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ABSTRACT

Improvement opportunities in the Two-Source Energy Balance Model for ET using UAV

imagery and point cloud information

by

Mahyar Aboutalebi, Doctor of Philosophy

Utah State University, 2021

Major Professor: Alfonso F. Torres-Rua, Ph.D.
Department: Civil and Environmental Engineering

Unmanned aerial vehicles (UAVs) are a rapidly developing technology for acquiring

high-resolution imagery at the desirable location and time. With the recent advances in

accelerating image processing algorithms and sensor technology, UAV high resolution im-

agery is one of the main sources for monitoring crop conditions in agricultural fields and in

a short time interval. This UAV technology is now being used on farms and particularly

on high-value crops such as orchards and vineyards to estimate evapotranspiration (ET)

and stress of individual plants, an important feature that is not possible using satellite

imagery. However, with increasing image resolution, new challenges/opportunities emerge.

The current study has been conducted in response to improving the estimation of crop

water requirement and irrigation scheduling using the integration of spatially-distributed

information that can be derived from high-resolution imagery into remote sensing evapo-

transpiration (ET) model. The UAV high-resolution imageries have been collected over a

California vineyard during the Grape Remote sensing Atmospheric Profile and Evapotran-

spiration eXperiment (GRAPEX) field campaigns. First, several existing approaches for

shadow detection used in satellite imagery are evaluated for high-resolution UAV imagery
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and the impacts of shaded pixels on vegetation indices and ET estimates using the Two-

Source energy balance (TSEB) model are presented. Second, an open source algorithm is

developed to extract useful information from UAV point cloud products for modeling Leaf

Area Index (LAI), which is a key input for the TSEB model. Third, a new algorithm is

designed to downscale radiometric temperature (Tr) to the spatial resolution of the optical

bands and the impact of downscaled Tr on the TSEB is discussed. The information pro-

vided by the shadow detection model, LAI and downscaling algorithms has the potential to

increase precision in irrigation water allocation and scheduling.

(192 pages)
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PUBLIC ABSTRACT

Improvement opportunities in the Two-Source Energy Balance Model for ET using UAV

imagery and point cloud information

Mahyar Aboutalebi

In recent years, satellites and unmanned aerial vehicles (UAVs) provide enormous

amounts of spatially-distributed information for monitoring crop conditions by measuring

crop’s reflected and emitted radiation at a distance. However, applications of high-resolution

UAV imagery and its intermediate products for improving crop water use estimates are not

well studied. In other words, the available approaches, methods and algorithms for de-

termining how much water to apply for irrigation using remotely sensed data have been

mostly developed at satellite spatial resolutions. High-resolution imageries that have been

achieved by small UAVs open new opportunities for revisiting, re-evaluating, and revising

available crop water use methods. In this study, different aspects of opportunities of UAV

high-resolution imagery for enhancing remote sensing crop water use models, notably the

Two-Source Energy Balance model (TSEB), over a commercial vineyard located in Cali-

fornia are presented. In particular, this dissertation presents the impact of shadows, leaf

area index (LAI) modeled from UAV 3D information, and higher-resolution temperature

on the TSEB model. The high-resolution spatially-distributed crop water use derived by

integration of UAV imagery into the TSEB model provides the capability to visualize spa-

tial variations of crop water use at a compatible resolution with irrigation systems. This

information is an essential part of scheduling irrigation with greater precision.
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CHAPTER 1

Introduction

One of the major components in water balance model for increasing crop water use

efficiency is Evapotranspiration (ET) [4]. ET can be measured using lysimeters and eddy

covariance towers or estimated based on empirical or physically-based models. Although

field-based observations based on lysimeters and eddy covariance towers are considered as

the most accurate methods for measuring ET, such measurements are expensive and are

made at point scale. In contrast to lysimeters and eddy covariance towers, various remotely-

sensed ET models have been developed providing estimation of ET across a variety of spatial

and temporal scales using satellite and aerial imagery. However, physically-based models

suffer from two major challenges: (1) input requirements and (2) model complexity. The

complexity of ET models increases in non-homogeneous areas where both soil and vegetation

contribute to radiometric temperature (Tr) and surface energy fluxes [9].

Among available remote sensing-based ET models, the Two-Source Energy Balance

Model (TSEB) is one ET model that successfully estimates spatially-distributed surface

energy fluxes from remotely-sensed land surface temperature over various types of crops.

To overcome the challenges related to the impact of canopy geometry characteristics, sensor

view, and solar zenith angle on the Tr and consequently on the surface temperature, the

original version of the TSEB model was developed to estimate surface energy fluxes using

a single measurement of Tr at one view angle [2]. In the past few years, the TSEB model

outputs are evaluated at different grid sizes, climate conditions, and landscape heterogeneity

( [6], [4], [1], [8], [3], and [5]).

The development of lightweight unmanned aerial vehicles (UAVs) provides an opportu-

nity for collecting high-resolution multi-spectral imagery. Image processing and photogram-

metry algorithms working at high spatial resolution offer a great opportunity for producing

ortho-mosaics and 3D information products such as point cloud dataset. While UAV im-
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agery has been widely used in crop water stress, yield monitoring, crop type identification,

and weed and pest detection, the application of UAV 3D products such as point clouds

in precision water management has not been well evaluated. Point clouds can be gener-

ated with overlapping UAV imagery. This information is likely to be a useful source for

estimation of biomass parameters that can be more directly correlated to LAI.

Although UAVs are cost-effective and can provide higher resolution imagery, increases

in resolution may lead to opening new opportunities as well as creating new challenges

for available crop water requirement methods since most of these approaches have been

developed, tested and enhanced at satellite resolution. Concerning new challenges, shadows

are one of the objects that will appear in the high resolution imagery and affect the signal

received by optical and thermal sensors. The occurrence of shadows in high-resolution

imagery can affect vegetation indices and consequently estimated bio-physical parameters

such as leaf area index (LAI), which is a key component for ET models.

Regarding new opportunities, one overlooked factor in ET models is the incorpora-

tion of vegetation-canopy structure information derived from multi-spectral imagery and

photogrammetry algorithms into evapotranspiration models. In general, canopy structure

information is the main source of information for (1) projection of shadows on the canopy

and the ground and (2) estimation of biomass parameters such as LAI. In addition to

vegetation-canopy structure information, spatial resolution differences between optical and

thermal bands of UAV sensors can provide a unique opportunity for downscaling land sur-

face temperature (LST) based on information derived from optical bands. This research

explores different aspects of these challenges and opportunities for improving the perfor-

mance of remote sensing ET models, particularly TSEB, over a commercial vineyard located

in California.

The first chapter reveals how shadows caused by canopy structure, sun position, and

geographical location can affect vegetation indices (VIs) and energy fluxes estimated by

TSEB. TSEB doesn’t consider the effect of shadows that appear in the high-resolution

imagery captured by UAV. Because of shaded pixels in the high-resolution imagery, VIs
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such as the Normalized difference vegetation index (NDVI), LAI, and empirical relationship

between NDVI and Tr for component temperature estimation are affected. Divergence of

NDVI values due to lack of incident radiation can lead to a bias in LAI, temperature

components, and consequently ET estimation. This chapter evaluates the performance

of four shadow detection methods in high-resolution UAV imagery. The shadow detection

methods are (1) unsupervised and (2) supervised classifications, (3) an index-based method,

and (4) a physically-based model for shadow projection that uses sun position and a digital

surface elevation model generated from point cloud dataset. Four high-resolution images

(less than 20 cm/pixel) captured by the AggieAir UAV system in 2014, 2015, and 2016 over

a vineyard located in near Lodi, California, are used in this chapter. Finally, the impacts of

shadowed areas on the calculation of the VIs LAI and surface energy fluxes are presented.

In the second chapter, a new algorithm called Vegetation Spectral-Structural Informa-

tion eXtraction Algorithm (VSSIXA) is developed. VSSIXA can estimate plant parameters

such as canopy height, volume and surface area based on point cloud dataset and provide

spectral-structural canopy properties. The spectral-structural canopy properties are used to

develop several LAI models. The TSEB model is executed based on these LAI models and

the TSEB outputs are tested against eddy covariance flux measurements. Besides, instead

of using nominal field values of canopy geometry characteristics as inputs to the TSEB

model, maps of canopy height, canopy width, and fractional cover are used. The two main

objectives for this chapter are to (1) improve the estimation of LAI and biomass parameters

using point cloud dataset and (2) understand how spatially-distributed canopy parameters

derived from VSSIXA can contribute to the TSEB model performance. The results reveal

the correlation between in situ LAI measurements and estimated canopy geometry param-

eters from VSSIXA and improvement in the TSEB model when new LAI models and maps

of canopy structure parameters are employed.

In the third chapter, a new algorithm for thermal sharpening is presented. To downscale

LST, a wavelet-machine learning technique is used to (1) decompose the optical bands, VIs,

and DSM to approximation and detail coefficients (using wavelet transform); (2) find a
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possible relationship between approximation coefficients of those variables (VIs, DSM, etc.)

and Tr (training/testing the network of the machine learning); (3) generate a detailed

coefficient for Tr (applying the trained network); and (4) restore the higher resolution of

Tr using inverse wavelet transform. Next, the high-resolution version of Tr is separated

into Ts and Tc by searching for pure canopy and bare soil pixels in a spatial domain.

TSEB is executed with pairs of Ts and Tc estimated from the original and downscaled Tr.

Ultimately, TSEB outputs are evaluated using measurements of eddy covariance towers.

The objectives and hypotheses of these three chapters are tested for the same imagery

from the Utah State University AggieAir UAV program as part of the USDA-ARS GRAPEX

project conducted since 2014 over multiple vineyards located in California. These three

chapters cover new challenges and opportunities into remote sensing ET models originated

by UAV high resolution imagery that have not yet examined in detail.
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[3] Chávez, J.L.; Gowda, P.H.; Howell, T.A.; Neale, C.M.U.; and Copeland, K.S. Estimating

hourly crop ET using a two-source energy balance model and multispectral airborne

imagery. Irrigation Science, 2009, 28, 79–91.

[4] Colaizzi, P.D.; Kustas, W.P.; Anderson, M.C.; Agam, N.; Tolk, J.A.; Evett, S.R.; How-

ell, T.A.; Gowda, P.H.; and O’Shaughnessy, S.A. Two-source energy balance model esti-

mates of evapotranspiration using component and composite surface temperatures. Adv.

Water Resour, 2012, 50,134–151.

[5] Kustas, W.P.; Alfieri, J.G.; Nieto, H.; Wilson, T.G.; Gao, F.; and Anderson, M.C. Utility

of the two-source energy balance (TSEB) model in vine and interrow flux partitioning

over the growing season. Irrigation Science, 2019, 37, 375–388.

[6] Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Knipper, K.; Torres-Rua, A.; Parry, C.K.;

Nieto, H.; Agam, N.; White, A.; Gao, F.; McKee, L.; Prueger, J.H.; Hipps, L.E.; Los,

S.; Alsina, M.; Sanchez, L.; Sams, B.; Dokoozlian, N.; McKee, M.; Jones, S.; Yang,

Y.; Wilson, T.G.; Lei, F.; McElrone, A.; Heitman, J.L.; Howard, A.M.; Post, K.;



6

Melton, F.; and Hain, C. The Grape Remote sensing Atmospheric Profile and Evap-

otranspiration eXperiment (GRAPEX). Bulletin of the American Meteorological Society,

https://doi.org/10.1175/BAMS-D-16-0244.1

[7] Nieto, H.; Kustas, W.; Torres-Rua, A.; Alfieri, J.; Gao, F.; Anderson, M.; White,

A.; Song, L.; Mar Alsina, M.; Prueger, J.; McKee, M.; Elarab, M.; and McKee, L.

Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and

canopy component temperatures from UAV thermal and multispectral imagery. Irrigation

Science, 2019, 37, 389–406. https://doi.org/10.1007/s00271-018-0585-9
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CHAPTER 2

Assessment of different methods for shadow detection in high-resolution optical imagery

and evaluation of shadows impact on calculation of NDVI, and evapotranspiration

2.1 Abstract

Significant efforts have been made recently in the application of high-resolution re-

mote sensing imagery (i.e., sub-meter) captured by unmanned aerial vehicles (UAVs) for

precision agricultural applications for high-value crops such as wine grapes. However, at

such high resolution shadows will appear in the optical imagery effectively reducing the

reflectance and emission signal received by imaging sensors. To date, research that eval-

uates procedures to identify the occurrence of shadows in imagery produced by UAVs is

limited. In this study, the performance of four different shadow detection methods used in

satellite imagery were evaluated for high-resolution UAV imagery collected over a Califor-

nia vineyard during the Grape Remote sensing Atmospheric Profile and Evapotranspiration

eXperiment (GRAPEX) field campaigns. The performance of the shadow detection meth-

ods was compared and impacts of shadowed areas on the normalized difference vegetation

index (NDVI) and estimated evapotranspiration (ET) using the Two-Source Energy Bal-

ance (TSEB) model are presented. The results indicated that two of the shadow detection

methods, the supervised classification and index-based methods, had better performance

than two other methods. Furthermore, assessment of shadowed pixels in the vine canopy

led to significant differences in the calculated NDVI and ET in areas affected by shadows

in the high-resolution imagery. Shadows are shown to have the greatest impact on modeled

soil heat flux, while net radiation and sensible heat flux are less affected. Shadows also have

an impact on the modeled Bowen ratio (ratio of sensible to latent heat) which can be used

as an indicator of vine stress level.
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2.2 Introduction

Unmanned aerial vehicles (UAVs) used for remote sensing (RS) purposes have become

a rapidly developing technology for acquiring high-resolution imagery of the earth’s sur-

face. The use of UAVs for monitoring agricultural crop conditions has greatly expanded

in recent years due to recent advances in high-resolution aerial image processing and sen-

sor technology. These advances have extended the capability to measure crop conditions

from a single field to multiple fields in a small time interval. The MIT Technology Review

has listed Agricultural UAVs (or drones) as number one in 10 Breakthrough Technolo-

gies of 2014 [25]. UAVs now offer sub-meter resolution remote sensing relevant to water

management through optical and thermal imagery and evapotranspiration estimation ad-

vances. This UAV technology is now being applied to high-value crops such as orchards

and vineyards to assess individual plant water use or evapotranspiration (ET) and stress

(Ortega-Farias et al. 2016 [32]; Nieto et al. this issue [30]). This enhanced sensing capa-

bility can provide information of plant water use and symptoms for biotic/abiotic stresses

at individual plant scale, a capability not achievable with commercial or NASA satellite

data. However, as image resolution increases, new challenges emerge such as data transfer

and storage, image processing, and detection and characterization of finer-scale features

such as plant canopy glint, blurriness due to wind, and shadows. Although in some cases

shadows might not be a significant issue, they affect surface reflectance and temperature

not accounted for in RS energy balance models, which in turn are likely to cause bias in

determining plant water use and stress, among other parameters. Therefore, neglecting the

shadow impact on monitoring and detecting plant water use and stress and soil moisture

status might well result in less reliable assessments for high-value crops.

Shadows appear when elevated objects, such as buildings or trees, occlude and block

the direct light (e.g. sun shortwave radiation) produced by a source of illumination. In some

cases, information about shadows can provide additional clues about the geometric shape

of the elevated object (Lillesand and Kiefer, 2000 [24]), the position of the source of light

(Bethsda, 1997 [4]), and the height of the object (Sirmacek and Unsalan, 2008 [45]). In most
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cases, the appearance of shadows in an image acquired by RS complicates the detection of

objects or areas of interest that are located under the shaded area and thus reflect reduced

radiance. The appearance of shadows in aerial imagery may also cause loss of valuable

information about features, such as shape, height, and color. Consequently, the darkening

effect of shadows increases land cover classification error and causes problems for remote

sensing studies, such as calculation of vegetation indices and change detection (Zhu and

Woodcock, 2012 [50]). Typical RS vegetation indices and outputs used in agriculture include

NDVI, enhanced vegetation index (EVI), LAI (Carlson and Ripley, 1997 [6]), ET estimates

(Nemani and Running, 1998 [29]), and land cover classification (Trout and Johnson, 2007

[48]), among others. In addition, sun position changes lead to moving and changing shadow

locations. As a result, shadow detection algorithms have received widespread attention,

primarily with respect to the impacts of shadows on satellite RS data.

Multiple studies have been conducted to develop methods that detect shadows in images

captured by satellites, and several shadow detection methods have been documented. These

methods can be categorized into four groups: (a) unsupervised classification or clustering,

(b) supervised classification that employ tools such as artificial neural networks (ANNs)

or support vector machines (SVMs), (c) Index-based methods, and (d) physically-based

methods.

(a) Unsupervised classification/clustering : Xia et al. (2009) [49] presented an unsuper-

vised classification/clustering algorithm to detect shadows using the affinity propagation

clustering technique in the Hue-Saturation-Intensity (HSI) color space. Shiting and Hong

(2013) [43] presented a clustering-based shadow edge detection method using K -means clus-

tering and punishment rules to modify false alarms. Xia’s results revealed that the proposed

method has the capability of producing a robust shadow edge mask.

(b) Supervised classification/object-based methods: Kumar et al. (2002) [50] proposed

an object-based method to detect shadows using a color space other than RGB. Siala et

al. (2004) [44] worked on a supervised classification method to detect moving shadows

using support vectors in the color ratio space. Zhu and Woodcock (2012) [50] presented an
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object-based approach to detect shadows and clouds in Landsat imagery.

(c) Index-based methods: Scanlan et al. (1990) [42] reported a method to detect and

remove shadows in images by partitioning the image into pixel blocks, calculating the mean

of each block, and comparing it with the image median. Rosin and Ellis (1995) [38] worked

on the impact of different thresholds on the detection of shadows in an index-based method.

Choi and Bindschadler (2004) [7] presented an algorithm to detect clouds using normalized

difference snow index (NDSI) to match plausible cloud shadow pixels based on solar position

and Landsat7 images. Qiao et al. (2016) [36] used normalized difference water index

(NDWI) and NDVI to separate shadow pixels from both water bodies and vegetation, and

then applied a maximum likelihood classifier (MLC) and support vector machines (SVMs) to

classify the shadow pixels. Kiran (2016) [17] converted an RGB color image to a grayscale

image using the average of the three bands, and then used Otsus’ method to define a

threshold for differentiating between shadow and non-shadow pixels. Finally, a histogram

equalization method was applied to improve the contrast of the grayscale image.

(d) Physically-based methods: Sandnes (2010) [40] used the sun position and shadow

length to approximately estimate the geolocation of the sensor. Huang and Chen (2009a)

[15] presented a physical approach for detecting the shadows in video imagery and showed

that the proposed method can effectively identify the shadows in three challenging video

sequences. Also, Huang and Chen (2009b) [16] proposed a method for detecting a moving

shadow using physical-based features. In this method, the physical-based color features are

derived using a bi-illumination reflection model. More information about physically-based

models can be found in Sanin et al. (2012) [41].

Concerning the impact of shadows on vegetation indices and water stress, Ranson

and Daughtry (1987) [37] and Leblon et al. (1996a) [22] concluded that NDVI estimates

were highly sensitive to the shaded part of a forest canopy. Leblon et al. (1996b) [23]

analyzed the mean sunlit and shadow reflectance spectra of shadows cast by a building and

by conifers and hardwood trees on grass, bare soil, and asphalt using the visible and near-

infrared bands. Their results indicated that reflectance of hardwood shadows was greater
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than those of conifers and buildings, except for shadow reflectance on bare soil. Moreover,

the average NDVI and the atmospherically resistant vegetation index (ARVI) in sunlit areas

could be lower or higher than in shaded areas depending on the surface type and shadow

type. Hsieh et al. (2016) [14] analyzed the spectral characteristics in the shadow areas and

also investigated the NDVI differences between shaded and non-shaded land covers using

high radiometric resolution digital imagery obtained from Leica ADS-40, Intergraph DMC

airborne. They found that digital number (DN) values in shaded pixels are much lower

than in sunlit pixels and also reported NDVI mean values in shadows and non-shadows

from the vegetation category of 0.38 and 0.64, respectively. Poblete et al. (2018) [34]

proposed an approach to detect and remove shadow canopy pixels from high-resolution

imagery captured by a UAV using a modified scale invariant feature transformation (SIFT)

computer version algorithm and Kmeans++ clustering. Their results indicated that deletion

of shadow canopy pixels from a vineyard leads to an improved relationship between the

thermal-based Crop Water Stress Index and stem water potential (13% in terms of the

coefficient of determination). They also concluded that the impact of shadow canopy pixel

removal should be evaluated for ET models working with high-resolution imagery.

While the literature identifies several shadow detection approaches, a few studies have

focused on shadow detection for very high-resolution imagery captured by UAVs. Fur-

thermore, limited work is available that demonstrates how shadows might affect the inter-

pretation of the imagery in terms of vegetation indices, biophysical parameters and ET.

Therefore, the objectives of this study were to characterize the advantages and disadvan-

tages of a version of each shadow detection model group using high-resolution imagery

captured by UAVs over complex canopy locations like vineyards, and consider the impacts

of shaded pixels on NDVI and ET estimations.

2.3 Material and Methods

2.3.1 Area of Study and UAV sensor descriptions

The high-resolution images for this study were collected by a small UAV over a Pinot
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Noir vineyard located near Lodi, California (38.29 N 121.12 W), in Sacramento County as

part of the GRAPEX project. It is a drip-irrigated system vineyard in which irrigation lines

run along the base of the trellis at 30 cm agl with two emitters (4 liters/hour) between each

vine. The training system is with “U” shaped trellises and canes trained upwards. The vine

trellises are 3.35 m apart, and the height to first and second cordon is about 1.45 and 1.9

m, respectively (Kustas et al. 2018 [20]). The orientation of the vine rows is East-West.

In terms of cycle of vine canopy growth in that area, the bud break (grape flowering state)

occurs in early May, and the veraison to harvest stage occurs in early or mid-June to late

August. Thus, June, July, and August are the months that the canopy may undergo stress.

The UAV was supplied and operated by the AggieAir UAV Research Group at the Utah

Water Research Laboratory at Utah State University ( [7]). Four sets of high-resolution

imagery (20 cm or finer) were captured over the vineyard by the UAV in 2014, 2015, and

2016. These UAV flights were synchronized with Landsat satellite overpass dates and times.

The data were used to evaluate the various shadow detection methods. The study area is

shown in Figure 2.1, and information describing the images is summarized in Table 2.1.

Details of the AggieAir aircraft, along with sensor payload, are shown in Figure 2.2.

As described in Table 2.1, different optical cameras were used each year (2014, 2015,

and 2016). Cameras ranged from consumer-grade Canon S95 cameras to industrial type

Lumenera monochrome cameras fitted with narrowband filters equivalent to Landsat 8

specifications. The thermal resolution for all four flights was 60 cm and the visible and NIR

(VNIR) were 10 cm except for the first one (15 cm).

A photogrammetric point cloud was produced from the multispectral images with a

density of 40 (points/m2) for the 15 cm resolution (2014 imagery) and 100 (points/m2) for

the 10 cm resolution (2015 and 2016 imagery), after which a digital surface model (DSM)

was generated at the same spatial resolution than the original imagery (i.e. 15 cm for 2014

and 10cm for 2015 and 2016). In addition to UAV point cloud products that describe the

surveyed surface, a LiDAR derived bare soil elevation (digital terrain model DTM) product

for the same location, collected by the NASA G-LiHT project, were used [9]. Also, 2014
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and 2015 images were captured between veraison and harvest stage, and the 2016 flight was

between bloom and veraison stage (Table 2.2).

Following the imagery acquisition, a two-step image processing phase occurred, includ-

ing (1) radiometric calibration and (2) image mosaicking and orthorectification. In the first

step, the digital images are converted into a measure of reflectance by estimating the ratio

of reference images from pre- and post-flight Labsphere ( [21]) Lambertian panel readings.

For this conversion, a method has been adapted from Neale and Crowther, 1994 [28]; Miura

and Huete, 2009 [26]; and Crowther, 1992 [10]) that is based solely on the reference panel

readings, which do not require solar zenith angle calculations. This procedure additionally

corrected camera vignetting effects that were confounded in the Lambertian panel readings.

In the second step, all images were combined into one large mosaic and rectified into a

local coordinate system (WGS84 UTM 10N) using the Agisoft Photoscan software [2], and

survey-grade GPS ground measurements. The software produced hundreds of tie-points be-

tween overlapping images by using photogrammetric principles in conjunction with image

GPS log file data and UAV orientation information from the on-board Inertial Measure-

ment Unit (IMU) to refine the estimate of the position and orientation of individual images.

The output of this step is an orthorectified reflectance mosaic (Elarab et al. (2015) [11]).

For thermal imagery processing, only step 2 is applied. The resulting thermal mosaic was

brightness temperature in degrees Celsius. Moreover, a vicarious calibration for atmospheric

correction of microbolometer temperature sensors proposed by Torres-Rua [47] was applied

to the thermal images.

.
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Fig. 2.1: Example of an aerial image of the study area captured by the AggieAir UAV on
June 2015 (left), and NASA phenocam photographs for the same site (right, obtained on
24 March 2013 and 02 July 2 2013 during the growing season)

Table 2.1: Dates, times, cameras and optical filters used to capture images with the UAV

Date
UAV Flight Time (PDT) UAV elevation

(agl) meters

Bands Cameras and Optical Filters
Spectral Response

Launch Time Landing Time RGB NIR Radiometric Response MegaPixels

August 9, 2014 11:30 AM 11:50 AM 450
Cannon

S95

Cannon S95

modified

(Manufacturer NIR

block filter removed)

8-bit 10

RGB: typical CMOS

NIR: extended CMOS NIR

Kodak Wratten 750 nm

LongPass filter

June 2, 2015 11:21 AM 12:06 PM 450
Lumenera

Lt65R Color

Lumenera

Lt65R

Monochrome

14-bit 9

RGB: typical CMOS

NIR: Schneider 820 nm

LongPass filter

July 11, 2015 11:26 AM 12:00 PM 450
Lumenera

Lt65R Color

Lumenera

Lt65R

Monochrome

14-bit 12

RGB: typical CMOS

NIR: Schneider 820 nm

LongPass filter

May 2, 2016 12:53 PM 1:17 PM 450
Lumenera

Lt65R Mono

Lumenera

Lt65R

Mono

14-bit 12
RED: Landsat 8 Red Filter equivalent

NIR: Landsat 8 NIR Filter equivalent



15

Fig. 2.2: Photos of the AggieAir aircraft and its sensor payload

Table 2.2: Dates, optical, DSM and thermal resolution, point cloud density and phenological
stages of the vineyard when the images captured by the UAV

Dates Optical and DSM resolution Thermal resolution Point cloud density (points/mˆ2) Phenological stage

9-Aug-14 15 cm 60 cm 37 near harvest

2-June-15 10 cm 60 cm 118 near verasion

11-Jul-15 10 cm 60 cm 108 veraison to harvest

2-May-16 10 cm 60 cm 77 bloom to veraison

2.3.2 Shadow detection methods

Figure 2.3 provides a schematic overview of the four different shadow detection methods

that were evaluated in this study. For unsupervised k -means classification, the value of k

(maximum number of classes) must be determined. When using supervised classification,

the signature spectra for each of the categories must be previously identified. The index-

based method required that an index be calculated using two or more spectral bands and

the identification of a threshold value (digital number or reflectance). Because the shadowed

pixels can be visually identified, the threshold value can be modified in a trial-and-error

process. Application of the physically-based model involved calculation of the sun position

based on the central latitude and longitude of the imagery, together with the local time at



16

the flight area. Since the case study is not a large area (<0.4 km2) and the flight time is

less than 20 minutes, we can assume that the sun position is constant for all pixels.

Fig. 2.3: Flowchart illustrating the process of the study for evaluating the shadow detection
methods using the very high resolution images captured by UAV

To statistically determine the impact of shadows over NDVI, a standard analysis of

variance (ANOVA) analysis was implemented. The ANOVA analysis compared shadowed

and non-shadowed pixels over the canopy and was applied to the best of the four shadow

detection methods.

To separate the canopy pixels from ground pixels, DTM and DSM products for each

image acquisition date are used. If the difference between DSM and DTM was greater

than a threshold (e.g. 30 cm), that pixel could be considered as belonging to the canopy

vegetation; otherwise, it was assumed to be a pixel of bare ground/inter-row. This threshold

filtered the canopy pixels in the images and its selection included a trial-and-error process.

Afterward, based on the filtering procedure and the evaluation of the shadow detection

methods, the leaf canopy portions that were shaded or sunlit were extracted. From here,
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NDVI was calculated and estimated separately for the shaded and sunlit portions of the

canopy. For NDVI, the shadowed versus sunlit pixels were compared to each other in terms

of histogram analysis and ANOVA. The null hypothesis for the ANOVA test is that the

average of the two populations are similar (e.g. the mean values of the shaded and sunlit

NDVI pixels were equal). If the null hypothesis was rejected, a further comparison was

performed on how the difference in shaded versus sunlit could affect NDVI and ET.

2.4 Results and Discussion

2.4.1 Unsupervised classification (clustering)

Examples of the results of unsupervised classification (clustering) for shadow detection

are illustrated in Figure 2.4 for the various flight dates over the study area. Five clusters

were considered in applying the clustering method. These were generated based on the

k -means method. The unsupervised classification toolbox of the ERDAS Imagine Software

was used to execute the k -means algorithm. As shown in Figure 2.4, it is evident that

most of the pixels assigned to Cluster 1 represent the pixels in shadows. Clusters 2 and 3

were mostly related to the sunlit vegetation canopy, and most of the pixels categorized into

Clusters 4 and 5 were bare soil. In addition, some parts of the bare soil in the central part

(dark pixels) of the 2015 images were classified as shadowed pixels (Cluster 1), which was

not correct. Also, in the May 2016 image, some pixels classified in Cluster 5 (which were

mostly bare soil pixels) overlapped with vegetation pixels. Thus, each cluster is a mixture of

at least two features (shadow, soil, etc.) as different levels of shade (particularly the shadow

over the canopy in the vine row) can be found in Cluster 2 not in Cluster 1. As shown in

Table 2.1, only the red and NIR bands were used in 2016. This might have affected the

performance of classification because it employed less information than was used for the

imagery from the 2014 and 2015 UAV flights.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2.4: Original UAV false color image subset (left column) and unsupervised classification
results (right column) from the vineyard imagery. (a) and (b) correspond to August 2014,
(c) and (d) to June 2015, (e) (f) to July 2015 and (g) and (h) to May 2016. Black pixels
on the right column represent shaded locations
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2.4.2 Supervised Classification

The supervised classification results were obtained using the supervised classification of

the ERDAS Imagine Software. Before running this model, a signature file was collected for

each of the different targets (vegetation, shadow, bare soil) using the area of interest layers

as the training areas and signature editor. Then each pixel was assigned to these discrete

signature classes based on a maximum likelihood method. The results of the supervised

classification method for shadow detection in images captured by the UAV in August 2014,

June 2015, July 2015, and May 2016 are shown in Figure 2.5. From visual inspection, which

is the customary approach used to evaluate the performance of different shadow detection

methods (Tolt et al. [46], 2011), the performance of this classification for detecting shadows

was better than that of the clustering approach, as can be seen by comparing the black

pixels in the classified image to the pixels that are obviously in shadows in the false color

image. In this method, however, selecting the targets and assigning them to classes was

time-consuming.

2.4.3 Index or pixel-based methods

A MATLAB program was written for detecting shadowed pixels using the index-based

method. In this program, the average of red and NIR bands was considered as a grayscale

image. Then, based on a trial-and-error search, a threshold was applied to the grayscale

image to separate shadowed from non-shadowed pixels. The results of the index-based

method are illustrated in Figure 2.6. Again, from visual inspection of these figures, the

performance of the index-based approach for detecting shadows is better than that of clus-

tering, and somewhat better than that of the classification method. However, as discussed

previously, to identify the shadowed pixels with this method, threshold values must be de-

fined to separate the shadowed area from the original version of the image, which requires

a trial-and-error approach and a visual histogram analysis.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2.5: Original UAV false color image subset (left column) and supervised classification
results (right column) from the vineyard imagery. (a) and (b) correspond to August 2014,
(c) and (d) to June 2015, (e) (f) to July 2015 and (g) and (h) to May 2016. Beige pixels
on the right column represent shaded locations
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2.6: Original UAV false color image subset (left column) and index-based method
classification results (right column) from the vineyard imagery. (a) and (b) correspond to
August 2014, (c) and (d) to June 2015, (e) (f) to July 2015 and (g) and (h) to May 2016.
Beige pixels on the right column represent shaded locations
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2.4.4 Physically-based methods

The Hillshade toolbox of ArcGIS was executed to project shadows according to the solar

position, using the UAV DSM data. The results of this modeling are shown in Figure 2.7.

These images show some uncertainties within the leaf canopy when projecting the shadows

using these tools. Although the ArcGIS Hillshade toolbox is independent of the reflectance

of each pixel, several factors can affect its accuracy. First, to execute the Hillshade toolbox,

the solar position (azimuth and elevation) must be defined. Based upon the latitude and

longitude of the image, as well as the time that the image was captured by the UAV, the

solar position is defined. Obviously, latitude and longitude are not fixed values over the

entire image. Moreover, the duration of the flight is around 20 minutes or less. Therefore,

the solar position is not consistent relative to all pixels, so the average solar position was

used as input. Moreover, the accuracy of the Hillshade projection critically depends upon

the accuracy of the DSM. Similarly to the index-based method, separating the shadowed

area from the image required a threshold. Thus, uncertainties for the ArcGIS Hillshade

method could be attributed to one or more of the following sources: (1) the accuracy of the

DSM, (2) the threshold definition, (3) the use of an average value for the time at which the

image was captured by the UAV, and (4) the use of an average value for latitude/longitude.

The Hillshade Toolbox in ArcGIS was executed to project shadows according to solar

time and position and DSM. The results of this modeling are shown in Figure 2.7. These

images show some errors within the leaf canopy when projecting the shadows using these

tools. Although the ArcGIS Hillshade Toolbox is independent of pixel reflectance, the main

factor that can affect its performance is related to DSM accuracy. Similar to the index-

based method, separating the shadowed area required a threshold selection. One advantage

of using this method is the ability to generate the shadow layer in the absence of optical

imagery. This is illustrated in Figure 2.8, wherein the diurnal shadow layer for a small part

of the vineyard imagery captured by the UAV in July 2015 is simulated from 7:00 a.m. to

8:00 p.m.

2.4.5 Visual Assessment of Shadow Detection Model Performance
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Figure 2.9 illustrates the shadow detection differences produced by the different clas-

sification methods over an area in the approximate center of the GRAPEX vineyard for

imagery captured from the various UAV flights. The performance of the unsupervised and

supervised classification approaches and the index-based method varies in this region of the

image and serves to contrast their performance in detecting shadows.

From visual inspection of the imagery in Figure 2.9, the performance of these four

classification methods in the center portion of the vineyard for the flights in August of

2014 (Figure 2.9.a, Figure 2.9.e, Figure 2.9.i, and Figure 2.9.m) and May of 2016 (Figure

2.9.d, Figure 2.9.h, Figure 2.9.l, and Figure 2.9.p) is acceptable. However, for the flights

in June of 2015 (Figure 2.9.b, Figure 2.9.f, Figure 2.9.j, and Figure 2.9.n) and in July

of 2015 (Figure 2.9.c, Figure 2.9.g, Figure 2.9.k, and Figure 2.9.o), the physically-based

classification methods performed much better than the unsupervised, supervised, and index-

based classification methods in the flat region (the center area) where the gray and black

pixels can be classified into the shadow class. In addition, the performance of the index-

based method is superior to that of the supervised classification method in July 2015 (Figure

2.9.g versus Figure 2.9.k). Thus, although in the flat area, the physically-based and index-

based methods performed similarly to each other and much better than the unsupervised,

and supervised methods, within the leaf canopy the physically-based method overestimates

shadowed pixels (see Figure 2.7 and Figure 2.9.m, Figure 2.9.n, Figure 2.9.o, and Figure

2.9.p).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2.7: Original UAV false color image subset (left column) and physically-based method
classification results (right column) from the vineyard imagery. (a) and (b) correspond to
August 2014, (c) and (d) to June 2015, (e) (f) to July 2015 and (g) and (h) to May 2016.
Beige pixels on the right column represent shaded locations
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2.8: Simulated diurnal shadow pattern shown hourly, from 7:00 a.m. to 8:00 p.m., using
the physically based model and shown on the background image captured by the UAV on
July 2015 around 11:45 am PST. shadow layer for 7:00 a.m. (a), 8:00 a.m. (b), 9:00 a.m.
(c), 10:00 a.m. (d), 11:00 a.m. (e), 12:00 a.m. (f), 1:00 p.m. (g), 2:00 p.m. (h), 3:00 p.m.
(i), 4:00 p.m. (j), 5:00 p.m. (k), 6:00 p.m. (l). Dark areas indicate shadow locations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2.9: Classification maps of the center portion of the vineyard (original UAV false color
image) using unsupervised classification for August of 2014 (a), June of 2015 (b), July of
2015 (c), and May of 2016 (d); using supervised classification for August of 2014 (e), June
of 2015 (f), July of 2015 (g), and May of 2016 (h); using the index-based method for August
of 2014 (i), June of 2015 (j), July 2015 (k), and May of 2016 (l); using physically-based
method for August of 2014 (m), June of 2015 (n), July of 2015 (o), and May of 2016 (p)
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2.4.6 Statistical Assessment of Shadow Detection Method Performance

Since shadow detection is a classification task, one approach for evaluating the accuracy

of the classification methods is to use the confusion matrix and report the correctness metric

(or user’s accuracy as described in Congalton, 1991 [8]) shown in (Eq. 2.1). To create

a confusion matrix, the images on the left column of Fig 2.5 were manually separated

into two categories: (1) shadowed and (2) non-shadowed area. Afterward, each class in

the manually extracted method was compared to the corresponding class in each of the

classification methods. Ultimately, the correctness metric (Eq. 2.1) was calculated based

on the confusion matrix. The results of the confusion matrix, along with the correctness

metric, are shown in Table 2.3. According to the correctness metric, the accuracy of the

index-based (∼94%) method and the supervised (∼92%) method is higher than for the

unsupervised (∼83%) method and the physically-based (∼87%) method. These results

confirmed the visual assessment performed in the previous subsection.

correctnessmetric =
TP

TP + FN
(2.1)

in which TP = the numbers of shadow pixels identified correctly, and FN = the numbers

of shadow pixels categorized into non-shadow class.

To summarize the advantages and disadvantages of the shadow detection methods, the

clustering approach requires no pre-knowledge of the shadow pixel features and the operator

only need to specify the number of the clusters, but each cluster contains the information of

more than one feature. The performance of the unsupervised classification method is lower

than supervised, index-based, and physically-based model, particularly near harvest time

(August 2014). However, between bloom and veraison stage of the canopy, the unsuper-

vised classification performance is similar to the physically-based method. The supervised

classification method requires pre-knowledge of and sample collection for the desired groups

such as vegetation and bare soil and is time-consuming and expensive, especially if there are

numerous targets in the imagery. Despite the phenological stages, the accuracy of super-

vised classification is quite high (more than 90%), but with thriving canopy its performance
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improves from 90% (bloom to veraison in May 2016) to 93% (near harvest in August 2014),

which is unlike the behavior of the unsupervised classification. In the index-based method,

the desired class or target is more sensitive to the threshold that separates the pixels of the

desired class from others. Defining an accurate threshold value requires a trial-and-error

process that is time-consuming; however, the computational time is generally much less

than the unsupervised and supervised classification methods. The accuracy of the index-

based method is quite high and even better than the supervised classification method. Like

the supervised classification method, the weakest performance of the index-based method

occurred when the canopy is not well-developed (bloom to veraison in May 2016), whereas

from closing to the harvest time, its accuracy increases (96%). The physically based method

requires several inputs, including sun position (azimuth and altitude angles) in the sky, data

contained in a DTM, and data from a DSM. The physically based method is independent

of the optical imagery and provides an opportunity to model a diurnal pattern of shadow

changes over the study area. However, its performance is completely dependent on the

quality and spatial resolution of the DEM and DSM data, which is a significant limitation.

Its performance classified between the unsupervised and supervised/index-based method.

There are no significant changes in the accuracy of the physically-based method with a

thriving canopy; however, the supervised, index-based, and physically-based methods all

have higher performance in shadow detection during veraison-harvest (June-August) when

the canopy may be under stress versus the bloom-veraison.
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Table 2.3: Assessment accuracy between different methods and manually extracted method
for a small part of the study of area

Date of Flight Item
Method

Unsupervised Supervised Index-Based Physically-Based

Method Method Method Method

Classes Shadow Non-Shadow Shadow Non-Shadow Shadow Non-Shadow Shadow Non-Shadow

2014, August
Manually Extracted

Shadow 27039 6742 31292 2489 32683 1098 29455 4326

Non-Shadow 20485 170695 8433 182747 5608 185572 10598 180582

Total 47524 177437 39725 185236 38291 186670 40053 184908

Assessment Accuracy (Correctness Metric) 80.6% 93.4% 96.7% 87.2%

2015, June
Manually Extracted

Shadow 19038 3917 21038 1917 21393 1562 20084 2871

Non-Shadow 2566 199440 2109 199897 1192 200814 2456 199550

Total 21604 203357 23147 201814 22585 202376 22540 202421

Assessment Accuracy (Correctness Metric) 82.9% 91.6% 93.2% 87.5%

2015, July
Manually Extracted

Shadow 11845 2416 13030 1231 13320 941 12497 1764

Non-Shadow 3454 207246 2561 208139 1459 209241 2964 207736

Total 15299 209662 15591 209370 14779 210182 15461 209500

Assessment Accuracy (Correctness Metric) 83.1% 91.3% 93.4% 87.6%

2016, May
Manually Extracted

Shadow 18301 3459 19668 2092 20268 1492 18796 2964

Non-Shadow 5697 197504 3294 199907 2314 200887 4198 199003

Total 23998 200963 22962 201999 22582 202379 22994 201967

Assessment Accuracy (Correctness Metric) 84.1% 90.4% 93.1% 86.4%

2.4.7 Impacts of shadows on NDVI, and ET

The results of evaluating NDVI in both the sunlit and shaded areas of the vineyard

leaf canopy are presented here. As discussed in the Methodology Section 2.3, assessing the

impact of shadows on NDVI involved extracting two groups of pixels, sunlit and shaded,

using two steps. The first step separates the vine canopy pixels from the ground surface

and inter-row areas using DTM and DSM data. The second step is the results from the

index-based shadow detection method. To test the equality of these two groups, ANOVA

was used on the NDVI data from Eq. 2.2. The results of ANOVA for NDVI are presented

in Table 2.4. The null hypothesis in the ANOVA is that the mean in both groups (sunlit

pixels and shaded pixels) is equal. The results of ANOVA for all images are presented in

Table 2.4 (where SS = sum of squares, df = degrees of freedom, MS = mean of squares, F
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= f-statistic).

H0 : µ1 = µ2 (2.2)

H1 : µ1 6= µ2 (2.3)

in which H0 and H1 are the null and alternative hypotheses, respectively, and µ1 and

µ2 are the mean of the two groups (in this study, NDVI on the sunlit and shaded leaf

canopy).

Table 2.4: ANOVA results for NDVI for the different flights acquired between 2014 and
2016

Flight Date Source of Variation SS df MS F (observed) P-value F (critical)

Groups 0.038 1 0.038 4.63 0.06 3.84
August 2014 Error 8.058 970 0.008

Total 8.086 971

Groups 0.328 1 0.32 51.92 0.00 3.84
June 2015 Error 6.141 972 0.006

Total 6.469 973

Groups 0.043 1 0.04 8.39 0.00 3.84
July 2015 Error 6.36 1222 0.005

Total 6.40 1223

Groups 0.216 1 0.21 20.58 0.00 3.84
May 2016 Error 10.26 974 0.010

Total 10.48 975

As shown in Table 2.4, the F-statistic (observed value) is greater than the critical

value for F. Therefore, the null hypothesis is rejected for all images. This means that there

is a statistically significant difference between the values of NDVI for the shadowed and

non-shadowed pixels within the vine canopy. The histograms shown in Figure 2.10 further

illustrate the difference in the distribution of NDVI values for the UAV flights conducted

in 2014, 2015, and 2016.

A close examination of the distribution range of the shadowed pixels as presented in

Figure 2.10, indicates that it is smaller than that of sunlit pixels. In addition, the average

values of NDVI in the sunlit pixels is higher than those in the shadowed pixels. This means

that ignoring the effect of shadows on NDVI can lead to biased results and conclusions when
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using this variable. The LAI is a critical input to land surface models for ET estimation

that can be calculated based on NDVI. Hence shadow effects over this biophysical variable

will cause error if the models ignore or fail to compensate for the bias on the LAI estimates.

For example, in the two-source energy balance (TSEB) model developed by Norman et al.

(1995) [31], the radiometric temperature sensed at the satellite is partitioned into canopy

temperature (Tc) and soil temperature (Ts) components using Eq. 2.4.

TR = [fc(φ)T 4
c + (1− fc(φ))T 4

s ]0.25 (2.4)

in which fc(φ) is the fraction of vegetation observed by the thermal sensor with view

angle φ and can be calculated using a Eq. 2.5 proposed by Campbell and Norman (1998). [5].

fc(φ) = 1− exp
−0.5Ω(φ)LAI

cosφ
(2.5)

in which Ω is a clumping factor, and LAI is estimated in this study using an empirical

NDVI-LAI relation (Anderson et al. 2004 [3]) proposed by Fuentes et al. 2014 [12] for

vineyards (Eq. 2.6).

LAI = 4.4×NDV I (2.6)

Satellite and also UAV imagery provide a single observation of (TR) per pixel. There-

fore, to partition TR using Eq. 2.4, there is still two unknown variables, Tc and Ts. One

approach to solve the equation is to estimate an initial value for Tc considering plants are

losing water at a potential rate defined by Priestley and Taylor (1972) [35] (Eq. 2.7).

LEc = αfg
S

S + γ
Rnc (2.7)

in which α = the Priestley-Taylor coefficient (default value is 1.26), fg = fraction of vegeta-

tion that is green, S = the slope of the saturation vapor pressure curve versus temperature,

and γ = psychrometric constant. Rns is the net radiation at the soil surface and Rnc is the



32

net radiation at the canopy layer estimated based on irradiance, LAI and surface spectra

and temperature (Kustas et al. 1999 [19], Campbell et al. 1998 [5])

By subtracting LEc from Rnc, the sensible heat flux of the canopy (Hc) is achieved.

Now, we are able to have an initial estimate of (Tc) using Eq. 2.8 and solve Eq. 2.4 with a

single unknown variable (Ts).

Hc = Rnc − LEc = ρ cp
Tc − T0
Rx

(2.8)

in which ρcp= volumetric heat capacity of air; T0= aerodynamic temperature at the canopy

interface, and Rx= bulk canopy resistance to heat transport. In this step, if the soil latent

heat flux (LEs) calculated based on Ts is non-negative, a solution is found. If not, LEc

decreases using an incremental decrease in α, which leads to increasing Tc and decreasing

Ts until a non-negative solution for LEs is found (Norman et al. (1995) [31] and Kustas and

Norman, 1999 [19]). In the case of vineyards, the more sophisticated radiation and wind

extinction algorithm in the TSEB model developed by Parry et al. 2017 (this issue [33])

and Nieto et al. 2017 (this issue [30]) requires several additional inputs, including LAI.

To evaluate the impact of shadows on energy balance components, TSEB was applied

considering two scenarios (with and without masking shadows), one in which canopy param-

eters (LAI, canopy width) are estimated from the original VNIR images, and a second in

which the canopy parameters are estimated with the image after masking out the shadows.

Moreover, in order to preserve the assumptions in TSEB related to turbulent transport,

TSEB was run by aggregating the UAV imagery to 3.6m. The impact on the magnitude

of the energy balance components and their distribution is illustrated in Figures 2.11-2.14

for the UAV image of August 2014. These figures show the spatial absolute differences of

fluxes as well as histogram and relative cumulative frequency of fluxes for both scenarios

(with and without masking shadows). The histograms show a clear shift in soil heat flux

(G) indicating that the peak is moved to the higher values when shadows are involved.

Since the NDVI-derived LAI present smaller values when shaded pixels are involved, LAI

yields lower values and therefore net radiation reaching the ground (Rns) is increased. As
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G is a ratio of (Rns) in TSEB, including the shadows in NDVI-LAI calculation led to an

increase of G. For the same scenario, the peak of sensible heat flux (H) and Rn are shifted

to smaller values. Increasing G and decreasing Rn account for shadows, and indicate that

the available energy (Rn-G) is decreasing. As shown in Figure 2.13, H decreased slightly

due to slight changes in the soil temperature and canopy temperature values derived from

a lower LAI in involving shadows scenario. For the latent heat flux (LE) considering the

shadows results in a slight shift in the LE distribution to larger values and a greater number

of LE values at the centroid of the distribution.

An additional evaluation of the shadow impact on crop water stress using Bowen Ratio

was performed as shown in Figures 2.15 and 2.16. These figures indicate that ignoring

shadows led to larger water stress areas, particularly in the southern section of the field.

Moreover, the histograms show there are some differences (approximately 6%) in the Bowen

ratio calculated by involving versus ignoring the shadows.
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(a) (b)

(c) (d)

Fig. 2.10: The NDVI histograms for the shadowed and sunlit pixels for the August 2014
imagery (a), the NDVI histograms for the shadowed and sunlit pixels for the June 2015
imagery (b), the NDVI histograms for the shadowed and sunlit pixels for the July 2015
imagery (c), the NDVI histograms for the shadowed and sunlit pixels for the May 2016
imagery (d).
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(a)

(b)

(c)

Fig. 2.11: Flight, August 2014; the spatial absolute differences of soil heat flux considering
shadows and ignoring shadows (a), histogram of soil heat flux considering/ignoring shadows
(b), CDF of soil heat flux considering/ignoring shadows (c).

(a)

(b)

(c)

Fig. 2.12: Flight, August 2014; the spatial absolute differences of latent heat flux consider-
ing shadows and ignoring shadows (a), histogram of latent heat flux considering/ignoring
shadows (b), CDF of latent heat flux considering/ignoring shadows (c).
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(a)

(b)

(c)

Fig. 2.13: Flight, August 2014; the spatial absolute differences of sensible heat flux consider-
ing shadows and ignoring shadows (a), histogram of sensible heat flux considering/ignoring
shadows (b), CDF of sensible heat flux considering/ignoring shadows (c).

(a)

(b)

(c)

Fig. 2.14: Flight, August 2014; the spatial absolute differences of net radiation flux consid-
ering shadows and ignoring shadows (a), histogram of net radiation considering/ignoring
shadows (b), CDF of net radiation flux considering/ignoring shadows (c).
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(a) ] (b)

(c)

Fig. 2.15: Flight, August 2014; Bowen Ratio ignoring shadows (a), Bowen Ratio involving
shadows (b), Histogram of Bowen Ratio ignoring/involving shadows (c).
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(a) ] (b)

(c)

Fig. 2.16: Flight, August 2014; (a) Bowen Ratio of the vine canopy ignoring shadows, (b)
Bowen Ratio of the vine canopy involving shadows, (c) Histogram of Bowen Ratio of the
vine canopy ignoring/involving shadows.

The ANOVA test was used to evaluate whether there was a significant difference in the

fluxes computed by TSEB when accounting versus ignoring shadows. The results of ANOVA

for those fluxes are presented in Table 2.5 to 2.8. The ANOVA results indicate that there is

a statistically significant difference in ignoring versus accounting for shading for G and, for
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most of the flights, for Rn. However, in only half the flights does the ANOVA indicate that

accounting for shadows makes a difference in the output of H (August, 2014 and June, 2015

flights) and in only one of the flights for LE (May, 2016 flight). Although ANOVA does not

indicate a significant difference for LE in 2014 and 2015 flights, it is important to note that

ANOVA is used for testing the equality of the means of the distributions and consequently

does not evaluate differences in the flux distributions between ignoring and accounting for

shadows. For this reason, the spatial differences in the fluxes shown in Figures 2.11 - 2.16 to

indicate the areas of the vineyard where significant discrepancies in fluxes and stress (i.e.,

Bowen ratio) can exist.

Table 2.5: ANOVA results for G flux for the different flights acquired between 2014 and
2016

Parameter Source of Variation SS df MS F (observed) P-value F (critical)

Groups 33484.5 1 33484.5 60.73 0 3.84
August 2014 (G) Error 550286.6 998 551.4

Total 583771.1 999

Groups 7064.16 1 7064.16 4.01 0.0456 3.84
June 2015 (G) Error 1787208.13 1014 1762.53

Total 1794272.25 1015

Groups 24355.7 1 24355.7 23.14 0 3.84
July 2015 (G) Error 1063052.4 1010 1052.5

Total 1087408 1011

Groups 13811.9 1 13811.9 13.26 0.0003 3.84
May 2016 (G) Error 1035735.6 994 1042

Total 1049547.5 995

2.5 Conclusions

Shadows are an inherent component of high-resolution RS imagery. If ignored, they can

cause bias in products derived from RS data that are intended for monitoring plant and soil

conditions. In this study, four different shadow detection methods developed for satellite

imagery were applied to very-high-resolution images captured by a UAV at various times

over a GRAPEX vineyard and evaluated for accuracy. These methods were (a) unsupervised

classification or clustering, (b) supervised classification, (c) index-based methods, and (d)
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Table 2.6: ANOVA results for H flux for the different flights acquired between 2014 and
2016

Parameter Source of Variation SS df MS F (observed) P-value F (critical)

Groups 77736.5 1 77736.5 21.82 0 3.84
August 2014 (H) Error 3519222.3 988 3562

Total 3596958.8 989

Groups 58627.9 1 58627.9 3.96 0.0467 3.84
June 2015 (H) Error 14544242 984 14781.5

Total 14602869 985

Groups 26698.01 1 26698 1.33 0.2499 3.84
July 2015 (H) Error 20223718 1004 20143.1

Total 20250416 1005

Groups 2157.86 1 2157.86 0.82 0.3656 3.84
May 2016 (H) Error 2602439 988 2634.05

Total 2604596.75 989

Table 2.7: ANOVA results for LE flux for the different flights acquired between 2014 and
2016

Parameter Source of Variation SS df MS F (observed) P-value F (critical)

Groups 2280.2 1 2280.2 0.38 0 3.84
August 2014 (LE) Error 6000867 998 6012.89

Total 6003147 999

Groups 14609.2 1 14609.2 0.59 0.4436 3.84
June 2015 (LE) Error 24472706 984 24870.6

Total 24487316 985

Groups 4889.28 1 4889.3 0.16 0.6854 3.84
July 2015 (LE) Error 29661146 996 29780.3

Total 29666036 997

Groups 11763.3 1 11763.3 4.07 0.0439 3.84
May 2016 (LE) Error 2889741.5 1000 2889.7

Total 2901504.2 1001

physically-based methods. The results from visual and statistical assessments indicated

that the accuracy of the supervised classification method and the index-based method were

generally comparable to one another, and superior to the other two. In terms of phenological

stage, the performance of the supervised and index-based methods increases with growing

canopy (from bloom stage to harvest stage, when the canopy may be under stress) whereas

the accuracy of the unsupervised classification decreases during late growing stage. However,

the performance of the physically based model was not sensitive to the growth stages of the

grapevine canopy. Furthermore, an ANOVA assessment between sunlit or shaded canopy
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Table 2.8: ANOVA results for Rn flux for the different flights acquired between 2014 and
2016

Parameter Source of Variation SS df MS F (observed) P-value F (critical)

Groups 4022.5 1 4022.48 8.13 0.0044 3.84
August 2014 (Rn) Error 482734.6 976 494.61

Total 486757.1 977

Groups 745.291 1 745.29 0.63 0.4261 3.84
June 2015 (Rn) Error 1140210.55 970 1175.47

Total 1140955.5 971

Groups 4884.997 1 4885 4.06 0.0441 3.84
July 2015 (Rn) Error 1223456.25 1018 1201.82

Total 1228341.25 1019

Groups 1407.9 1 1407.9 3.99 0.0462 3.84
May 2016 (Rn) Error 344778 976 353.26

Total 346186.5 977

indicates statistical differences between the two groups for NDVI. Finally, the impacts of

shadows on ET estimation and other fluxes using energy balance models and high-resolution

RS data is examined. According to the TSEB model outputs, G increased, while Rn, H, and

available energy (Rn-G) decreased in conditions involving shadows. However, in most cases

the overall effect on LE was minimal, although differences were significant in certain areas

in the vineyard. This implies that high-resolution models of ET and biophysical parameters

should consider the impact of shadowed areas that could cause significant bias in modeled

ET.

The analyses presented, together with the emerging ability to employ UAV-based re-

mote sensing technologies to acquire high-resolution, scientific-grade spectral data in three

dimensions (high-resolution DTM and DSM data, and point cloud data), also point to the

possibility of successfully applying high-resolution energy balance modeling techniques to

acquire plant-scale estimates of ET and plant stress. Such information could be poten-

tially exploited by growers to manage irrigation deliveries in differential patterns within

individual fields while, at the same time, conserving water and reducing management costs.

Additional research is required to prove this capability has utility and economic return for

high-value crops, such as wine grapes. Future steps based on this work involve the diurnal

modeling of shadows for quantification of their impact on energy balance model results, as
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well as incorporation of shadow conditions into energy balance algorithms.
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CHAPTER 3

Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote

Sensing Evapotranspiration Models

3.1 Abstract

In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has

led to production of enormous amounts of data and to novel data processing and analysis

techniques for monitoring crop conditions. One overlooked data source amid these efforts,

however, is incorporation of 3D information derived from multi-spectral imagery and pho-

togrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have

taken advantage of 3D UAV information in monitoring and assessment of plant conditions.

In this study, different aspects of UAV point cloud information for enhancing remote sens-

ing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model

(TSEB), over a commercial vineyard located in California are presented. Toward this end,

an innovative algorithm called Vegetation Structural-Spectral Information eXtraction Algo-

rithm (VSSIXA) has been developed. This algorithm is able to accurately estimate height,

volume, surface area, and projected surface area of the plant canopy solely based on point

cloud information. In addition to biomass information, it can add multi-spectral UAV in-

formation to point clouds and provide spectral-structural canopy properties. The biomass

information is used to assess its relationship with in situ Leaf Area Index (LAI), which is

a crucial input for ET models. In addition, instead of using nominal field values of plant

parameters, spatial information of fractional cover, canopy height, and canopy width are

input to the TSEB model. Therefore, the two main objectives for incorporating point cloud

information into remote sensing ET models for this study are to (1) evaluate the possible

improvement in the estimation of LAI and biomass parameters from point cloud information

in order to create robust LAI maps at the model resolution and (2) assess the sensitivity of
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the TSEB model to using average/nominal values versus spatially-distributed canopy frac-

tional cover, height, and width information derived from point cloud data. The proposed

algorithm is tested on imagery from the Utah State University AggieAir sUAS Program

as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile

and Evapotranspiration eXperiment) collected since 2014 over multiple vineyards located

in California. The results indicate a robust relationship between in situ LAI measurements

and estimated biomass parameters from the point cloud data, and improvement in the

agreement between TSEB model output of ET with tower measurements when employing

LAI and spatially-distributed canopy structure parameters derived from the point cloud

data.

3.2 Introduction

Evapotranspiration (ET) is one of the key components in water and energy cycles, and

its quantification is essential to increasing crop water use efficiency [19]. However, esti-

mation of ET using physically-based models is not a straightforward process due to input

requirements and model complexity [81]. The degree of complexity increases with non-

homogeneous landscapes where both soil and vegetation contribute to radiometric temper-

ature and surface energy fluxes [84].

One ET model that has been successful in estimating spatially distributed surface en-

ergy fluxes from aerial imagery over different landscapes is the Two-Source Energy Balance

model (TSEB) [10]. The TSEB model was developed by Norman et al. [68] to compute

surface energy fluxes using a single measurement of remotely-sensed surface temperature

(at one view angle) to overcome the difficulties associated with characterizing the impact

of canopy structure, fractional cover, sensor view, and sun zenith angle on the radiometric

brightness temperature and its relationship to surface aerodynamic temperature. In recent

years, numerous studies have evaluated the performance of TSEB-based models at different

spatial scales, climates, and landscape heterogeneity.

Satellites and Unmanned Aerial Vehicles (UAVs) offer an opportunity to provide multi-

spectral imagery and at different pixel resolutions. Satellites can cover the globe with daily
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to bi-weekly re-visit times, while UAVs are designed to cover small areas, obtain higher

resolution imagery, and capture information at a specific time. One important remote sens-

ing application is estimation of vegetation biomass, and ultimately yield, typically with

vegetation indices (VIs), which is easily calculated using multi-spectral imagery. Numerous

research studies have been conducted to fit a linear or nonlinear regression model between

VIs and biomass parameters [2]. Basically, significant differences in plant reflectances and

energy emission in the optical wavelengths, particularly the red (R) and near-infrared (NIR)

region, defined as the range between 700 and 1300 nm due to biochemical plant constitutes

such as chlorophyll, have resulted in numerous VI formulas [97]. While the performance of

VI-based models has been promising, these indices have generally been developed for uni-

formly distributed canopies, and are thus not as reliable in estimating plant biomass/Leaf

Area Index (LAI) for strongly clumped and uniquely structured canopies such as vine-

yards [79].

A saturation issue occurs with well-developed canopies, wherein, despite significant

increases in biomass parameters (and as a result LAI), VI values become saturated, meaning

they plateau at a maximum value and are no longer sensitive to increases in LAI [12, 78].

Thus, VIs are recommended to be used only in early growing stages in denser canopies [15].

The saturated behavior of VIs versus biomass parameters is more noticeable in normalized

VIs, which are set to a specific range (e.g., −1, +1). For example, Diarra et al. [25] evaluated

the TSEB model performance using Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) images and the FAO-56 dual crop coefficient approach versus Eddy

Covariance records for monitoring actual ET and detecting water stress over irrigated wheat

and sugar beets located in the Haouz plain in the center of the Tensift basin (Central

Morocco). They concluded that TSEB performed very well, even at a large scale. However,

to estimate LAI based on the vegetation indices (VIs), they found that LAI > 2.5 saturates

the normalized difference vegetation index (NDVI) and no relationship can be found between

NDVI and LAI. In contrast, LAI < 1.5 resulted in a quite linear relationship between NDVI

and LAI. Although LAI is a critical input for ET models, accurate estimation of LAI using
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only VIs is not possible, particularly when the canopy is well-developed or is uniquely

structured. In addition, investigation of the relationship between direct or indirect in situ

LAI measurements and VIs is certainly time-consuming and labor-intensive [94]. Thus,

exploring new techniques to minimize the need for calibration of remote sensing retrieval of

LAI has significant advantages for application in complex canopies.

The development of lightweight UAVs has provided an opportunity for acquiring very

high-resolution multi-spectral imagery (less than 50 cm pixel−1) to produce ortho-mosaics

and 3D information products such as point-cloud and digital surface models (DSMs) us-

ing photogrammetry algorithms [98]. UAV imagery has been widely used in agricultural

activities and in extensive research in areas such as yield mapping [27], plant heath mon-

itoring [99], plant water status [74], irrigation efficiency [45], phenotyping [39], and weed

and pest detection [71, 87]. In comparison with satellites, UAVs are cost-effective, easy to

operate, and portable, while offering very high-resolution products [73]. In addition to these

features, dense 3D dense information can be generated for objects from the overlapping im-

agery captured by UAVs to be used in mapping plant canopy structure and volume that is

likely to be more directly correlated to plant biomass and LAI than VIs.

This 3D source of information from UAV imagery is also called a point cloud, which is a

dataset representing visible parts of objects where light is reflected [20]. This source can be

produced by three-dimensional point-cloud modeling, photogrammetry, and computer visu-

alization algorithms. Two popular algorithms developed for generating point cloud datasets

are Structure from Motion (SfM) and Multiview-stereo (MVS), recommended for when op-

tical cameras are used as opposed to expensive laser scanners [98]. Although 3D information

for an object can be directly and accurately provided by Light Detection and Ranging (Li-

DAR) installed on manned and unmanned aerial vehicles, collecting point-cloud information

using photogrammetry methods is much less expensive, thus representing an economically

viable alternative. In addition, the SfM method requires neither external camera calibration

parameters (i.e., position and orientation) nor internal parameters (i.e., lens properties) to

perform the bundle adjustment to reconstruct a 3D scene [33]. In some cases, UAV point
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clouds provide more details of small objects than airborne LiDAR datasets. For instance,

the authors in [83] found that 45 out of 205 trees were not detected when they used an

airborne LiDAR dataset, while only 14 trees were missed using a UAV photograph-based

point cloud. Compared to LiDAR technology, the main weakness of UAV point cloud and

photogrammetry algorithms is that UAV camera sensors are incapable of viewing beneath

the canopy, which leads to sparse points and low density information of bare soil [90],

whereas a single laser pulse can penetrate into an object, reach the ground, and return with

multiple pulses [42]. However, because SfM and MVS are low-cost, easy to access, and easy

to use, they can be efficient tools for processing UAV imagery and creating LiDAR-like

point clouds [51].

Several factors affect the accuracy of point cloud datasets and consequently the dig-

ital surface model (DSM) and crop surface model (CSM) generated from them, including

flight height [72], terrain morphology [9], number of ground control points (GCP) [63, 72],

weather conditions [23], camera type [88], UAV types (fixed-wing versus multi-rotor) [80],

photogrammetry software, and algorithms [43]. For instance, Mart́ınez-Carricondo [59] an-

alyzed the impact of the number and distribution of GCPs on the performance of DSMs

produced from UAV photogrammetry. They found that the accuracy improved and the best

performance was achieved when GCPs were placed both around the edge of and inside the

study area. Although performance evaluation of UAV point cloud datasets requires a com-

parison with LiDAR data, recently, Aboutalebi et al. [4] developed an algorithm to validate

point cloud geometrical information for shaded regions detected from UAV multi-spectral

imagery.

The 3D point cloud is a useful source of information about the size, position, and orien-

tation of an object that can be combined with UAV multi-spectral or hyper-spectral imagery

to explore relationships between an object’s 3D geometry information and its spectral in-

formation. Several classification methods, such as supervised and unsupervised machine

learning algorithms, have been developed to generate a classified map of aerial imagery

based on the similarities in spectral signatures [3]. While these algorithms fail to distin-
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guish objects having similar spectral signatures (e.g., differentiating between water and

shadows [36] in optical bands), point cloud would be a useful and an additional source

to combine with multi-spectral imagery in order to improve the accuracy of classification

methods. In addition to the capability of point clouds in segmentation and classification

problems, point clouds are considered a crucial source of information for phenotyping.

UAV point cloud has been used to measure canopy height [44], tree height and crown

diameter [26,46,70], to detect individual trees [47] and development of annual crops such as

rice [14] and barley [13]. In addition, several studies show that bio-geophysical properties

such as LAI and canopy reflectance parameters such as NDVI are correlated with above-

ground biomass [37,40] and ground cover percentage [28] defined as the area of soil surface

masked by plants from nadir view angle [16]. Matese et al. [61] generated a vineyard

canopy height model (CHM) using an SfM point cloud and compared it with an NDVI

map. They found that, although CHM from SfM underestimated canopy height (about

0.5m) due to camera resolution, it is highly correlated to NDVI maps, which means that high

NDVI regions correspond to high canopy height areas. Ultimately, they estimated average

volume per vine by multiplying height, width, and length of the vine canopy. Mathews

and Jensen [62] explored the relationship between vineyard canopy LAI and several metrics

from a UAV point cloud using a step-wise regression model. These metrics include number

of points within each vine’s zone and height-based metrics (e.g., mean height of canopy).

They reported a moderate positive correlation (0.57 in terms of R2) between modeled LAI

and in situ measured LAI. Weisis and Baret [93] proposed a method to estimate row height,

width, spacing, and vineyard cover fraction using a UAV point cloud generated from red,

green, and blue (RGB) images acquired over a vineyard.

Although UAV point cloud datasets and the SfM algorithm have been widely used in

characterizing vegetation structure, the full potential of the photogrammetric data has not

been utilized. Most of the cited studies converted dense point cloud information into Digital

Elevation Model (DEM), Digital Terrain Model (DTM), DSM, or CSM (raster versions of

point cloud datasets) because working with pure LiDAR-like datasets is challenging, and
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algorithms and hardware that can handle such massive datasets are limited. In addition, the

potential of 3D plant information to improve remote sensing-based ET models has not been

explored. To the authors’ knowledge, the published studies mostly focused on assessing

regression models to estimate biomass parameters such as LAI, which is a key parameter

in ET models, using DSMs, CSMs, or CHMs.

In this study, we propose a methodology to incorporate the 3D information extracted

from a UAV point cloud into the TSEB model. In particular, a new algorithm called

Vegetation Spectral-Structural Information eXtraction algorithm (VSSIXA) is developed to

extract canopy height, volume, surface area, and projected surface area (fractional cover)

from the point cloud dataset without converting it to a raster file. Next, the possible

relationship between in situ LAI measurements, radiometric temperature (Tr), spectral

information, and 3D derived structure parameters is explored. The sensitivity of the TSEB

model to fixed values of the structural information over a vineyard block versus the spatial

structural information is presented. The algorithm is evaluated from imagery and point

cloud data collected by Utah State University AggieAir UAVs over a commercial vineyard

located in California as part of the ARS-USDA GRAPEX Project (Grape Remote sensing

Atmospheric Profile and Evapotranspiration eXperiment). Finally, the TSEB model is

executed under different scenarios of LAI and other canopy biomass parameters and TSEB

output are compared with flux tower measurements.

3.3 Materials and Methods

3.3.1 Site Description

This study was conducted as a part of GRAPEX, an ongoing project started in 2013

that seeks to improve water-use efficiency through modeling of evapotranspiration and plant

stress over vineyards. The vineyard test site selected is located near the town of Lodi in Cal-

ifornia’s Central Valley (38.29N, 121.12W, 38.4 m elev). This vineyard ranch called Sierra

Loma (formally listed as the Borden ranch [53] consisted of two vineyard blocks, a north-

ern and southern block, containing a flux tower in each block (Figure 3.1a). An overview
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of all continuous and episodic measurements is described in detail in [53]. The northern

and southern vineyard blocks (referred to as Site 1 and Site 2 hereafter, respectively) were

planted with the Pinot Noir variety in 2009 and 2011, respectively. The age differences

resulted in lower vegetation density, biomass and leaf area at Site 2 compared to Site 1.

Both sites share similar trellis structure and vine management. Vines are grown on

identical quadrilateral cordon fixed trellis systems with installed drip irrigation in which

irrigation lines run along the base of the trellis at 30 cm above ground level (agl) with two

emitters (4 L/h) between each vine. The training system employs “U” shaped trellises,

and canes are trained upwards. The vine trellises are 3.35 m (11 ft) apart, and the height

to first and second cordons is about 1.45 and 1.9 m, respectively [53]. Vine heights vary

between 2 and 2.5 m, with space between vines of 1.5 m and an East–West row orientation.

The elevated canopy included significant open space between the bottom of the canopy

crown and the soil surface. This open space (∼0.7 m in height during peak growing season)

is occupied by the narrow trellis posts and drip irrigation line (Figure 3.1b).

In order to regulate soil moisture early in the growing season following the winter

season, an inter-row grass cover crop is planted in both vineyards and is mowed in either

late April or early May. Two flux towers were installed in 2013, one at Site 1 and another

at Site 2. The towers are installed approximately half-way North–South along the Eastern

edge of each site as the predominant wind direction is from the West during sunlight hours

in the growing season (Figure 3.1c).
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Fig. 3.1: World Imagery of the study area from Environmental Systems Research Institute
(ESRI) along with the locations of the flux towers (a), drip irrigation system (b), and eddy
covariance instrument (c) installed in the area of study.

3.3.2 AggieAir Remote Sensing Platform

AggieAir is a battery powered unmanned aerial vehicle (UAV) designed by Utah State

University (USU) to carry multi-spectral sensor payloads and to acquire high-resolution

aerial imagery at both optical and thermal spectra. This UAV platform consists of two

cameras, a computer, a GPS module, an inertial measurement unit (IMU), a radio controller,

and flight control, and it can be flown autonomously or manually [29]. The UAV can fly

over the area of interest using a pre-programmed flight plan (in an autonomous mode)

for an hour at a speed of 30 miles per hour [38], with the capability to provide very high-

resolution imagery (less than 20 cm) at 1000 m agl and record the position and orientation of

the aircraft when each image is taken. Figure 3.2 shows a layout of the AggieAir air-frame.
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Fig. 3.2: AggieAir airframe layout flying and capturing imagery over the study area.

3.3.3 AggieAir UAV High-Resolution Imagery

The high-resolution images for this study were collected by an AggieAir UAV over

the GRAPEX Pinot Noir vineyard. The UAV was supplied and operated by the AggieAir

UAV Research Group at the Utah Water Research Laboratory at USU [7]. Four sets of

high-resolution imagery (20 cm or finer) were captured over the vineyard in 2014, 2015, and

2016. These UAV flights were synchronized with Landsat satellite overpass dates and times.

A sample of the imagery captured by the UAV over the study area is shown in Figure 3.3,

and information describing the images is summarized in Table 3.1.

Figure 3.3 shows the study area with details of sections as captured by UAV. Cameras

and optical filter information, fieldwork dates, vineyard phenological stages, and imagery

resolution are summarized in Tables 3.1 and 3.2.
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Table 3.1: Dates, times, cameras 1, and optical filters used to capture images with the UAV.

Date
UAV Flight Time (PDT) UAV Elevation

(agl) Meters

Bands Cameras and Optical Filters Spectral

ResponseLunch Time Landing RGB NIR Radiometric Response MegaPixels

9 August 2014 11:30 a.m. 11:50 a.m. 450 Cannon S95

Cannon S95

modified

(Manufacturer NIR

block filter removed)

8-bit 10

RGB: typical CMOS

NIR: extended CMOS NIR

Kodak Wratten 750 nm

LongPass filter

2 June 2015 11:21 a.m. 12:06 p.m. 450

Lumenera

Lt65R

Color

Lumenera

Lt65R

Monochrome

14-bit 9

RGB: typical CMOS

NIR: Schneider 820 nm

LongPass filter

11 July 2015 11:26 a.m. 12:00 p.m. 450

Lumenera

Lt65R

Color

Lumenera

Lt65R

Monochrome

14-bit 12

RGB: typical CMOS

NIR: Schneider 820 nm

LongPass filter

2 May 2016 12:53 p.m. 1:17 p.m. 450

Lumenera

Lt65R

Mono

Lumenera

Lt65R

Mono

14-bit 12
RGB: Landsat 8 Red Filter equivalent

NIR: Landsat 8 NIR Filter equivalent

1 The use of trade, firm, or corporation names in this article is for the information and

convenience of the reader. Such use does not constitute official endorsement or approval by

the US Department of Agriculture or the Agricultural Research Service of any product or

service to the exclusion of others that may be suitable.

Table 3.2: Dates, optical and thermal resolution, point cloud density and phenological
stages of the vine and cover crop when the images were captured by the UAV.

Date Optical Resolution Thermal Resolution Point Cloud density (point/m2) Vine Phenological Stage Phenological Stage of Cover Crop

9 August 2014 15 cm 60 cm 37 Veraison towards harvest Mowed stubble

2 June 2015 10 cm 60 cm 118 Near veraison Senescent

11 July 2015 10 cm 60 cm 108 Veraison Mowed stubble

2 May 2016 10 cm 60 cm 120 Bloom to fruit set Active/green
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Fig. 3.3: Example of high-resolution imagery captured by AggieAir over the study area in
August 2014.
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As described in Tables 3.1 and 3.2, the imagery covers all major phenological vineyard

stages. The cameras used in the current study ranged from consumer-grade Canon S95

cameras to industrial type Lumenera monochrome cameras fitted with narrowband filters

equivalent to Landsat 8 specifications. The thermal resolution for all four flights was 60

cm, and the visible and near-infrared (VNIR) were 10 cm, except for the August flight.

3.3.4 AggieAir UAV Image Processing

A three-step image processing phase followed imagery acquisition. This process in-

cluded (1) radiometric calibration, (2) image mosaicking and orthorectification, and (3)

Landsat harmonization. In the first step, the digital images were converted into a measure

of reflectance by estimating the ratio of reference images from pre- and post-flight Lab-

sphere [56]Lambertian panel readings. This conversion method was adapted from Neale

and Crowther [65]; Miura and Huete [64]; and Crowther [22] and is based solely on the ref-

erence panel readings, which do not require solar zenith angle calculations. This procedure

additionally corrected camera vignetting effects that were confounded in the Lambertian

panel readings. In the second step, all images were combined into one large mosaic and

rectified into a local coordinate system (WGS84 UTM 10N) using Agisoft Photoscan soft-

ware [8] and survey-grade GPS ground measurements. The software produced hundreds of

tie-points between overlapping images by using photogrammetric principles in conjunction

with image GPS log file data and UAV orientation information from the on-board IMU

to refine the estimate of the position and orientation of individual images. The output of

this step is an orthorectified reflectance mosaic [29]. Since different optical sensors with

different spectral responses are used to capture high-resolution imagery (Table 3.1) and the

spectral information of vegetation will be used to model LAI, a bias correction method is

necessary to remove the disagreement of remotely sensed information regardless of pixel

resolution and sensor. Thus, in the third step, the UAV optical high-resolution imagery

was upscaled to Landsat resolution using the Landsat point spread function. If biased, it

was corrected with a linear transformation [5]. For thermal imagery processing, only step 2

was applied. The resulting thermal mosaic consisted of brightness temperature in degrees
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Celsius. Moreover, a vicarious calibration for atmospheric correction of microbolometer

temperature sensors proposed by Torres-Rua [85] was applied to the thermal images.

3.3.5 Field Measurements, Multi-Spectral Imagery, Point Cloud, and LiDAR

Datasets

Photogrammetric point clouds were produced from the multispectral images (Figure

3.4a) with a density of ∼40 (points/m2) for the 15-cm resolution (2014 imagery) and ∼100

(points/m2) for the 10-cm resolution (2015 and 2016 imagery), after which a DSM was

generated at the same spatial resolution as the original imagery (i.e., 15 cm for 2014 and 10

cm for 2015 and 2016). In addition to UAV point cloud products that describe the surveyed

surface, a LiDAR derived bare soil elevation (DTM) product for the same location, collected

by the NASA G-LiHT (Goddard’s LiDAR, Hyperspectral Thermal Imager) project in 2013,

was used [21] (Figure 3.4b).

Fig. 3.4: Example of a point cloud dataset produced by AgiSoft using AggieAir imagery
and SfM method (a) versus LiDAR dataset collected by NASA G-LiHT (b) for the area of
study.

In addition, ∼80 LAI measurements for each flight were acquired using the Plant

Canopy Analyzer (PCA, LAI2200C, LI-COR, Lincoln, NE, USA) as the indirect in situ

LAI measurements (Figure 3.5). These LAI measurements were validated with direct LAI

(i.e., destructive sampling) measurements [94].
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Fig. 3.5: (a) leaf area sampling locations, (b) measuring LAI according to GRAPEX pro-
tocol [94].

The location of each measurement is recorded with a precise Real-time kinematic (RTK)

GPS (Figure 3.5). To evaluate the relationship between vine spectral-structural information

and in situ LAI measurements, first the footprint of the LICOR-2200C must be defined.

According to White et al. [94], it was assumed that the LICOR-2200C was measuring

LAI in a rectangle 1 m wide and 3 m long. However, the smallest valid resolution in

applying the TSEB model for the study area was determined to be 3.6-m grid [67], which

means that all required inputs for the TSEB model must be set to 3.6-m grids. Due to

inconsistency between the LICOR-2200C footprint and the TSEB model resolution and its

unknown impact on the LAI map, vine spectral-structural information is extracted for both

rectangular and square buffers around LAI measurements (Figure 3.6).
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Fig. 3.6: Square and rectangle buffers around LAI measurements.

Eddy covariance and micrometeorological data, surface fluxes, and meteorological con-

ditions are being collected year round at each of the vineyard sites for starting in 2013.

The raw high-frequency data have been fully processed and evaluated for quality control

and are stored as hourly block-averaged data. Wind speed and wind direction are mea-

sured via sonic anemometer (CSAT3, Campbell Scientific) mounted 5 m agl facing due

west (270°). Air temperature is measured via a humidity/temperature sensor (HMP45C,

Vasaila) mounted at 5 m agl. Water vapor density is measured via a humidity/temperature

sensor (HMP45C, Vasaila) mounted at 5 m agl. Atmospheric pressure is measured by a

pressure sensor (EC150, Campbell Scientific) mounted 5 m agl facing due west (270°). Inci-

dent long-wave radiation and net radiation are measured via a 4-component net radiometer

(CNR-1, Kipp & Zonen, ) mounted 5 m, agl facing southwest (225°). Sensible and latent

heat flux are derived from CSAT and EC150 data. Soil heat flux is the mean of the five

measurements collected along a transect across the inter-row.

For the post-processing of the turbulent fluxes, the high-frequency data was screened

to identify and remove flagged values (CSAT or infrared gas analyzer (IRGA) diagnostic),

physically unrealistic values, and statistical outliers (data spikes). The sonic temperature

was converted to air temperature following Schontanus [77] and Lui [58]. The measurements

of the wind velocity components were rotated into the mean streamwise flow following the

2D coordinate rotation method described by Tanner and Thurtell [82]. The wind velocity
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and the scalar quantities were adjusted in time to account for sensor displacement and

optimize the covariance. The frequency response correction of Massman [60] was applied.

The turbulent fluxes were calculated. The initial estimates of the latent heat flux and

the carbon dioxide flux were then corrected for density effects following the Webb et al.

method [92]. The initial estimates of the sensible heat flux were corrected for buoyancy

effects [31]. The soil heat flux was corrected for heat storage in the overlying soil layer [69].

The data were quality controlled via visual inspection to remove physically unrealistic values

due to rainfall, dew, and similar events. Output of fluxes and ancillary micrometeorological

data are stored as hourly block-averaged data.

Traditionally, any imbalance of net radiation (Rn) - soil heat flux (G) versus sensible

heat flux (H) + latent heat flux (LE) is considered a lack of energy balance closure. It is

often assumed that H and LE have been underestimated by the eddy covariance method, and

the level of underestimation is often used to indicate the reliability of the eddy covariance

estimates of H + LE [86]. The value of the ratio of (Rn-G)/(H+LE) should ideally be

equal to 1, but, generally, values over 0.80 are considered reliable [86, 96]). In this study,

for any imbalance between Rn-G and H+LE, closure was forced by assuming that the

Bowen ratio H/LE is correct because both are probably underestimated. Moreover, recent

studies indicate that flow distortion for non-orthogonal sonics underestimate vertical wind

and hence the turbulent fluxes [30, 32, 41, 49]. Therefore, energy is added to H and LE

(HBR and LEBR) according to the Bowen ratio (BR) to reach a closure value of 1.0; this

is typically called forcing energy balance closure [86]. Therefore, H and LE from eddy

covariance are modified by Equations (3.1) and (3.2):

HBR =
H

H + LE
× (Rn−G−H − LE) +H, (3.1)

LEBR =
LE

H + LE
× (Rn−G−H − LE) + LE. (3.2)
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3.3.6 Vegetation Structural-Spectral Information Extraction Algorithm (VS-

SIXA)

To analyze and extract 3D information from the point cloud dataset and spectral in-

formation from the high-resolution imagery, a new algorithm called Vegetation Structural-

Spectral Information eXtraction Algorithm (VSSIXA), using Python and ArcGIS Pro li-

braries, was developed. The code of this algorithm is available at [91]. Figure 3.7 shows

components of VSSIXA in a flowchart diagram.
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Fig. 3.7: A workflow of proposed VSSIXA algorithm.

As shown in Figure 3.7, the VSSIXA algorithm requires a point cloud dataset as the

primary input and a shapefile, optical and thermal imagery, and a ground point as the
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secondary inputs. In the first step, a vine spacing grid shapefile is read and point cloud,

ground points, and UAV imagery are clipped for each grid of the shapefile. In this step, the

average of the UAV imagery for each band and for each grid, and consequently the partition-

ing of Tr into soil temperature (Ts) and canopy temperature (Tc) are executed and stored.

In this step, Ts and Tc estimations are by-products of VSSIXA. Next, clipped ground points

and point cloud datasets are converted to individual point datasets, Red (R), Green (G),

Blue (B), near-infrared (NIR), and Tr bands from UAV imagery along with z-values from

ground points are assigned to each single point cloud based on nearest distance, and rela-

tive height (Point cloud z-Ground z) is calculated. Therefore, the Attribute Table of each

point constitutes point cloud height, ground height, relative height, RGB, NIR, and thermal

information. Next, the individual points are separated into vegetation and non-vegetation

points using a VI threshold (e.g., NDVI > 0.6), and volume, surface area, height, and the

average of Tr and optical bands for vegetation points using a triangulated irregular network

(TIN) are calculated and appended into the Attribute Table. In the last stage, vegetation

points are separated into vine canopy and cover crop points based on a relative height

threshold (0.5 m in this study) and derived structural and spectral information for vine and

cover crop points is separately recalculated. Because structural and spectral information

for each point has been extracted and geographical information for those single points has

been accessed, a profile of information, such as average height, vine temperature, and VIs,

can be extracted. VSSIXA is able to extract and store these profiles in a comma-separated

values (CSV) format.

VSSIXA is coded in two different versions, VSSIXA-I and VSSIXA-II. VSSIXA-I re-

quires only a point cloud dataset, while VSSIXA-II requires both point cloud data and

LiDAR ground points. In VSSIXA-I, after appending multi-spectral information to each

point in each grid, the point cloud is classified into the ground and non-ground classes based

on an NDVI threshold. The relative height is calculated based on Point Cloud z and the

minimum value of ground point heights. Therefore, the structural information is calculated

between TIN created from non-ground points and a surface with height zero. If there are
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no multi-spectral data to separate ground points from non-ground points or if a grid has

no ground points (e.g., fully covered by vegetation), VSSIXA-I considers the minimum z-

value from all points to calculate relative height. In contrast, the classified ground points

exist for VSSIXA-II, due to LiDAR penetration into vegetation and detection of ground.

Therefore, z-values from LiDAR ground points are affixed to the point cloud from a spatial

perspective (e.g., closest distance) to calculate relative height and then, similar to VSSIXA-

I, the structural information is calculated. Since VSSIXA-I assigns one value (minimum z

value of ground points) to non-ground points in each grid, it assumes that the slope of the

ground surface in each grid is close to zero. Thus, VSSIXA-I is appropriate for flat terrain,

even though it requires only a point cloud dataset. In contrast, because VSSIXA-II assigns

ground z values to each point, the impact of slope is considered, albeit it requires both point

cloud and LiDAR ground point datasets (Figure 3.8).

Fig. 3.8: Differences between VSSIXA-I and VSSIXA-II determination of ground elevation
and canopy height.

The difference between VSSIXA-I and VSSIXA-II in relative height calculation may

lead to differences in the estimation of canopy volume. It is expected that VSSIXA-II

estimates higher values for canopy volume compared to VSSIXA-I. In contrast, there should
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not be a significant difference between surface area or projected surface area estimated by

VSSIXA-I and VSSIXA-II (Figure 3.9). Thus, if all the structural parameters are used to

evaluate the relationship between LAI and VSSIXA outputs, either VSSIXA-I or VSSIXA-

II must be employed for the entire study area due to inconsistency between canopy volume

and height estimated by VSSIXA-I and -II unless the slope of each grid can be considered

as zero (similar to the current study area).

Fig. 3.9: Differences between VSSIXA-I and VSSIXA-II in estimation of canopy surface
area, projected surface area, volume, and average height.

Genetic Programming: GP

Genetic Programming (GP) is a machine learning method inspired by the genetic al-

gorithm (GA). In contrast to a trained network with Artificial Neural Network (ANN) and

Support Vector Machine (SVM), the output of GP is a trained equation that researchers

can simply use and calibrate in different study areas. Similar to GA, GP uses a search-

ing process to solve optimization problems. It starts with many possible solutions in the

form of chromosomes, in which each gen could be a function (sin, log, cos, and exp), an
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operator (+,−, /), an input variable (x1, · · · , xn), or a number (1, 2, 3, · · · , n ). In it-

eration 1, chromosomes (equations) are generated by a random initial solution. Then,

chromosomes are ranked (from the best to the worst) based on an objective function (e.g.,

Root Mean Square Error (RMSE)) calculated for each chromosome. In other words, in-

put data ( ~X = x1, · · · , xn) are input to each chromosome (equation) to calculate outputs

(f1( ~X), · · · , fn( ~X)); the outputs of each chromosome (f1( ~X), · · · , fn( ~X)) are compared

with observed values (y1, · · · , yn); an objective function (e.g., RMSE) is calculated for each

chromosome (equation); and these initial solutions are sorted based on objective function

values. In subsequent iterations, solutions (chromosomes) must be updated. Each chromo-

some can be modified in each iteration of the search process using cross-over and mutation

functions. Cross-over is responsible for interpolation between two chromosomes, and muta-

tion is designed for extrapolation. In each iteration, if the stopping criteria (e.g., number

of iterations < 1e6) is satisfied, GP will stop, and the first among the sorted chromosomes,

which is a fitted linear or nonlinear equation, is reported as the best solutions. Figure

3.10 shows the evolving process for one chromosome after one iteration using mutation and

cross-over functions.
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Fig. 3.10: A graphical visualization of the various stages of GP to update solutions (chro-
mosomes).

In this study, spectral-structural information (e.g., canopy volume and surface area)

estimated by VSSIXA for each in situ LAI domain ( input dataset) and in situ LAI (output

dataset) is used train GP. Thus, GP is employed to search possible linear and nonlinear

relationships (equations) between VSSIXA outputs (e.g., canopy volume and surface area)

and in situ LAI in order to create LAI maps for the TSEB model.

One of the advantages of GP is access to a formula in which inputs are related to

outputs, whereas the trained networks of popular machine learning methods such as ANN

and SVM do not explicitly provide a formula, only results and performances. Without

access to trained networks (weights, bias, and sometimes kernel parameters), reproducing

results or evaluation of the performance of the trained network for a different case study is

not possible. In contrast, the trained network of GP is reported in the form of an equation

(sometimes a complex equation). This feature makes GP a tool [1] with a transferable

trained network, although the proposed GP models should be confirmed under different

planting geometries, and local calibration may be needed.
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A software called “Eureqa” [75,76] is used to execute GP, wherein 70% of the dataset

records are considered for training the network, and 30% are allocated for the testing proce-

dure. To train GP, basic (e.g., +,−,*,/), trigonometric (sin, cos), and exponential formula

building-blocks are used, and maximizing R-square is considered the objective function.

3.3.7 TSEB-2T Model

TSEB-2T is a version of the TSEB model that was developed for when both Ts and

Tc can be derived from nadir and off nadir Tr viewing angles [54] or by deriving pure

vegetation and soil/cover crop pixels in a contextual spatial domain, namely VI-Tr space

[67]. The contextual domain is a 3.6 x 3.6 m grid mapping NDVIs versus Tr (Figure

3.11). Next, a linear function via least squares regression is fit to the NDVI-Tr pairs. Pure

vegetation and soil/cover crop pixel values are defined using histogram analysis or LAI-

NDVI empirical relationships for the entire field. These threshold values are substituted

into the fitted linear equation, and two temperatures are retrieved. The lowest and highest

temperatures are assigned for Tc and Ts, respectively.
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Fig. 3.11: Example of a contextual NDVI-Trad scatterplot used for searching Ts and Tc
within a 3.6-m grid.

In addition to Ts and Tc, TSEB requires LAI, fractional cover, soil and canopy emissiv-

ity, albedo, information of the canopy structure (leaf width, canopy height), and atmospheric

forcing, air temperature (Ta), wind speed coming, solar radiation and vapor pressure. VS-

SIXA is able to produce LAI, fractional cover, and canopy structure information such as

canopy height based on the point cloud information. Without VSSIXA, LAI is estimated

based on empirical relationships between VIs and in situ LAIs, and fractional cover and

canopy height are fixed values for the entire domain.

In TSEB with Tc and Ts estimates (Figure 3.12) using the TSEB-2T version [54, 67],

net shortwave (Sn) and longwave radiation (Ln) are generally calculated at the first steps.

Next, net longwave radiation is separated into canopy and soil net longwave radiation (Lns

and Lnc) using a formulation developed by Kustas and Norman [55] (Equations (3.3) and
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(3.4)):

Lnc = (1− exp(−kLΩLAI))(Lsky + Ls − 2Lc), (3.3)

Lns = exp(−kLΩLAI)Lsky + (1− exp(−kLΩLAI))Lc − Ls, (3.4)

where kL is the long-wave radiation extinction coefficient, Ω is the vegetation clumping

factor proposed by [55], and Ls, Lc and Lsky (W/(m2)) are the long-wave emissions from

soil, canopy and sky, respectively.

In addition, net shortwave radiation is separated into canopy and soil net shortwave

radiation (Sns and Snc) based on the canopy radiative transfer model developed by Camp-

bell and Norman [17]. Then, net radiation at the soil and canopy are calculated based on

the summation of net longwave and shortwave radiation for each component (Rns and Rnc;

Equations (3.5) and (3.6)):

Rnc = Lnc + (1− τs)(1− αc)S, (3.5)

Rns = Lns + τs(1− αs)S, (3.6)

where τs is solar transmittance through the canopy, S (W/(m2)) is the incoming short-wave

radiation, αc and αs are the canopy and soil albedo, respectively.
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Fig. 3.12: Connections between TSEB model components for the energy fluxes calculation.

Since soil heat flux (G) is assumed to be a portion of Rns (e.g., 30%), it is simply com-

puted at this step. Next, sensible heat flux is estimated for the canopy and soil components

(Hs and Hc) initially assuming a neutral atmospheric stability, but it is corrected in an

iterative loop until changes in the Monin–Obukhov stability length scale reach a minimum

(i.e., changes between consecutive calculations of the Monin–Obukhov length is less than

0.00001). Ultimately, latent heat flux for soil and canopy (LEs and LEc) are calculated

as residuals of the soil and canopy energy balance equations, namely Equations (3.7) and

(3.8), respectively:

LES = RnS −G−HS , (3.7)
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LEC = RnC −HC . (3.8)

3.3.8 Data Analysis

The relationship between VSSIXA outputs and in situ LAI measurements, as well

as the accuracy of the TSEB model considering different inputs against eddy covariance

measurements, is evaluated using coefficient of determination (R2), mean absolute error

(MAE), RMSE, and relative root mean square error (RRMSE) (Equations (3.9)–(3.12)):

R2 = 1−
∑n

i=1(Mi − Ei)2∑n
i=1(Mi − M̄i)2

, (3.9)

MAE =

∑n
i=1 |Mi − Ei|

n
, (3.10)

RMSE =

√∑n
i=1(Mi − Ei)2

n
, (3.11)

RRMSE =
RMSE

M̄i
× 100, (3.12)

in which n is the number of observations, Mi is measured value, Ei is estimated value, and

M̄i is the average of measured values. R2 is often used to estimate the performance of

the models and shows the fraction of the estimated values that are closest to measurement

data. MAE is an indicator for average model performance error and is less sensitive to

outliers [95]. RMSE is designed to show the predictive capability of a model in terms of its

absolute deviation [24]. RRMSE is a dimensionless version of RMSE, and model accuracy

is connoted excellent when RRMSE < 10%, good if 10% < RMSE < 20%, fair if 20% <

RMSE < 30% and poor if RRMSE > 30% [57].

3.4 Results

3.4.1 VSSIXA Outputs

VSSIXA is able to provide information such as canopy height, volume, surface area,

and projected surface area (PSA) directly from the point cloud data. Due to the presence
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of both grass cover crop and grapevine canopy in the study area, a 0.5-m threshold is

considered to separate grapevine canopy from grass. After the separation, the vegetation

structure information is executed for three categories: (1) vine canopy, (2) cover crop, and

(3) vegetation (both vine canopy and cover crop). Examples of this information derived

from a 2015 July point cloud dataset is shown in Figure 3.13.

Fig. 3.13: Examples of (a) vine volume, (b) vegetation volume, (c) vine surface area, (d)
vegetation surface area, (e) vine height and (f) cover crop height calculated for a 2015 July
point cloud dataset using VSSIXA-II (horizontal lines are areas of missing data).

Vegetation volume and vine volume (Figure 3.13) show similar patterns, indicating

Site 1 (northern site) clearly has higher biomass compared to Site 2 (southern site). These

differences in biomass amount are likely related to the difference in age, with vines at Site 1

more mature than Site 2. The grapevines planted in Site 1 have greater height and surface

area versus those planted in Site 2. As expected, canopy volume, height, and surface area

values in an area between the north and south blocks and roads are close to zero since these

areas contain no grapevine. Although zero plant height regions are not of interest in this

study, these zero height values do show the accuracy of the point cloud data since overlaying
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the high resolution imagery of Figure 3.3 has a very high correspondence with roads and the

non-vineyard field separating north and south vine blocks. Low, dense, and short vegetation

in the area separating the two vineyard blocks, which is visible in Figure 3.3, appeared in

vegetation volume and vegetation surface area maps (Figure 3.13b,c). The horizontal lines

of missing data are due to a lack of sufficient data points in the UAV point cloud acquisition

and are probably a result of inadequate overlapping in the UAV imagery. This can be solved

by increasing the overlap in adjacent image acquisitions.

As illustrated in Figure 3.13, volume and surface area are separately calculated for

vegetation and vine canopy points due to the presence of grass cover crop. In terms of

volume and surface area estimation, the main difference between vegetation and vine canopy

is that the vegetation TIN file is created based on all non-zero heights, while, in the vine

TIN file, points with height less than 0.5 m are excluded (Figure 3.7). As shown in Figure

3.14, this exclusion leads to increasing vegetation surface area and decreasing vegetation

volume compared to structural vine information if gaps inside the vines are detected in the

photogrammetry process.

Fig. 3.14: Impact of filtering z < 0.5 m on the vegetation/canopy volume and surface area.
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3.4.2 Computation Time of VSSIXA

Although VSSIXA can precisely estimate structural information from point cloud data,

the speed of the computational process is relatively slow due to the massive calculations

needed to append spectral information into point cloud data and create TIN files. We used

a relatively fast computer with a 2-terabyte Solid-state drive (SSD), 12 cores, 24 logical

processors, and 128 gigabytes of Double Data Rate 4 (DDR4) RAM to execute VSSIXA

over the study area. However, for each 3.6-m grid, both VSSIXA-I and VSSIXA-II require

∼40 s to extract and store spectral-structural information. The study area contains ∼77,000

grids. Therefore, each flight takes 35 days (77,000 × 40/3600 /24) to be processed by

VSSIXA. The 2015 July point cloud was processed by four fast computers to decrease the

total running time to two weeks. Due to the long computational time of VSSIXA, spectral-

structural information of other flights was extracted for footprints of the eddy covariance

instrument and in situ LAI domains. It is possible that parallelization can enhance VSSIXA

performance, but further investigation is needed.

3.4.3 In-Situ LAI versus VSSIXA Outputs

To evaluate the relationship between VSSIXA outputs and in situ LAI measurements,

first the footprint of the LICOR-2200C must be defined. According to [94], it was assumed

that the LICOR-2200C is measuring LAI in a rectangle 1 m wide and 3 m long. However,

the smallest valid resolution of the TSEB model for the study area is a 3.6-m grid (square),

which means that all required inputs for the TSEB model must be set to 3.6-m grids. Due

to inconsistency between the LICOR-2200C footprint and the TSEB model resolution and

its unknown impact on the LAI map, VSSIXA is executed for both rectangular and square

buffers around LAI measurements (Figure 3.6).

To assess the performance of VSSIXA-I and VSSIXA-II, and particularly the impor-

tance of precise ground points (ground LiDAR dataset), spectral and structural information

of the vegetation and canopy are computed by both versions of VSSIXA (VSSIXA-I and

VSSIXA-II) and for both rectangular and square buffers (Figure 3.6). The relationship

between in situ LAIs and VSSIXA outputs based on R2 are illustrated in Table 3.3.
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Table 3.3 shows R2 calculated between in situ LAI and VSSIXA outputs. In gen-

eral, results showed that structural information is more correlated to LAI compared to

UAV spectral information, and among all the structural-spectral information extracted by

VSSIXA, nine parameters had stronger correlation with LAI: NDVI, Tr, Nv, V olumev,

SAreav, Areav, V olumevc, SAreavc, Areavc. According to the definition of LAI [total

one-sided leaf area per unit ground surface area], the strongest correlation was expected to

be between LAI and surface areas (SAreav and SAreavc). Table 3.3 shows that, in most

cases, the strongest correlations associated with surface areas. The magnitude of those

correlations was up to 44% in terms of R2, whereas vine canopy volume and vegetation

volume (V olumev and V olumevc) have reached 51%. Except for the June 2015 flight, no

significant correlation was noted between vegetation and canopy height (hv and hvc) versus

LAI. Projected areas (Areav and Areavc) are related to fractional cover, and fractional

cover is nonlinearly related to LAI. Table 3.3 shows that the correlation between projected

area, specifically vine canopy projected areas (Areavc), and LAI is comparable with volume

information. In addition, results revealed that NIR and Tr bands, and consequently indices

utilizing these two bands, have the potential to be used for LAI prediction for late vine

growth stage.

Concerning the buffer shapes (square or rectangular) around LAI measurements, Table

3.3 shows that the correlation between spectral information and LAI is insensitive to the

shape of the buffer, which means that the average values of spectral information in both

grid sizes are close to each other. In contrast, changing the buffer grids from the rectangular

to the square shape, in most cases, improves R2. For example, in the June 2015 flight at

the Landsat time overpass (10:43 a.m.), V olumev, V olumevc, and SAreavc’s R
2 doubled

(16% to 38%, 15% to 36%, and 11% to 25%, respectively). Although the improvement in

R2 with buffer shape change is not significant, VSSIXA-I’s performance appears to be more

sensitive to the buffer shape. When VSSIXA-I is used along with the square buffer, the

chance of ground point detection increases and may lead to improvements in the estimation

of structural information. In other words, if narrower buffers are occupied by vine, VSSIXA-
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I considers the lowest height values of the vine canopy as the ground points, leading to a

bias in structural information, particularly in vegetation and vine volumes (V olumev and

V olumevc).



83

T
ab

le
3.

3:
R

2
ca

lc
u

la
te

d
b

et
w

ee
n

V
S

S
IX

A
ou

tp
u

ts
an

d
in

si
tu

L
A

I
m

ea
su

re
m

en
ts

fo
r

20
14

,
20

15
,

an
d

2
0
1
6

U
A

V
fl

ig
h
ts

ov
er

S
ie

rr
a

L
om

a.



84

Regarding VSSIXA-I and VSSIXA-II performances, since VSSIXA-II takes advantage

of a more accurate ground point dataset (LiDAR ground data), it provides a more accurate

estimation of structural information. Except for the May 2016 flight, volumes, surface areas,

and projected surface areas calculated by VSSIXA-II are more correlated to in situ LAI. Our

preliminary investigation on 2016 ground points extracted by the point cloud and LiDAR

data shows that ground point cloud data are significantly lower than LiDAR data, which

could be due to generating the point cloud using only two bands (R and NIR) compared to

2014 and 2015 point cloud data generated by four bands (R, G, B, and NIR).

3.4.4 Modeled LAI with Machine Learning Algorithms

Although VSSIXA-II outputs with the square buffers, in general, show higher correla-

tions in terms of R2, this statistical analysis shows that a simple linear regression model

cannot lead to an accurate LAI model across different vine growth stages, and exploring the

ability of sophisticated algorithms such as machine learning techniques becomes necessary

in modeling LAI. Machine learning techniques are not as simple as the regression models,

but they can explore both linear and nonlinear relationships between output and several

inputs through training and testing procedures that minimize error functions. Here, GP is

employed to model LAI, exploring linear and nonlinear fitting curves between VSSIXA-II

outputs extracted in square buffer domains. To remove the dependency of GP LAI models

to the grid size, structural information (such as canopy volume and surface area) was di-

vided by the area of the square grid (3.6 × 3.6 m). To evaluate the importance of structural

information in modeled LAI, three different scenarios were defined, including LAI models

with only spectral information (Model 1), with only structural information (Model 2), and

with both spectral and structural information (Model 3). According to Table 3.3, N, NDVI,

Tr, Nv, and Nvc are the main inputs in Model 1. In Model 2, V olumev, SAreav, Areav,

V olumevc, SAreavc, and Areavc are considered as the main descriptors for the LAI model.

In Model 3, a combination of Model 1 and Model 2 inputs are used to train GP and create

the LAI map. Figure 3.15 and Table 3.4 show the results of the LAI modeled by GP and

∼310 LAI measurements in the 2014, 2015, and 2016 flights, except for those lacking NIR
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or R bands.

Fig. 3.15: In situ LAI measurements versus modeled LAIs by GP based on Model 1 (a),
Model 2 (b), and Model 3 (c).

Table 3.4: Performance of the Models 1, 2 and 3.

Stats Model 1 Model 2 Model 3

R2 0.56 0.54 0.70

MAE 0.35 0.37 0.30

RMSE 0.43 0.44 0.32

RRMSE 25% 26% 19%

As shown in Figure 3.15 and Table 3.4, employing GP with both spectral and structural

information (Model 3) can significantly increase the accuracy of modeled LAI up to 70%

in terms of R2 and enhance the performance of the models from fair to good (RRMSE of

Model 1 and Model 2 < 30% compared to RRMSE of Model 3 < 20%). Despite flight time

and vine phenological stage, GP was able to produce a reliable model if both spectral and

structural information are provided. Equations (3.13)–(3.15) show the relationship between

inputs and outputs found by GP for Models 1, 2, and 3, respectively:
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LAI1 = 5.85 + 17.37×N ×Nv + 0.85×NDV I × Tr

−0.52× Tr − 8.51×N2
vc − 14.96×NDV I2,

(3.13)

LAI2 = 0.47 + 2.39×Areavc − 2.29×Areavc ×Area0.41×43.07
V olumev

v , (3.14)

LAI3 = 2.69×N × V olumevc + 0.11× Tr ×Areav+

−0.67× Areav
Nvc

− 0.38× 1.54Tr ×N2 ×NDV I26.92 × N4
vc

V olumevc
.

(3.15)

The unit of Tr in Equations (3.13)–(3.15) is Celsius degree, and the unit of structural

parameters is m as they are divided by the area of the square grids (m3/m2).

3.4.5 TSEB-2T Model versus Eddy Covariance Measurements

To evaluate the importance of point cloud data on the TSEB model, three different

scenarios are defined. In scenario 1 (the spectral-based scenario, S1), the LAI map is

created with GP Model 1. Canopy height (hvc), fractional cover (fc), and canopy width

(wc) are set to fixed values. In scenario 2 (the structural-based scenario, S2), GP Model

2 is used to create the LAI map. hvc, fc (vine projected surface area/the grid area), and

wc maps (3.35fc [67]) are estimated by VSSIXA outputs instead of the fixed values used in

S1. In Scenario 3 (the spectral-structural-based scenario, S3), the LAI map is created using

GP Model 3 and other TSEB inputs the same as S2 (Table 3.5). Considering these three

scenarios, the results of the modeled flux components by TSEB (Rn, LE, H, and G) are

compared with the surface energy balance measurements from the Eddy Covariance flux

tower footprints.
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Table 3.5: TSEB Inputs for each scenario.

Scenario LAI hvc (Canopy Height) fc (Fractional Cover) wc (Canopy Width)

S1: Spectral-based GP Model 1 a fixed value a fixed value a fixed value

S2: Structural-based GP Model 2 estimated by VSSIXA estimated by VSSIXA = 3.35 * fc

S3: Spectral-Structural-based GP Model 3 estimated by VSSIXA estimated by VSSIXA = 3.35 * fc

To create LAI maps for each scenario at the TSEB resolution, VSIXXA-II with the

square buffer is employed to extract spectral and structural information from the 2014,

2015, and 2016 flights. Next, LAI maps for each flight are created based on Models 1, 2

and 3. Due to the computation time of VSSIXA discussed in Section 3.4.2, VSSIXA-II is

executed only for the flux tower footprints. As shown in Figure 3.1, the study area includes

two flux towers, the footprint of each tower contains ∼ 2500 3.6-m grids that requires ∼

24 h (2500 × 40 s/3600 s) to process. The footprint of the flux tower is produced using a

method presented by [48].

The results of the TSEB model compared to the eddy covariance measurements are

shown in Figure 3.16 and Table 3.6.

Fig. 3.16: Scatterplot of observed vs. predicted fluxes using the different scenarios. (a) S1:
LAI Model 1 and fixed values for hvc, fc, wc (b) S2: LAI Model 2 with the map of hvc, fc,
wc (c) S3 : LAI Model 3 with the map of hvc, fc, wc. All fluxes are in W/m2.
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Table 3.6: Performance of the TSEB model based on GP model estimate of LAI using
model scenarios 1, 2, and 3 (S1, S2 and S3) for each energy flux component.

Variable Scenario MAE RMSE RRMSE

S1 46 53 10%

Rn S2 39 47 8%

S3 39 42 8%

S1 87 93 49%

H S2 64 67 35%

S3 35 40 21%

S1 65 72 26%

LE S2 65 69 25%

S3 35 39 14%

S1 46 52 65%

G S2 38 49 61%

S3 37 41 51%

Figure 3.16 shows the agreement between TSEB model outputs versus eddy covariance

measurements for each scenarios. Each subplot contains 32 pairs of estimated and observed

energy fluxes (4 flights × 2 eddy covariance × 4 fluxes). From Figure 3.16, the agreement

between modeled and observed fluxes improves going from using as LAI input GP Model

1 (S1) to GP Model 3 (S3), with the most significant improvement using S3 versus S1.

Since differences between the performance of TSEB using GP Model 1 versus GP Model

2 for estimating LAI was not significant (Figure 3.16 and Table 3.6), it is likely that the

improvement is mainly attributed to the use of a spatially-distributed map of the fractional

cover, canopy height, and canopy width instead of using a fixed value. Using the spatially-

distributed maps of the fractional cover, canopy height, and canopy width appears to have

the largest effect on modeled H, with marginal impact on Rn, G, and LE. Comparing TSEB
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model results using S3 versus S2 and S1 reveals how a more accurate LAI map can affect

the TSEB model output, particularly H and LE. The differences between TSEB output

using S3 versus S2 illustrates the impact of the LAI maps, as the only difference between

these two scenarios is related to the estimated LAI (LAI2 via Equation (3.13) and LAI3

via Equation (3.14)). According to Table 3.6, using GP Model 3 estimates of LAI in the

TSEB model yields the best agreement with the observed H and LE fluxes. In terms of

the RRMSE statistic for accuracy or performance of the TSEB model changes from “fair”

to “good” rating for LE and “poor” to “fair” rating for H (i.e., poor rating is if RRMSE

> 30%, fair rating if RRMSE < 30%, and a good rating if RRMSE < 20%). For Rn, all

three GP model inputs of LAI produce an RRMSE value with “excellent” accuracy rating.

On the other hand, the RRMSE value for G using all three GP models results in a “poor”

rating. This “poor” performance is due in part to the assumption that G is a simple fraction

of modeled soil net radiation (e.g., G = 0.30Rns), but also the large spatial and temporal

variability in measured G due to a nonuniform vine canopy cover [6] and the fact that the

source area/flux footprint contributing to the tower fluxes and the area used in aggregating

the TSEB model flux output is much greater than the sampling area used for the flux tower.

3.5 Discussion

In this study, a new algorithm, called VSSIXA, is developed to extract canopy spectral

and structural information from multi-spectral UAV imagery and point cloud data. Al-

though the computation time of VSSIXA is long (40 s for each 3.6-m grid), several aspects

of this algorithm make it an efficient tool for improving remote sensing-based ET models,

particularly the TSEB model. First, VSSIXA is able to separately extract vine canopy

and cover crop canopy spectral and structural information, which cannot be achieved with

solely spectral information. In other words, at the early phenological stage of the vine

(April, May), when the presence of the cover crop is dominant, the spectral-based analysis

cannot assign a unique class for vine and cover crop classes separately as their spectral

responses are similar to one another. However, the structural information, particularly

canopy height, can be an efficient measure for separation. This feature of VSSIXA can be
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useful for partitioning total flux into vine and interrow flux. Second, although vegetation

indices (such as NDVI) are popular and well-known inputs for modeling LAI, these indices

by themselves cannot fully describe the variability in LAI when the amount of active cover

crop in the inter row is significant [67]. Therefore, 3D structural metrics can be used as

other sources of information to derive spatial maps of LAI. The dominancy of the cover crop

is more pronounced in the flights in May 2016 in which the active cover crop was present.

In addition, several studies have indicated that satellite or UAV-derived LAI solely based

on VIs may lead to the saturation situation that occurs within the relationship between VIs

and LAI for well-developed canopies [2,12,25,78]. The saturation issue resulted from mod-

eling a non-scaled parameter, namely LAI using scaled parameters such as VIs. However,

as VSSIXA computed non-scaled structural metrics such as canopy height, surface area,

and volume, the saturation issue does not occur in LAI estimated by Model 2 and Model

3, whereas most LAI values estimated by Model 1 ranged between 1 and 2 (Figure 3.15).

Third, this study showed that, compared to using fixed-values, spatially-distributed struc-

tural metrics such as hvc, fc, and wc can be more effective. However, a question may arise on

how canopy structural properties can be re-generated or integrated into satellite imageries

for estimation of daily canopy properties when no point cloud data exist for that coarse of

pixel resolution or even for other dates. One approach is to fit empirical curves between

in situ LAI values collected during different canopy phenological stages (bloom to harvest,

Table 3.2) and structural information estimated by VSSIXA. Next, Landsat LAI obtained

by fusing the MODIS LAI (MCD15A3H) product and Landsat surface reflectance [34, 35]

are trained with upscale structural canopy parameters (e.g., Landsat LAI vs. hvc at 30-m

resolution). Ultimately, for each of the Landsat LAI products, spatially-distributed maps

of canopy structural information at the satellite scale can be estimated based on satellite

LAI products [66].

Although sensitivity analysis of canopy 3D metrics in remote sensing-based ET mod-

els, and particularly the TSEB model, require a further investigation, the authors in [89]

performed a sensitivity analysis of the vegetation structural information (hc, LAI, fc, etc.)
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that is used in estimating soil resistance to heat transfer in sparse semiarid stands. Their

results showed that the turbulent bulk heat transfer model for the sensible heat flux was

sensitive to variations in crop height. The authors in [11]) conducted a simple model sensi-

tivity analysis of TSEB to LAI and found that a variation on the LAI value of 30% would

increase the final TSEB model error on a range of 4% and 7%. Thus, an error in LAI could

significantly impact the accuracy of ET [18], which is compatible with the results presented

in this study (decreasing LE from 72 (S2) to 39 (s3) in terms of RMSE). Generally, in the

TSEB model, LAI is a key input for partitioning Tr into Ts and Tc and canopy and soil

net radiation.

In TSEB-2T, the selection criterion for determining bare soil/cover crop stubble NDVI

is based on the empirical relationship between NDVI and LAI [67]. In other words, NDV IS

in Figure 3.13 corresponds to the extrapolation of the NDVI-LAI curve for LAI = 0.

Moreover, the spatial map of LAI is an input in the canopy radiative transfer model [17] to

estimate soil and canopy net radiation (Equations (3.3)–(3.6)). Therefore, the partitioning

of Rn between Rns and Rnc is controlled by the LAI estimates. These equations (Equations

(3.3) and (3.4)) indicate how and why the temporal trend in transpiration of the canopy

(LEC) over LE follows the temporal variation in LAI [52]. In addition, LAI is inversely

related to the boundary layer resistance of the canopy of leaves (Equation (3.16)):

Rx =
C

LAI
× (

lw
Ud0+Z0m

), (3.16)

in which d0 is the zero-plane displacement height, and z0M is the roughness length for

momentum. C is assumed to be 90 s
1
2

m , and lw is the average leaf width (m). Equation (3.16)

indicates that overestimation of LAI leads to underestimation of Rx then overestimation

of Hc and possibly an overestimation of H assuming a relatively small change in Hs (H =

Hs + Hc). As LE is calculated as a residual term of the land surface energy balance

(LE = Rn −G−H), a lower Rx likely yields lower LE, assuming Rn and G are not highly

sensitive to LAI.

In addition to relating LAI to NDVI thresholds of vegetation and bare soil/cover crop
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stubble, partitioning Rn into Rns and Rnc and the boundary layer resistance of the canopy

in the TSEB model, LAI is used to indirectly (through the partitioning of Rn into Rns and

Rnc) estimate G via the expression G = 0.3Rns. This resulted in estimated G from TSEB

to be in relatively poor agreement with observed G (see Table 3.6). However, modifications

to this simple expression have been proposed (Nieto et al. [67]), which considers empirically

the effect of the cover crop on G.

3.6 Conclusions

This paper explored the utility of incorporating UAV point cloud products into the

remote sensing-based TSEB model. A new algorithm called VSSIXA in Python and Ar-

cGIS Pro was developed to extract both spectral and structural information for a vineyard.

VSSIXA is developed in two modes, VSSIXA-I and VSSIXA-II. VSSIXA-I only requires

point cloud data to calculate vegetation structural information, while VSSIXA-II requires a

precise and separate ground point data (e.g., LiDAR data). In this study, both versions of

VSSIXA along with different buffer shapes around in situ LAI measurements are employed

to create LAI maps. Three different estimates of LAI using Genetic Programming (GP)

machine learning are considered to evaluate the impact of structural information for com-

puting LAI. First, results indicated that VSSIXA-II with wider buffers is more efficient for

calculating vegetation structural information. Among the three GP-based models for esti-

mating LAI, Model scenario 1 (S1) and Model scenario 2 (S2), which require only spectral

and structural information, respectively, had similar performance, while Model scenario 3

(S3), which takes advantage of both spectral and structural information, could estimate

LAI with 70% accuracy in terms of R2.

To assess the impact of the structural information in modeling fluxes, the remote

sensing-based TSEB model was applied using the three LAI modeling scenarios, S1–S3

and using fixed values versus a spatially-distributed map of canopy height, width, and

fractional cover. The TSEB model output of the fluxes using derived soil and canopy

temperatures (TSEB-2T), which avoids the need for the Priestley–Taylor assumption for

canopy transpiration, are compared with eddy covariance flux tower measurements. Results
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indicated that significant improvement in the agreement of modeled output with the flux

tower observations is achieved by using a reliable LAI map, more so than a map of spatially-

distributed canopy structure parameters. The statistical results suggest that a more robust

LAI map derived from both spectral and structural information can lead to significant

improvement in TSEB model performance in estimating the turbulent fluxes H and LE.

There was much less of an impact from the three different model estimates of LAI in TSEB

output of Rn and G. In particular, the relatively poor performance rating given by the

RRMSE statistic for G has to do with both the simple model assumption that G is a

constant fraction of Rns and the significant spatial and temporal variation in individual G

measurements observed by [6]. Improvements on this simple formulation for estimating G

have been proposed by Nieto et al. [67].
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CHAPTER 4

Downscaling UAV Land Surface Temperature using a Coupled Wavelet-Machine

Learning-Optimization Algorithm and Its Impact on Evapotranspiration and Energy

Balance Components Estimated by the TSEB Model

4.1 Abstract

Monitoring evapotranspiration (ET) is possible through land surface temperature (LST)

measured by satellites and unmanned aerial vehicles (UAVs). The assumption that the

higher resolution of LST may improve the performance of remote sensing ET models was

verified in a recently published article showing that higher resolution LST led to increased

performance of the Two-source Energy Balance Model (TSEB)—one of the well-known ET

models. However, because of technology limitations, the spatial resolutions of satellites and

UAVs in thermal wavelengths are coarser than those in optical and near-infrared (NIR)

bands. Therefore, developing thermal sharpening techniques and assessing their impacts

on ET models performance are imperative. Although previous studies have developed and

evaluated downscaling LST methods for satellite imagery, implementation of those meth-

ods on UAV imagery is limited. In this study, a coupled wavelet, machine learning, and

optimization algorithm was implemented for downscaling UAV thermal imagery from 60

cm to UAV optical imagery (15 cm) because 60 cm pixel resolution can still incorporate

mixed temperatures from the soil, vine canopy, active cover crop and shaded regions. A

2D discrete wavelet transform (2-D DWT) was employed for the decomposition of inputs

to 60 cm and inverse transformation of low thermal resolution to higher resolution. Four

machine-learning-based algorithms (Decision Tree Regression (DTR), Ensemble Decision

Tree (DTER), Support Vector Machine (SVM), and Gaussian process regression (GPR))

along with four linear regression-based models (linear, interactions linear, robust linear

and stepwise linear) are used as the potential fitting models, and a grid search algorithm
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is used for auto-tuning parameters of the machine learning algorithms. Additionally, a

novel sampling technique was designed to provide more representative samples for train-

ing steps in the regressing models. Four sets of high-resolution images were provided by

the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX

Project collected since 2014 over multiple vineyards located in California. After applying

the proposed downscaling algorithm, a separation method was used for estimation of canopy

and soil temperatures from the original and sharpened thermal imagery. Ultimately, the

TSEB model was executed for these pairs of temperature components, and its performance

compared to eddy covariance measurements. Results demonstrated that the proposed sam-

pling algorithm can significantly accelerate the computation time for the UAV temperature

sharpening efforts. Among all the fitting models, GPR, SVM and DTER were the most

accurate in terms of R-square. The correlation between NDVI and radiometric temperature

(Tr) was significantly improved when the downscaled Tr (DTr) was used in the NDVI-Tr

domain for the separation procedure. Compared to additional IRT sensors temperatures,

Tc and particularly Ts derived from the DTr were closer to the observed measurements.

After feeding the TSEB model with DTr products, results demonstrated that estimations

of soil heat flux (G) were significantly improved, while large LE differences were reduced.

4.2 Introduction

Land surface temperature (LST) is required for various applications such as wildfire

( [18]), urban heat island ( [48], [53]), land cover types ( [55]), and retrieving surface soil

moisture ( [41]). Compared to vegetation parameters and the surface albedo, LST is more

responsive to surface energy fluxes ( [10]) and is a key input for remote sensing evapotranspi-

ration (ET) models to modulate energy fluxes over extensive areas (Zhan et al. 2013 [54]).

Nowadays, estimation of Evapotranspiration (ET) at farm and plant scale is possible using

high-resolution (i.e., 101–102 m) and super-high-resolution (i.e., less than 1 m) land surface

temperature (LST) from satellites and unmanned aerial vehicles (UAVs), respectively. How-

ever, the trade-off between temporal and spatial resolution leads to a platform with either

high-spatial/low-temporal resolution or low-spatial/high-temporal resolution (Agam et al.
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2007 [6], Essa et al. 2013 [22]). In addition to this trade-off, even within the same platform,

the spatial resolution of thermal infrared sensors is coarser than that of shortwave spectral

band imagery (Gao et al. (2012) [23]). For example, the ratio of the spatial resolution of

Landsat TM sensor in the thermal band (120 m) to the shortwave band (30 m) is 4. In the

AggieAir UAV platform (https://aggieair.usu.edu) at 450m agl, the typical resolution

of visible and NIR bands is mostly about 10 cm, while thermal band resolution is 60 cm.

Thus, this ratio increases to 6. Although the spatial resolution of the thermal band provided

by high-resolution satellites such as Landsat 8 is enough for monitoring crop conditions at

the farm level, the long repeat cycle of satellite data is not suitable for routine ET estima-

tion (Gao et al. (2012) [23], Kustas et al. 2003 [30]). This deficiency has been addressed by

development of several downscaling and desegregation methods applied on higher temporal

frequency – coarser resolution thermal-infrared data from the Moderate Resolution Imag-

ing Spectroradiometer (MODIS), Geostationary Orbiting Environmental Satellite (GOES)

( [25], [24]), and the Advanced Very High Resolution Radiometer (AVHRR) ( [52]).

Nonetheless, the higher-resolution thermal imagery provided by UAVs is still more

desirable due to the thermal mixture effect (TME), defined as a blending of thermal infor-

mation in a large thermal pixel where the resolution is coarser than the thermal elements

(Zhan et al. 2013 [54], Strahler et al., 1986 [42]). For example, the highest resolution of

AggieAir UAV thermal imagery at 450 m agl (above ground level) is 60 cm, which is a

mixture of the soil, vegetation, and shaded and sunlit regions. This mixture of information

has an effect on ET models working with high-resolution imagery such as the two-source

energy balance (TSEB) model. For instance, partitioning radiometric surface temperature

(Tr) to the canopy and soil temperature (TC and TS) using TSEB-2T requires the Tr and

normalized difference vegetation index (NDVI) at the same scale (Nieto et al. (2019) [37]).

Since NDVI is available at a higher resolution compared to Tr, one way to use this ap-

proach is up-scaling NDVI to the Tr resolution (10 cm to 60 cm), fitting a linear regression

model on the NDVI-Tr domain, and estimating TS and TC by substituting NDVI soil and

canopy thresholds (NDV IS and NDV IC) in the fitted model. In this approach, a strong

https://aggieair.usu.edu
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linear correlation is assumed between Tr and NDVI if both are available at high resolution.

However, upscaling NDVI to Tr resolution (10 cm to 60 cm) lead to an NDVI with the

mixed effect of different elements (e.g., soil and vegetation). Although one recent publi-

cation demonstrated that the sharpened temperature would allow a better discrimination

between Tc and Ts [37], comprehensive changes in NDVI-Tr correlation at different scales

(10 cm, 30 cm, 60 cm) have not yet been examined. One of the specific applications of

higher resolution Tr is related to extraction of only vine canopy temperature when an ac-

tive cover crop is also present in vineyards (in the early growing season). Due to active

interrow cover crops and vines having the same spectral responses in the R, G, B and NIR

wavelengths, separation of pure vine pixels from active cover crop using popular VIs such

as NDVI is not possible. However, histogram analysis of temperature can be an alternative

if the temperature is available at VNIR pixel resolution. The consequences of the TME

in different applications result in increasing demand for disaggregation, downscaling, or

sharpening techniques, although few studies are focusing on sharpening techniques for UAV

thermal imagery.

During the last twenty years, two types of thermal sharpening techniques have been

developed: physical downscaling methods (PDMs) and statistical downscaling methods

(SDMs) ( [22]). These are the most common approaches for LST downscaling ( [9]), and

they are based on the assumption that, if a unique and strong relationships between Tr and

aggregated predictors (e.g., VIs) exists, it can be valid across multiple resolutions (Agam

et al. 2007, [6]). However, the PDMs are based on establishing a physically functional

relationship between LST and aggregated predictors, such as the disTrad method developed

by Kustas et al. 2003 ( [30]) and employed by Anderson et al. 2004 ( [8]). Whereas the SDMs

mostly rely on exploring a strong linear or non-linear relationship between LST and upscaled

predictors without referring to physical meaning. ( [22]). One of the popular approaches to

statistically downscale LST is to explore the relationship between the aggregated NDVI and

LST to be applied to the original resolution of NDVI (higher spatial resolution). However,

NDVI cannot explain all variations in LST in heterogeneous land covers ( [11]). Nemani et
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al. 1993 ( [36]) showed that the slope of LST-NDVI could be controlled by a wide range of

factors such as fractional vegetation cover, crop type, and surface moisture availability.

2D-wavelet is a mathematical algorithm that decomposes an image into different fre-

quency components. Many studies investigated the application of 2D-wavelet transform

algorithm in scaling problems to determine the surface heterogeneity and appropriate scale

for different physical processes. For instance, Pelgrum et al. ( [38]) employed wavelet vari-

ance with auto-correlation analysis to infer length scales of land surface characteristic using

remote sensing data. Brunsell and Gillies ( [13]) used wavelet analysis to determine the

scaling characteristics of AVHRR radiometric temperature images in a homogeneous area.

They found that both NDVI and radiometric temperature show similar scaling behaviors.

However, scaling problems become more complicated when degree of spatial heterogene-

ity and model non-linearity increase. Although wavelet transform algorithms are popular

methods to describe the spatial surface heterogeneity, machine learning algorithms have

been used extensively to model systems with nonlinear behavior.

With the advent of machine learning algorithms and advanced versions such as Deep

Learning, various types of these algorithms have been employed to consider non-linear

relationships between aggregated high-resolution variables such as vegetation indices (VIs)

at courser resolution and LST ( [51], [52]). Although machine learning methods have been

reported to be satisfactory in downscaling temperature, they are site- and time-specific and

require re-calibration for different datasets as they are trained for a specific set of input

variables. In addition, current downscaling versions are mostly developed for satellite pixel

resolutions (<102 m).

To the best of the authors’ knowledge, the performance of downscaling methods has

not been evaluated for UAV super-high-resolution imagery (less than 1 m), whereas topo-

graphical information such as the digital surface model and slopes derived from UAV point

cloud data also can be possible predictors in downscaling techniques. To bridge this gap, a

coupled wavelet-machine learning-optimization algorithm is proposed to explore non-linear

relationships between possible predictors and LST over a heterogeneous area. The first ver-
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sion of this model is presented by Kaheil et al. (2008 [26]) to downscale ET from NOAA LST

with 960-m resolution to 15 m. In that model, (1) finer resolution inputs are decomposed

to approximation and detail coefficients at coarser resolution using a wavelet decomposition

method; (2) a support vector machine (SVM) as the machine learning tool is trained by

approximation coefficients of inputs and output; (3) detail coefficients for coarse resolution

output are generated by the trained SVM; and (4) output at finer resolution is generated

by applying the inverse wavelet transform. Despite the statistical methods, this method

explores a unique relationship between variables at the decomposition level (different pixel

resolutions).

In this study, we hypothesized that downscaled LST can improve the accuracy of LST

separation between Ts and Tc and consequently can result in a better estimation of energy

fluxes by the TSEB model. This is due to the fact that the TSEB model is highly sensitive

to Ts and Tc estimates. To test this hypothesis, a 2-D DWT is used to decompose high-

resolution imagery to LST resolution and to inverse transform LST to higher LST resolution.

A new sampling training method has been designed to select more representative records

for fitting regression models in each decomposition level. Instead of SVM, four different

machine learning algorithms, along with four linear-based models, are considered to find

the relationship between possible predictors and LST. The parameters of machine learning

methods are tuned with a grid search method. The proposed method is employed to sharpen

UAV thermal imagery captured over a commercial vineyard located in California as a part

of the GRAPEX project ( [28]) from 60 cm to 15 cm . To take advantage of 3D UAV

point cloud information, in addition to multi-spectral information and VIs, DSM and slope

derived from the UAV point cloud data are considered in the set of possible predictors.

Ultimately, The impact of downscaled LST (DTr) on Ts and Tc derivation from the NDVI-

Tr domain and consequently on energy fluxes estimated by the TSEB model are presented.

TSEB is executed with Ts-Tc pairs before and after applying the downscaling algorithm,

and TSEB outputs are compared with eddy covariance measurements.
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4.3 Study of Area

This study was conducted over a commercial vineyard located near the town of Galt in

California’s Central Valley as a part of the GRAPEX project ( [28]); hereafter it is referred

to the Lodi site. This site consisted of two blocks: the northern block (Block 1) and the

southern block (Block 2). Block 1 was planted with the Pinot Noir variety in 2009 and

Block 2 was planted with the same variety in 2011. The age differences resulted in older,

taller, more mature grapevines along with higher biomass and leaf area at Block 1 compared

to Block 2. In each block, an eddy covariance tower is installed half-way North–South along

the Eastern edge because the dominant wind direction is mostly from west to east during

daylight hours from March to October (Fig 4.1).

Fig. 4.1: The study area boundaries along with the locations of the eddy covariance towers
installed in the area of study

In both blocks, a “U” shaped trellises is employed for the training system in which

canes are trained upwards, and the height to first and second cordons is about 1.30 m (4’

4”, Fig 4.2c) and 1.9 m, respectively. Canopy vine heights ranged from 2 to 2.5 m, and
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in-row vine spacing was about 1.5 m (4’ 8”) (Fig 4.2b) and an East–West row orientation.

A drip irrigation system is installed at 35 cm (14”) agl (Fig 4.2a).

Inter-row cover crops can be used to manage vineyard growth and increase yields.

Particularly in winter, cover crops like peas and clover can significantly increase nitrogen

content in the soil. In order to control water content in soil surface layer and regulate vine

vigor early in the growing season, inter-row grass cover crops are planted in both blocks

(Block 1 and Block 2) and is mowed in either late April or early May.

Fig. 4.2: (a) A drip irrigation system, (b) space between vines, (c) height to first and second
cordons measured by the “Measure app” using Apple’s ARKit 2

4.3.1 AggieAir Remote Sensing Platform

AggieAir UAVs operated by the AggieAir UAV Research Group at the Utah Water

Research Laboratory at USU (https://aggieair.usu.edu) are designed to acquire high-

resolution imagery (less than 20 cm at 1000 m agl) using multi-spectral and thermal cameras.

In this study, A fixed-wing small AggieAir UAV called Minion was used to capture high-

resolution multi-spectral and thermal imagery over the Lodi site from 2014 to 2016. The

battery capacity of this platform provides sufficient power for an hour at a speed of 48 Km

https://aggieair.usu.edu
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per hour. Minion consists of two cameras (one for multi-spectral imagery and the other one

for thermal), a computer, a GPS module, an IMU, a radio controller, and flight control.

This platform has the capability to store the coordinates and sensor view of aircraft for

each image ( [21]).

Fig. 4.3: AggieAir UAV capturing high-resolution imagery over the vineyard

4.3.2 AggieAir UAV High-resolution Imagery

In this study, four sets of high-resolution images (15 cm or finer in the multi spectral-

bands and 60 cm in the thermal spectrum) collected by the Minion UAV over the GRAPEX

Pinot Noir vineyard in 2014, 2015, and 2016 are used to assess the proposed downscaling

method and the TSEB model. An example of the high-resolution imagery recorded by

Minion over the commercial vineyard is shown in Figure 4.4, and the properties of the UAV

images and products are summarized in Table 4.1.
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Fig. 4.4: A subset of imagery captured by AggieAir in August 2014

Flight dates, configurations of cameras and sensors, growth stages, and pixel resolution

are summarized in Tables 4.1 and 4.2.

Table 4.1: Flight time, sensors and filters used in Minion to capture images

Date
UAV Flight Time (PDT) UAV elevation

(agl) meters

Bands Cameras and Optical Filters
Spectral Response

Launch Time Landing Time RGB NIR Radiometric Response MegaPixels

August 9, 2014 11:30 AM 11:50 AM 450
Cannon

S95

Cannon S95

modified

(Manufacturer NIR

block filter removed)

8-bit 10

RGB: typical CMOS

NIR: extended CMOS NIR

Kodak Wratten 750 nm

LongPass filter

June 2, 2015 11:21 AM 12:06 PM 450
Lumenera

Lt65R Color

Lumenera

Lt65R

Monochrome

14-bit 9

RGB: typical CMOS

NIR: Schneider 820 nm

LongPass filter

July 11, 2015 11:26 AM 12:00 PM 450
Lumenera

Lt65R Color

Lumenera

Lt65R

Monochrome

14-bit 12

RGB: typical CMOS

NIR: Schneider 820 nm

LongPass filter

May 2, 2016 12:53 PM 1:17 PM 450
Lumenera

Lt65R Mono

Lumenera

Lt65R

Mono

14-bit 12
RED: Landsat 8 Red Filter equivalent

NIR: Landsat 8 NIR Filter equivalent
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Table 4.2: Flight dates, spatial resolution, point cloud, and phenological stages when the
images were captured by Minion

Date Optical resolution Thermal resolution Point Cloud density (point/m2) Vine Phenological Stage Phenological Stage of Cover Crop

August 9, 2014 15 cm 60 cm 37 Veraison towards harvest Mowed stubble

June 2, 2015 10 cm 60 cm 118 Near veraison Senescent

July 11, 2015 10 cm 60 cm 108 Veraison Mowed stubble

May 2, 2016 10 cm 60 cm 120 Bloom to fruit set Active/green

As described in Tables 4.1 and 4.2, all the main growth stages (Bloom to fruit set, near

veraison, veraison and veraison towards harvest) are covered by the imagery captured from

May to August. Except for 2014 that a consumer-grade camera (Canon S95) is used to

capture imagery, the industrial type of Lumenera monochrome cameras with narrowband

filters in red and near-infrared bands (equivalent to Landsat 8 sensor specifications) are

used in 2015 and 2016. The resolution of VNIR images was 10 cm, except for the August

flight while the resolution of thermal images was 60 cm for all the flight.

4.3.3 AggieAir Image Processing

After imagery acquisition, image processing steps are required to prepare the imagery

for further analysis: (1) radiometric calibration, (2) image mosaicking and orthorectification,

and (3) satellite (Landsat-8) harmonization. In the radiometric calibration, which was based

on the method developed by Neale and Crowther, 1994 [35]; Miura and Huete, 2009 [34]; and

Crowther, 1992 [17]), the digital numbers of images were calibrated to reflectance using pre-

and post-flight Labsphere (https://www.labsphere.com) Lambertian panel readings. The

effect of vignetting is additionally corrected in the radiometric calibration step. In the image

mosaicking and orthorectification step, UAV images were merged into a single scene and

linked into the WGS84 UTM 10N coordinate system using Agisoft Photoscan software [7]

and GPS control points. Since various types of multi-spectral sensors were used between

2014 and 2016, a harmonization technique was employed to reduce the bias of remotely

sensed information captured at different pixel resolutions and by different sensors ( [5]). In

the harmonization technique, the UAV multi-spectral imagery is aggregated to the Landsat-

https://www.labsphere.com
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8 scale using a point spread function (PSF); its bias is corrected with a linear transformation

( [5]). For UAV thermal imagery, after the image mosaicking and orthorectification steps,

a vicarious calibration was applied. More information on the vicarious calibration can be

found in Torres 2017 [44].

4.3.4 Field Measurements, Point cloud and DTM

For each flight, ∼80 LAI records were acquired using the LAI-2200c sensor, and those

measurements were corrected with direct LAI measurements ( [49]). Aboutalebi et al. 2020

( [4]) evaluated vegetation spectral and structural information derived from point cloud

information versus these in-situ LAIs and proposed three LAI models. The LAI maps

for each flight, estimated from that study based on the Vegetation Spectral-Structural

Information eXtraction Algorithm (VSSIXA), are inputs to the TSEB model. In addition

to the LAI map, a DSM was generated using point clouds that were produced from the

multispectral images. The DSM’s spatial resolution was the same as the multispectral

imagery. The slope and aspect from DSM raster files were generated using the Aspect-

Slope function from the ArcGIS Pro toolbox.

Eddy covariance and micrometeorological data were collected for each of the vineyard

blocks (Block 1 and Block 2) in 2013. The data were quality controlled and were stored

as hourly block-averaged data. More information about the measured parameters, quality

procedure, and post-processing of the turbulent fluxes are addressed in Aboutalebi et al.

2020 [4]. In addition to quality control of eddy covariance measurements, the concept of

energy balance closure is used to correct any imbalance between available energy (Rn-G)

and H + LE by assuming that the Bowen ratio (BR) H/LE is correct. In this method, the

adjusted H and LE (HBR and LEBR) are calculated by Eqs (4.1–4.2) ( [45]). .

HBR =
H

H + LE
× (Rn−G−H − LE) +H (4.1)

LEBR =
LE

H + LE
× (Rn−G−H − LE) + LE (4.2)
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4.4 Methods

The proposed downscaling method is a combination of four sub-modules; (1) the wavelet

module for the decomposition of high-resolution imagery inputs to LST resolution and

reconstruction of LST approximation and detail coefficients to high-resolution imagery; (2)

the regression module for generation of LST detail coefficients; (3) the sampling module

for training the regression module with more representative grids; and (4) the optimization

modules for auto-tuning the regression module’s parameters. In the following section, the

framework of the proposed downscaling method, along with a short description of each

of these sub-modules, is presented. In the end, a brief description of the TSEB model

and temperature component estimation and the effect of the downscaling method on the

performance of the TSEB model are presented.

4.4.1 The Proposed Downscaling Algorithm

The principle of this proposed algorithm is based on the fact that a higher resolution of

every image can be reconstructed using an inverse wavelet transform if the approximation

image and detail coefficients of a decomposed image are available. Therefore, the main goal

in each level is to estimate the detail coefficients for the coarser image (i.e., the thermal

imagery) and then apply inverse wavelet transform to produce higher resolution imagery.

The first idea of this algorithm is presented by Kaheil et al. 2008 [26] for downscaling and

forecasting of evapotranspiration using a synthetic model of wavelets and SVM. That model

is enhanced in this investigation, and the workflow of the proposed downscaling algorithm

is illustrated in Fig 4.5.
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Fig. 4.5: Flowchart of the proposed downscaling algorithm (Level 1: the 1st decomposition
level, Level 2: the 2nd decomposition level, Level 3: the 3rd decomposition level).

As shown in Fig 4.5, the higher resolution images (i.e. VNIR bands imagery and

DTM) are first decomposed using a wavelet transform and a wavelet basis function (a two-

coefficient Haar function, which resembles a step function) to approximation [low-low (LL)]

and detail coefficients [high-low (HL), low-high (LH), and high-high (HH)] until the size of

approximation and detail coefficients is equal to the observed image (i.e., LST). Next, the

regression module will be trained with the approximation coefficients (i.e. approximation

coefficients of VNIR versus LST). In this study, four types of machine learning algorithms

and four types of the linear regression model are used to train LL-observed pairs (approx-

imation coefficients) and then applied on HL, LH, and HH matrices of inputs to generate

detail coefficients for the output (e.g., LST). To maximize the performance of the machine

learning algorithms, their parameters are tuned with a grid search algorithm. Due to the

very high number of pixels in each training level (in this study, 457x157 pixels in level 2 and
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914 x 314 in level 1), an efficient sampling algorithm is needed to accelerate the training

procedure speed; therefore, a new sampling technique was designed to select more represen-

tative pixels for each training step. Due to convolution processes performed at the training

step, the estimated detail coefficients (HL, LH and HH of the testing step) have an inherent

linear bias ( [26]). The linear bias corrector can be found by fitting a linear regression model

between the detail coefficients of the observed image and its detail coefficients at the next

level (Level 3 in Fig 4.5). By applying an inverse wavelet transform, a higher resolution

of the observed image will be achieved. This process must continue until the size of the

new target matrix is equal to the size of the input matrices. In this method, the number of

wavelet levels depends on the resolution of the inputs and the target imagery. For exam-

ple, if the input imagery is captured at 15 cm and the target imagery resolution is 60 cm,

only two levels of decomposition are enough to reach the target resolution and vice versa

(6015 = 4 = 22).

4.4.2 Wavelet Decomposition and Reconstruction

Wavelet transformation is a powerful tool for the decomposition of a signal into a

different frequency scale. Among various applications, it is an effective tool in remote

sensing to analyze the variability of the geophysically distributed variables across different

resolutions ( [27]), edge detection ( [43], [33]), dimensionality reduction ( [12], [31]), image

fusion ( [56], [15]) and downscaling ( [26]). In the wavelet decomposition technique, a

signal is separated into multi-resolution components in which the high-resolution and low-

resolution components represent the fine and coarse scale features, respectively ( [16]). The

properties of wavelets are valid for both 1-D signal and 2-D datasets such as images and

matrices. In the 2-D discrete wavelet transform (2-D DWT) used in this investigation, low-

and high-pass filters are recursively applied on the finest scale for capturing the variability

information ( [26]). 2-D DWT is an expanded version of the Mallat’s forward pyramid

algorithm, where 1-D low and high-pass filters are passed through the rows and columns,

respectively, generating two sets of wavelet coefficients of the original image: approximation

[low-low (LL)] and detail [high-low(HL), low-high (LH), and high-high (HH)]. Moreover,
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these approximation and detail coefficients can be used for reverse 2-D DWT (inverse wavelet

transform) to reconstruct and obtain the higher-resolution on each scale. Fig 4.6 shows one

level decomposition and reconstruction of sub-imagery captured by Minion over the study

area.

Fig. 4.6: Example of wavelet output coefficients for a single-level discrete 2-D wavelet
transform applied on sub-UAV imagery captured in the red band

As shown in Fig 4.6, the approximation coefficients show the smooth version of the

original image (without noise), whereas detail horizontal, vertical, and diagonal coefficients

captured horizontal, vertical, and diagonal edges, respectively.

4.4.3 The regression module

In the proposed downscaling algorithm, the regression model contains two categories

of regression models: machine learning algorithms and linear-based models. The machine

learning algorithms are decision tree regression (DTR), decision tree ensemble regression

(DTER), support vector machine (SVM), and Gaussian process regression (GPR) models,
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and linear-based models are linear regression (LR), robust linear regression (RLR), inter-

actions linear regression (ILR), and step-wise linear regression (SLR).

Similar to any linear-fitted problem, machine learning-based models are designed to find

weights and bias values in a regression model (Eq. 4.3) by means of solving an optimization

problem over training datasets while considering a specific objective function.

y = f(x) = wT × x+ b , (4.3)

in which, y = an output vector, f(x) = a linear regression model connecting input vectors

to the output vector, w = weighting vector, x = input vectors, T = the transpose sign, and

b = bias. Analogous to machine learning-based models, Eq. (4.3) will be solved for w and

b over training datasets (i.e., a subset of the input-output space) by minimizing an error

function. The machine learning-based algorithms can be modified to be used as a non-linear

fitting model by means of a non-linear kernel function (K(x, xi) in Eq. 4.4).

yi = f(xi) = wT ×K(x, xi) + b. (4.4)

In general, non-linear kernel functions are developed and used when inputs are not

linearly related to outputs. In other words, kernel functions evaluate the correlation be-

tween inputs and the output in a new space where inputs can be linearly related to the

output. Various kernel functions for machine learning algorithms have been developed and

polynomial, sigmoid, and radial basis function (RBF) are popular kernel functions among

them.

DTRs are constructed by recursive partitioning. They are starting from a root node

that then is split into two nodes. The root node is known as the parent, and the two nodes

in the next layer are called child nodes. Each child node can be split again and generates

two more nodes. In DTRs, Eq. 4.5 is solved for each node by minimizing the weighted

mean squared error (WMSE in Eq. 4.3).
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WMSE(t) = 1/Nt

n∑
i=1

(yi − yt)2 (4.5)

in which Nt is the number of training records at node t, n is the training subset at node

t, and yt is the true observed value. Ensemble DTRs combines a few DTRs to enhance the

prediction accuracy compared to a single decision tree using two techniques: bagging and

boosting. In the bagging approach, several subsets from the training records are randomly

selected for training DTRs and the average of all the outputs from the different trees is

reported, which is more robust compared to a single decision tree. In the boosting approach,

consecutive trees are fitted on the training records and at the end of each tree, the error

from the prior tree is analyzed.

The support vector machine (SVM) presented by Vapnik (1995 [46]) is for clustering,

classification, and regression analysis. To design SVR, Vapnik (1998 [47]) presented a new

error function, which is called the epsilon intensive (e-intensive) function (Eq. 4.6).

|ŷ − f(x)| =

 0 if |ŷ − f(x))| ≤ κ

|ŷ − f(x))| − κ = ξ otherwise

 , (4.6)

in which, ŷ = predicted/estimated y (the SVR output), κ = maximum allowed errors

threshold so that an error between zero and κ is considered as zero and an error greater

than κ is actual absolute error minus maximum allowed errors threshold (ξ). Therefore, κ

plays an important role in the sensitivity of the error function. κ is a parameter defined

by users and makes the absolute error function insensitive when the error (ŷ − f(x)) falls

within [-κ, +κ]. In addition to the e-intensive function, Vapnik (1998 [47]) added two more

terms (1) a coefficient (C) to adjust the weight of the insensitive range of error and (2) a

regularization term (12 ||w||
2 in Eq. 4.7) to prevent the over-fitting (Aboutalebi, 2018 [1]).

Minimize 1
2 ‖w‖

2 + C
∑m

i=1(ξi)

subject to |yi − f(xi))| − κ < ξi.
(4.7)
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Minimize 1
2 ‖w‖

2 + C
∑m

i=1(ξi)

subject to |yi − ŷi)| − κ < ξi.

where ŷi = f(xi) = wT ×K(x, xi) + b.

(4.8)

The non-linear form of SVR (Eq. 4.8) possesses at least three user-defined parameters,

including κ, C, and kernel function parameter(s). In addition, SVR does not employ the

input selection feature to efficiently select the main descriptors among possible inputs, which

leads to a decrease in the SVR training speed ( [2], [3]).

Similar to Gaussian distribution that is specified by its mean and variance, GPR is

defined by a mean function m(x) indicating the mean of estimations at observation input

points and a covariance function that relates one observation to another (the covariance

between the target input point and other input points (K(x, x′))). One of the popular

covariance functions ranging from 0 and σ2f is the “squared exponential”:

k(x, x′) = σ2fexp
−(x− x′)2

2l2
(4.9)

in which l is the length parameter governing the impact of distant observation at new

x values during interpolation, and σf are hyperparameters defining the covariance function.

To apply GPR, the covariance function is calculated for all observed points (K), between

new input points and the observed points (K∗), and between new input points K∗∗ [40]:

K =



k (x1, x1) k (x1, x2) . . . k (x1, xn)

k (x2, x1) k (x2, x2) . . . k (x2, xn)

...
...

. . .
...

k (xn, x1) k (xn, x2) · · · k (xn, xn)


(4.10)

K∗ = [k (x∗, x1) k (x∗, x2) · · · k (x∗, xn)] (4.11)

K∗∗ = k (x∗, x∗) (4.12)
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In GPR, by definition, the joint (multivariate) normal distribution of observed output

values (y) and estimated output values for new input points (y∗) is as follows:

 y

y∗

 ∼ N
0,

 K + σ2ε I KT
∗

K∗ K∗∗


 (4.13)

in which I is an identity matrix and σ2ε is the assumed noise level of observations. The

conditional probability of Eq. 4.13 can be written as:

y∗|y ∼ N
(
K∗K

−1y,K∗∗ −K∗K−1KT
∗
)

(4.14)

in which, the first term in the distribution (K∗K
−1y) is the best estimation for new

input points, and the second term (K∗∗ − K∗K−1KT
∗ ) is the uncertainty in the GPR es-

timations [20]. The performance of GPR is highly dependent on the covariance function’s

parameters θ (e.g. l, σf ,σε). A common practice to obtain reliable estimations of GPR’s

hyperparameters is to maximize marginal (log) likelihood ( [39]) that can be implemented

by means of the partial derivatives of Eq. 4.15 with respect to θ.

log p(y|X,θ) = −1

2
y>K−1y y − 1

2
log |Ky| −

n

2
log 2π (4.15)

in which Ky = K + σ2ε I.

4.4.4 Grid search

As discussed in the regression module section, except for the linear-based models, each

of the regression methods employed in this study has its own hyperparameters, and an op-

timizer called “grid search” embedded in the “MATLAB regression learner” is used to tune

those hyperparameters. In each iteration, the grid search algorithm starts searching and

evaluating the model based on an objective function (maximizing accuracy in this case) us-

ing uniform sampling without replacement from a range of values allowed in each parameter.

More information about this optimization algorithm, the optimizable hyperparameters and
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the range considered for each hyperparameter is available at (https://www.mathworks.

com/help/stats/hyperparameter-optimization-in-regression-learner-app.html)

4.4.5 Sampling technique for training the regression modules

As shown in Fig 4.5, for each level, the regression modules are trained with LL inputs

and LL observed pairs. Since the size of LL matrices is quite large and may lead to an

increase in the computation time of the machine learning-based regression algorithms, a

sampling technique is required to extract a subset of LL pairs and accelerate the training

procedure. In this study, a new sampling technique was designed wherein 20% of LL

matrices are randomly selected and clustered to k groups by means of the k-means clustering

algorithm. For each cluster, a simple index is calculated based on Eq. 4.16. This index

considers high weights for clusters with a small number of members and low weights for

clusters having more members.

Indexi = (1− (Nmi/N))p (4.16)

in which Nmi is the number of members in Cluster i, N is the subset size (e.g. 20% of the LL

matrix), and p is an integer parameter (larger than 1) to accentuate the importance of small

size clusters and underemphasize the importance of large size clusters. After calculating this

index for each cluster, training samples are randomly selected with the size of dIndexi ∗Ne

from each cluster without replacement. In general, this sampling technique involves special

records from LL pairs (e.g. extreme values) in the training sample, leading to an increment

of accuracy in the machine learning-based algorithms.

4.4.6 Two-source Energy Balance (TSEB) Model

The TSEB model with Tc and Ts estimates based on contextual NDVI-Tr domain

(TSEB-2T [37]) first calculates net shortwave (Sn) and longwave radiation (Ln). In the

next step, soil and canopy net longwave radiation (Lns and Lnc) is calculated based on

Eqs. 4.17–4.18) developed by Kustas and Norman 1999 [29]. .

https://www.mathworks.com/help/stats/hyperparameter-optimization-in-regression-learner-app.html
https://www.mathworks.com/help/stats/hyperparameter-optimization-in-regression-learner-app.html
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Lnc = (1− exp(−kLΩLAI))(Lsky + Ls − 2Lc) (4.17)

Lns = exp(−kLΩLAI)Lsky + (1− exp(−kLΩLAI))Lc − Ls (4.18)

where Ls, Lc and Lsky (W/(m2)) are the longwave emissions from soil, canopy, and

sky, respectively; kL is the longwave radiation extinction coefficient; and Ω is the clumping

factor presented by [29].

Similar to net longwave radiation, canopy and soil net shortwave radiation (Snc and

Sns) are calculated in a canopy radiative transfer model presented by Campbell and Norman

(1998) [14]). Then canopy and soil net radiation (Rnc, Rns) are calculated using Eqs. 4.19-

4.20.

Rnc = Lnc + Snc = Lnc + (1− τs)(1− αc)S (4.19)

Rns = Lns + Sns = Lns + τs(1− αs)S (4.20)

where S (W/(m2)) is the incoming shortwave radiation, τs is solar transmittance

through the canopy, and αs and αc are the soil and canopy albedo, respectively.

Soil heat flux (G) is considered to be a portion of Rns (e.g. 20% to 30%). The

model computes the sensible heat flux for the canopy and soil layers separately (Hs and

Hc). It first assumes having a neutral atmospheric stability condition. Then, the sensible

heat flux is corrected through an iterative method until Monin-Obukhov length changes

reach a minimum. Next, canopy and soil latent heat fluxes (LEc and LEs) are calculated as

residuals in the canopy and soil energy balance equations (Eqs. 4.21 and 4.22), respectively.

LES = RnS −G−HS , (4.21)
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LEC = RnC −HC . (4.22)

4.4.7 Temperature Components Estimation

In the TSEB-2T (a special implemented of TSEB), Ts and Tc are derived from fitting

a linear function over the NDVI-Tr pairs in a contextual spatial domain, namely VI-Tr

space, and exploring pure vegetation and soil/cover crop pixel values. Due to inconsistency

between NDVI and Tr pixel resolutions (i.e., 15 cm vs. 60 cm), downscaling Tr from

its original resolution into higher resolution would allow better estimations of Ts and Tc

( [37]). Soil and canopy emissivity, LAI, albedo, fractional cover, measurement of canopy

geometry characteristics (leaf width, canopy height), solar radiation, air temperature (Ta),

wind speed, and vapor pressure are the other required inputs for the TSEB model. In this

study, LAI, canopy height and fractional cover are estimated by VSSIXA ( [4]). Other

parameters either are internally calculated in the TSEB, such as albedo, or measured by

instruments installed in the experimental field.

4.4.8 Data Analysis

The TSEB model is executed with both original Tr and DTr. Estimated fluxes by

TSEB are evaluated using eddy covariance towers measurements based on evaluation metrics

including: (1) coefficient of determination (R2), (2) mean absolute error (MAE), (3) root

mean square error (RMSE), and (4) relative root mean square error (RRMSE) (Eqs. 4.23–

4.26).

R2 = 1−
∑n

i=1(Mi − Ei)2∑n
i=1(Mi − M̄i)2

(4.23)

MAE =

∑n
i=1 |Mi − Ei|

n
(4.24)

RMSE =

√∑n
i=1(Mi − Ei)2

n
(4.25)
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RRMSE =
RMSE

M̄i
× 100 (4.26)

in which, n is the number of records, Mi is an observation, Ei is estimated or predicted

value, and M̄i is the average of observations. R2 is often used to estimate model perfor-

mance and indicates how much variation of an output is explained by inputs. MAE is an

indicator of average bias between observations and estimated values. MAE is less sensitive

to outliers in outputs ( [50]). RMSE is developed to show how concentrated the data points

is around the fitted line ( [19]). RRMSE as a dimensionless version of RMSE indicates

excellent performance when RRMSE < 10%, good performance if 10%< RMSE <20%,

fair performance if 20%< RMSE <30% and poor performance if RRMSE >30% ( [32]).

4.5 Results and Discussion

4.5.1 Sampling Method

Figure 4.7 shows the histogram of the thermal imagery (blue line), the histogram

of 20% samples selected randomly from the thermal imagery (dashed red line), and the

histogram of training data selected by the sampling algorithm (yellow line). In other words,

the yellow line shows the histogram of training data based on the method developed in

this study (clustering 20% samples and applying weights to each cluster). Sampling data

(dashed red line) clearly follow the histogram pattern of the original Tr (blue line) since

those samples are randomly selected from the entire image. Although random sampling

techniques are more representative of the whole population, they select more samples from

the classes with high frequency, which is not an efficient method for training the network of

the machine learning algorithms or regression based models. In contrast, the new sampling

approach significantly improves the sample size issue in low dense clusters by clustering

multi-dimension input space to a one-dimensional input space and assigning weights to

clusters based on the number of members in each cluster (higher weights for lower density

clusters). This approach helped the sampling algorithm keep the important records that
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are located in the left and right tails. In other words, instead of taking many samples

(for example between 25 to 40 degrees Celsius) and overtraining the model, the sampling

algorithm can adjust the number of samples and keep the important information that usually

located at tails.

In training machine learning algorithms, overtraining the network with high-frequent

samples can be avoided by keeping extreme values. Although the sampling pattern ends

up similar to a uniform sampling method based on Tr, it should be noted that training

samples in Fig 4.7 are not selected solely based on Tr. In other words, spikes and valleys

in the yellow histogram indicate very low and very high sample size in clusters selected by

the k-means approach based on the set of possible predictors in the downscaling algorithm.

Fig. 4.7: Histograms of Tr for the original thermal image, sampling pixels, and training
pixels
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4.5.2 Downscaling Method

As discussed in the regression modules section, two types of regression models (linear-

based and machine learning-based) are considered to simulate detail coefficients in Fig 4.5.

The linear regression based models were LR, RLR, SLR, and ILR. The machine learning

algorithms were DTR, DTER, SVM, and GPR, the hyper-parameters of which are tuned

using a grid-search optimization algorithm. The performance of these eight models at both

level 1 (L1) and level 2 (L2) over sampling points for each flight with 5-fold cross-validation

are summarized in Table 4.3 -4.6.

Table 4.3: Performance of the models at two levels of decomposition for August 2014 flight

Model
RMSE (◦C) R-squared MSE (◦C) MAE (◦C)

Prediction Speed

(obs/sec)

Training time

(second)

L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1

LR 4.69 2.84 0.70 0.84 22.08 8.08 3.54 2.16 76,000 78,000 4.2 3.7

ILR 4.43 2.63 0.73 0.86 19.62 6.93 3.38 1.96 71,000 70,000 5.3 3.5

RLR 4.70 2.85 0.70 0.84 22.14 8.13 3.53 2.15 71,000 75,000 5.1 4.4

SLR 4.43 2.63 0.73 0.86 19.66 6.94 3.38 1.96 110,000 110,000 17.4 17.3

DTR 3.83 2.05 0.80 0.91 14.66 4.23 2.84 1.48 550,000 550,000 158.2 120.5

DTER 3.43 1.69 0.84 0.94 11.77 2.88 2.54 1.19 3,100 3,200 718.8 856.7

SVM 3.51 1.61 0.83 0.95 12.32 2.59 2.56 1.14 84,000 18,000 273.6 300.5

GPR 3.35 1.43 0.85 0.96 11.27 2.05 2.48 1.01 4,700 5,700 184.5 248.9
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Table 4.4: Performance of the models at two levels of decomposition for June 2015 flight

Model
RMSE (◦C) R-squared MSE (◦C) MAE (◦C)

Prediction Speed

(obs/sec)

Training time

(second)

L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1

LR 4.88 3.14 0.68 0.79 23.84 9.86 3.59 2.25 78,000 300,000 4.8 0.8

ILR 5.16 3.35 0.64 0.76 26.66 11.22 3.35 2.02 72,000 180,000 4.9 0.6

RLR 5.04 3.34 0.65 0.76 25.45 11.17 3.51 2.18 78,000 310,000 4.7 0.5

SLR 4.66 3.35 0.7 0.76 21.79 11.24 3.33 2.02 120,000 230,000 17.9 15.9

DTR 4.00 2.29 0.78 0.89 16.06 5.27 2.95 1.68 560,000 600,000 152.9 138.2

DTER 3.56 1.92 0.83 0.92 12.70 3.68 2.62 1.43 2,900 2,900 869.51 717.1

SVM 3.61 1.83 0.82 0.93 13.06 3.37 2.60 1.34 13,000 16,000 293.6 14.6

GPR 3.47 1.79 0.82 0.93 12.10 3.22 2.56 1.32 5,400 5,700 169.47 187

Table 4.5: Performance of the models at two levels of decomposition for July 2015 flight

Model
RMSE (◦C) R-squared MSE (◦C) MAE (◦C)

Prediction Speed

(obs/sec)

Training time

(second)

L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1

LR 7.08 4.08 0.61 0.8 50.12 16.67 5.18 2.99 110,000 77,000 3.2 3.6

ILR 6.85 3.33 0.64 0.87 46.93 11.11 4.7 2.55 70,000 71,000 3.8 4.4

RLR 7.11 4.71 0.61 0.74 50.59 22.22 5.00 2.85 75,000 76,000 3.7 4.2

SLR 6.52 3.34 0.67 0.87 42.52 11.17 4.7 2.55 120,000 110,000 18.0 18.3

DTR 5.77 2.88 0.74 0.90 33.35 8.31 4.42 2.12 580,000 540,000 157.5 139.9

DTER 5.21 2.40 0.79 0.93 27.20 5.79 3.94 1.74 3,100 32,000 800.4 464.9

SVM 5.12 2.09 0.80 0.95 26.31 4.40 3.83 1.51 11,000 43,000 17.1 14.04

GPR 4.96 2.01 0.81 0.95 24.64 4.05 3.78 1.44 5,500 5,600 175.41 199.5



134

Table 4.6: Performance of the models at two levels of decomposition for May 2016 flight

Model
RMSE (◦C) R-squared MSE (◦C) MAE (◦C)

Prediction Speed

(obs/sec)

Training time

(second)

L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1

LR 6.29 5.31 0.55 0.58 39.56 28.24 4.93 4.09 80,000 80,000 4.9 4.8

ILR 4.00 3.06 0.82 0.86 16.05 9.40 2.90 2.22 81,000 79,000 4.2 4.1

RLR 6.38 9.58 0.53 0.38 40.76 91.92 4.88 4.00 80,000 79,000 5.3 4.4

SLR 4.00 3.06 0.82 0.86 16.06 9.40 2.91 2.22 120,000 120,000 6.4 6.8

DTR 2.85 1.54 0.91 0.96 8.17 2.39 2.07 1.06 580,000 630,000 134.8 118.4

DTER 2.62 1.31 0.92 0.97 6.83 1.73 1.89 0.91 3,200 87,000 699.3 122.73

SVM 2.68 1.28 0.92 0.98 7.18 1.66 1.94 0.93 14,000 23,000 14.2 12.14

GPR 2.61 1.23 0.93 0.98 6.82 1.53 1.90 0.86 5,500 5,700 186.5 182.95

According to Tables 4.3–4.6, LR and RLR models cannot be potential models for

simulating Tr at different levels of wavelet decomposition since R-square is less than 70%.

In terms of R-square, the performance of the other two linear based models are close to

machine learning based algorithms. However, considering other statistics such as MSE,

machine learning based algorithms provide closer values to observed Tr values. Linear

regression based models can process 100,000 observations per second at each level, and

they are faster than machine learning-based models. However, among all evaluated models,

DTR with a processing speed of 5̃00,000 per second was the fastest model. In terms of

training time, linear regression-based models can be trained in less than 10 seconds, while

the computation time for training machine learning networks with the same number of

training samples, varies between 14 seconds (SVM) and more than 10 minutes (DTER).

However, the training time of the SVM network in most cases is comparable to linear

regression based models. GPR outperformed other models in all four flights, although,

considering all statistics, no significant differences exist between DTER, SVM, and GPR.

Figs 4.8–4.9 shows scatter plots of simulated Tr using machine learning algorithms
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against the original Tr. Compared to Level 2 (Fig 4.8, the first level of the simulation),

the correlation between simulated and observed Tr in Level 1 is significantly more robust.

A stronger correlation in Level 1 could be due to training and testing the models with the

estimations of Tr generated by the inverse wavelet transform. In other words, some part of

the Tr in Level 1 originated from detail coefficients of Tr at level 2 that are already trained

with descriptors (Fig 4.5). Among these four algorithms in Level 2, DTR provides constant

values for a different range of observed Tr, and scatterings around the 1–1 line of DTER and

GPR are much less than DTR and SVM. However, at Level 2, the strip pattern of DTER

disappears, and the performances of DTER, SVM and GPR are significantly improved,

while different flight dates indicate significant differences between DTER, SVM and GPR .
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Fig. 4.8: Scatter plots of estimated Tr versus the original Tr at Level 2 for sampling records.
Right colorbar indicates the Tr density, and the red line is 1–1 line
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Fig. 4.9: Scatter plots of estimated Tr versus the original Tr at Level 1 for sampling records.
Right colorbar indicates the Tr density and the red line is 1–1 line

According to Tables 4.3-4.6, GRP was slightly better than DTER and SVM in both

levels based on the evaluation metrics. Thus, GPR is used in the downscaling algorithm,

described in fig 4.5, to estimate DTr in each level. As Tr imagery at optical resolution does

not exist in the study area, two figures illustrate the comparisons of the downscaling Tr

algorithm’s performance. In Fig 4.10, the DTr and the original Tr are aggregated in the

footprint of IRT sensors, and then the aggregated values are compared with the in-situ Tr

measurements by IRT sensors. Since the IRT sensors measure canopy and soil temperatures



138

separately, for this comparison, both original Tr and downscaled Tr must be separated into

Ts and Tc. To derive Ts and Tc from Tr, the NDVI-Tr domain proposed by Nieto et al.

(2019 [37]) is employed.

Fig. 4.10: The comparison between (a) soil and (b) canopy temperature measured by IRT
against UAV Tr and UAV DTr within the IRT footprints for 2015 and 2016 flights

On average, the differences between IRT temperatures and UAV temperatures is about

1.5 and 5 degrees in soil and canopy components, respectively. In comparison with the

original UAV Tr, downscaled UAV temperatures are, in general, closer to the measured

IRT sensors, and the agreement between DTr points and IRT records is higher compared

to the original Tr, which could be due to more accurate separation of Tr into Ts and Tc

when DTr is used. In other words, if the correlation between DTr and NDVI is higher than

that between the original Tr and NDVI, the temperature components estimated by the

separation model are more accurate, and they should be closer to the IRT measurements.

The impact of the DTr on Ts and Tc separation is discussed in the following section.
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4.5.3 Impact of Downscaling Method on Ts and Tc

As discussed in the methodology, the TSEB model will start calculating fluxes for

each canopy and soil component separately based on Ts and Tc estimated from a fitting

regression model in an NDVI-Tr domain proposed by Nieto et al. (2019 [37]). The first

assumption in this approach is that a linear relationship exists between NDVI and Tr if

both are available at high-resolution (less than a meter). Since NDVI and Tr are not in the

same resolution, increasing the resolution provides the opportunity to estimate Ts and Tc

from the NDVI-Tr domain model without resampling and missing NDVI information. Fig

4.11 illustrates the role of the proposed downscaling method in the relationship between

NDVI and Tr at different resolution and its impact on Ts and Tc, which are the key inputs

for the TSEB model.
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Fig. 4.11: The histogram of correlation coefficient between NDVI and original/DTr, and Ts
and Tc estimated from NDVI and the original/DTr domain

In Fig 4.11, the histograms of correlation coefficient, along with Ts and Tc, are ex-

tracted for all NDVI-Tr domains (457x157 grids in this study). Fig 4.11 reveals that the

correlation coefficient between NDVI and the DTr is significantly stronger than upscaled

NDVI and the original Tr, confirming the assumption that higher resolution Tr leads to a

stronger correlation between VIs and Tr. Changing the correlation coefficient in the NDVI-

Tr domain may lead to a change in temperature components (Ts and Tc) extraction. In

other words, by changing the slope and bias in the fitted linear equation, different Ts and

Tc are estimated by the model. In all images, the correlation coefficients between NDVI and
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DTr are less than -0.8. In contrast, this correlation ranges from 0 to -1 when it is computed

between upscaled NDVI and the original Tr. Surprisingly, in some NDVI-Tr domains at the

original Tr resolution in May 2016, positive correlations were found between NDVI and Tr

that are likely due to growing cover crops in the interrows. In other words, if no pure soil

pixels exist in the NDVI-Tr domain, all NDVI-Tr pairs belong to vegetation pixels (active

cover crops and vines), and the inverse relationship between NDVI and Tr can change to a

positive correlation. This positive relationship resulted in estimating higher temperatures

for higher NDVI (vegetation pixel) and, consequently, lower temperatures for lower NDVI

(soil pixels), which cannot be correct.

In contrast, the histograms indicate no positive correlation in NDVI and downscaling

Tr, not only for May 2016 but for all flights. Applying the downscaling algorithm, it turns

out that the NDVI-Tr domain contains enough soil pixels to keep the inverse relationship.

Comparing Ts and Tc, the histogram shows less variation in temperatures estimated from

NDVI-DTr domain. Additionally, it seems that, in the first two months of the growing

season (May and June), Ts and Tc estimated from the DTr are respectively lower and

higher than Ts and Tc from the original Tr resolution, whereas this pattern is not followed

in July and August. In July and August, the peaks of the Ts histograms derived from the

original Tr and DTr are close to one another, while Tc estimated from the DTr is slightly

higher than Tc derived from the original NDVI-Tr domain.

4.5.4 TSEB Outputs

In addition to developing an efficient sampling algorithm for fitting models on big

data, assessing the performance of a 2D wavelet transform with different machine learning

algorithms for downscaling Tr, and analyzing the temperature separation algorithm at two

different resolutions, the other objective of this study was to evaluate the impact of new DTr

on remote sensing ET models. As described in the methodology, TSEB, one of the popular

ET models, was selected as the base ET model for such evaluation because it is highly

sensitive to temperature components and takes advantage of Ts and Tc for distributing

energy fluxes between two different components. However, the sensitivity of the TSEB
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model to higher Tr resolution is still untested. Therefore, two scenarios are defined to

evaluate the performance of the TSEB model. In the first scenario, Ts and Tc estimated

at the original Tr resolution are fed to the TSEB. In other words, NDVI is aggregated at

Tr resolution (from 15 cm to 60 cm) and Ts and Tc in each grid (3.6 m by 3.6 m) are

estimated from a regression model fitted over 36 points, whereas, in the second scenario,

Ts and Tc are estimated using the same approach but from a domain populated with 576

NDVI-DTr pairs [(3.6×3.6) /(0.15×0.15) = 24 × 24 = 576]. TSEB is executed with Ts

and Tc components derived from NDVI-Tr and NDVI-DTr domains and its outputs are

compared with the fluxes measured by ECs installed in northern and southern blocks of the

study area (Fig 4.2). The outputs of the TSEB model for those scenarios against EC are

illustrated in Fig 4.12, and the statistics of this comparison are summarized in Table 4.7.

Fig. 4.12: Scatterplot of observed vs. estimated fluxes using the different scenarios. All
fluxes are in W/m2
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Table 4.7: Performance of the TSEB model based on the original Tr (S1) and DTr (S2) for
each energy flux component (units in W/m2)

Variable Scenario MAE RMSE RRMSE

Rn
S1 16.29 20.54 3.30

S2 16.18 18.62 2.99

G
S1 22.52 23.41 25.21

S2 18.53 21.69 23.35

H
S1 38.29 40.95 22.41

S2 36.77 40.97 22.42

LE
S1 47.61 54.51 20.26

S2 35.84 36.31 13.50

Although results show an overestimation in H and LE and an underestimation in Rn,

there is a good agreement between measured fluxes from ECs and TSEB outputs. As

shown in Fig 4.12 and Table 4.7, the impact of downscaling Tr is more apparent in G

and LE. In general, the biases in G for S1 could be due to TSEB implementing a non-

calibrated empirical equation between net radiation reaching to the soil (Rns) and G (G =

0.35 ∗ Rns). However, it turns out that the biases in G for S2 are slightly improved when

DTr is fed to the model. In the TSEB model, Rns is computed based on net longwave

and shortwave radiation reaching the soil (Lns and Sns, respectively). LAI is the most

important component in Sns, and using DTr instead of Tr may not affect this parameter.

However, Lns is estimated based on long emissions from canopy and soil that both are a

function of Ts and Tc to the power of 4. Therefore, seeing the impact of DTr in G and

consequently in Rn is expected since total Rn is a summation of net radiation separately

estimated for soil and canopy. Since Rn estimates were acceptable with using both DTr and

Tr as inputs, the improvements in G led to a better estimation of the total available energy
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(Rn −G). Although using DTr instead of Tr did not lead to a significant improvement in

H estimates, the better Rn − G estimates resulted in more accurate LE estimates. Since

G affects only LES (4.21), improvements in LE should be due to LES estimates not LEC .

Interestingly, we found better LES estimates at periods when there was an active cover

crop in the inter-rows (4.12, see arrows to green points which are results for May 2016.)

Therefore, the impact of DTr in the TSEB model would be more pronounced in separation

of LE estimates into LES and LEC , specifically when there is an active cover in inter-rows.

4.6 Conclusions

In this study, a coupled 2D wavelet and machine learning algorithm is used to down-

scale Tr from its original resolution to optical band resolutions. Since training and testing

the machine learning algorithm with the entire image was not possible, a new sampling

algorithm was developed. In the sampling algorithm, the entire image with all bands is

clustered to several classes using the k-means approach. Samples are selected from each

cluster using a weighted approach. The sampling algorithm can significantly increase the

speed of internal computations since the speed of training of the machine learning algo-

rithms is sensitive to the size of training data sets. Although the coupled 2D wavelet and

machine learning algorithm is still a computationally expensive algorithm compared to fit-

ting regression models between VIs and Tr at lower resolutions, it is a practical method

that can be automated and implemented on remotely sensed thermal images after applying

image processing steps. Similar to VIs-Tr fitting models, however, the wavelet-machine

learning algorithm only requires higher resolution of visible and near-infrared bands.

Results confirmed that the proposed sampling algorithm could keep most extreme mem-

bers from the population while minimizing the training size. Among all machine learning

algorithms tested for exploring the relationship between optical-band-derived information

and Tr, the GPR, SVM, and DTER algorithms are more accurate than the others, while

DTR was the fastest model in terms of prediction speed, and linear-based models were the

fastest in terms of the training time. Original Tr and DTr are compared with the IRT

sensors installed in the field, and results indicated a higher agreement between DTr and
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IRT measurements for soil component.

Results revealed that the correlation between NDVI and DTr in the 3.6-m grid is signif-

icantly higher than the correlation between the original Tr and NDVI. Stronger correlation

may lead to more accurate Ts and Tc estimates. Two scenarios are defined to assess the

impact of the DTr on the TSEB outputs. In the first scenario, TSEB is executed with Ts

and Tc estimated from the NDVI-Tr domain, and in the second scenario, DTr is used for

the separation of temperature components. Comparing the TSEB outputs based on these

two scenarios against EC measurements showed that Rn and H are less sensitive to DTr

while DTr can affect G and consequently LES . The improvements in LES resulted in a

better estimation of LE, specifically when there is an active cover crop in inter-rows (May

2016).
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NSGAII to Hydrograph Routing in Open Channels. Journal of Irrigation and Drainage

Engineering, 142(3):04015061, 2016.

[4] Aboutalebi, M., Torres-Rua, A. F., McKee, M., Kustas, W. P., Nieto, H., Alsina,

M. M., White, A., Prueger, J., McKee, L., Alfieri, J., Hipps, L., Coopmans, C., and

Dokoozlian, N. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products

into Remote Sensing Evapotranspiration Models. Remote Sensing, 12(1), 2019.

[5] Aboutalebi, M., Torres-Rua, A. F., McKee, M., Nieto, H., Kustas, W. P., Prueger,

J. H., McKee, L., Alfieri, J. G., Hipps, L., and Coopmans, C. Assessment of Land-

sat Harmonized sUAS Reflectance Products Using Point Spread Function (PSF) on

Vegetation Indices (VIs) and Evapotranspiration (ET) Using the Two-Source Energy

Balance (TSEB) Model. AGU Fall Meeting Abstracts, 2018.

[6] Agam, N., Kustas, W. P., Anderson, M. C., Li, F., and Neale, C. M.U. A Vegetation

Index Based Technique for Spatial Sharpening of Thermal Imagery. Remote Sensing

of Environment, 107(4):545 – 558, 2007.

[7] AgiSoft, L. L. C., and Russia St Petersburg. Agisoft photoscan.



147

[8] Anderson, M. C., Norman, J. M., Mecikalski, J. R., Torn, R. D., Kustas, W. P., and

Basara, J. B. A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes

to Micrometeorological Scales. Journal of Hydrometeorology, 5(2):343–363, 2004.
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CHAPTER 5

Conclusions

Considering the climate change, increasing population, and the high pressure on ground-

water, one of the main concerns in precision agriculture is increasing the water use efficiency

and optimizing irrigation systems to improve crop yield and maintain quality.

During these years, several irrigation systems have been developed by engineers for

improving irrigation systems based on different purposes. For example, a variable rate

drip irrigation (VRDI) concept was developed to reduce yield and fruit quality variability,

particularly in vineyards. In this concept, the vineyard is divided into different irrigation

zones (e.g., 30 x 30-meter, Landsat pixel resolution), allowing individual irrigation for each

zone. VRDI assumes that the observed variability in yield and fruit quality can be managed

by different applied water for the plant-based on soil variability. VRDI is an efficient

irrigation system for reaching full yield potential. However, there is an open question as

to how to optimally use this system to improve yield and quality improvement and reduce

variability” because the operation of VRDI requires reliable and frequent ET estimates at

the grid size of VRDI.

As discussed above, having accurate ET maps is essential for irrigation systems and

particularly for optimized irrigation scheduling. Emerging and developing remote sensing

platforms such as satellites and UAVs provide a unique opportunity for estimation and

mapping of ET. Several remote sensing-based models have been developed to estimate

ET as a residual in the energy balance equation in the past decade. TSEB, SEBAL, Alexi,

DisAlexi, and METIRC are popular models among them. Although these models have been

developed based on physical and semi-empirical equations, uncertainties in their inputs can

significantly affect their performance.

These inputs include land cover, wind speed and direction, LAI, air temperature, and

LST. Wind speed, wind direction, and air temperature are obtained from the weather
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station and numerical models. However, the land cover, LAI, and LST inputs are estimated

from remote sensing platforms (satellites and UAVs). More specifically, land cover maps

can be achieved by applying supervised classification methods. LAI maps are indirectly

estimated by fitting an empirical equation between in-situ LAI measurements and VIs.

LST can be estimated based on the radiant temperature measured by the thermal sensor.

Although each input can be considered as a potential source of uncertainty to ET models,

investigations show that remote sensing based ET models (particularly the TSEB model)

are more sensitive to LAI and LST.

The sources of uncertainties in LAI can be classified into three categories: in-situ LAI

measurements, mixed information in VIs calculation, and the fitting models between in-situ

LAIs and VIs. Among these categories, the uncertainties in LAI measurements have been

described in previous studies. However, the uncertainties in VIs and fitting models have

not been addressed yet. The main factor that can lead to increasing uncertainties in VIs is

the coarse spatial resolution of the satellite imagery where signals of different objects are

aggregated over a pixel (e.g., 30m in Landsat data). For instance, the NDVI value for one

pixel at 30-m in vineyards can be a combination of shaded and sunlit areas of vegetation

and soil. In vineyards, canopy height, row orientation, and topography can lead to different

patterns of shadows on objects. The appearance of shadows due to canopy height and row

orientation may not be visible and detectable in the signal received by satellites. Since

shadows can affect VIs (e.g., reduction in NDVI), fitting regression models between VIs

and observed LAI must be applied based on “shadow-free” imagery. Shadow-free imagery

means detection and removal of shaded pixels from the original imagery. This process

requires super-high resolution imagery that UAVs can provide. Among popular methods

for detecting objects, we found that both supervised and index-based methods outperformed

others.

Another solution to reduce the uncertainty in LAI models is to incorporate vineyard 3D

structure information. Despite satellites, UAVs can capture multiple imagery at different

angles from objects. Overlapping those images along with implementing the Structure from
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Motion algorithm provides a 3D database called “Point Cloud”. A dense point cloud is

a valuable database for LAI models because it is not affected by shadows. Secondly, it

provides information about canopy geometry and canopy structure such as canopy height,

canopy surface area, and canopy volume. Although extraction of canopy geometry and

structure from point cloud requires advanced algorithms being developed and run on high-

performance computing systems, it can provide parameters that are physically linked to

the definition of LAI (the one-sided green leaf area per unit ground surface area). Our

results showed that the combination VIs and canopy structural information along with a

non-linear fitted model can achieve the most accurate LAI model. However, a significant

effort is necessary to enhance the speed of the computational process.

Concerning the second main input for remote sensing ET models, LST, there is a similar

story about mixed pixel information. Although the mixed information in thermal signals

is more highlighted at satellite pixel resolutions, 50 cm to 1 m resolution of UAVs thermal

imagery can even contain mixed pixels. For example, 50 cm resolution of thermal imagery

in vineyards could be a combination of shaded and sunlit pixels of leaves, soil, and cover

crops. Thus, higher thermal imagery by UAVs is still needed. UAV thermal imagery at the

vine level plays an important role in vine water stress, virus detection, separation of ET into

evaporation and transpiration components, and separation of active cover crops from green

pixels of vines, specifically in the early growing season. In addition to the importance of

higher resolution of UAV thermal imagery for different purposes, higher thermal resolution

of satellites with a daily repeat cycle is imperative. In the operational mode of an irrigation

system such as VRDI, relying on one snapshot every other week from Landsat 8 is not

sufficient. In contrast, LST and ET at 500 m to 1 Km spatial resolution from satellites

providing daily images are not useful for monitoring water consumption at the field level.

One solution to overcome this issue is to develop a reliable downscaling approach providing

higher resolution of thermal imagery using satellites providing daily LST. In the near future,

the availability of more robust downscaling algorithms, data fusion, and data assimilation

will provide reliable daily ET, which is a key for the operational mode of irrigation systems.



156

To sum up, several models can estimate ET using remotely sensed information and

climatic data. Still, providing reliable estimates of LAI and LST, the critical inputs for these

models, is challenging. Satellites will continue playing an essential role in delivering more

frequent geospatial information, particularly LST. Thus, the application of downscaling

methods on daily LST images will be more pronounced. On the other hand, more advanced

and cheaper UAVs and sensors will be developed to carry heavier sensors and batteries and

to cover more than 10,000 acres in a single flight. Also, faster algorithms that take advantage

of the point cloud, LiDAR, high-resolution imagery, and machine learning algorithms will

be developed to model LAI. Thus, satellites and UAVs will be used together to advance

ET models from the “experimental version” to the operational mode for more accurate

irrigation scheduling
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