

§6.3.2, §6.3.4 yielded the homogeneous component of the first order RG flow operator

expected from physics [33]. As was demonstrated in §6.3.5 , §6.3.6 , the isomassive

curve and double massless hypermultiplet Nf = 4 curve can be twisted via the mixed-

twist construction in such a way that the new twist parameters are independent of the

mass configuration Seiberg-Witten data, though potentially dependent on the weak

coupling limit chosen (up to a quadratic field extension).

In this way, the corresponding Picard-Fuchs operators determined by the mass

configuration should lift as well to the K3 periods. The role that these operators play,

especially the first order RG flow operators computed in Equations (6.3.57,6.3.67)

should play some role in generating the Picard-Fuchs ideal described in §2.1.4 of the

twisted K3 surface.

However, the role does seem to depend on what choice of weak coupling limit

and which quadratic field extension of the moduli / accessory parameters from the

Seiberg-Witten data is chosen, if any. Consider the following computation.
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In the case of the isomassive Nf = 4 curve in §6.3.3, we demonstrated that after

choosing e1 = 0, e2 = α/m2, e3 = β/m2, and the quadratic field extension of the

Seiberg-Witten data C(
√
α− β), the curve could be written as a twisted Legendre

pencil

y2 = (t− c)x(x− 1)(x− t) .

Using the direct computational methods in §5.3.1, one computes that the period

integral Ẑ =
∫ 1

0
dtω(t) satisfies the second order ODE

c(c− 1)Zcc +

(
c− 1

2

)
Zc = 0 . (7.1.1)

This ODE has the general solution with logarithmic singularities given by

Z = c1 + c2 log

(
c− 1

2
+
√
c(c− 1)

)
(7.1.2)

with c1, c2 ∈ C arbitrary, after choosing some appropriate branch of log. This reveals

some sort of integral transform of the hypergeometric function 2F1 with the kernel

function 1F0

(
1
2
| t
c

)
, though such an identity is assuredly already known.

Moreover, the logarthmic singularities are only apparent, as the argument c− 1
2
+√

c(c− 1) is everywhere nonzero. One may then check that the operator

O1 := c(c− 1)
d2

dc2
+

(
c− 1

2

)
d

dc
(7.1.3)

is not the derivative of some first order operator, nor is the square of a first order

operator. We deem this second order operator “RG-like”, in that it is not an honest

RG flow operator, but annihilates the periods, and has a connection to the special

geometry of the associated Seiberg-Witten curve. This operator should then lift to
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the second order operator

O1 := c(c− 1)
∂2

∂c2
+

(
c− 1

2

)
∂

∂c
(7.1.4)

in the Picard-Fuchs ideal for the K3 periods, though it is unclear what role this

operator plays for the full twisted Legendre pencil.

A similar statement holds for the periods of the double massless hypermultiplet

Nf = 4 curve. By virtue of Theorem 6.3.96, the RG flow equation derived in Equation

(6.3.57) should lift to the Picard-Fuchs ideal of the double sextic family, the Aomoto-

Gel’fand E(3, 6) hypergeometric system. Determining the solution to this problem

will be further illuminating on how the mixed-twist construction interacts with the

special geometry of the Seiberg-Witten curves. Moreover, one should determine how

the massive Nf = 2 curve considered in §6.3.4 lifts to the twisted Legendre pencil /

double sextic family.

Another connection between the special geometries can be seen in the following

general result.

Theorem 7.1.97. Let π : Z → P1 be a Seiberg-Witten curve described by the Weier-

strass model

y2 = 4x3 − gSW2 (t)x− gSW2 (t) (7.1.5)

and consider the K3 X surface obtained from the mixed-twist construction applied to

Z, branched over a, b /∈ DZ, the discriminant locus of Z. Then the period integral of

X can be written as

ωK3 =

∫
Σ

dx ∧ du
(
λSWd

(
1√
h

))
(7.1.6)

where h = (t− a)(t− b), λSW is the Seiberg-Witten differential of Z and Σ ∈ T(X) is

a transcendental avoiding the branching locus of the mixed-twist construction.
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Proof. The holomorphic 2-form ηX ∈ H2,0(X) can be written as

ηX =
dt√
h
∧ dx

y
= −

(
1√
h

)
ΩSW ≡ −

(
1√
h

)
dλSW .

After carefully choosing the transcendental cycle Σ ∈ T(X) to avoid the branching

locus of the mixed-twist construction, the result follows from integration by parts.

7.2 Constructing Calabi-Yau threefolds

The main point of interest in continuing this research trajectory is to iteratively

build families of Calabi-Yau threefolds via the mixed-twist construction of Doran &

Malmendier [40]. More specifically, given an elliptically fibred K3 surface π : X → P1,

the mixed-twist construction allows one to explicitly construct an elliptically fibred

Calabi-Yau threefold π̂ : X̂ → B, where B is some rational surface, such that X̂ is

simultaneously fibred over P1 by Jacobian elliptic K3 surfaces. In fact, their iterative

construction allows one to build, starting from a rational elliptic surface, a chain of

Jacobian elliptic Calabi-Yau n-folds that fibres simultaneously over P1 by the Calabi-

Yau (n− 1)-folds.

For the purposes of this section, we recall the definition of an elliptic threefold.

Definition 7.2.98 (Miranda, [104]). An elliptic threefold is a threefold X together

with a map π : X → B from X to a surface B, whose generic fiber is a smooth elliptic

curve. We say that the fibration π : X → B is a Jacobian elliptic threefold if a section

for the map π is given.

Miranda also outlines the following criteria, to study whether or not the fibration

π : X → B has a smooth minimal model:

• X and B are both smooth.
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• The map π is flat, i.e., all fibers are one-dimensional.

• The map π is minimal, in the sense that there is no generically contractible

surface Y whose contractible fibers lie in the fibers of π. Hence no contraction or

generic contraction of a surface in X will be compatible with the map π.

• The discriminant locus D ⊂ B, over which the fibers of π are singular, is a curve

with at worst ordinary double points as singularities.

• At a smooth point p ∈ D, the singular fiber π−1(p) is a singular elliptic curve on

Kodaira’s list of singular fibers of elliptic surfaces [?]. Moreover, this fiber type is

locally constant near p, and so is constant on irreducible components of D−Dsing.

• At a singular point p ∈ D, the singular fiber π−1(p) is determined by the singular

fiber types over the two branches of D at p.

Indeed, the possibility of codimension-2 singularities complicates the analysis of

the existence of a smooth minimal model; moreover, even if such a smooth model

does exist, the resolution of singular fibres may not be crepant, i.e., preserving the

canonical bundle.

We have the following example:

• Start with the extremal rational elliptic surface with singular fibres give by

2I1 + II∗, with g2 = 3 and g3(t) = −1 + 2t and ∆(t) = −108 t (t− 1) such that

y2 = 4x3 − 3x+ 1− 2t.

The fiberwise periods of dx/y satisfy the ODE of 2F1(
1
6
, 5
6
; 1|t).

• Carry out a base transformation and a twist to obtain a convenient model for a

one-parameter subfamily of the family of M-polarized K3 surfaces. By setting
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t 7→ t
(
2 + 1

s(s+1)

)
we obtain

y2 = 4x3 − 3
(
s(s+ 1)

)4
x− g3

(
t

(
2 +

1

s(s+ 1)

)) (
s(s+ 1)

)6
.

This family has the singular fibres given by 2II∗ + 4I1; a simple base transfor-

mation shows that this family can be identified with the M-polarized sub-family

for α = 1, β = 1, γ = 0, δ = (4t)2. The K3 periods of ds∧ dx/y satisfy the ODE

of

4F3

 1
12
, 5
12
, 7
12
, 11
12

1, 1, 1
2

∣∣∣ (2t)2
 .

• Setting t 7→ t (1+u2)
u

and carry out another twist to obtain a family of Calabi-Yau

threefolds over P1 × P1 given by

y2 = 4x3 − 3
(
s(s+ 1)u

)4
x− g3

(
t
(1 + u2)

u

(
2 +

1

s(s+ 1)

)) (
s(s+ 1)u

)6
.

Notice that in generic u- and s-direction we have elliptic fibrations with 2II∗ +

4I1. In u-direction, the II∗-fibers are located at u = 0,∞, in s-direction the

II∗-fibers are at s = 0,−1. A residue computation shows that the periods of

du ∧ ds ∧ dx/y satisfy the ODE of

4F3

 1
12
, 5
12
, 7
12
, 11
12

1, 1, 1

∣∣∣ (2t)2
 .

The analysis of this fibration via the framework of Miranda reveals, after a relatively

long sequence of blow-ups, that the threefold X produced here by the mixed-twist

construction is singular, i.e., the smooth-minimal model is not Calabi-Yau. Part

of what makes this interesting, besides being the so-called 14th and final case of
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hypergeometric pencils of Calabi-Yau threefolds [22], is that this threefold can also

be constructed by means of a different rational elliptic surface - and the fibering K3

surfaces have different Picard rank.

• Start with the extremal rational elliptic surface with singular fibres I2+I1+III
∗,

with g2 =
16
3
− 4 t and g3(t) = −64

27
+ 8

3
t and ∆ = −64 t2 (t− 1) such that

y2 = 4x3 −
(
16

3
− 4 t

)
x+

64

27
− 8

3
t.

The fiberwise periods of dx/y satisfy the ODE of 2F1(
1
4
, 3
4
; 1|t).

• Carry out a base transformation and a twist to obtain a convenient model for a

one-parameter family of K3 surfaces with M2-polarization - so Picard-rank 19.

• By setting t 7→ −t 1
4s(s+1)

we obtain

y2 = 4x3 − g2

(
−t

4s(s+ 1)

) (
s(s+ 1)

)4
x− g3

(
−t

4s(s+ 1)

) (
s(s+ 1)

)6
.

This family has singular fiber content 2III∗ + 2I1 + I4. The K3 periods of

ds ∧ dx/y satisfy the ODE of

3F2

 1
4
, 1
2
, 3
4

1, 1

∣∣∣ t
 .

• Set t 7→ 16t
729u4(u+1)2

and carry out another twist to obtain a family of Calabi-Yau

threefolds over P1 × P1 given by

y2 = 4x3 − g2(T ) (s(s+ 1))4 (u2(u+ 1))2 x− g3 (T ) (s(s+ 1))6 (u2(u+ 1))3

with T = −22t
36s (s+1) (u2(u+1))2

. In generic s-direction we have an elliptic fibration
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with 2III∗ + 2I1 + I4 with the III∗-fibers located at s = 0,−1. In u-direction,

we have an elliptic fibration with I∗12 + 6I1 with the I∗12-fiber located at u = ∞

- and thus, are M-polarized. A residue computation shows that the periods of

du ∧ ds ∧ dx/y satisfy the ODE of

4F3

 1
12
, 5
12
, 7
12
, 11
12

1, 1, 1

∣∣∣ t
 .

Importantly, the 14th case has been reconstructed in such a way that in various

directions of the base surface, the fibering K3 surfaces have different Picard rank!

This could be a manifestation of the singular structure of the total space, which as

we remarked before, does not possess a crepant resolution.

Beyond illustrating the utility of the mixed-twist construction in analyzing inter-

esting Calabi-Yau threefolds, which may or may not possess smooth minimal models,

one may provide explicit geometric constructions of Calabi-Yau threefolds that are

known to exist solely from a Hodge theoretic argument [40]. In order to do so, one

must sample larger families of rational elliptic surfaces - in particular, those rational

elliptic surfaces whose quadratic twists yield Jacobian elliptic K3 surfaces of at least

Picard rank 17 or 16. This has of course been the focus of this dissertation.

Moreover, knowing the Picard-Fuchs systems of such K3 surfaces allows one to

take 1-parameter restrictions by adequately sampling the moduli space. A generic,

1-parameter restriction of the moduli space T of the twisted Legendre pencil over the

line {a = α0z + β0, b = α1z + β1, c = z} ⊂ T has been produced during the course of

this research, and the corresponding rank-5 Picard-Fuchs ODE operator is given as

follows:
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a5(z)
d5ω

dz5
+ a4(z)

d4ω

dz4
+ a3(z)

d3ω

dz3
+ a2(z)

d2ω

dz2
+ a1(z)

dω

dz
+ a0(z)ω = 0 ,

with coefficients given by

a5(z) =
8

15
z(z − 1) (zβ1 − z + β0)

2 (zα1 − z + α0)
2 ,

a4(z) =
4

15
(β1z − z + β0) (α1z − z + α0)

(
14z3α1β1 − 26α1z

3 − 26z3β1 + 14z2α0β1

+14z2α1β0 − 7z2α1β1 + 38z3 − 26z2α0 + 19z2α1 − 26z2β0 + 19z2β1+

14zα0β0 − 7zα0β1 − 7zα1β0 − 31z2 + 19zα0 + 19zβ0 − 7α0 , β0
)
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a3(z) =
124

15
α2
0β0 +

124

15
α0β

2
0 −

172

15
z3α2

1 −
172

15
z3β2

1 +
224

5
α3
1 −

172

15
zα2

0 −
172

15
zβ2

0

+
224

5
z2α0 +

224

5
z2β0 +

224

5
z3β1 +

24

5
α2
0β

2
0

+
368

15
z4α2

1 +
368

15
z4β2

1 +
368

15
z2α2

0

+
368

15
z2β2

0 −
396

5
z3α0 −

336

5
z3β0 −

396

5
z4α1 −

396

5
z4β1 +

96

5
z2α0α1β0β1

− 548

15
z3 +

868

15
z4 +

248

15
zα0β0β1 +

248

15
z2α0α1β1

+
248

15
z2α1β0β1 +

248

15
α0α1β0

+
48

5
z3α0α1β

2
1 +

48

5
z3α2

1β0β1 −
784

15
z3α0α1β1

− 784

15
z3α1β0β1 −

784

15
z2α0α1β0

− 784

15
z2α0β0β1 +

48

5
zα2

0β0β1 +
48

5
zα0α1β

2
0

+
124

15
zα1β

2
0 −

344

15
z2β0β1

+
124

15
z2α0β

2
1 −

140

3
z2α1β0 +

124

15
z2α2

1β0

− 140

3
zα0β0 −

140

3
z2α0β1 −

344

15
z2α0α1

+
124

15
zα2

0β1 +
124

15
z3α1β

2
1 +

124

15
z3α2

1β1 −
140

3
z3α1β1 −

392

15
z3α2

1β0

− 392

15
z4α2

1β1 +
1484

15
z3α0β1 −

392

15
z2α1β

2
0 −

392

15
z2α2

0β1 +
736

15
z3β0β1

+
24

5
z4α2

1β
2
1β

2
1 +

736

15
z3α0α1 +

24

5
z2α2

0β
2
1 −

392

15
zα2

0β0 +
1484

15
z2α0β0

− 392

15
z3α0β

2
1 +

24

5
z2α2

1β
2
0 +

1484

15
z3α1β0

+
1484

15
z4α1β1 −

392

15
zα0β

2
0 −

332

15
z4α1β

2
1
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a2(z) =− 16

3
z2α2

1 −
16

3
z2β2

1 + 42z2α1 + 42z2β1 + 42zα0 + 42zβ0 −
70

3
α0β0

− 14α2
0β0 − 14α0β

2
0 +

74

3
z3α2

1 +
74

3
z3β2

1 − 118α1z
3

+
74

3
zα2

0 +
74

3
zβ2

0 − 118z2α0 − 118z2β0

− 118z3β1 − 50z2 − 16

3
α2
0 −

16

3
β2
0 + 112z3

− 28zα0β0β1 − 28z2α0α1β1 − 28z2α1β0β

− 28zα0α1β0 −
70

3
z2α1β1 −

32

3
zα0α1 −

70

3
zα0β1

− 70

3
zα1β0 −

32

3
zβ0β1 − 14zα1β

2
0 +

148

3
z2β0β1

− 14z2α0β
2
1 +

308

3
z2α1β0 − 14z2α2

0β0 +
308

3
zα0β0

+
308

3
z2α0β1 +

148

3
z2α0α1 − 14zα2

0β1 − 14z3α1β
2
1

− 14z3α2
1β1 +

308

3
z3α0β1 ,

a1(z) =
9

2
z2α2

1 + 21z2α1β1 +
9

2
z2β2

1 − 44z2α1

− 44z2β1 + 9zα0α1 + 21zα0β1 + 21zα1β0

+ 9zβ0β1 +
119

2
z2 − 44zα0 + 7α1z − 44zβ0 + 7β1z +

9

2
α2
0

+ 21α0β0 +
9

2
β2
0 −

31

2
z + 7α0 + 7β0 ,

a0(z) = −1

4
(6zα1 + 6zβ1 − 14z + 6α0 + 6β0 + 1)

Studying how Picard-Fuchs operators such as these will allow for the construction,

upon taking careful values of α0, β0, α1, β1, will allow for the explicit geometric con-

struction of Calabi-Yau threefolds that have thus far only been realized by abstract

Hodge-theoretic data.
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85–133. Birkhäuser, Boston, Mass., 1983. 27

[104] R. Miranda. Smooth models for elliptic threefolds. In The birational geometry
of degenerations (Cambridge, Mass., 1981), volume 29 of Progr. Math., pages
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