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statistical species distribution models
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Abstract

BACKGROUND: Forecasting the spread of emerging pests is widely requested by pest management agencies in order to prior-
itise and target efforts. Two widely used approaches are statistical Species Distribution Models (SDMs) and CLIMEX, which uses
ecophysiological parameters. Each have strengths and weaknesses. SDMs can incorporate almost any environmental condition
and their accuracy can be formally evaluated to informmanagers. However, accuracy is affected by data availability and can be
limited for emerging pests, and SDMs usually predict year-round distributions, not seasonal outbreaks. CLIMEX can formally
incorporate expert ecophysiological knowledge and predicts seasonal outbreaks. However, the methods for formal evaluation
are limited and rarely applied. We argue that both approaches can be informative and complementary, but we need tools to
integrate and evaluate their accuracy. Here we develop such an approach, and test it by forecasting the potential global range
of the tomato pest Tuta absoluta.

RESULTS: The accuracy of previously developed CLIMEX and new statistical SDMs were comparable on average, but the best
statistical SDM techniques and environmental data substantially outperformed CLIMEX. The ensembled approach changes
expectations of T. absoluta's spread. The pest's environmental tolerances and potential range in Africa, the Arabian Peninsula,
Central Asia and Australia will be larger than previous estimates.

CONCLUSION: We recommend that CLIMEX be considered one of a suite of SDM techniques and thus evaluated formally. CLI-
MEX and statistical SDMs should be compared and ensembled if possible. We provide code that can be used to do so when
employing the biomod suite of SDM techniques.
© 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Supporting information may be found in the online version of this article.
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1 INTRODUCTION
With increasing globalisation of trade and transport networks, the
number of invasive pest species introduced around the world is
continually increasing.1,2 Pest managers at local, national and
global scales often want to know how far an emerging, intro-
duced pest species will ultimately spread. This information can
help prioritise species for funding and management, and alert
growers to the potential arrival of a pest in time to mitigate the
consequences.3 A pest species’ potential range can be estimated
on the basis of the environmental conditions it can tolerate.4 Per-
haps the most common approaches to predict pest ranges are
statistical Species Distribution Models (SDMs) and CLIMEX.
Although the two approaches share similar principles, often they
are seen as fundamentally different.5 Thus, there has been little
comparison of their results, and no formal means for comparing
or integrating predictions.

Statistical SDMs calculate the statistical relationship between
the locations where a species is recorded and the environmental
conditions at those locations.6 This approach has benefits and
drawbacks. First, the accuracy of the relationship and the projec-
tion of the pest's potential geographical range, is usually formally
evaluated using data on the species’ distribution separate to data
used to calculate models.7 This could include the species’ distribu-
tion in a separate geographical region or time period,8,9 although
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commonly a ‘semi-independent’ subset of the data within the
same region or time is used.6 This provides a standardised means
of evaluating confidence in the SDM projection, and for compar-
ing between models, species or locations.6,10 Formal evaluation
ensures that models are not overly complex, which would reduce
their ability to accurately project distributions beyond species’
current ranges, and thus is particularly important for introduced
pests.9 Second, the accuracy of statistical SDMs can be affected
by the number of species distribution points available, meaning
that emerging pest species with few known presences cannot
be effectively modelled11,12 (although see13). However, SDMs
appear to be particularly informative for species that are wide-
spread and well known in their historic range,9 which often is
the case for introduced pest species. Third, growth in the use of
SDMs has been near-exponential,6 and several well-established
statistical modelling techniques are widely employed.14,15 How-
ever, this growth has not necessarily been accompanied by
growth in the adequacy the SDMs developed.6 Fourth, statistical
SDMs can use a broad variety of environmental variables, includ-
ing – but not limited to – climate, soil, land-use and anthropo-
genic disturbance. This can be crucial when large parts of
species’ distributions are not governed by climate, including crop
pest species that are restricted to areas where their host crop is
grown. Fifth, in theory statistical SDMs could be constructed with-
out expert knowledge of the species’ ecology or in-depth under-
standing of the environment in the projection range. However
in practice, the importance of environmental parameters for the
study species, the shape of its responses to the environment,
and visual checks of the ecological feasibility of the projected dis-
tribution all are important and used widely for model evaluation.
Sixth, statistical SDMs are best suited to modelling the ranges that
species will occupy over several years, rather than during a given
year or season, because the distribution data on which SDMs rely
are rarely recorded with the temporal accuracy to distinguish suit-
ability between years or seasons. However, with sufficient data on
pest reproduction or survival at different times of year, seasonal
forecasts would be possible.
CLIMEX is applied almost exclusively to agriculturally problem-

atic species including pest insects, weeds and crop diseases.16–
19 As with statistical SDMs, CLIMEX uses the principle that a spe-
cies’ observed distribution informs the environment in which it
can survive.16 However, CLIMEX characterises the relationship
between environment and distribution using ecophysiological
parameters that govern species survival and population growth
rate under four stress indices: Cold, Hot, Wet and Dry.5,19 It is
recommended the parameter values are based on prior knowl-
edge of the species’ ecology, and fine-tuned by visually compar-
ing the projected distribution with the species’ known presence
and absence.16 However, some statistical fitting is possible, using
a Genetic Algorithm.16 Benefits particular to CLIMEX are that
models can be constructed with few distribution data, supple-
mented by expert knowledge on the ecology of the pest species
or a similar species. This could be particularly useful when the
potential range of a suddenly emerging pest must be projected
urgently, but the pest's historical distribution is unknown. CLIMEX
is employed via a Graphical User Interface (GUI), which may be
easier to master than R, the statistical software usually used to
fit statistical SDMs (although at least one widely used SDM
technique, Maxent, also has a GUI15). CLIMEX can model environ-
mental suitability for species on a seasonal basis, with a maximum
temporal resolution of one month. This feature is helpful to
distinguish where species can survive from where they can

reproduce,19 and is particularly helpful to predict pest out-
breaks.20 However, species distribution data rarely are available
for particular seasons, so it is not usually possible to assess the
accuracy of these predictions using semi-independent data
(below). A drawback to CLIMEX is that the environmental vari-
ables that can be used to parameterise models are limited to cli-
mate, a single physical substrate and a single biotic substrate,
and the relationships between substrate and pest population
growth rate must be user-defined rather than estimated via
modelling.21 Other variables can be used to restrict the distribu-
tion in a post hocway (as also could be donewith statistical SDMs).
CLIMEX v4 comes loaded with a 100 and 300 gridded global terres-
trial climatology centred on 1975, and a future climate scenario
centred on 2080, which draw on climate data from Worldclim
and the Climatic Research Unit.16,22 However, CLIMEX can include
irrigation in its climate data, which is a unique advantage for agri-
cultural species.
A particular contrast with statistical SDMs is the way in which

model accuracy is assessed. CLIMEX model-fit can be assessed
with the CLIMEX Information Criterion (CXIC).16 CXIC combines
the proportion of presences where the environment is projected
to be suitable (‘sensitivity’) and the size of the geographical area
predicted suitable (‘prevalence’) as well as some (by default very
small) contribution from model complexity. The area predicted
to be suitable, but where the pest is absent (‘specificity’), is not
included, meaning that there is no formal penalisation against
overpredicting the suitable range. The purpose of CLIMEX and sta-
tistical SDMs is very often to project species’ potential future
ranges, and thus they may over-predict a species’ current range.
However, there are several reasons why incorporating specificity
into evaluations is still important. First, a CLIMEX model could be
made to maximise sensitivity by over-predicting the species’
potential range (i.e. making specificity really low), which would
render the prediction uninformative. Second, the user is deter-
mining sensitivity and specificity when tweaking CLIMEX parame-
ters to show the ‘best fit’, so it is crucial that the results of this
procedure can be reported transparently. Third, the trade-off
between sensitivity and specificity tells us how well models
discriminate suitable and unsuitable habitat. If a model can
achieve high sensitivity only at a suitability threshold where sen-
sitivity is very low, then we should not have much confidence in
its ability to discriminate suitable and unsuitable habitat. This
may occur in particular for species in the early stages of range
expansion, and although it may still be appropriate to predict a
species’ future range, we cannot be highly confident in our pre-
dictions. Reporting specificity and related statistics is an impor-
tant and comparable way of evaluating confidence in model
discrimination.
CLIMEX offers some capability for qualitative comparison of sen-

sitivity and specificity with semi-independent data, by running
the Compare Locations tool against a previously unused set of
species distribution data and visualising how well the map of suit-
able areas matches the distribution (‘cross-validation’). It also is
possible to analyse how much influence a particular ecophysio-
logical parameter has on the projections. However, in practice it
is not clear how often evaluation statistics or formal cross-
validation tools are employed. For example, the three key papers
that present CLIMEX projections of the range of the pest insect
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), do not report
CXIC, sensitivity analysis or cross-validation.23–25 A visual assess-
ment of the projected range seems to be the norm. Research
has shown that models achieved by visual and formal model
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evaluation can differ greatly, and expert-projected species distri-
butions can poorly reflect observed distributions.26,27 In addition,
species’ ecophysiological parameters measured in controlled lab-
oratory or field conditions might not accurately project popula-
tion dynamics and, thus, distributions in real-world situations.
For example, irregular temperature fluctuations can change sur-
vival and population growth rates from those measured under
constant or regularly fluctuating temperature.28 Also, precipita-
tion and temperature can have complex interactive effects on
species distributions but ecophysiological responses to these fac-
tors are normally measured seperately.29 Finally, whereas the soft-
ware used to construct statistical SDMs usually is free, using
CLIMEX also can be expensive. As of November 2020 a single user
perpetual license with 12 months maintenance is £940 for com-
mercial or government use, although ‘developing country’ dis-
counts are mentioned.16 The key areas of difference between
statistical SDMs and CLIMEX relevant to this study are summarised
in Table 1.
In practice, statistical SDMs and CLIMEXmay project very similar

species distributions.30 However, differences can be particularly
apparent near the edge of species’ projected ranges and esti-
mated environmental tolerances.30 It often is in these marginal
areas where uncertainty about the pest's impact is greatest, and
models of environmental suitability are most needed. For exam-
ple, the pest risk assessment for Spodoptera frugiperda in Europe
was strongly dependent on whether areas fell just inside or just
outside the species’ potential range.30 In light of this requirement,
it would be helpful to have a formal and standardised basis for
comparison between CLIMEX and statistical SDMs.
A pest for which we urgently need to understand the eventual

global distribution is T. absoluta. Native to South America, this
species is arguably the most important pest of tomato, although
it can feed and develop on other members of the Solanaceae.
Outside its native range, T. absoluta was first reported in Spain
in 2006, and has since spread to different parts of the world. The
biology and ecology of T. absoluta and its worldwide spread has
been well-documented for the Afro-Eurasian region,31 for the
Mediterranean Basin,32 and for Africa.33 Crop damage is caused
when the larvae penetrate the leaf and feed on the mesophyll.
This results in irregular mines on the leaf surface, decreasing the
photosynthetic capacity of the plant and its ability to defend itself
from other harmful agents. The larvae, at high densities, will bore
into the stem and fruits. The pest also feeds directly on the grow-
ing tip of the plant, which halts the development of the plant,
directly compromising the yield of the crop.23,34 The mines and
galleries in the stems and fruits become entry routes for second-
ary infection by pathogens. Yield losses of ≤50–100% have been
reported23 as a result of the direct and indirect damage. Approxi-
mately 21.5% of surface cultivated (0.95 million ha) and 27.2% of
tomato production (41 million t) had been infested by
T. absoluta between 2006 and 2011.35

We develop a means to formally assess confidence in CLIMEX
projections and integrate with projections from statistical SDMs
(GitHub repository: https://github.com/Fabiogeography/biomod_
climex). This approach would be of use to pest management
agencies who wish to understand the uncertainty associated with
multiple valid methods of range forecasts, and the geographical
areas on which they agree. This information would either reassure
that predictions are sensible, or illustrate areas of uncertainty where
further research is needed. We develop new statistical SDMs and
use a CLIMEX model developed by experts on T. absoluta.23–25

We compare the accuracy of both in fitting the distribution of

T. absoluta, demonstrate how the results can be ensembled into a
consensus prediction, and project the potential year-round global
range of the pest.

2 METHODS
2.1 Environmental variables
We considered the following environmental variables for inclu-
sion in statistical SDMs. Raster layers for all variables are included
in this paper's github respository.

• Gdd14, annual growing degree days above 14 °C. A certain
number of days above the developmental threshold is needed
to complete T. absoluta's life cycle.36 14 °C was found to be the
developmental threshold.31 Other papers have found lower
developmental thresholds (e.g. 6.7–9.8 °C).36 However, the pre-
cise specification of the lower developmental threshold is not
very important, as the growing degree days above any thresh-
old are closely correlated. We calculated Gdd14 by multiplying
the number of months where the mean monthly temperature
was >14 °C by 30.

• minTCM,minimum temperature of the coldestmonth. T. absoluta
is fairly cold-tolerant, with 50% larval, pupal and adult survival at
0 °C (for 11.1, 13.3 and 17.9 days, respectively).31 However, there
is a limit below which a population is not viable because the
life cycle cannot be completed. For example adults were not
obtained at 10 °C.36,37 A previous SDM using Maxent found
minTCM to be important.38

• maxTWM, maximum temperature of the warmest month.
T. absoluta faces an upper development temperature thres-
hold of 37–43 °C,31,36,39 and an optimum temperature for
fecundity.36

• meanTWQ, mean temperature of the wettest quarter. The wet-
test quarter is often the growing season for crops, and so tem-
perature during this period could dictate the maximum rate of
population growth during the year. A previous SDM using Max-
ent found meanTWQ to be important.38

• MAP, Mean Annual Precipitation. Too much precipitation is
thought to limit T. absoluta's range more than too little precip-
itation.24 T. absoluta is widespread in the savannahs of central
Brazil that have low relative humidity, but its development is
limited in areas with intense precipitation throughout the year
(i.e. northwest Brazil).25 There also was a drastic decline
observed during the rainy season in open tomato fields in
Senegal, and number of rainy days over past month decreased
the species’ occurrence.40 The negative effect of heavy rainfall
could be indirect – merely a consequence of lack of tomato
crops during the rainy season – and it is possible that popula-
tions could persist in aubergine crops during wet seasons.
Low MAP also has indirect importance. If the host plant is
affected by drought, then juvenile survival and growth rate
suffer.31

• Forest, the proportion of each 10 arc-min grid-cell that is cov-
ered by trees. This variable was used to exclude areas where
no crops are grown, and thus crop pests could not survive, even
if climate were suitable for them. Climatically suitable, unoccu-
pied, areas often occur because land-use is not suitable and if
not accounted for can substantially affect the accuracy of statis-
tical SDM projections.41 Without the forest variable, climate
conditions alone may be less able to discriminate between suit-
able and unsuitable locations. We used forest rather than crop
or pasture land because forest is relatively easier to delineate
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than grassland using satellite data.42 Forest was included only
in statistical SDMs, as no CLIMEX model has included this or a
similar variable.

Climatic variables were derived from the CliMond dataset at
10 arc-min resolution and centred on 1975.22 This dataset comes
pre-loaded in CLIMEX, and thus is likely to be the most commonly
used with that software. The proportion of forest cover was drawn
from the European Space Agency's Global Land Cover 2000 pro-
ject. Forest cover was supplied at 1 km resolution and was aggre-
gated to the same 10 arc-min resolution as CliMond.
If correlations between environmental variables are high, the

explanatory power of SDMs can be inflated. Variables with Pear-
son's correlation coefficient ≥ 0.7 normally are considered to
covary too strongly to be used.43 The correlations between
minTCM and Gdd14, and between meanTWQ and minTCM and
Gdd14 exceed this threshold. There is no clear rationale for
why one of these variables would be more meaningful for

T. absoluta's distribution than the other. We therefore ran SDMs
with three sets of variables: (i) MAP, Forest, minTCM, and
(ii) MAP, Forest, gdd14, (iii) MAP, Forest, maxTWM, meanTWQ.
We used cross-validation on semi-independent data (see below)
to decide which set of variables best explained T. absoluta's distri-
bution. We note that a useful alternative approach is to use PCA to
remove correlations between explanatory variables.44 However,
this approach prevents straightforward interpretation of the
effects of each environmental variable on the species, and would
have limited comparison with CLIMEX.

2.2 Distribution data
Presence data were obtained from the following:

• GBIF.org accessed 6 December 201845

• Papers from the primary literature obtained using key-
words Tuta absoluta, which yielded 511 records on Web of

Table 1. Key areas of contrast between CLIMEX and statistical SDMs that affect their utility and accuracy for modelling the ranges of introduced crop
pest species

Statistical SDMs CLIMEX

Software cost Usually free Single user perpetual license with 12 months
maintenance for commercial or government
use is £940

User skills required Familiarity with statistical programming language
often required, though a GUI is available for
some approaches.

Applied using a GUI

Possible to execute without detailed species life
history data, but knowledge of the species’
ecology is good practice and improves the
modelling process.

Knowledge of species ecophysiology and life
history.

Possible to execute without familiarity with
climatic patterns and biogeography of study
region, but such knowledge is good practice
and improves modelling process.

Familiarity with climatic patterns and
biogeography of study region needed to
‘tweak’ parameters.

Method for maximising discrimination
between suitable and unsuitable
environments and assessing
confidence in results

Formal evaluation using semi-independent data
on the species’ distribution offers a
standardised and rapid means of model
comparison and interpretation. Most evaluation
methods utilise specificity.

Often visual. CLIMEX Information Criteria (CXIC)
used to perform automated Genetic Algorithm
approach to select parameter values. CXIC uses
size of area projected suitable rather than
specificity. Sensitivity analysis to check
influence of parameters is possible, but this
does not evaluate model discrimination or
directly assess confidence.

Distribution data requirements Accuracy improves with number of occurrences. Accuracy improves with number of occurrences.
Can be supplemented with knowledge of
species’ ecophysiology and life history, if
confident that parameters measured in
controlled environments reflect values in the
field.

Environmental variables Any continuous or categorical variables of any
spatiotemporal resolution and source.

Climate, physical substrate and biotic substrate
can be parameterised and explicitly included in
CLIMEX projections.

Time frame of projections Typically projects environmental suitability for
establishment of year-round populations,
although seasonal projections would be
possible if sufficient data on survival or
reproduction in different seasons existed.

Can project environmental suitability for
establishment of year-round or seasonal
(maximum temporal resolution is monthly)
populations, although often not possible to
validate seasonal projections with semi-
independent distribution data.
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Knowledge's Core Collection. 50 of these yielded presence data,
which we georeferenced.

• Ivan Rwomushana's personal work in Uganda (unpub-
lished data)

• Household surveys undertaken by CABI in Kenya and Zambia,
available on CABIs open access CKAN data repository, https://
ckan.cabi.org/data/dataset?groups=tomato-leafminer,
accessed December 2018.

• Papers sourced through CABI's Crop Protection Compendium
• Russel IPM's website tutaabsoluta.com (coordinates taken from
the HTML code as the map function was not working at the
time of download)

Data that were or could be georeferenced within a 10 arc-min
grid-cell were included. Records from glasshouses, inaccurate
locations, or known to be far outside the area where T. absoluta
can establish year-round outdoors populations were excluded
(blue crosses, Fig. 1). If multiple presences fell into the same
10 arc-min climate grid-cell, then this was considered a single
presence. This resulted in 340 presence data points (Fig. 1). Distri-
bution data extracted from the literature and utilised in this study
(before filtering to one presence per grid-cell) are in Supporting
information Table S3.
It is unusual to have verified data on locations where a species is

absent. Therefore statistical SDMs often use ‘pseudo-absences’,
where it is reasonable to believe the species is absent. To con-
struct statistical SDMs and test the predictive accuracy of all
approaches we sampled four sets of 340 pseudo-absences within
the geographical background shaded in Fig. 1. This background
corresponds to the native and long-term invaded range, and con-
sisted of the following:

• South American countries in which T. absoluta is native and
recorded (red). This restriction reduces the probability of draw-
ing pseudo-absences from regions where the species is found,
but has not been recorded. These are termed ‘false absences’,
and would make it difficult for models to distinguish between
suitable and unsuitable climate.

• Countries T. absoluta invaded during or before 2015 (yellow).
Invasive species can take time to spread to all the areas climat-
ically suitable for them (called reaching ‘equilibrium’46). In
recently invaded countries T. absoluta may be absent from
some areas because the species has not yet reached equilib-
rium, and drawing pseudo-absences from these regions would
be ‘false absences’ (see above). We included Zambia in the
invaded countries. Although T. absoluta did not reach Zambia
until 2016, it has been sampled intensively and it is clear that
T. absoluta has reached equilibrium there.47 Countries invaded
during/before 2015 includes countries in which T. absoluta
occupies glasshouses, but does not have year-round popula-
tions outdoors (i.e. in Europe). If T. absoluta is not present out-
doors year-round in these countries there is a strong chance
this is a result of climatic unsuitability. By placing pseudo-
absences in these countries we tested the hypothesis that
Europe is climatically unsuitable (i.e. if SDMs find a clear differ-
ence between pseudo-absences in Europe and presences in
the year-round range).

• Central America and the lower 48 US states (blue). These areas
are geographically close to the native range and trade fruit
and vegetables regularly with countries where T. absoluta is
found. Thus it is highly likely that T. absoluta has had the oppor-
tunity to establish populations in this region, but has been pre-
vented from doing so as a consequence of environmental

Figure 1. Presence locations used to make models. See text for explanation of shading. Black points, known presences in the models; blue crosses, not
used as they were records from glasshouse or inaccurate locations, or known to be far outside the area where T. absoluta can establish year-round out-
doors populations. Shaded countries were used as background (see methods).

Statistical and CLIMEX species distribution modelling www.soci.org

Pest Manag Sci 2021 © 2021 The Authors.
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

wileyonlinelibrary.com/journal/ps

5

https://ckan.cabi.org/data/dataset?groups=tomato-leafminer
https://ckan.cabi.org/data/dataset?groups=tomato-leafminer
http://tutaabsoluta.com
http://wileyonlinelibrary.com/journal/ps


unsuitability. Placing pseudo-absences in these countries tests
the hypothesis that they are climatically unsuitable.

The geographical background did not include countries further
from the species’ native and invaded range in order to prevent
the modelling from contrasting completely different climate con-
ditions (e.g. very cold versus warm). This very coarse contrast
would only yield the information that T. absoluta can live in
regions with a broadly tropical climate, and has been shown not
to be informative.48–50

Following experimentation with several pseudo-absence place-
ments, pseudo-absences were excluded from a 500 km buffer
around the presence locations. When pseudo-absences were
allowed to fall closer to observed presences models could not dis-
criminate between suitable and unsuitable environments. This
was likely because the pseudo-absences were false absences:
thus, T. absoluta occupied some of the pseudo-absence locations,
but was not recorded there. Excluding pseudo-absences from the
buffer could somewhat reduce the precision of models in distin-
guishing suitable from unsuitable climate. This may affect the pre-
cision of the forecast of the edges of T. absoluta's distribution, but
not the accuracy with which the majority of the species’ range is
projected. However, the improvement in accuracy of statistical
SDMs when excluding pseudo-absences from a 500 km buffer
demonstrated the benefit of this approach outweighed the
downside.

2.3 Constructing statistical SDMs
We used 10 different SDM techniques: artificial neural networks
(ANN), classification tree analysis (CTA), flexible discriminant anal-
ysis (FDA), generalised additive models (GAM), generalised
boosted regression models (GBM), generalised linear models
(GLM), multivariate adaptive regression splines (MARS), maximum
entropy (MAXENT15), random forest (RF) and surface range enve-
lope (SRE; note that this does not use pseudo-absence data to
construct models). More details in Table S3. Analyses were under-
taken in R51 using the BIOMOD214 and MODEVA52 packages, and
default BIOMOD2 settings.

2.4 Variable importance in statistical SDMs
The importance of environmental variables for T. absoluta's range
was calculated using all of the distribution data in a given dataset
and using all models. For any given environmental variable, that
variable was randomised, an SDM was made with the shuffled
dataset and the Pearson's correlation (r) calculated between the
SDMs with original and shuffled data. Importance is calculated
as 1 – r, so a value 0 indicates the variable has no influence on
the SDM. This was repeated for each SDM technique.

2.5 Constructing CLIMEX models
CLIMEX models have been constructed for T. absoluta by three
peer-reviewed publications.23–25 The later publications refined
the earlier models. This high level of scrutiny suggested that it
seemed unlikely we could improve on the most recently pub-
lished model, and we therefore obtained the parameter values
from the most recent publication25 (Table S1). We used these
parameters and the ‘Compare Locations (1 species)’ tool to pro-
ject the Ecoclimatic Index (EI) for T. absoluta22 across all terrestrial
grid-cells. The EI is an overall measure of favourableness of the
location for year-round occupation by the target species, on a
scale of 0–100, where 100 is most favourable. Therefore, EI is anal-
ogous to the potential distributions projected by statistical SDMs.

To compare directly to statistical SDMs, we converted the EI to a
0–1 numerical scale.

2.6 Semi-independent evaluation of statistical SDMs and
CLIMEX
The AUC (Area Under the receiver operating Curve) measures the
trade-off between sensitivity (predicting as suitable the places the
species can live), and specificity (predicting as unsuitable the
places where the species cannot live). An AUC value near 1 means
the model can do both of these things simultaneously. Accuracy
of the statistical SDMs was evaluated by the cross-validation
AUC, splitting each of the presence and pseudo-absence datasets
randomly so that 70% of the points were used to ‘calibrate’ the
models. These models were used to predict the suitability at the
30% remaining ‘evaluation’ distribution data points, and the
AUC calculated. Accuracy of the CLIMEX model was calculated
as the AUC when the projection was compared against each of
the four complete presence and pseudo-absence datasets in Dis-
tribution Data, above. We focus on AUC here, but other metrics
employ sensitivity and specificity: Cohen's kappa and the True
Skill Statistic (TSS).53 Those metrics require a suitability threshold
to be specified, and there is no single best way to determine the
best threshold. Therefore, in this paper we focus on AUC, but
the code we supply offers the option to use kappa or TSS, and
additional options can be implemented. Because area predicted
suitable often is used to evaluate CLIMEX, the ensemble.R code
we provide calculates this for all projections.

2.7 Comparing results between environmental datasets,
statistical SDMs and CLIMEX
In order to compare the statistical SDM results from each environ-
mental dataset, we made a single, ensemble statistical SDM pre-
diction for each variable set. It often is not advisable to obtain
projections from a single statistical SDM technique that gives
the highest AUC value, because the evaluation data may not be
completely independent from the calibration data and this can
inflate the AUC.9 There is no statistical SDM technique that is a
priori better than others, and the SDM techniques used have all
been shown capable of producing highly accurate models whilst
still making very different projections.54–56 In these circumstances
it is common to ensemble the results from several SDM tech-
niques. This is based on the principle that the ‘signal’ emerges
from the ‘noise’ associated with individual model errors and
uncertainties,54,57 and ensembling can have superior predictive
performance to individual models.58 In order to produce an easily
interpretable result we therefore created an ensemble projection
for each combination of environmental variables.
In order to construct the ensemble, we selected statistical SDM

techniques for which the cross-validation AUC >0.8.59 Models
with AUC >0.8 are considered to have ‘good’ performance
(greater than ‘fair’, but less than ‘excellent’60). However, to con-
struct the ensemble we constructed statistical SDMs using all
presence and pseudo-absence points. This was to ensure that
when a technique yielded good accuracy, all of the data then
were included to maximise the information in the final model.
We repeated this for each environmental dataset. The ensemble
consensus prediction was the mean suitability projected by all
selected statistical SDMs weighted by the mean predictive accu-
racy (AUC) of each model (methods described above; Fig. 2).
We mapped the disagreement between CLIMEX and the

ensemble statistical SDM projections from each environmental
dataset by subtracting the SDM projection from the EI (scaled
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from 0–1). In order to visually compare projections at range edges
from statistical SDMs and CLIMEX we also used thresholds to con-
vert the ensemble SDMmaps of continuous suitability to maps of
the areas where environment is suitable or unsuitable for
T. absoluta. Projections from both approaches are commonly
visualised in this way, yet it should be noted that using a threshold
adds another level of uncertainty to results,61 and can trick the
viewer into thinking that the exact potential range margin can
be projected more precisely than is really the case. Thresholds
were calculated by comparing the continuous suitability map
against presence and pseudo-absence data, and selecting suit-
ability thresholds where a certain proportion of presence and
pseudo-absence data were accurately projected to be suitable
or unsuitable respectively. No single threshold can be said to be
most accurate,62–64 and we investigated four threshold
approaches based on sensitivity (the proportion of presences pro-
jected to be in a suitable environment) and specificity (the propor-
tion of pseudo-absences projected to be in an unsuitable

environment). The thresholds were the suitability value that
(i) fixed sensitivity at 95%, (ii) fixed sensitivity at 90%,
(iii) maximised the sum of sensitivity and specificity, and
(iv) minimised the difference between sensitivity and specificity.
To calculate the thresholds, all 340 presences were used and
100 sets of 340 pseudo-absences were generated as described
above. The thresholds were the averages of the values calculated
for all of the 100 sets of pseudo-absences. Thresholds were
applied to CLIMEX predictions using values of EI = 0 (unsuitable),
0 < EI < 30 (marginally suitable) and EI > 30 (highly suitable),
following.25

2.8 Best projection of T. absoluta global, year-round
distribution
We selected the environmental dataset for which statistical SDMs
yielded the highest mean cross-validation AUC, the statistical
SDMs for which cross-validation AUCs were>0.8, and constructed
an ensemble of these models. We also included CLIMEX in the

Figure 2. Variable importance as calculated in statistical SDMs. Importance is calculated as 1 – r, where r is the Pearson's correlation calculated between
the SDMs with original and shuffled data, so a value 0 indicates the variable has no influence on the SDM.

Table 2. Summary statistics for all the models made, along with standard interpretations of the values in parentheses

Model technique

Mean AUC (± SD)

Model 1. minTCM, MAP, Forest Model 2. Gdd14, MAP, Forest Model 3. maxTWM, MAP, Forest, meanTWQ

GLM 0.63 (±0.02) Poor 0.59 (±0.06) Fail 0.84 (±0.02) Good
GAM 0.66 (±0.03) Poor 0.66 (±0.05) Poor 0.89 (±0.02) Good
SRE 0.97 (±0.01) Excellent 0.97 (±0.02) Excellent 0.93 (±0.03) Excellent
RF 0.71 (±0.02) Fair 0.74 (±0.03) Fair 0.91 (±0.02) Excellent
ANN 0.59 (±0.09) Fail 0.66 (±0.09) Poor 0.83 (±0.04) Good
FDA 0.64 (±0.03) Poor 0.65 (±0.05) Poor 0.9 (±0.02) Excellent
MAXENT.Phillips 0.82 (±0.05) Good 0.83 (±0.04) Good 0.84 (±0.04) Good
CTA 0.82 (±0.03) Good 0.81 (±0.04) Good 0.89 (±0.03) Good
GBM 0.84 (±0.02) Good 0.84 (±0.01) Good 0.91 (±0.02) Excellent
MARS 0.75 (±0.02) Fair 0.74 (±0.02) Fair 0.81 (±0.02) Good
CLIMEX 0.74 (±0.01) Fair 0.74 (±0.01) Fair 0.75 (±0.01) Fair

Note that although the CLIMEX model tested was the same in all three columns, the mean AUC varies very slightly because different presence/
pseudo-absence datasets were used.
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Figure 3. Agreement between SDMs in the consensus projections (which include CLIMEX) and CLIMEX alone. CLIMEX's Ecoclimatic Index was divided by
100 to produce projections on the same numerical scale as the SDMs. Agreement was calculated by subtracting the SDM value from the CLIMEX values.

Figure 4. Environmental suitability for T. absoluta projected using the consensus SDM projections as in Fig. 2, with suitable and unsuitable areas distin-
guished using the threshold that maximises the sum of sensitivity and specificity (Table 2). Thresholds were imposed on CLIMEX as used previously.25
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final consensus projection despite it receiving an AUC score <0.8.
This is because parameters used in the CLIMEX model have been
refined by three different sets of authors. Thus a broad range of
experts are confident that the CLIMEX parameters used here rep-
resent the physiology of T. absoluta. As with statistical SDMs, the
CLIMEX projection was weighted using the AUC score of the pro-
jected distribution. Uncertainty was calculated as the coefficient
of variation between the individual models in the ensemble.

3 RESULTS
For SDMsmade with gdd14 and with minTCM (variable sets 1 and
2; Table 2), some SDM techniques yielded good results
(AUC > 0.8), whereas others were notably poor (AUC < 0.7).

Evaluation statistics were far more encouraging for variable set
3, which includes meanTWQ (AUC > 0.8 for all SDM techniques).
Additionally, the global projection map (Fig. S1) shows a clearer
distinction between suitable and unsuitable conditions using var-
iable set 3 than variable sets 1 and 2. meanTWQ appeared to have
a strong effect on the results (Fig. 2). This evidence suggests that
variable set 3 (maxTWM, MAP, Forest, meanTWQ) is the most
accurate and informative.
CLIMEX gave a ‘fair’ AUC value of 0.74, which is fairly central

within the range of values from the statistical SDM techniques
and variable sets 1 and 2, but strikingly lower than those from var-
iable set 3 (Table 2).
Statistical SDMs found that precipitation and temperature dur-

ing the rainy season (MAP and meanTWQ) are key determinants

Figure 5. Best projection of year-round suitability for T. absoluta, based on variable set 3 ensemble SDM including CLIMEX.
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of T. absoluta's observed range (Fig. 2). Neither minTCM nor
gdd14 were particularly important. Forest was particularly impor-
tant within variable sets 1 and 2, and notably unimportant in var-
iable set 3 (Table 2).
The agreement between the continuous ensemble statistical

SDM projections and CLIMEX results were highest for variable
set 3 (Fig. 3). The threshold that maximises sum of sensitivity
and specificity was chosen to visually compare the range margins
projected by different environmental variable sets and from sta-
tistical SDMs and CLIMEX (Fig. 4). This threshold yielded the high-
est specificity (far higher than the thresholds that fixed sensitivity
at 5 or 10%, Table S2), and equal, higher or very slightly lower sen-
sitivity than the threshold that minimises difference between sen-
sitivity and specificity (Table S2). Although the selected threshold
yielded substantially lower sensitivity than the fixed sensitivity
thresholds, those thresholds yielded such low specificity that
they would project large areas to be suitable that are not in fact
suitable, and were far beyond the areas CLIMEX projected to
be suitable. The continuous ensemble statistical SDM projections
of global suitability from each set of environmental variables and
from CLIMEX are shown in Fig. S1.
The best, ensemble projection of the ultimate global distribu-

tion of year-round populations of T. absoluta was based on CLI-
MEX and statistical SDMs using variable set 3 (Fig. 5).

4 DISCUSSION
All results suggest that T. absoluta has further to spread globally,
particularly in southern and East Asia, Australia and Central Amer-
ica. Ensemble statistical SDMs with all environmental variable sets
projected suitable conditions in the eastern part of South Amer-
ica, in Central America and the southern USA, in southern Europe,
North Africa, the Arabian peninsula, India, a strip of Africa below
the Sahara, and eastern and southern Africa (Figs 3, S1). However,
ensemble statistical SDM projections disagreed over the extent of
suitable conditions in China, Australia, South Africa, northern
Europe and Central Asia (Figs 3, S1). The best, ensemble projection
suggests that the ultimate global distribution of year-round popu-
lations in Indiamay be limited to the west, in Chinamay be limited
to the south and west, in Australia may be limited to the south,
and in Europe may be fairly widespread in the south and west.
Uncertainty (disagreement between SDM techniques) is highest
in areas where T. absoluta is very unlikely to establish
(i.e. northern areas), where it appears one of the selected SDM
techniques erroneously projected suitable climate [Fig. 5(b)].
Agreement is extremely high in all areas where suitability is pre-
dicted to be high. Although agreement amongst techniques does
not directly indicate accuracy, it indicates that multiple ways of
linking the species’ distribution to the environmental variables
give similar results, and thus that there are clear relationships
between distribution and environment.
Environmental variable set 3 performed notably better than the

other variable sets. This variable set found precipitation to be
notably less important than temperature related variables
(Fig. 2). The fact that variable set 3 also found forest to be less
important than climatic variables suggests that temperature in
the wettest quarter is a crucial variable for T. absoluta. Thus, when
temperature in the wettest quarter is omitted, the difference in
forest between presence and pseudo-absence locations becomes
more important. It therefore appears that statistical SDMs without
meanTWQ can poorly discriminate T. absoluta's distribution, and
these models were largely distinguishing forested and unforested

areas. This supports previous findings25 that including Hot-Wet
stress in CLIMEX improved the model substantially. This is likely
to be because T. absoluta's development is hindered if periods
of high temperature, particularly with coincident high precipita-
tion, as happens in northern areas of Brazil.25

Neither minTCM nor gdd14 were particularly important in any
variable set (Table 2), suggesting that T. absoluta's observed distri-
bution currently is not strongly limited by cold conditions. This
also matches a CLIMEX model25 that dropped the lower optimum
temperature (DV1) from 20 °C in previous CLIMEX models to 14 °
C based on the experimental findings.65 Santana et al.25 also
dropped the cold temperature stress accumulation rate (THCS)
by an order of magnitude compared to previous models, suggest-
ing that cold periods only affect T. absoluta if they last longer than
thought previously. Moreover, recent evidence has emerged that
T. absoluta can enter facultative diapause, which is further evi-
dence that cold temperatures do not limit its current range. How-
ever, the spread beyond the background region may well be
limited by cold winters.
The strikingly different results from different environmental vari-

able sets, both in projections and variable importance, underlines
the importance of formally evaluating the fits of multiple models
and datasets. A previous SDM using Maxent found the minimum
temperature of the coldest month to be important.38 However,
the difference in results between variable sets, low importance of
minTCM and gdd14, and previous findings25,65 suggest that low
temperatures are not important limiters of T. absoluta's current
range. Here, Maxent performed better than some other techniques
when using minTCM (Table 2), suggesting that the importance of
this variablemay possibly be related to technique, and that the pre-
vious Maxent predictions38 may not be accurate.
Results from variable set 3 agreedmore closely with CLIMEX than

did results from variable set 1 or 2 (Fig. 3). The areas projected as
suitable by CLIMEX and the consensus statistical SDMwith variable
set 3 largely coincide in South and Central America, southern
Europe, and parts of Australia and East Africa (Figs 3, S1). The most
concerning areas of disagreement are in southern Brazil and
Uruguay, where six T. absoluta presence points fall into areas with
disagreement ∼0.3 and one ∼0.4. CLIMEX predicts suitability to
be notably higher than statistical SDMs in these areas [Fig. 3(c)].
This could suggest that statistical SDMs are measuring some envi-
ronmental conditions as unsuitable for T. absoluta which the spe-
cies can actually tolerate. However, this does not seem to lead to
underprediction elsewhere; rather, projections from the statistical
SDM ensemble with variable set 3 appeared to bemore in line with
T. absoluta's distribution than those of CLIMEX. In particular, there
are T. absoluta presence points elsewhere in the South American
native range where statistical SDMs predicted substantially higher
suitability than suitability found by CLIMEX (five points with dis-
agreement ∼ −0.3, four with disagreement ∼ −0.4). Outside the
native range T. absoluta is naturalised in areas where the ensemble
statistical SDMs projected much higher suitability than CLIMEX:
North Africa, the Arabian Peninsula and Central Asia [Fig. 3(c)]. This
suggests that CLIMEX is underprojecting species’ potential distribu-
tions in these regions. Other areas where ensemble statistical SDMs
projected higher suitability than CLIMEX are the western USA/Mex-
ico, southern Australia and a strip of Africa below the Sahara. Given
that previous CLIMEX models underpredicted the current distribu-
tion elsewhere, and that the data available when CLIMEX was para-
meterised were more limited than currently available (below), it
seems likely that these regions are indeed suitable and that
T. absolutamay eventually spread there.
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CLIMEX projected much higher suitability than the statistical
SDM ensemble with variable set 3 in areas from which
T. absoluta is absent: much of Central Africa and parts of China,
South America and Southeast Asia (Fig. 4). These areas are heavily
forested (Fig. S2), a variable which could be included in statistical
SDMs but not CLIMEX. These areas may be climatically suitable for
T. absoluta, but not occupied owing to a lack of host plants, and
unlikely to be widely invaded unless deforestation and cultivation
of host plants is intensified. This emphasises the importance of
including nonclimatic variables in distribution projections, partic-
ularly when large parts of species’ distributions are not governed
by climate, for example for crop pests such as T. absoluta that do
not tend to infest densely forested areas. Omitting important non-
climatic variables from any type of distribution model can lead to
spurious relationships with climatic variables.6 CLIMEX can
include features such as forest or host crops in its Compare Loca-
tions via the biotic substrate functionality, if these features can be
coded into the MetManager data file. However, the effect on pest
population growth is user-defined, rather than calculated by the
model, and only a single biotic substrate variable can be included.
In addition, any interaction between environmental variables
(e.g. climate and the presence or density of one or more crops
infested by a pest) cannot be investigated. Statistical SDMs there-
fore have an advantage of being able to estimate the direct and
interactive effects of any relevant, available environmental vari-
able, including host plant data. An alternative to using ‘forest’
would be to use crop maps;66 however, these are currently avail-
able only for themost widespread crop types, and thus not appro-
priate in this case.
CLIMEX projected much higher suitability than the consensus

statistical SDM with variable set 3 in the southeast USA, which is
unlikely to be caused by high forest cover. It may be that efforts
to prevent the invasion of T. absoluta, for example by prohibiting
import of tomato fruits and propagative materials from infested
countries,67 are working.
The CLIMEX model was validated25 against fewer global

T. absoluta presence records (148) than used in this report
(340), and showed a high level of sensitivity (91% of records fell
in areas where EI > 0). Visual comparison of Fig. 1 herein with
fig. 1 in the previous smaller presence record validation25 indi-
cates that the distribution data that we used included almost
all of the records used previously but additionally included
points from the Arabian Peninsula, Central Asia and India. In
the former two regions the most recent CLIMEXmodel appeared
to underproject suitability for T. absoluta. This suggests that CLI-
MEX modelling may improve if it was repeated with the more
recent data. This also illustrates that despite drawing on inde-
pendent ecophysiological data, CLIMEX is not immune to the
problems of parameterising range models with historic invasion
data, before a species reaches equilibrium.46 CLIMEX attempts to
avoid this problem by using ‘prevalence’ (size of area predicted
suitable) rather than specificity in numerical evaluation of model
fit (i.e. CXIC). However, our result shows that disequilibrium can
cause CLIMEX to underpredict the potential range, just as it
would for statistical SDMs.
In order to minimise the risk that disequilibrium could lead sta-

tistical SDMs to underpredict the potential range, we excluded
pseudo-absences from a 500 km buffer around presence loca-
tions. This appears to have been somewhat successful, because
the best statistical SDM (variable set 3) did not predict substan-
tially lower suitability than CLIMEX in almost areas where
T. absoluta is currently found. However, disequilibrium means

we cannot rule out that the statistical SDM underpredicted the
species’ potential range. As T. absoluta continues to spread it
may reveal even broader environmental tolerances than we cur-
rently measure. An added challenge for any modelling approach
is that environmental tolerances may change rapidly following
invasion.9 It recently has been suggested that this may be the case
for T. absoluta.68

In conclusion, we suggest that CLIMEX should be considered as
one of a suite of SDM techniques, and the results from it and other
models compared formally (i.e. numerically), interpreted clearly
and ensembled if appropriate. The limitations of information that
can be drawn from the species’ current distribution must be con-
sideredwhen doing this (i.e. environmental disequilibrium). In this
regard it can be informative to compare results based entirely on
species’ distributions (i.e. statistical SDMs) to results from sensible,
experimentally informed values of key ecophysiological parame-
ters (e.g. CLIMEX, or less formally using expert knowledge on spe-
cies’ ecology). However, although CLIMEX draws on independent
assessments of ecophysiology, the underpredictions that we
found indicate it is not immune to the problems of disequilibrium,
which are inherent when dealing with an emerging crop pest. Dis-
agreement between modelling approaches and datasets may
inform where available distribution or environmental data do
not fully represent a species’ environmental tolerances. Therefore,
if species’ range projections are to be used for management pur-
poses, multiple modelling techniques should be used, numeri-
cally evaluated against independent or semi-independent data
on the species’ known distribution, and the uncertainty and any
potential causes interpreted for end-users. We provide tools to
do this. Nonclimatic environmental variables with a potentially
strong range limiting effect for the species of interest should be
included in models, and the distributions of forest or particular
crops may be particularly important for crop pests.
With respect to T. absoluta, the final best estimate suggests that

T. absoluta's potential range in Africa, Arabian Peninsula, Central
Asia and Australia will be larger than previous estimates based
on CLIMEX alone. Although T. absoluta may currently be pre-
vented from spreading further in parts of China and Southeast
Asia as a consequence of high forest cover, this effect is not cer-
tain and merits further investigation, as does the pest's absence
SDM-projected suitable areas in southeast USA.
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