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A B S T R A C T

In offshore engineering, it is common practice to estimate long-term extremes under the assumption that
environmental conditions are independent. However, many environmental variables, such as winds and waves,
exhibit correlation over several days. In this work, we consider the impact that this has on estimates of
return values of metocean variables, environmental contours and long-term extreme responses. It is shown that
methods which neglect serial correlation over-estimate the size of extreme events at a given return period. We
introduce a new definition of a sub-asymptotic extremal index, and show how this can be used to quantify
the effect of neglecting serial correlation. Simple examples are presented to illustrate why neglecting serial
correlation leads to positive bias. We show how the size of the bias is related to the average shape of storm
events and the shape of the tail of the distribution of storm peak values, with the latter having the dominant
effect. Storm peak distributions with longer tails lead to larger biases when serial correlation is neglected. In
the examples presented, neglecting serial correlation resulted in relative errors of over 50% in the 25-year
extreme response estimates in some cases. The examples presented show that accounting for serial correlation
in estimates of environmental contours and long-term extreme responses can reduce over-conservatism and
result in more efficient designs.
1. Introduction

1.1. Motivation

Environmental variables such as winds, waves, currents and surges
are serially correlated. Conditions can persist over time scales of hours
to days. In the statistics literature, the effects of serial dependence
on the modelling of extreme values has been discussed widely (see
e.g. Leadbetter et al., 1983; Coles, 2001; Beirlant et al., 2004; Chavez-
Demoulin and Davison, 2012). In offshore and coastal engineering,
there are inconsistencies between the way in which serial dependence
is treated in estimates of univariate extremes, multivariate extremes
and long-term extreme responses. For univariate extremes, it is com-
mon practice to use methods such as annual maxima or peaks-over-
threshold (Jonathan and Ewans, 2013), which remove the effects of
serial correlation by considering only peak events that are sufficiently
separated in time that they are effectively independent. Other methods,
such as the average conditional exceedance rate (ACER) method (Naess
and Gaidai, 2009), explicitly treat the serial correlation in a univariate
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time series. In contrast, multivariate extremes or long-term extreme
responses, are often calculated based on the distribution of all obser-
vations, under the tacit assumption that sequential observations are
independent.

The distribution of all observations is different to distribution of
peak events. When the interest is in assessing the probability of struc-
tural failure due to an extreme response, the pertinent problem is to
estimate how often a storm event will occur in which a given response
level is exceeded. If such an event occurs, it does not matter how many
times a failure would occur within the storm event. In this case, it is
the distribution of peak events that is of interest. However, if we are
interested in the total number of times a level is exceeded (e.g. for low-
cycle fatigue analysis), then it is the distribution of all observations that
is of interest. In this paper, we focus on the problem of estimating the
occurrence of extreme events for the purpose of assessing the risk of
structural failure.

The main point that we wish to emphasise, is that neglecting serial
correlation will result in over-estimates of the occurrence of extreme
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events. To illustrate this point, consider the following simple example.
Suppose we have a 100-year time series of significant wave height, 𝐻𝑠,
in which there is one storm which exceeds 𝐻𝑠 = 10 m, and all other
storms have 𝐻𝑠 < 10 m. Suppose that in the largest storm, there are
𝑟 hours which exceed 10 m. If each hour is treated as an independent
event, then the empirical estimate would be that 𝐻𝑠 = 10 m is exceeded

times in 100 years, on average. Whereas, in fact, there was only
ne event in 100 years which exceeds 𝐻𝑠 = 10 m. Of course, the

actual return period of the largest storm in the record is not known
exactly, but the example illustrates the difference between the two
interpretations.

It is important to emphasise that neglecting serial correlation in the
data does not necessarily lead to bias in the estimate of the distribution
of all observations. Rather, the simple example above illustrates that
the distribution of all observations is not what is required for estimating
the occurrence of extreme events. The distribution of all observations
tells us the proportion of time that a level is exceeded. It tells us nothing
about how those exceedances are distributed in time, in particular it
does not specify the rate of up-crossing of a particular level.

The problem of dependence is also important in the estimation
of spatial extremes, and many of the methods to account for spatial
dependence are similar to those for temporal (serial) dependence. How-
ever, the most common problem in offshore engineering is to estimate
extreme events based on a time series of historic observations, so the
focus here is on the effect of temporal rather than spatial dependence.

The arguments we present in this work will be familiar to some
people in the offshore and coastal engineering communities. However,
from various conversations with practitioners involved with estimating
both extreme environmental conditions and extreme loads on marine
structures, it was clear that the effect of neglecting serial correlation
is not widely appreciated in the offshore community. Moreover, a
number of widely-used methods for estimating extreme events do not
account for serial correlation. For example, environmental contours are
usually constructed from the distribution of all observations, without
accounting for serial correlation (Haselsteiner et al., 2021). Similarly,
estimates of long-term extreme response calculated by integrating the
short-term distribution function over the long-term distribution of en-
vironmental conditions (e.g. Fogle et al., 2008; Sagrilo et al., 2011;
Naess and Moan, 2013), also neglect serial correlation. The various
methods for combining short-term response functions with long-term
distributions of environmental conditions has been considered by a
various authors in the past (e.g. Sagrilo et al., 2011; Forristall, 2008;
Mackay and Johanning, 2018c). The current work extends these studies
by considering the impact of serial dependence in a range of contexts,
including univariate and multivariate problems.

The main aim of this paper is to illustrate why it is important
to consider dependence in estimates of extreme events and provide
examples which quantify the impact of neglecting serial correlation
in practical cases. We also consider the theoretical treatment of serial
dependence in the statistical literature, and show how the effect of
neglecting serial correlation can be quantified in terms of the extremal
index, defined in the following sub-section. The examples are intended
to provide a more intuitive understanding of why neglecting serial
correlation causes bias, and explain how various factors influence the
size of bias.

1.2. Statistical treatment of dependence in time series extremes

In the statistics literature, extremes of time-series have been con-
sidered by a number of authors over many years. Chavez-Demoulin
and Davison (2012) provide a relatively recent review. Informally,
the analysis considers a time-series 𝑋1,… , 𝑋𝑛 such that the marginal
distribution of 𝑋𝑖 is common to all choices of 𝑖 ∈ [1, 2,… , 𝑛]. It is
then assumed that the time-series exhibits serial dependence, with
certain conditions. Importantly, the focus of the analysis is typically the
2

estimation of the common marginal distribution 𝐹 . As discussed above,
this is not typically the main concern of the ocean engineer interested
in estimation of return values and similar quantities.

For the practical analysis of dependent sequences, some constraints
are usually assumed, which limit the long-range dependence at extreme
levels. A widely used constraint is the so-called 𝐷(𝑢𝑛) condition (see
e.g. Leadbetter et al., 1983; Coles, 2001; Beirlant et al., 2004). Infor-
mally, for sequences which meet this condition, the events 𝑋𝑖 > 𝑢 and
𝑋𝑗 > 𝑢 are approximately independent, provided that 𝑢 is high enough
and times 𝑖 and 𝑗 are sufficiently separated.

The key metric used to quantify temporal dependence in extreme
values is the extremal index, 𝜃. The extremal index can be defined in a
number of equivalent ways. In serially correlated time series, extreme
events occur in clusters. Asymptotically, extremes of a stationary se-
quence can be shown to occur in clusters with mean size 1∕𝜃 (Hsing,
1987a; Hsing et al., 1988). An equivalent way to define the extremal
index is in terms of the distribution of the maximum values of a sample.
Suppose that 𝑋1,… , 𝑋𝑛 are a stationary process with some level of
serial correlation, and with marginal distribution function 𝐹 . Assuming
that 𝐹 is in the domain of attraction of an extreme value distribution
(see e.g. Coles, 2001), the distribution of the maximum of a sample will
tend to a limit Pr(max

{

𝑋1,… , 𝑋𝑛
}

≤ 𝑥) → 𝐺(𝑥) as 𝑛→ ∞, where 𝐺 is a
member of the generalised extreme value (GEV) family. Now consider
a sequence of independent variables, 𝑋̃1,… , 𝑋̃𝑛, also with common
distribution function 𝐹 . It can be shown that Pr(max{𝑋̃1,… , 𝑋̃𝑛} ≤ 𝑥) →
𝐺̃(𝑥) as 𝑛 → ∞, where 𝐺̃ is also a member of the generalised extreme
value (GEV) family, and 𝐺(𝑥) = [𝐺̃(𝑥)]𝜃 , where 𝜃 ∈ [0, 1] is the extremal
index (see e.g. Coles, 2001, Theorem 5.2). In the case that 𝜃 < 1, we
have 𝐺(𝑥) = [𝐺̃(𝑥)]𝜃 > 𝐺̃(𝑥), so if the serially correlated data are treated
as independent, this will result in an over-estimate of the probability
of extreme events.

For a series of independent observations we have 𝜃 = 1, but there
are also dependent series for which 𝜃 = 1. For example, Chavez-
Demoulin and Davison (2012) note that linear Gaussian autoregressive-
moving average models have 𝜃 = 1, corresponding to independent
extremes at very high levels, despite clustering at lower levels. This
highlights a key feature of the extremal index. Coles (2001, p97) notes
that ‘‘a series for which 𝜃 = 1 means that dependence is negligible
at asymptotically high levels, but not necessarily so at extreme levels
that are relevant for any particular application’’. Tawn (1990) pro-
posed a penultimate approximation for the extremal index, 𝜃𝑥, which
depends on the level, 𝑥 and noted that in general 𝜃𝑥 ≤ 𝜃. Ledford
and Tawn (2003) define the sub-asymptotic extremal index as 𝜃𝑥(𝑛) =
Pr(𝑋2, 𝑋3,… , 𝑋𝑛 ≤ 𝑥|𝑋1 > 𝑥). A review of methods for estimating the
extremal index was presented by Ancona-Navarrete and Tawn (2000),
who noted that most methods for estimating 𝜃 actually estimate 𝜃𝑥.
Some authors have proposed incorporating estimates of 𝜃𝑥 explicitly
into inferences of extremes from serially correlated data (e.g. Eastoe
and Tawn, 2012). However, most studies concerned with the effect of
serial correlation, only consider the asymptotic extremal index, 𝜃. In
the examples presented in Sections 3–5, we show that understanding
how 𝜃𝑥 varies with 𝑥 (or equivalently with return period), is important
for various problems in offshore design. In Section 2, we introduce a
new definition of a sub-asymptotic extremal index and show how this
is related to biases in return values and return periods when serial
correlation is neglected.

A multivariate extension to the extremal index has also been pro-
posed (Nandagopalan, 1994). Whereas in the univariate case, the
asymptotic dependence is summarised by a single number, in the multi-
variate case the extremal index is a function, describing the dependence
as a function of angle (Beirlant et al., 2004). In the present work, the
examples considered can all be reduced to univariate problems, so our
focus will be on the univariate extremal index.

Another important metric for dependence in time series extremes
is the limiting conditional probability lim𝑢→∞ Pr(𝑋𝑡+𝜏 > 𝑢|𝑋𝑡 > 𝑢),
which estimates the extent of asymptotic dependence in the time

series at lag 𝜏. This corresponds to the so-called 𝜒 statistic used in
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spatial extremes (Coles et al., 1999), and has been referred to as
the extremogram (Davis and Mikosch, 2009). For stationary series,
the quantity Pr(𝑋𝑡+𝜏 > 𝑢|𝑋𝑡 > 𝑢) − Pr(𝑋𝑡 > 𝑢) will tend to zero
when 𝑋𝑡 and 𝑋𝑡+𝜏 are independent. This quantity can be plotted as a
unction of 𝜏 for various thresholds 𝑢, to select de-correlation timescales

used in declustering routines (Mackay and Johanning, 2018c). The
corresponding 𝜒̄ statistic, characterising asymptotic independence can
also be estimated (Coles et al., 1999).

For univariate environmental data it is more common to adopt
either the annual maxima method or peaks-over-threshold method.
In the latter, a suitable declustering scheme is used to select events
that are approximately independent, thus ensuring that 𝜃 ≈ 1. It is
important to note that, in the statistics literature, the distribution of
quantities such as cluster maxima are considered mainly as a pragmatic
approach to obtain the marginal distribution of all observations. In
ocean engineering, however, it is often appropriate to focus on the
distributions of cluster maxima or storm peak events.

1.3. The effect of seasonal and long-term variation

Throughout this work we will be mainly concerned with the effect
of serial correlation in environmental conditions over time-scales of
hours to several days. Seasonal variation in environmental conditions
introduces a longer range dependence into conditions. However, this
has a slightly different effect to short-range serial dependence. Provided
that storm peaks are sufficiently separated in time, storm peak values
of variables such as wind speeds or wave heights, can be considered as
independent realisations from a distribution that is dependent on the
season. That is, the storm peak value does not dependent on the size
of the previous storm peak, but only the time of year when it occurs.
Mackay and Johanning (2018c) showed that when the seasonal signal
is removed from time series of significant wave height, 𝐻𝑠, values of
storm peak 𝐻𝑠 separated by 4–5 days were effectively independent.

Seasonality can be modelled as a covariate effect. There is some
debate about whether it is necessary to model seasonality and other
covariate effects in order to accurately characterise the annual (or
omni-covariate) distribution (Jonathan et al., 2008; Mackay et al.,
2010). Using a non-stationary model can improve the accuracy in some
cases, but this is dependent on the particular covariate model used
and the strength of covariate influence (Mackay and Jonathan, 2020a).
The naive use of non-stationary models, where the data is subdivided
into seasonal bins and an independent model is fitted in each bin, will
lead to larger biases than using stationary models (Mackay et al., 2010;
Mackay and Jonathan, 2020a).

Alternatively, the effect of seasonality can be modelled by first
removing the seasonal signal (see e.g. Vanem, 2018). However, this
generally requires stronger assumptions than covariate approaches, for
example that there is no change in the shape of the distribution over
the year and that seasonality only affects the mean and variance.

Longer-term climate patterns such as the El Niño Southern Oscilla-
tion (ENSO) or the North Atlantic Oscillation (NAO) can also introduce
long-range dependence into environmental conditions. However, as
with seasonality, these can also be modelled as covariate effects. While
neglecting short-range dependence will always result in a positive bias
in estimates of return values, the effect of neglecting covariate effects
such as seasonality or long-term climatic variations is case dependent
and can result in either positive or negative biases.

1.4. Definition of return periods for serially correlated data

Suppose, as above, that 𝑋 is any observation of a serially correlated
sequence in time, with common marginal distribution function 𝐹 . An
equivalent independent sequence, 𝑋̃, also with marginal distribution
function 𝐹 , can be defined by randomising the order of observations
in the dependent sequence. Alternatively, inferences from 𝑋̃ can be
interpreted as those that would be obtained if the serial correlation in
3

the dependent sequence, 𝑋, is ignored and observations are treated as
independent.

We denote cluster maxima in the dependent sequence as 𝑋𝑐 , where
it is assumed that clusters are defined such that 𝑋𝑐 are sufficiently
separated in time that they are effectively independent. The marginal
distribution of the cluster maxima is denoted 𝐹𝑐 . It is assumed there
are a fixed number, 𝑛, observations of 𝑋 (or 𝑋̃) per year and 𝑚 cluster
maxima on average per year.

The return period of level 𝑥 for the dependent sequence, 𝑋, is
defined as

𝑇 (𝑥) = 1
𝑚(1 − 𝐹𝑐 (𝑥))

. (1)

Note that if annual maxima of 𝑋 are considered, rather than cluster
maxima, then definition (1) still applies, under the interpretation that
𝐹𝑐 is the distribution of annual maxima and 𝑚 = 1. In this case, return
alues can only be defined for 𝑇 > 1. As it is often useful to consider
he 1-year return value, it is useful to define return periods in terms of
luster maxima rather than annual maxima.

The return period of level 𝑥 for the independent sequence, 𝑋̃, is
efined as

̃ (𝑥) = 1
𝑛(1 − 𝐹 (𝑥))

. (2)

Eq. (2) is sometimes used (incorrectly) to define return periods and
return values for the dependent sequence. Our main concern in this
paper will be to quantify the impact of using Eq. (2) to calculate return
periods and return values when the data exhibit serial correlation.

For serially correlated data, arguably, it is clearer to define return
values in terms of the distribution of the maximum value in the return
period. If we denote the distribution of the maximum value of 𝑋 in
𝑇 years as 𝐹𝑇 (𝑥) then the 𝑇 -year return value can be defined as the
olution of

𝑇 (𝑥) = exp(−1). (3)

f we suppose that occurrences of cluster maxima are independent and
Poisson point process with mean rate of occurrence 𝑚 per year, then
𝑇 can be written

𝑇 (𝑥) =
∞
∑

𝑘=0
𝑓𝑃 (𝑘)[𝐹𝑐 (𝑥)]𝑘𝑇 , (4)

here 𝑓𝑃 (𝑘) is the Poisson probability mass function, given by 𝑓𝑃 (𝑘) =
−𝑚𝑚𝑘∕𝑘!. Noting that exp(𝑥) = ∑∞

𝑘=0 𝑥
𝑘∕𝑘!, we can write:

𝑇 (𝑥) = exp(−𝑚𝑇 (1 − 𝐹𝑐 (𝑥))). (5)

quating (3) and (5) shows that the two definitions of return periods
or the dependent sequence, (1) and (3), are equivalent. The use of
efinition (1) requires the identification of independent cluster max-
ma, whereas definition (3) does not explicitly include the requirement
o define independent events, only the requirement to establish the
istribution of the maximum value in 𝑇 -years. Of course, the problem
f estimating 𝐹𝑇 will require some method to account for the serial
orrelation in the data, for example through declustering to identify
ndependent peaks, the use of annual maxima or through explicit
reatment of the time series dependence structure. As will be seen
n Section 2, definition (3) is useful when considering the theoretical
spects. However, for the practical examples considered in Sections
–5, definition (1) is more useful.

.5. Outline of the paper

In Section 2 we introduce a new definition of a sub-asymptotic
xtremal index, 𝜃𝑇 , which is dependent on return period 𝑇 . We show
ow the impact of neglecting serial correlation on estimates of extremes
an be quantified in terms 𝜃𝑇 . We then go on to consider three types of
roblem involving serial dependence. Firstly, in Section 3, we consider
he estimation of univariate extremes of an observed variable, such as



Ocean Engineering 242 (2021) 110092E. Mackay et al.

s
T
t
c
t
w
e
i
c
n
c
a
t
w
c

2

c
i
d
p
s
d

2
s

w
c
d
[
𝜃
t

[

T
s

[

E

𝜃

S
r
i

l
o
t
s
w

𝐺

w
𝜎
t
a
a

𝜇

f
g

e
e
r
r
v

o
k
S
a
s
t
b
t
i
𝜃
t
c
𝜃

2

a
t
b
e
(
t
r
e
a

an environmental state or measured response. Methods for dealing with
serial correlation are well understood for this case. However, it is in-
structive to start by considering this simple case to illustrate the general
principle. The examples demonstrate why neglecting serial correlation
leads to biases, and how the size of the biases (or, equivalently, the
value of 𝜃𝑇 ) are related to the average shape of storm events and the
hape parameter for the tail of the distribution of storm peak events.
he theory and results developed in Sections 2 and 3 are then applied
o more complex problems. In Section 4, we consider the effect of serial
orrelation in a multivariate context, where extremes are quantified in
erms of environmental contours. In the third example, in Section 5,
e go on to consider the effect of serial correlation on long-term
xtremes of a short-term response. In this case, the short-term response
s not directly observed, but is specified in terms of a distribution
onditional on the environmental state. If the short-term process is
ot directly observed, then the historic time series of environmental
onditions combined with the short-term response function only gives
probabilistic description of historic response, so the methods required

o account for serial correlation are slightly different to the case where
e are interested in the extremes of an observed variable. Finally, the

onclusions of the work are presented in Section 6.

. Theoretical aspects

In this section, we demonstrate how the effect of neglecting serial
orrelation on return values and return periods, can be quantified
n terms of the extremal index. In Section 2.1, we introduce a new
efinition of a sub-asymptotic extremal index, relevant for any return
eriod of interest. In Section 2.2 we show how this new definition of the
ub-asymptotic extremal index is consistent with the usual asymptotic
efinition of the extremal index, introduced in Section 1.2.

.1. Relation between extremal index, return periods and return values at
ub-asymptotic levels

As before, suppose that 𝑋 is a serially-correlated random process,
ith marginal distribution function 𝐹 . According to the results dis-

ussed in Section 1.2, there exists a value 𝜃𝑇 ∈ [0, 1] such that the
istribution of the maximum value in 𝑇 years is given by 𝐹𝑇 (𝑥) =
𝐹 (𝑥)]𝜃𝑇 𝑛𝑇 , where 𝑛 is the (fixed) number of observations per year. Here,
𝑇 is a sub-asymptotic extremal index, with 𝜃𝑇 ≤ 𝜃. Using definition (3),
he return period of 𝑥, is the solution of

𝐹 (𝑥)]𝜃𝑇 𝑛𝑇 = exp(−1). (6)

he return period for the equivalent independent sequence is the
olution of

𝐹 (𝑥)]𝑛𝑇̃ = exp(−1). (7)

quating (6) and (7) and taking logarithms, we have

𝑇 (𝑥) =
𝑇̃ (𝑥)
𝑇 (𝑥)

. (8)

o, the sub-asymptotic extremal index, 𝜃𝑇 , can be interpreted as the
atio of the return period of 𝑥, calculated under the assumption of
ndependence, to the true return period of level 𝑥.

Whilst the effect of serial correlation on return periods of a given
evel is dependent only on 𝜃𝑇 , the effect on return values depends
n the shape of the distribution. To illustrate this, we assume that
he distribution of the maximum value in 𝑇 years for the dependent
equence is [𝐹 (𝑥)]𝜃𝑇 𝑛𝑇 ≈ 𝐺(𝑥), where 𝐺 is a member of the GEV family,
ith cumulative distribution function (CDF)

(𝑥) =

⎧

⎪

⎨

⎪

exp (− exp (−𝑠)) , 𝜉 = 0,

exp
(

− (1 + 𝜉𝑠)−1∕𝜉+

)

, 𝜉 ≠ 0,
(9)
4

⎩ 𝑢
here 𝑧+ = max {𝑧, 0}, 𝑠 = (𝑥 − 𝜇)∕𝜎, 𝜇 ∈ R is the location parameter,
> 0 is the scale parameter and 𝜉 ∈ R is the shape parameter. Under

his assumption, it is straightforward to show that [𝐹 (𝑥)]𝑛𝑇 ≈ 𝐺̃(𝑥) is
lso a GEV distribution, where 𝐺̃𝜃𝑇 (𝑥) = 𝐺(𝑥) and the parameters of 𝐺̃
re given by

̃ =

⎧

⎪

⎨

⎪

⎩

𝜇 − 𝜎 log
(

𝜃𝑇
)

, 𝜉 = 0,

𝜇 − 𝜎
1 − 𝜃−𝜉𝑇
𝜉

, 𝜉 ≠ 0,
(10a)

𝜎̃ = 𝜎𝜃−𝜉𝑇 , (10b)

𝜉 = 𝜉. (10c)

So serial correlation has no effect on the shape of the tail of the
distribution, or on the upper end point in the case that 𝜉 < 0, where the
upper end point is given by 𝑥𝐹 = sup {𝑥 ∶ 𝐹 (𝑥) < 1} = 𝜇−𝜎∕𝜉 = 𝜇̃− 𝜎̃∕𝜉.
The size of the bias in the 𝑇 -year return value, caused by neglecting
serial correlation, can be calculated by comparing the quantiles of 𝐺
and 𝐺̃ at probability level 𝑝 = exp(−1). The inverse distribution function
for the GEV is given by:

𝐺−1(𝑝) =

⎧

⎪

⎨

⎪

⎩

𝜇 − 𝜎 log(− log(𝑝)), 𝜉 = 0,
𝜇 + 𝜎

𝜉
(

(− log(𝑝))−𝜉 − 1
)

, 𝜉 ≠ 0, (11)

or 𝑝 ∈ [0, 1]. Using definition (3) and substituting 𝑝 = exp(−1) into (11)
ives

𝑥̃𝑇 − 𝑥𝑇
𝜎

=

⎧

⎪

⎨

⎪

⎩

− log
(

𝜃𝑇
)

, 𝜉 = 0,
𝜃−𝜉𝑇 − 1
𝜉

, 𝜉 ≠ 0,
(12)

where 𝑥𝑇 is the true return value and 𝑥̃𝑇 is the return value for the
quivalent independent sequence. The size of the bias is determined
ntirely by 𝜎, 𝜃𝑇 and 𝜉. The bias is independent of the location pa-
ameter, 𝜇, and scales linearly with the scale parameter, 𝜎. The bias in
eturn value estimates is shown in Fig. 1 as a function of 𝜉 for three
alues of 𝜃𝑇 . For a given value of 𝜃𝑇 , the bias increases with 𝜉.

In the discussion above, 𝜃𝑇 is defined in terms of the distributions
f the 𝑇 -year maximum, 𝐹𝑇 (𝑥). In practical cases of interest, it is not
nown a priori how 𝜃𝑇 varies with 𝑇 . In the simulations presented in
ection 3, it will be shown that for a given level of serial correlation
round the storm peak, the value of 𝜃𝑇 is strongly dependent on the
hape parameter of 𝐹𝑇 . Therefore, quantifying bias in return values in
erms of 𝜉 and 𝜃𝑇 alone does not tell the full story. The relationship
etween bias and 𝜉 shown in Fig. 1, must be understood as the rela-
ionship for a fixed value of 𝜃𝑇 . The analysis presented in Section 3
ndicates that if the average shape of a storm is roughly constant, then
𝑇 will decrease as 𝜉 increases. In the case that 𝜉 < 0, it will be shown
hat 𝜃𝑇 → 1 as 𝑇 → ∞, and hence the bias caused by neglecting serial
orrelation also tends to zero. However, when 𝜉 ≥ 0, we can have
𝑇 → 𝜃 < 1 as 𝑇 → ∞ and the bias tends to a constant value.

.2. Asymptotic considerations

The discussion above has focused on the effect of serial correlation
t sub-asymptotic levels. A somewhat surprising asymptotic result is
hat as the threshold tends toward the upper end point of the distri-
ution, the conditional distribution of a randomly chosen threshold
xceedance converges to the conditional distribution of cluster maxima
see e.g. Hsing, 1987b; Anderson, 1990; Leadbetter, 1991). To state
his more precisely, suppose, as above, that 𝑋 is a serially-correlated
andom process, with marginal distribution function 𝐹 , and upper
ndpoint 𝑥𝐹 ≤ ∞. Under the assumption that 𝐹 is in the domain of
ttraction of an extreme value distribution, we have

lim Pr(𝑋 > 𝑥|𝑋 > 𝑢) = 𝐻̄(𝑥), (13)

→𝑥𝐹
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Fig. 1. Bias in the return value estimated under the assumption of independent
observations, 𝑥̃𝑇 , relative to true return value, 𝑥𝑇 , for various values of the sub-
asymptotic extremal index, 𝜃𝑇 . Calculations assume that the true distribution function
f the 𝑇 -year maximum is a GEV distribution with arbitrary location parameter, scale
arameter, 𝜎, and shape parameter, 𝜉.

where 𝐻̄ = 1 −𝐻(𝑥) and 𝐻(𝑥) is a member of the generalised Pareto
family. Similarly, for cluster maxima, 𝑋𝑐 , we have

lim
𝑢→𝑥𝐹

Pr(𝑋𝑐 > 𝑥|𝑋𝑐 > 𝑢) = 𝐻̄(𝑥). (14)

To examine the effect that the asymptotic equivalence of these dis-
tributions has on estimates of return values, we need to consider the
non-conditional probabilities Pr(𝑋 > 𝑥) and Pr(𝑋𝑐 > 𝑥). Denote
the threshold exceedance probabilities for all observations and cluster
maxima as 𝑝𝑎 = Pr(𝑋 > 𝑢) and 𝑝𝑐 = Pr(𝑋𝑐 > 𝑢). Then Pr(𝑋 > 𝑥) =
𝑝𝑎𝐻̄(𝑥) and Pr(𝑋𝑐 > 𝑥) = 𝑝𝑐𝐻̄(𝑥). Using (1), the return period of level
𝑥 > 𝑢 for the dependent sequence is given by

𝑇 (𝑥) = 1
𝑚𝑝𝑐𝐻̄(𝑥)

, 𝑢→ 𝑥𝐹 . (15)

Similarly, using (2), the return period of level 𝑥 > 𝑢 for the equivalent
independent sequence is given by

𝑇̃ (𝑥) = 1
𝑛𝑝𝑎𝐻̄(𝑥)

, 𝑢→ 𝑥𝐹 . (16)

Note that 𝑚𝑝𝑐 is the expected number of clusters per year with peak
value that exceeds 𝑢, and 𝑛𝑝𝑎 is the expected number of observations
per year that exceed 𝑢. Therefore, for 𝑥 > 𝑢,

𝑇̃ (𝑥)
𝑇 (𝑥)

=
𝑚𝑝𝑐
𝑛𝑝𝑎

= 𝜃𝑢 = 𝜃, 𝑢→ 𝑥𝐹 , (17)

where we have used the interpretation that 𝜃𝑢 is the inverse of the mean
cluster size at level 𝑢, noted in Section 1.2. As this is an asymptotic
result, 𝜃𝑢 is equal to the asymptotic extremal index 𝜃 for 𝑢 → 𝑥𝐹 .
So, although the conditional distributions of cluster maxima and all
observations are asymptotically equivalent, the difference in the ex-
pected number of clusters and observations exceeding a given level, 𝑢,
results in different return periods for the dependent and independent
sequences, consistent with the analysis in the previous section.

3. Effect of serial correlation on univariate extremes

In this section, we consider two examples to illustrate the effect
of serial correlation on univariate extremes. In the first example, we
assume that the time series consists of a series of independent ‘storm’
events, where the evolution of the variable over the storm is given
by a simple parametric form. The motivation for using a parametric
representation of the time series, is that it allows us to adjust the level
5

p

of serial correlation around the storm peaks. In the second example, we
use more realistic time histories, resampled from measured time series.
Throughout this section, our interest lies in the extremes of an ob-
served variable (i.e. there is no unobserved short-term variability). The
case where we have an unobserved short-term response is considered
separately in Section 5.

3.1. Examples with parametric time series

In this example, we consider time series of significant wave height,
𝐻𝑠, but the conclusions from the analysis are applicable to other
variables as well. We assume that the time series of 𝐻𝑠 is composed
of discrete storm events, where the peak values of 𝐻𝑠 in each storm,
denoted 𝐻𝑝𝑒𝑎𝑘

𝑠 = 𝐴, are assumed to be independent GEV variables, with
CDF given in (9). In the present example, we fix the location parameter
as 𝜇 = 4 and scale parameter as 𝜎 = 1. The duration of each storm,
𝐵, is assumed to be related to the storm peak, by the fixed relation
𝐵 = 150𝐴−0.25 hours (a similar relation was reported in Mackay and
Johanning, 2018a). The time series of 𝐻𝑠 within each storm is given
by the ‘power storm’ model (Arena et al., 2014):

𝐻𝑠(𝑡) = 𝐴

[

1 −
(

2|𝑡 − 𝑡0|
𝐵

)𝜆
]

, −𝐵∕2 ≤ 𝑡 − 𝑡0 ≤ 𝐵∕2, 𝜆 > 0 (18)

here 𝑡0 is the time corresponding to the storm peak. When 𝜆 = 1,
he storms are triangular. When 𝜆 < 1, the storms have sharper peaks,
nd when 𝜆 > 1, the storms have more rounded peaks. The storm
hape parameter, 𝜆, determines the level of serial correlation around
he storm peak. For 𝜆 → 0, the peak becomes narrower, the storm tends
o a delta function, with value 𝐴 at the storm peak and 𝐻𝑠 → 0 away
rom the storm peak. In this case, the serial correlation close to the
eak tends to zero. Conversely, as 𝜆→ ∞, the storm tends to a constant
ectangular shape, with constant 𝐻𝑠 = 𝐴 throughout the storm. In this
ase, the serial correlation within the storm is equal to one.

We use numerical simulation to generate random storm peaks, 𝐴,
ith the values of 𝐻𝑠 over the course of the storm, conditional on
𝑝𝑒𝑎𝑘
𝑠 , given by (18). An example of random storms generated using

he power storm model is shown in Fig. 2. In this example, the shape
arameter for the GEV distribution of storm peak heights is 𝜉 = 0, and
he storms have been generated using exponents of 𝜆 = 0.5, 1 and 2. The
istribution of storm peak heights is not affected by the storm shape
arameter 𝜆 (it is determined solely by the GEV parameters), whereas
he marginal distribution of 𝐻𝑠 is directly affected by the value of 𝜆.

Simulations were conducted for three values of the GEV shape
arameter, with 𝜉 = −0.2, 0 and 0.1. For each value of 𝜉, 108 random
torm peak heights were simulated and hourly values of 𝐻𝑠 within each
torm were generated for storm shape parameters 𝜆 = 0.5, 1, and 2. The
otal lengths of the simulations were approximately 2 × 106 years (this
s related to the fixed relationship between 𝐴 and 𝐵, noted above).

Fig. 3 shows return values estimated from the independent storm
eaks and from all hourly values of 𝐻𝑠, under the assumption of inde-
endence. Return values are shown for return periods up to 104 years,
here the sampling uncertainty is an acceptable level (see Mackay and

onathan, 2021). It is clear that both the GEV shape parameter and
he storm shape parameter influence the differences between the return
alues from the storm peak values and the return values calculated
rom hourly 𝐻𝑠 under the assumption of independent observations. As
xpected, the effect of neglecting serial correlation has a greater impact
hen the correlation around the storm peak is higher, corresponding

o the higher values of 𝜆.
For the simulations with 𝜉 = −0.2 and 𝜆 = 0.5, neglecting se-

ial correlation has negligible effect for return periods greater than
0 years. The reason for this is that when a storm occurs with a peak
eight exceeding the 10-year return value, typically there is only one
our in the storm when this occurs, so exceedances of this level are
ffectively independent. However, for higher values of the storm shape

arameter there are typically multiple hours in a storm exceeding the
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Fig. 2. Simulated time series using parametric storm shapes with random peak heights and various storm shape parameters, 𝜆. The storm shape affects the marginal distribution
of 𝐻𝑠, but not the distribution of peak heights.
Fig. 3. Top row: Return values of 𝐻𝑠 calculated using the time series of parametric storms, for various storm shape parameters, 𝜆, and GEV shape parameter, 𝜉. Black lines
how return values calculated from storm peak values only. Coloured lines indicate return values calculated from all values of 𝐻𝑠 under the assumption of independent hourly
bservations. Bottom row: estimated sub-asymptotic extremal index, 𝜃𝑇 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)
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rue 10-year return level, which are all treated as independent events
f serial correlation is ignored. In the latter case, the more correlated
bservations that are treated as independent, the greater the bias will
e.

The GEV shape parameter has a similar effect. In the case that the
istribution of storm peaks has a longer tail (i.e. higher values of 𝜉), the
ifference between e.g. the 10-year and 100-year return value is larger.
o, when a storm occurs where the peak value exceeds the 100-year
evel, there will be many hourly values which also exceed the 10-year
evel. So if these are all treated as independent events then this will
ntroduce bias. In contrast, when the tail of the distribution of storm
eaks is shorter, the difference between the 10-year and 100-year level
s smaller, so for a storm with peak value exceeding the 100-year level,
here will be fewer hourly values exceeding the 10-year level.

Estimates of 𝜃𝑇 are shown in Fig. 3. It is evident that 𝜃 is dependent
n both the storm shape parameter 𝜆 and the GEV shape parameter 𝜉.
or the cases with 𝜉 = −0.2, 𝜃𝑇 increases with level for all values of
. For the more peaked storms with 𝜆 = 0.5, the extremal index tends
owards 1 for 𝐻 > 8 m (note that finite sample size effects mean that
6

𝑠

𝑇 is not exactly equal to one). However, for 𝜉 = 0 and 𝜉 = 0.1, the
xtremal index for 𝜆 = 0.5 tends to a constant less than 1 (note that the
pper limit of the 𝑥-axis has been set at the 104-year return value, so
hat sampling variability is kept to a reasonable level). So, despite the
evel of serial correlation around the storm peaks being constant, 𝜃𝑇
aries with the shape of the distribution of storm peak heights. Since
𝑇 effectively quantifies the level of bias introduced by neglecting serial
orrelation, the reason for the dependence of 𝜃𝑇 on 𝜉 is clear, given the
iscussion above. When 𝜉 < 0, the GEV distribution has a finite upper
nd point, 𝑥𝐹 = 𝜇 − 𝜎∕𝜉. In this case, for storms which have a fixed
hape with a single largest value, there will be only one point in a storm
hat exceeds a level 𝑥 as 𝑥→ 𝑥𝐹 . This means that exceedances of 𝑥 are
ndependent as 𝑥 → 𝑥𝐹 and hence 𝜃𝑇 → 1. In contrast, for 𝜉 ≥ 0 and

fixed storm shape, 𝜃𝑇 will tend to a finite value.
The examples presented in this section are relatively simplistic, but

serve to illustrate how the storm shape and the distribution of the
storm peak values both influence the bias related to neglecting serial
correlation. In the next section, we use more realistic examples to
illustrate the effect of serial correlation in real datasets.
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Fig. 4. Examples of time series of 𝐻𝑠 and 𝑈10, with declustered peaks circled in red and minima between adjacent peaks indicated by dashed lines.
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.2. Examples with resampled time series

In this section, we illustrate the effect of serial correlation in a
ataset for a location in the central North Sea (dataset E from the
ecent benchmarking exercise for environmental contours, described
n Haselsteiner et al., 2019). The dataset consists of a 50 year time
eries of hindcast values of 𝐻𝑠 and wind speed at 10 m above water
evel, 𝑈10, at hourly intervals. If we used the original 50-year time series
o compare empirical estimates of return values from declustered peaks
nd all hourly observations, then the largest return values will coincide
rom both methods. However, this is an effect of finite sample size,
hich will happen for any sample, since the largest storm peak is, by
efinition, equal to the largest observation.

To circumvent this problem, we can resample the time series to
reate synthetic time series of arbitrary length. We use an approach
imilar to that outlined in Mackay and Jonathan (2020b), although here
e consider each variable on its own, rather than modelling their joint
istribution. The method is as follows. The time series of 𝐻𝑠 and 𝑈10
re declustered to identify local peaks which are approximately inde-
endent, with peaks defined as local maxima within a moving window
f length ±5 days, to ensure peaks are separated by a minimum of 5
ays. (Changing the minimum separation time used for the declustering
ainly affects the isolation of lower peaks which have little influence

n the extremes). Each time series is then partitioned into blocks where
he peak values are assumed independent. The boundaries between the
locks are defined as the minimum value between adjacent peaks. This
efinition is somewhat arbitrary, but ensures that large values are not
ocated close to block boundaries, so we do not separate one ‘event’
nto separate blocks. Fig. 4 shows examples of how the time series of
ach variable are partitioned into blocks.

The storm-peak values are modelled with a GEV distribution, with
DF given by (9). It is more common to model the storm-peaks exceed-

ng some threshold level with a generalised Pareto (GP) distribution.
owever, here we wish to fit a distribution to all storm-peak values,
hich can be used for simulating artificial time series. This could be
chieved by using a two-part model with a parametric distribution for
he body of the distribution and a GP model for the tail. The problem
ith this approach is that it is difficult to ensure continuity of the
7

ensity function on the boundary between body and tail. The GEV
ives a simple, flexible model for all storm-peak values, and avoids the
eed to fit a two-part model. In practical cases of estimating univariate
xtremes, this would not be necessary, as only a model for the tail is
equired.

Fig. 5 shows the fitted GEV distributions and parameter estimates
or the peak values of 𝐻𝑠 and 𝑈10. Whilst the GEV distribution is

asymptotically justified as a model for maxima of blocks of constant
size and sufficient length, the model diagnostics for the current data
suggests that it is still a reasonable model for both variables in this
example, despite the non-constant block sizes and finite block length.
It should be emphasised that the aim here is not to fit an optimal model
for the data or to advocate that data should be modelled in this way
in general. The aim is to fit a simple parametric model for all storm
peak values, which can be used to generate synthetic time series that
are reasonably realistic. Fig. 5 indicates that the GEV distribution is a
reasonable model for the peaks for this purpose.

To simulate synthetic time series, we simulate random storm peaks
and resample and rescale the observed blocks to match the simulated
peak heights. However, the correlation structure of the observed time
series is dependent on the block-peak value. To illustrate this, we can
consider the mean storm shape as a function of peak level. If hourly
values are treated as independent, then the order in which they occur
within each block does not matter. So we can re-order each block into
a descending sequence, to examine how many hours there are where
𝐻𝑠 or 𝑈10 is close to the peak value. Fig. 6 shows the average shape of
the ordered blocks (or ‘storms’), when storms are binned by the peak
value. The average storm shape is similar for both 𝐻𝑠 and 𝑈10. In both
cases, the larger storms decay more rapidly away from the peak. To
preserve this effect, for each simulated storm peak, measured blocks
are resampled at random from the five blocks with the closest peak
values. This does not provide a way to extrapolate the shape of the
storm outside the range of observations, but provided the extrapolation
is not too large, the results should be representative. It should be noted
that although there may be covariate effects on the distribution of storm
peak 𝐻𝑠 or 𝑈10 in the original data (e.g. dependence on season or
direction), by design, there are no covariate effects in the simulated
time series.
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Fig. 5. GEV fit to declustered storm peaks for North Sea dataset. GEV parameter estimates are shown above each plot.
Fig. 6. Average shapes of ordered storms for North Sea dataset.
A total of 106 random storm peaks were simulated from the fitted
EV distributions for 𝑈10 and 𝐻𝑠. This gave a total length of ap-
roximately 30,000 years of hourly records. Fig. 7 shows the return
alues of 𝐻𝑠 and 𝑈10 from the peak values and the hourly values from
he resampled time series. Return values are shown for return periods
etween 0.1 and 100 years, for which the sampling uncertainties
n the return values are very low from the 30,000-year time series
see Mackay and Jonathan, 2021). For 𝐻𝑠 there is a difference of more

than 2 m at the 1-year level and around 1 m at the 100-year level.
For 𝑈10 the difference at the 1-year level is around 1.7 m/s, but at
the 100-year level, the difference is relatively small (around 0.1 m/s).
Fig. 6 indicated that the level of serial correlation around the storm
peaks was similar for winds and waves at this location. The difference
between the effect of neglecting serial correlation is therefore related
to the shape of the tail of the distribution of storm peaks. The tail of
the distribution of 𝑈 𝑝𝑒𝑎𝑘

10 is shorter than the tail for 𝐻𝑝𝑒𝑎𝑘
𝑠 (i.e. the GEV

shape parameter was more negative, as shown in Fig. 5); as discussed in
the previous section, this results in exceedances of higher levels being
effectively independent. It is important to note that these conclusions
about neglecting serial correlation are particular to this example. In
other locations, where the shape of the distribution of storm peaks is
different or where the average ordered storm shape is different, then
the effect of serial correlation would change accordingly, as indicated
by the simple examples in the previous section.
8

4. Effect of serial correlation on environmental contours

Environmental contours (EC) are widely used as an approximate
method of estimating the long-term extreme response of a marine
structure, based on response calculations for a small number of design
conditions. In the EC method, the probabilistic description of the
environment is separated from structural design, by making certain
assumptions about the region of the environmental variable space
where the structure fails (the failure region). The most commonly used
EC approach is the inverse first-order reliability method (IFORM) (Win-
terstein et al., 1993). In this method, it is assumed that the failure
surface (the boundary of the failure region) can be approximated by
a straight line in two dimensions (or hyperplane in higher dimensions)
at the design point (the point on the failure surface with the highest
probability of occurrence). The IFORM approximation to the failure
surface is illustrated in Fig. 8. The method can be applied in higher
dimensions, but we will restrict our attention to the two-dimensional
case.

Typically, short-term variability in the response is not considered
directly in the EC method. Instead, the short-term response is evaluated
at a fixed quantile. Often the median value of the distribution of the
maximum response in each environmental state is used, but some
design standards recommend using a higher quantile to compensate for
neglecting the effect of short-term variability — see e.g. Winterstein
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Fig. 8. Illustration of IFORM approximation to failure surface.

et al. (1993), Winterstein and Engebretsen (1998) and Derbanne et al.
(2017). This is equivalent to assuming that the short-term response
function is deterministic, with the value given by the fixed quantile of
the distribution of the maximum response in each environmental state.

Under these assumptions, the problem of estimating extreme struc-
tural responses is reduced to estimating the probability that environ-
mental conditions fall within the half-plane region defined by the
linearised failure surface. Since the location of the failure region is
not known, the 𝛼-exceedance environmental contour is defined by the
intersection of all half-plane regions containing a probability 1 − 𝛼.
The definition of these regions is not unique. In the original IFORM
method (Winterstein et al., 1993), the regions are calculated by apply-
ing the Rosenblatt transformation to the joint density function, which
maps the original variables to independent standard Gaussian variables.
In the Gaussian space, the half-plane areas containing a probability 1−𝛼
re at a constant radius of 𝛷−1(1 − 𝛼) from the origin, where 𝛷 is the

CDF of the standard Gaussian distribution. Huseby et al. (2013, 2015)
noted that it was not necessary to apply the Rosenblatt transformation
to calculate these exceedance regions and proposed that the boundary
of the half-plane regions could be calculated in the original parameter
space.

Both the original and modified IFORM methods can be calculated
by projecting the variables onto lines at various angles, 𝜓 , to the
rigin (either in Gaussian space or the original parameter space) and
alculating the 1 − 𝛼 quantile for each projection angle. The problem
f calculating multivariate exceedance regions is therefore reduced to
series of univariate analyses of deterministic variables. (Note that

his is different to the cases considered in Section 5, since short-
erm variability is not considered directly in the EC method). In both
9

pproaches, it is only the proportion of observations in a region that is
counted, without accounting for serial correlation in the data. As such,
the positive biases resulting from neglecting serial correlation, that
were discussed in the previous section, will also affect environmental
contours calculated in this way. However, since IFORM contours are
defined in terms of univariate exceedance regions, the techniques of
univariate analysis can be applied here as well. Derbanne and de Haute-
clocque (2019) proposed using a POT method on projections of the
data onto lines at given angles, in the original variables space. In their
method, the projected data are first declustered to identify independent
peaks, and a generalised Pareto (GP) model is fitted to the declustered
peak values at each angle.

To illustrate the effect of serial correlation on construction of en-
vironmental contours, we will use another dataset from the recent
benchmarking exercise (Haselsteiner et al., 2019). The dataset is a 30-
year time series of hourly measurements of significant wave height, 𝐻𝑠,
and zero-upcrossing period, 𝑇𝑧, taken from NDBC buoy 41009, located
of the coast of Florida, US. We consider the construction of IFORM con-
tours in the original parameter space, following the approach of Huseby
et al. (2013). Fig. 9 shows some steps involved in the construction of
the contour. An extract of the time series when the data are projected
onto a line at 𝜓 = 45◦ to the origin is shown (where the projected
variable is defined by 𝑋 = 𝑇𝑧 cos𝜓 + 𝐻𝑠 sin𝜓), together with peaks
defined as local maxima within a moving window of length ±5 days.

ather than fitting a GP model to the projected data, we consider the
-year empirical return values, for which the sampling variability is
easonable for a 30-year dataset (see Mackay and Jonathan, 2021). The
mpirical return values from the peaks and all observations are shown
n panel (c), and the boundaries to the half plane regions defined by
he return values of the projected data are shown in panel (b). Another
xample for projections at 𝜓 = 15◦ is shown in panels (d) and (e).

For these projection angles, the tail of the distribution of storm
peaks is approximately exponential (evident from the approximately
linear relationship between return values and return periods, when
plotted on a semi-log scale). As shown in the previous section, this
results in a large difference between the 1-year return values from the
peak values and all observations. By definition, the empirical estimates
of return values coincide for the largest storm peak and largest observa-
tion in the 30-year dataset. However, as noted in the previous section,
this is a finite sample size effect that will occur for any sample.

Fig. 10 shows the 1-year empirical IFORM contours for the Florida
dataset, constructed from all observations and from peak values only.
The contours are constructed as the intersection of the non-exceedance
regions at projection angles 𝜓 = 10◦, 20◦, … , 360◦. The effect of
sampling uncertainty is evident in some of the ‘loops’ at various points
on the contours (see Huseby et al., 2013 for a discussion of this effect

and Vanem, 2019 for a discussion of improved sampling methods from
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Fig. 9. Illustration of construction of IFORM contours by projecting data onto lines at various angles 𝜓 to origin. (a) Time series of (𝑇𝑧 ,𝐻𝑠) data projected onto line at 45◦ to
the origin, together with local peaks within a 5-day moving window. (b) Scatter plot of 𝐻𝑠 against 𝑇𝑧, together with empirical 1-year return values for projected data at 𝜓 = 45◦.
(c) Empirical return values for projected data at 𝜓 = 45◦, calculated using all observations (blue) and peaks only (red). (d) and (e) same as (b) and (c), but for 𝜓 = 15◦. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
fitted models). However, the differences between the two contours is
clear. There is a large difference for the highest values of 𝐻𝑠 and 𝑇𝑧,
with nearly a 3 m difference in the maximum value of 𝐻𝑠 and nearly 3
s difference in the maximum value of 𝑇𝑧. This is related to the long tails
of these distributions, discussed in the previous section. In contrast, the
differences between the two contours on the low period side is much
lower, since the tail of the distribution of the projected data is shorter
for these angles, due to the physical limit imposed by steep waves
breaking.

As discussed in the previous section, the effect of neglecting serial
correlation may decrease for higher return periods (e.g. when 𝜉 < 0).
However, the size of the effect and how it varies with return period
will depend on the particular joint distribution of interest. Further
10
discussion of the effect of neglecting serial correlation on response
estimates from environmental contours is provided in de Hauteclocque
et al. (2021).

Finally, it is important to note that neglecting serial correlation
also affects contours defined in terms of ‘total exceedance’ probability,
i.e. the probability than an observation falls anywhere outside the
contour. These include highest density region contours (Haselsteiner
et al., 2017) and inverse second-order reliability method (ISORM)
contours (Chai and Leira, 2018). As with standard IFORM contours,
highest density and ISORM contours are calculated in terms of the
proportion of data outside a region, which tells us nothing about how
these occurrences are distributed in time. As far as the present authors
are aware, currently, no method has been proposed to account for serial
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Fig. 10. 1-year IFORM contours for Florida dataset based on declustered data and all
observations.

correlation in highest density or ISORM contours. Given that ‘total
exceedance’ contours are significantly more conservative than contours
defined in terms of marginal exceedance probabilities (i.e. the various
types of IFORM contour) (Mackay and Haselsteiner, 2021), the effect
of neglecting serial correlation will introduce yet further conservatism.

5. Effect of serial correlation on long-term extreme responses

In this section we consider the problem of how to calculate the
long-term extremes of a short-term response that is conditional on the
environmental state. The short-term response can represent a range
of processes, such as sea surface elevation, the motion response of
an offshore structure, or the load on a particular part of a structure.
The environmental conditions are assumed to vary on a much slower
time scale than the short-term response, such that the environmental
condition can be considered stationary for a period of the order of a few
hours, during which there are many cycles of the short-term response.

The key difference between this problem and the univariate cases
discussed in Section 3, is that, typically, the short-term response is not
directly observed, but is described in terms of a previously-established
distribution, conditional on the environmental state. In this case, a
record of historic environmental conditions only enables a probabilistic
description of the historic response.

To illustrate why this problem is different to the cases considered
in Section 3, consider the problem of estimating the long-term extreme
individual wave height. Fig. 11 shows a time series of 𝐻𝑠 over the
course of a storm, together with 1-hour maximum wave heights (sim-
ulated assuming a Rayleigh distribution of wave heights and 3600∕𝑇𝑧
waves per hour). In this example, the maximum individual wave height
in the storm does not occur at the time of the storm peak 𝐻𝑠. In the
examples in Section 3, we were interested in the distribution of the
peak values of an observed variable, and we only needed to consider
the peak value of the variable in each storm. In the present example, it
is clear that if we only consider the peak 𝐻𝑠 in a storm, then we risk
missing the maximum individual wave height. So in the case where we
do not directly observe the short-term response, we need to account for
all environmental conditions over a storm.

There is a common misconception about the need to account for
serial correlation in the estimation of long-term extreme responses,
related to the difference in the correlation time scales for the short-term
response process and the environmental variables. In a stationary envi-
ronmental state, the correlation time scales for most response processes
are relatively short, and it is reasonable to expect that peak responses
11
separated by 1 h would be independent. However, since environmental
conditions are non-stationary and correlated over time scales of hours
to days, this introduces correlation into the values of peak responses in
adjacent 1-hour periods. This effect is apparent in the lower panel of
Fig. 11, where the serial correlation in 1-hour maximum wave heights
over the storm is clearly visible. Fig. 12 shows a one year time series of
𝐻𝑠 and 1-hour maximum wave height. In this figure, the dependence
of the 1-hour maximum wave height on 𝐻𝑠 is very clear, illustrating
how the serial correlation in the environmental state introduces serial
correlation into the short-term maximum responses.

We start by presenting a brief review of methods for calculating
long-term extreme response in Section 5.1. Some examples of the
effect of neglecting serial correlation on estimates of long-term extreme
responses are then presented in Section 5.2.

5.1. Methods for calculating long-term extreme response

Methods for calculating the long-term extreme response are usually
based on calculating the distribution of the maximum response in a
random event, where the event is either a storm, a single short-term
condition, or a single peak. The long-term distribution is then formed
under the assumption that each event is independent. We shall refer to
the methods as the ‘all-peak’, ‘short-term maxima’ and ‘storm-based’
methods. Comparisons of all-peak and short-term maxima methods
were presented in Sagrilo et al. (2011). Further comparisons with
storm-based methods were presented in Forristall (2008) and Mackay
and Johanning (2018c). Here, we present a brief overview of the
methods. As storm-based approaches are less widely used, we present
more detail on these methods. In the following, we denote the vector
of parameters representing the environmental state as 𝐒 and the short-
term response peaks as 𝑅. Here we use the term ‘peaks’ to distinguish
between local peaks (e.g. crest heights) and the continuous short-term
response (e.g. surface elevation). The distribution of response peaks
conditional on environmental state is denoted 𝐹𝑅|𝐒(𝑟|𝐬) and the joint
density function of environmental conditions is denoted 𝑓𝐒(𝐬).

5.1.1. All-peaks methods
Methods for calculating the long-term distribution of all short-term

response peaks have been proposed in Nordenström (1969), Battjes
(1970) and Tucker (1989). In this work, the long-term distribution of all
short-term peaks is calculated using the Battjes method (Battjes, 1970).
In this method, the probability that a randomly chosen response peak
does not exceed a level, 𝑟, is given by

𝐹𝑅(𝑟) = 𝑁̄−1
∫𝐒
𝑁(𝐬)𝐹𝑅|𝐒(𝑟|𝐬)𝑓𝐒(𝐬)d𝐬, (19)

where 𝑁(𝐬) is the average number of response peaks in condition 𝐬 and
𝑁̄ is the average number of response peaks in any environmental state
chosen at random, given by:

𝑁̄ = ∫𝐒
𝑁(𝐬)𝑓𝐒(𝐬)d𝐬. (20)

The distribution of the maximum response in a 𝑇 -year period is cal-
culated under the assumption that all response peaks are independent:

𝐹𝑅𝑚𝑎𝑥 ,𝑇 (𝑟) = [𝐹𝑅(𝑟)]𝑁̄𝑛𝑇 , (21)

where 𝑛 = 365.25×24∕𝑑 is the number of environmental conditions per
year, and 𝑑 is the duration of each condition in hours.

5.1.2. Short-term maxima methods
Two methods are commonly used for calculating the long-term

distribution of the maximum response in each environmental condition.
One is based on ergodic mean (Naess, 1984; Krogstad, 1985) and
the other based on an average over the probability of occurrence of
environmental states. The two methods give almost identical results

for return periods of interest for offshore design (see Sagrilo et al.,
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Fig. 11. Example of 𝐻𝑠 and random 1-hour maximum wave heights over a storm. The 5% and 95% quantiles of the distribution of the 1-hour maximum wave height are also
hown, assuming that individual wave heights follow a Rayleigh distribution. In this example the maximum individual wave height does not occur at the storm peak 𝐻𝑠.
Fig. 12. Example time series of 𝐻𝑠 and random 1-hour maximum wave heights over a year. The serial correlation in 1-hour maximum wave heights is evident.
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011; Mackay and Johanning, 2018c). For consistency with the all-
eaks and storm-based methods, we shall use the definition in terms
f the probabilistic average. Denote the distribution of the maximum
esponse in environmental state 𝐬 as 𝐹𝑅𝑚𝑎𝑥|𝐒(𝑟|𝐬). Then the distribution

of the maximum response in any environmental condition selected at
random, is given by

𝐹𝑅𝑚𝑎𝑥 (𝑟) = ∫𝐒
𝐹𝑅𝑚𝑎𝑥|𝐒(𝑟|𝐬)𝑓𝐒(𝐬)d𝐬. (22)

The distribution of the maximum response in a 𝑇 -year period is calcu-
lated under the assumption that the short-term maximum responses are
independent:

𝐹𝑅𝑚𝑎𝑥 ,𝑇 (𝑟) = [𝐹𝑅𝑚𝑎𝑥 (𝑟)]
𝑛𝑇 . (23)

As discussed above, short-term maximum responses exhibit serial cor-
12

relation, so (23) will overestimate the probability of occurrence of o
large response values. We note that (22) is a valid way of calculat-
ing this distribution of all short-term maximum responses (given the
caveats about the differences between the ergodic mean and proba-
bilistic mean, mentioned above). However, since short-term maximum
response are serially-correlated, this distribution is not what is required
for calculating long-term extreme responses. Calculating long-term ex-
treme responses from 𝐹𝑅𝑚𝑎𝑥 (𝑟), is analogous to calculating long-term
extremes of an environmental variable, 𝑋, based on the distribution
of all observations, 𝐹𝑋 (𝑥), without accounting for serial correlation.

s discussed in Sections 1–3, this leads to a positive bias in estimated
eturn values.

.1.3. Storm-based methods
Storm-based methods are derived in a similar way to the all-peaks

r short-term maxima methods. We start by calculating the distribution
f the maximum response in any storm selected at random, 𝐹 ,
𝑅𝑆𝑃
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where SP denotes storm peak. The long-term response distribution is
then calculated under the assumption that storm peak responses are
independent:

𝐹𝑅𝑚𝑎𝑥 ,𝑇 (𝑟) = [𝐹𝑅𝑆𝑃 (𝑟)]
𝑚𝑇 , (24)

where 𝑚 is the expected number of storms per year. Storm-based
methods can be classed as either ‘‘equivalent storm’’ methods or Monte
Carlo methods. In equivalent storm methods, the distributions of the
maximum response in measured storms is parameterised in terms of
a statistically equivalent storm and 𝐹𝑅𝑆𝑃 is calculated in an analogous
way to the distributions of all peaks or all short-term maxima. In Monte
Carlo methods, 𝐹𝑅𝑆𝑃 is estimated directly from the data, removing the
need to define equivalent storms.

Equivalent storm methods:
Although sequential environmental states are correlated, the ex-

treme responses in adjacent environmental states are dependent only
on the environmental conditions and not on the extreme response
in adjacent environmental states. That is, the sequence of values of
𝑅𝑚𝑎𝑥,𝑖 are independent realisations from 𝐹𝑅𝑚𝑎𝑥|𝐒𝑖 , but the sequence 𝐒𝑖
s serially correlated. The correlation in 𝐒𝑖 introduces correlation into
equence of values of 𝑅𝑚𝑎𝑥,𝑖 (see Fig. 11).

Given that 𝐹𝑅𝑚𝑎𝑥|𝐒𝑖 are conditionally independent, the distribution
f the extreme response over a measured storm (MS) can be calculated
s

𝑅𝑆𝑃 |𝑀𝑆
(𝑟) =

∏

𝑖∈[𝑖0 ,𝑖1]
𝐹𝑅𝑚𝑎𝑥|𝐒𝑖 (𝑟|𝐬𝑖), (25)

here 𝑖0 and 𝑖1 are the indices of the start and end of the storm.
There is a potential area for misunderstanding here. In (25), the

istribution of the maximum response in the measured storm is cal-
ulated as the product of the conditionally-independent distributions
f maximum responses in each short-term condition. We could extend
his argument to say that the distribution of the maximum response
ver a given year is the product of the distributions of maximum
esponses in each observed short-term condition in the given year.
ince this distribution is calculated as a product, the order of the
erms in the sequence does not matter. Based on this, some authors
rgue (incorrectly) that serial correlation therefore cannot affect long-
erm extreme responses, since the product could be rearranged into
ny sequence without affecting the result. However, this argument
nly applies to an observed time series. As discussed in Sections 1–
, if a year of observations was simulated from the distribution of
ll observations, without accounting for serial correlation, then this
ould overestimate the frequency of occurrence of large values. The
ethod applied in (25), for calculating the distribution of the maximum

esponse in an observed, serially-correlate time series of environmental
ariables, therefore cannot be extended to uncorrelated sequences of
nvironmental variables simulated from 𝑓𝐒(𝐬).

Two types of method have been proposed for parameterising the dis-
ribution of the maximum response in a storm. One approach to param-
terising 𝐹𝑅𝑆𝑃 |𝑀𝑆

is to model the temporal evolution of environmental
tates in a storm using a simplified geometric form, such as a trian-
le (Boccotti, 1986, 2000; Arena and Pavone, 2006), power law (Fedele
nd Arena, 2010; Arena et al., 2014) or exponential law (Laface and
rena, 2016). In this approach, the temporal evolution of only one vari-
ble is modelled (such as significant wave height or wind speed) and
ll other variables are modelled as taking a single value, conditional
n the dominant variable. If storm peaks are sufficiently separated in
ime, the order in which environmental states occur within a storm
oes not matter. Each measured storm can therefore be rearranged
nto a monotonic sequence, for which a simple parametric form is a
easonable approximation for the largest values. Temporal evolution
ethods were derived for calculating return periods of wave and

rest heights, for which 𝐻𝑠 has the dominant influence on the short-
erm distribution. For responses such as loads or motions of floating
13

s

tructures, which are dependent on multiple variables, modelling only
he temporal evolution of a single variable may not provide an adequate
odel for the distribution of the maximum response in a storm.

The alternative is to define an equivalent storm as a parametric
tatistical distribution, fitted to 𝐹𝑅𝑆𝑃 |𝑀𝑆

for each measured storm.
romans and Vanderschuren (1995) proposed to model the distribution
f the square of the maximum response in a storm as a Gumbel
istribution. A generalisation of this method was proposed in Mackay
2017) and Mackay and Johanning (2018a), where 𝐹𝑅𝑆𝑃 |𝑀𝑆

is modelled
sing the GEV distribution.

For both the temporal evolution methods and distribution modelling
ethods, the distribution of the maximum response in any storm

elected at random is calculated as

𝑅𝑆𝑃 (𝑟) = ∫Ω
𝐹𝑅𝑆𝑃 |Ω (𝑟|𝜔)𝑓Ω(𝜔)d𝜔, (26)

here Ω is the vector of equivalent storm parameters and 𝑓𝛺(𝜔) is the
ong-term joint density function of equivalent storm parameters. Often,
he integral over the joint density of the equivalent storm parameters
an be simplified by taking the mean value of some equivalent storm
arameters conditional on the others, for example, taking the mean
EV shape parameter and modelling the scale parameter as conditional
n the location parameter. Details are provided in the works cited
bove.

Monte Carlo methods:
Broadly speaking, two types of Monte Carlo methods have been

roposed for combining long-term and short-term distributions. One
ype uses only the observed environmental conditions; we shall refer
o this as MC1. The other uses some method to generate random time
eries of environmental conditions, which we will refer to as MC2.

Mackay and Johanning (2018b) proposed an MC1 method where
random realisation of the maximum response in each environmen-

al state is generated. A POT analysis is then conducted, with the
eneralised Pareto (GP) distribution fitted to the random storm peak
esponses. This process is repeated a large number of times and the
esults are averaged over all trials. It should be noted that results
ill differ, depending on whether the GP parameters are averaged and

eturn values are calculated, or the return values are calculated for
ach trial and then averaged. The difference is due to the nonlinear
elationship between the GP parameters and return values. Methods
sed for estimating GP parameters and quantiles vary in the bias and
ariance (see e.g. de Zea Bermudez and Kotz, 2010; Mackay et al.,
011). Whether it is appropriate to average GP parameters or return
alues depends on the parameter estimation method. Jonathan et al.
2021) showed that if maximum likelihood was used to estimate GP pa-
ameters, then averaging return values over each trial results in a lower
ias than calculating return values from the average GP parameters.
owever, if the empirical Bayesian method (EBM) (Zhang, 2010) is
sed to estimate GP parameters, then using the average GP parameters
o calculate return values results in a lower bias.

Various types of MC2 methods have been proposed. The methods
enerally involve three steps: (1) a method to partition the observed
ime series into a sequence of non-overlapping storm events; (2) a
oint model for the storm peak variables; and (3) a model for the
istribution of variables conditional on the storm peak values. For
ultivariate problems, the peak values of each variable within a storm
ay not occur simultaneously. There is therefore some choice in how

o chose the values used for the joint model of storm peak variables.
ome practitioners opt to identify one dominant variable, such as
ignificant wave height or wind speed, and select the values of the
ther variables at the time of the peak value of the dominant variable
e.g. Ewans and Jonathan, 2008). In other works, ‘characteristic’ values
f variables over the course of a storm are defined (Hansen et al.,
020). Alternatively, the peaks values of each variable within a storm
an be modelled, where the peak values are not required to occur

imultaneously (Mackay and Jonathan, 2020b). To obtain a model for
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the joint distribution of variables, conditional on the storm peak values,
measured storms can be resampled and rescaled (Ross et al., 2017;
Hansen et al., 2020; Mackay and Jonathan, 2020b). Alternatively, a
model for the time series evolution around the peak values can be
estimated (Tendijck et al., 2019).

The MC1 method is simpler to implement than MC2, as it only re-
quires the short-term response function and a standard univariate POT
analysis. The disadvantage of MC1 is that a separate analysis is required
for each response of interest. It also assumes that response function
does not change significantly outside the range of observations. Some
responses, such as mooring line snatch loads or wave-in-deck loads
may exhibit a sharp change at some level. In comparison, MC2 is more
complex to implement, but has the advantage that the extreme value
analysis of environmental conditions can be separated from the extreme
response analysis, and no assumptions are required about how the
response function behaves outside the range of observations.

5.2. Examples using resampled time series

5.2.1. Short-term response model
We use response functions for the vertical bending moment (VBM)

and roll motion of eight ships, considered in de Hauteclocque et al.
(2021). The normalised VBM and roll response amplitude operators
(RAOs) are shown in Fig. 13.1 The natural periods for the roll responses
are between 7.5 s and 25 s. Although, only two types of ship response
are considered, roll is typical of many resonance driven responses,
with a sharp-peaked narrow-band response. In contrast, VBM has a
broader bandwidth. Thus the roll and VBM responses used here can be
considered as representative of a wider range of responses of offshore
structures.

The response spectrum is given by

𝑆𝑅|𝑆 (𝜔) = [RAO(𝜔)]2𝑆𝜂|𝑆 (𝜔), (27)

where 𝑆𝜂|𝑆 (𝜔) is the surface elevation spectrum in sea state 𝑆. In
the examples in this section it is assumed that each sea state has
a JONSWAP spectrum with peak enhancement factor 𝛾 = 1.5. The
significant response is defined as 𝑅𝑠 = 2

√

𝑚0, where 𝑚𝑗 is the 𝑗th
oment of the response spectrum

𝑗 (𝑠) = ∫

∞

0
𝜔𝑗𝑆𝑅|𝑆 (𝜔)𝑑𝜔. (28)

1 The RAOs used in this study are available at: https://github.com/ec-
enchmark-organizers/ec-benchmark/tree/master/publications/quantiative-
ssessment-of-contours/raos.
14

1

Under the assumption of a linear, narrow-band response, peak re-
sponses follow a Rayleigh distribution (Naess and Moan, 2013):

𝐹𝑅|𝑆 (𝑟|𝑠) = 1 − exp

(

−2
(

𝑟
𝑅𝑠

)2
)

. (29)

If we make the simplifying assumption that all short-term response
peaks in a sea state are independent, then

𝐹𝑅𝑚𝑎𝑥|𝑆 (𝑟|𝑠) = [𝐹𝑅|𝑆 (𝑟|𝑠)]𝑁 , (30)

here 𝑁 = 𝜈𝑑 × 3600, 𝜈 =
√

(𝑚2(𝑠)∕𝑚0(𝑠))∕2𝜋 is the mean number of
peaks per unit time, and 𝑑 is the duration of the sea state in hours. In
eality, consecutive response peaks are correlated due to the grouping
f waves. In practice, more advanced methods could be used to estimate
𝑅𝑚𝑎𝑥|𝑆 (𝑟|𝑠), which do account for short-term correlation in response
eaks. However, this simple model will suffice for the purpose of
llustrating the effect of serial correlation in environmental conditions.

.2.2. Time series model
To simulate arbitrarily long time series of 𝐻𝑠 and 𝑇𝑧, we use the

torm resampling approach described in Mackay and Jonathan (2020b)
in the notation of Section 5.1.3, this is an MC2-type model). The
ethod for dividing the time series into discrete storm events is very

imilar to that described in Section 3.2. The details of the joint model
or storm peaks are not repeated here, but is described in Mackay and
onathan (2020b). The method was applied to three datasets of 𝐻𝑠
nd 𝑇𝑧, provided in the recent environmental contour benchmarking
xercise (Haselsteiner et al., 2021). Comparisons of the observations
nd empirical isodensity contours for the resampled data are shown
n Fig. 14 and further comparisons are presented in de Hauteclocque
t al. (2021). Although there are some differences between the ob-
erved and simulated distributions, the simulated data are sufficiently
epresentative of real datasets to illustrate the effect of neglecting serial
orrelation in the ‘all-peaks’ and ‘short-term maxima’ methods.

.2.3. Results
For each dataset, 104 years of synthetic hourly time series of 𝐻𝑠 and

𝑧 were simulated. For each hour in the records, a random maximum
esponse was simulated for each of the 16 response functions described
n Section 5.2.1. Return periods were calculated from the empirical
istribution function (EDF) for the simulated storm peak values (the
aximum response in each resampled block) and for hourly values
nder the assumption of independence. Examples of return values of
BM for ship R05 are shown in Fig. 15. For dataset A, the effect
f neglecting serial correlation is negligible for return periods above

0 years. In contrast, for datasets B and C, there are relatively large

https://github.com/ec-benchmark-organizers/ec-benchmark/tree/master/publications/quantiative-assessment-of-contours/raos
https://github.com/ec-benchmark-organizers/ec-benchmark/tree/master/publications/quantiative-assessment-of-contours/raos
https://github.com/ec-benchmark-organizers/ec-benchmark/tree/master/publications/quantiative-assessment-of-contours/raos
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Fig. 14. Scatter plot of observed 𝐻𝑠 and 𝑇𝑧 (dots), overlaid with empirical isodensity contours for the resampled data. Contours shown at probability densities of 10−𝑛 for 𝑛 = 1,… , 6.
Fig. 15. Examples of return values of vertical bending moment for ship R05 for the three datasets, calculated using various methods.
differences at the 10-year level between the ‘true’ return values and
those which neglect serial correlation.

Return values of VBM calculated using the all-peaks method are also
shown in Fig. 15. Instead of generating time series of all peaks within
the 10,000 year datasets, a discrete analogue of (19) was applied to the
hourly time series to calculate the distribution of a randomly chosen
response peak:

𝐹𝑅(𝑟) =
1

𝑀𝑁̄

𝑀
∑

𝑖=1
𝑁(𝐬𝑖)𝐹𝑅|𝐒𝑖 (𝑟|𝐬𝑖), (31)

where 𝑀 = 104 ×8760 is the number of hourly sea states in the 10,000-
year time series. Return values were then calculated as described in
Section 5.1.1. For dataset A, there is negligible difference in the return
values for the all-peaks and short-term maxima methods above the 1-
year level, whereas for datasets B and C there are still some differences
at the 10-year level. Mackay and Johanning (2018c) showed that if the
distribution of the maximum short-term response is formed under the
assumption that all peaks are independent, then the return values from
the all-peak method will converge to those from the short-term maxima
method as 𝑇 → ∞. This is because both methods make the assumption
of no serial correlation between individual peaks or sea states.

It should be noted that after the random maximum response in
each hour is simulated, we now have a univariate time series of
observed variables, so the situation is identical to that discussed in
Section 3. Therefore, for a given response, the effect of neglecting serial
correlation will depend on the shape of the tail of the distribution of
storm peak response and the average shape of the ‘storms’, where in
this case ‘storms’ refer to clusters of large responses. Moreover, note
that for a given dataset both the shape of the tail of storm peaks and
the mean storm shape will depend on the particular response function.

To summarise the results over all datasets, Fig. 16 shows the sub-
asymptotic extremal index 𝜃𝑇 for each of the response functions and
each of the datasets. In this plot, 𝜃𝑇 is calculated as the ratio of the
return period from the short-term maxima method to that from the
15
storm peak method. There are similar trends for each response function.
For dataset A, 𝜃𝑇 increases to close to 1 at 𝑇 = 100 years, whereas for
datasets B and C, there is more scatter, but lower values on average.

To assess the influence of the shape of the tail of storm peak
response 𝐹𝑅𝑆𝑃 , Fig. 17(a) shows a scatter plot of 𝜃𝑇 for 𝑇 = 25 years
against the ratio 𝑅10∕𝑅100, where 𝑅𝑇 is the 𝑇 -year return value of the
response. The ratio 𝑅10∕𝑅100 is a proxy for the shape of the tail of the
distribution of 𝐹𝑅𝑚𝑎𝑥|𝑆𝑃 around the 25-year return level, with lower
values of the ratio corresponding to higher values of 𝜉.2 The relatively
tight banding of the results over all 16 responses evaluated for the
three datasets, indicates that the mean storm shape is fairly constant
for each case. The colour of the points in Fig. 17 indicates the period
of the peak response. It is apparent that the longer period responses
tend to have distributions of storm peak response with longer tails,
and hence small values of 𝑅10∕𝑅100. This is related to the shape of the
joint distribution of 𝐻𝑠 and 𝑇𝑧, discussed in Section 4. For the lower
period responses, the tail of the distribution of storm peak response
will be shorter, since the minimum period at a given 𝐻𝑠 is limited
by wave breaking. Fig. 17(b) shows the relative error in the 25-year
return value for short-term maxima methods compared to storm-based
methods (defined as (𝑅̃25 − 𝑅25)∕𝑅25, where 𝑅̃25 is the estimate from
the short-term maxima method and 𝑅25 is storm-based estimate). When
the tail of the distribution of 𝐹𝑅𝑚𝑎𝑥|𝑆𝑃 is short and 𝑅10∕𝑅100 ≥ 0.6, the
relative error is negligible. However, for smaller values of 𝑅10∕𝑅100, the
biases can be very large — just under 100% in the largest case. For this
case, a structure designed using response estimates from a short-term
maxima method would be extremely conservative.

Finally, we consider the differences in the effect of serial correlation
with and without short-term variability. Fig. 16 shows the values of

2 The correspondence between the ratio and the tail shape can be seen
by considering the Hill estimator (Hill, 1975) for tail index. If we denote an
ordered sample 𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛) and denote the ratio 𝑣𝑖𝑘 = 𝑥(𝑛−𝑖+1)∕𝑥(𝑛−𝑘), then
the Hill estimator is 𝜉 = 1 ∑𝑘 log(𝑣 ).
𝑘 𝑘 𝑖=1 𝑖𝑘
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Fig. 16. Sub-asymptotic extremal index for three dataset and various ship responses. Thin lines are values for each response, bold lines are mean over all responses.
Fig. 17. (a) Sub-asymptotic extremal index and relative error at 𝑇 = 25 years, for each of the 16 responses and three datasets. 𝑅10∕𝑅100 is the ratio between the 10-year and
100-year response, used as a proxy to characterise tail shape. (b) Relative error in 25-year return value for short-term maxima methods compared to storm-based methods. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
𝜃𝑇 for the significant response, 𝑅𝑠, for each of the response functions
(also presented in de Hauteclocque et al., 2021). It is apparent that
including short-term variability increases the value of 𝜃𝑇 . As discussed
before, a change in 𝜃𝑇 could be due to either a change in the shape
of the tail of the distribution of storm peak response, or a change in
the mean storm shape. Quantile–quantile plots of the random storm
peak response against the storm peak significant response indicated a
linear relationship (not shown). So for the present examples, it can be
inferred that short-term variability influences the mean storm shape
(where the storm shape is defined in the same way as in Section 3.2,
as the ordered sequence of response values over the storm, averaged
over storms with similar peak response values). However, for other
response functions, short-term variability could also influence shape the
distribution of storm peak response.

When the short-term distribution is Rayleigh, given by (29), the
distribution of the maximum response in 𝑁 cycles tends to a Gum-
bel distribution as 𝑁 → ∞, (a GEV distribution with CDF given
in (9) and 𝜉 = 0) with parameters 𝜇 = 𝑅𝑠

√

log(𝑁)∕2 and 𝜎 =
𝑅𝑠∕2

√

2 log(𝑁). As a measure of the variability of 𝑅𝑚𝑎𝑥 we define
a coefficient of variability of the short-term maximum response as
𝑉𝑆𝑇 = STD(𝑅𝑚𝑎𝑥(𝑠))∕mode(𝑅𝑚𝑎𝑥(𝑠)) = 𝜋∕(2

√

6 log(𝑁)). Here we have
normalised by the most probable maximum value, 𝜇, rather than the
expected maximum value to simplify the expression. In the case that
𝑉𝑆𝑇 is large relative to the variation of 𝑅𝑠 within storms, the presence
of short-term variability dominates any serial correlation in significant
response, making time series of 𝑅𝑚𝑎𝑥(𝑠) effectively independent. In the
present examples, 𝑉𝑆𝑇 (𝑠) is relatively constant at around 10% for all
response functions and the ranges of sea states considered. So clusters
of extreme values in the time series of 𝑅𝑠 and 𝑅𝑚𝑎𝑥 will occur at
approximately the same times (similar to the case illustrated in Fig. 11).

To investigate the effect of additional short-term variability on the
mean storm shape, consider the following simple example. We assume
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that over the course of a storm, 𝑅𝑠 increases linearly from zero to 𝑅𝑝𝑒𝑎𝑘𝑠
over 100 h, and that the distribution of the maximum response in each
hour follows a Gumbel distribution with parameters given above. We
simulate random values of 𝑅𝑚𝑎𝑥 in each hour of the storm for 𝑁 = 10,
100, and 1000. For each simulation, the values of 𝑅𝑚𝑎𝑥 over the storm
are ordered, and the process is repeated 1000 times to calculate the
mean shape of the ordered values of 𝑅𝑚𝑎𝑥. The results are shown in
Fig. 18. It is evident that the mean shape of the ordered values of 𝑅𝑚𝑎𝑥
is more peaked than ordered values of 𝑅𝑠, and that the peakedness
increases with 𝑉𝑆𝑇 (𝑠), as expected. This implies that the reason that 𝜃𝑇
is reduced when considering random responses rather than significant
responses is that the mean storm shapes are more peaked.

6. Conclusions

Sections 1 and 2 present theoretical arguments suggesting how a
rational extreme value analysis from serially-correlated data should
be conducted in the ocean engineering context. We show that basing
analysis on storm peaks or cluster maxima of variables leads to intuitive
interpretations of return values and return periods. We have presented
theoretical arguments and simple examples to show how neglecting
serial correlation leads to positive bias in the estimation of extreme
events.

A new definition of a sub-asymptotic extremal index, 𝜃𝑇 , was in-
troduced. It was shown 𝜃𝑇 (𝑥) = 𝑇̃ (𝑥)∕𝑇 (𝑥), where 𝑇 is the true return
period of 𝑥, and 𝑇̃ (𝑥) is the return period when serial correlation is
neglected. It was also shown that the bias in return values introduced
by neglecting serial correlation can be quantified in terms of 𝜃𝑇 . The
sub-asymptotic extremal index is more relevant to offshore engineering
than the standard extremal index, which describes the effect of serial
correlation at asymptotically high levels, corresponding to return pe-
riods outside the usual range of interest. We show that the value of
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Fig. 18. Effect of short-term variability on mean storm shape. Solid line shows ordered
values of 𝑅𝑠 over a hypothetical storm. Other lines show mean of ordered values of
1-hour maximum response, 𝑅𝑚𝑎𝑥, over the same storm, where there are 𝑁 peaks per
hour, and the response follows a Rayleigh distribution.

𝜃𝑇 (𝑥) is dependent on the average shape of storm events and the shape
parameter of storm peak values, 𝜉. It was shown that larger values
of 𝜉 lead to larger biases at a given return period. For the examples
considered here, the effect of neglecting serial correlation is reduced
at higher return periods. The rate at which 𝜃𝑇 increases with 𝑇 is also
depended on 𝜉.

The examples presented show how neglecting serial correlation can
lead to biased, overly-conservative estimates of environmental contours
and long-term extreme responses. For the roll motion and bending
moment response functions considered in Section 5, it was shown that
when serial correlation was neglected, the 25-year return values of the
long-term extreme response could have relative errors of nearly 100%
in some cases, although in other cases the relative errors were much
smaller. Accounting appropriately for the effect of serial correlation can
therefore reduce over-conservatism in offshore design, leading to more
rational design decisions.
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