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Abstract: Hydraulic modelling of a foul sewer system (FSS) enables a better understanding 24 

of the behavior of the system and its effective management. However, there is generally a 25 

lack of sufficient field measurement data for FSS model development due to the low number 26 

of in-situ sensors for data collection. To this end, this study proposes a new method to 27 

develop FSS models based on geotagged information and water consumption data from smart 28 

water meters that are readily available. Within the proposed method, each sewer manhole is 29 

firstly associated with a particular population whose size is estimated from geotagged data. 30 

Subsequently, a two-stage optimization framework is developed to identify daily time-series 31 

inflows for each manhole based on physical connections between manholes and population as 32 

well as sewer sensor observations. Finally, a new uncertainty analysis method is developed 33 

by mapping the probability distributions of water consumption captured by smart meters to 34 

the stochastic variations of wastewater discharges. Two real-world FSSs are used to 35 

demonstrate the effectiveness of the proposed method. Results show that the proposed 36 

method can significantly outperform the traditional FSS model development approach in 37 

accurately simulating the values and uncertainty ranges of FSS hydraulic variables (manhole 38 

water depths and sewer flows). The proposed method is promising due to the easy availability 39 

of geotagged information as well as water consumption data from smart water meters in near 40 

future.  41 
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1 Introduction 44 

As a result of population growth and rapid urbanization, spatial scales and structural 45 

complexities (e.g., the number of pipes, pumps and weirs) of many foul sewer systems (FSSs) 46 

have substantially increased over the past few decades (Rokstad and Ugarelli, 2015). These 47 

physical changes combined with system ageing result in a number of challenges for FSS 48 

management or operation (Sweetapple et al., 2018). Typical issues include pipe blockages 49 

(Montes et al., 2020), manhole overflows (Liu et al., 2016), odor problems (Talaiekhozani et 50 

al., 2016), illicit inflows (e.g., toxic discharges from local factories, rainwater infiltration, and 51 

groundwater intrusion (McCall et al., 2016), and sewer exfiltration (Lepot et al., 2016, 52 

Beheshti and Saegrov, 2018). These issues can either directly induce serious contamination to 53 

the surrounding water environments (Lepot et al., 2016; Beheshti and Saegrov, 2018), or 54 

cause functional failures of wastewater treatment plants and consequently result in significant 55 

contamination of the receiving water body (McCall et al., 2016). Therefore, an efficient and 56 

effective management strategy for the FSS is vital to the urban environment safety as well as 57 

sustainable development of the society (Bailey et al., 2019).  58 

One promising approach to enable effective FSS management is through hydraulic modelling 59 

(See et al., 2009, Draude et al., 2019). Typically, simulations of the FSS hydraulic variables 60 

(water depth and flows) can be compared with the in-situ observations, thereby identifying 61 

anomalies when observed water depths differ significantly from the simulation results (Ahm 62 

et al., 2016, Bailey et al., 2019). However, ensuring the high performance of an FSS 63 

hydraulic model is not a trivial task. This is because manhole inflow data, i.e., dry weather 64 



flows (DWFs), is typically unavailable (Breinholt et al., 2013). In addition, the true manhole 65 

inflow is a result of an inherently stochastic process that can be affected by many external 66 

conditions (e.g., temperature, user behaviour, Abdel-Aal et al., 2015) and hence it is difficult 67 

to simulate. To this end, this study aims to investigate the challenge of accurately simulating 68 

the FSS hydraulics including the underlying stochastic properties.  69 

Regarding the manhole inflow data, a number of different methods have been developed to 70 

estimate dry weather flows (DWF) for FSS models. These include the domestic appliance 71 

usage survey methods (Butler et al., 1995, Almeida et al., 1999), various empirical prediction 72 

models (Carstensen et al., 1998, Bechmann et al., 1999, Langergraber et al., 2008, Rodríguez 73 

et al., 2013) and the time-series sewer generation approaches (Mannina et al., 2009, De 74 

Keyser et al., 2010). These studies have also recognized that there are sources of variability 75 

that cannot be represented entirely deterministically and that adding a stochastic component 76 

to the model is beneficial (Almeida et al., 1999, Pablo Rodríguez et al., 2013). While these 77 

DWF methods have made contributions in developing FSS hydraulic models, their practical 78 

applications are restricted due to large efforts and insufficient data accuracy associated with 79 

these approaches (Bailey et al., 2019).  80 

In recent years, a widely used approach is to calibrate the FSS model to estimate manhole 81 

inflows (i.e., DWFs) based on limited in-sewer observations (Korving and Clemens, 2005). 82 

Currently, the majority of the calibration algorithms aim to identify the inflows for each 83 

manhole at each particular time of the day, which is kept the same across different days 84 

(Bailey et al., 2019). Such a calibration approach is referred to as static or offline calibration. 85 



The approach is based on an engineering assumption that inflows at each manhole at a 86 

particular time period (say 6:00 am - 6:30 am) are similar across different days (Bailey et al., 87 

2019). This, however, neglects the stochastic nature and variability associated with these 88 

inflows. More importantly, the static calibration results often exhibit the so-called 89 

“equifinality” problem (Khu et al., 2006). This refers to a situation where many manhole 90 

inflow combinations produce a similar agreement between simulated and observed water 91 

levels or sewer flows at monitoring locations. As a result, it is very difficult, if not impossible, 92 

to identify a unique parameter set (i.e., a manhole inflow combination) that represents the 93 

true underlying temporal and spatial distribution of manhole inflows. The “equifinality” issue 94 

can significantly hamper practical application of FSS models due to model performance 95 

suffering at locations without sensors and also under different sewer discharge scenarios 96 

(Zhang et al., 2021).  97 

To address the “equifinality” problem, some domain knowledge can be incorporated into the 98 

calibration process. For example, the length of sewer pipes or the contributing area can be 99 

used as prior knowledge for manhole inflow calibration (Maurer et al., 2013). This is because, 100 

typically, a long pipe or a large contributing area often collects a relatively large amount of 101 

wastewater. While these heuristics can improve the quality of the static calibration and 102 

partially alleviate the “equifinality” problem, the resulting model may not match the real 103 

situation in a sewer system. For example, some long sewer pipes may be only used to 104 

transport wastewater collected in upstream regions. In that case, manhole inflows are rather 105 

low because the house/commercial building density around these pipes is rather low. 106 

Conversely, some short pipes may receive a large amount of wastewater discharged from 107 



surrounding regions with a high population density. Therefore, the use of pipe length or the 108 

contributing area as the domain knowledge for FSS calibration may not be able to identify the 109 

true inflows into the manholes. Another heuristic is the use of the pipe diameter size since an 110 

increase in pipe diameter at a given location may indicate larger local sewer flows. However, 111 

it is also not ideal as a pipe in the downstream not only collects the sewer discharges from its 112 

local resident buildings, but also delivers sewer flows that are from its upstream pipes. 113 

Therefore, there is no direct relationship between the pipe size and the amount of the local 114 

sewer inflows. More recently, Zhang et al. (2021) developed an FSS model using a high 115 

density of real-time water consumption data, but this approach is not ideal for practical 116 

application as many water utilities have a relatively low number of smart water meters 117 

(mainly for large water users, e.g., factories, hospitals or schools). 118 

Relative to the studies focused on the static FSS modelling, investigations on the stochastic 119 

properties of the manhole inflow data (i.e., DWFs) are rare. Some previous studies have 120 

assumed a particular distribution function, e.g., Uniform distribution, Gaussian distribution or 121 

Poisson distribution (Jin and Mukherjee, 2010; Sun et al., 2014) to describe the stochastic 122 

process of water consumption. However, their effectiveness with applications to FSS models 123 

has not been demonstrated. More importantly, the parameters of the specified distributions 124 

(e.g., ±15% around the expected value) are mainly assumed subjectively, and hence may 125 

not be realistic. Therefore, there is still a need of an effective uncertainty analysis method to 126 

describe the underlying variation of the expected manhole inflows.  127 

The objective of this study is to propose a novel FSS modelling method that can accurately 128 



simulate manhole inflows and their underlying uncertainty ranges. This goal is achieved with 129 

the aid of geotagged information and smart water meter data. More specifically, in the 130 

proposed method, the population information is derived based on the geotagged data (e.g., 131 

building area and height) taken from public databases. This information is used as prior 132 

knowledge to facilitate the static calibration of inflows for each manhole. The rationale 133 

behind this is that the population density can better indicate the inflow magnitudes at 134 

manholes when compared to the pipe length previously considered. In addition, uncertainty 135 

ranges associated with manhole inflows are derived from the stochastic properties of water 136 

consumption data from smart water meters. The idea behind this uncertainty analysis 137 

approach is that: (i) a given number of smart water meters that record water consumption in a 138 

near real-time manner (say every 30 minutes, Creaco et al., 2018) can be used to derive 139 

stochastic properties of the water consumption, and (ii) stochastic characteristics of manhole 140 

inflows can be derived from water consumption properties due to the intrinsic relationship 141 

between the water consumption and wastewater discharge in the same area.  142 

The main contributions and novelties of this study include (i) the use of geotagged 143 

information from public databases to estimate the FSS manhole inflows, which can greatly 144 

improve the simulation accuracy and address the problems of “equifinality”, and (ii) the use 145 

of water consumption data from smart water meters to accurately characterize uncertainty 146 

associated with manhole inflows. To our best knowledge, this is the first work where the 147 

geotagged information and water consumption data are used to improve the accuracy of FSS 148 

hydraulic modelling.  149 



This paper is organized as follows. The proposed methodology is described in Section 2, 150 

followed by the descriptions of the case studies considered in Section 3. Results and 151 

discussions are given in Section 4. Finally, the conclusion section (Section 5) shows the main 152 

findings and implications of this paper.  153 

2. Methodology 154 

Figure 1 illustrates the overall framework of the proposed methodology, which involves three 155 

phases of FSS model development as well as the demonstration of the method on real-world 156 

case studies. Phase 1 aims to estimate the population size associated with each sewer 157 

manhole based on geotagged data. In this phase, the geotagged data from public databases are 158 

used to build physical relationship between each FSS manhole and its surrounding buildings, 159 

with details given in Section 2.1. This is followed by the estimate of population size based on 160 

the established relationship between each manhole in the FSS and the associated buildings, as 161 

described in section 2.1. In Phase 2, the daily pattern of the inflows (i.e., DWFs) for each 162 

manhole is identified using a two stage optimization approach applied to the FSS subsystems 163 

partitioned by the sewer flow meter locations (Section 2.2). Phase 3 focuses on the 164 

uncertainty analysis of manhole inflows (Section 2.3). In this phase, stochastic properties of 165 

water consumption are derived using data from smart water meters deployed in the water 166 

distribution system (WDS) that is overlapping with the FSS. The stochastic properties of 167 

water consumption data are then used to quantify the uncertainty ranges for sewer manhole 168 

inflows (Section 2.3). The utility of the proposed method is demonstrated through two real 169 

case studies. The performance of the proposed method is compared with traditional 170 



calibration and uncertainty analysis methods in accurately estimating hydraulic variables. 171 

172 

Figure 1 The overall framework of the proposed method 173 

Phase 1: Estimate population size for each sewer
manhole service based on geotagged information

Phase 2: Identify daily inflow pattern for each
manhole

Phase 3: Identify uncertainty ranges for
manhole inflows

Build physical relationship between each sewer 
manhole and its surrounding residential buildings 

Calibrate daily time-series pattern of total inflows 
of each subsystem using stage-one optimization

Determine the daily time-series inflow pattern for 
each manhole using stage-two optimization

Determine stochastic properties of water 
consumption data from smart water meter

Quantify sewer uncertainty ranges using the 
stochastic properties of water consumption data 

Demonstrate the utility of the proposed method

Estimate population size of each residential 
building according to geotagged information

Partition the FSS into different subsystems based 
on sewer flow meter locations

•Comparison with the traditional calibration method
•Performance in solving the equifinality issue
•Comparison with the traditional uncertainty approach



2.1 Estimate population size for each sewer manhole based on geotagged data  174 

For a manhole receiving residential wastewater, the population data associated with this 175 

manhole is an important indicator of inflows. However, it is usually difficult to obtain 176 

accurate population data for a particular area or an individual building level due to unknown 177 

occupancy rates and population mobility. In addition, privacy issues may also limit the 178 

availability of population mobility data in some areas. To this end, the proposed method uses 179 

maps taken from publicly available databases, such as Google Earth, OpenStreetMaps, Bing 180 

Maps (Zheng et al., 2018). These map databases often possess comprehensive geotagged data 181 

as illustrated in Figure 2(a), which in this study are employed to estimate the population size 182 

associated with each manhole.  183 

Typically, the density of residential buildings and the heights of these buildings can reflect the 184 

population size of an area, as illustrated in Figure 2(a). Accordingly, the population size can 185 

represent an important indicator of the magnitude of dry-weather wastewater flows, thus 186 

providing a link between the building information and sewer manhole inflows (Sitzenfrei et 187 

al., 2010). The specific information of each building includes the building height and width, 188 

representing the number of floors and the number of households at each floor respectively. 189 

This information can be obtained from geotagged data within the public databases. In 190 

addition, the occupancy of the building also needs to be accounted for in order to estimate the 191 

population size.  192 

In addition to the residential buildings, the sewers from commercial buildings or public 193 

buildings (e.g., hospitals or schools) also need to be considered when developing the FSS 194 



hydraulic models. Typically, sensors (e.g., smart water sensors) are deployed to monitor the 195 

water consumption or discharges for these large water users in a near real-time (as illustrated 196 

in Figure 2(a)). Therefore, the manhole inflows associated with these buildings can usually be 197 

directly acquired from local water utilities (Zhang et al., 2021). Prior to the population size 198 

estimate, it is necessary to build a physical connection between each manhole and the 199 

surrounding buildings. This physical connection represents that the discharges of these 200 

buildings are received by this manhole, with details given below.  201 

202 

Figure 2 The conceptual figure of the proposed method to build physical connections 203 

between buildings and manholes204 

2.1.1 Build the physical connection between each manhole and its surrounding buildings205 



In this study, the physical connection between a building (can be a residential, commercial or 206 

public building) and a manhole is determined based on their Euclidean distance. The rationale 207 

behind this is that the discharges of a building are most likely to flow to its nearest manhole. 208 

The Euclidean distance between the building and the manhole can be estimated using the 209 

following equation  210 

222 )()()(),( rhrhrh zzyyxxhrd  (1) 

where ( rx , ry , rz ) is the three-dimensional coordinate of the geometric center at the base of 211 

the building r  and ( hx , hy , hz ) are the coordinates of the manhole h . All these coordinates 212 

are available in the geotagged data of the public map databases. Consequently, for a given 213 

building r, its associated manhole can be identified by  214 

 ),(minarg)(
,...,2,1

hrdrh
Hh

 (2) 

where )(rh  represents the hth manhole assigned to rth building; H is the total number of 215 

manholes in the FSS model.  216 

Using Equations (1) and (2), the physical connections between the buildings and the 217 

manholes are established as shown in Figure 2(b). For a real FSS, a single manhole is very 218 

likely to physically connect multiple buildings, especially when the buildings are small in 219 

size, as shown in Figure 2(b). In a real FSS, there also might exist multiple manholes that 220 

potentially drain wastewater from a single building, which is often the case for large 221 

buildings. For this case, it is necessary to identify the proportion division of total discharges 222 

from a building across different surrounding sewer manholes, which is often difficult. For the 223 



sake of simplicity, only one manhole is assigned to a building in this study even though the 224 

fact is that multiple manholes are jointly used to deliver discharges of this building. It is 225 

acknowledged that such an assumption may lead to possible unrealistic hydraulic behaviour 226 

in the local region of the FSS, but its influence on the hydraulic results of the entire FSS is 227 

negligible (Zhang et al. 2021).  228 

2.1.2 Estimate population size of each residential building based on geotagged data 229 

While it is ideal to have detailed population information for each building to enable FSS 230 

modelling, gaining such data is challenging and also time-consuming. Therefore, two 231 

assumptions are made in this study to estimate the population size of each residential building, 232 

as shown below. 233 

(i) Assumption 1: The population size is linearly correlated with the volume of the 234 

residential building. This assumption is practically reasonable as a residential building 235 

with a relatively large area and height is often associated with a large population size.  236 

(ii) Assumption 2: All the residential buildings are fully occupied. It is believed that such 237 

an assumption is again practically reasonable as the manhole inflows are estimated 238 

based on the fraction of the population associated with each manhole, rather than the 239 

exact population number. Given that the occupation rate of each residential building 240 

should be statistically similar in a local region, this assumption should not significantly 241 

affect the final results.  242 

Conditioned on the two assumptions stated above, the following equation can be used to 243 

estimate the population size associated with each manhole, 244 







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r
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1
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where ))(( rhP  is the estimated population size associated with manhole h; )(hVr  (m3) is 245 

the building volume associated with manhole h, which can be computed based on geotagged 246 

data from public map databases as shown in Figure 3; Rh is the total number of buildings that 247 

has physically connected to manhole h;   is the average number of living persons (np) per 248 

building volume (np/m3); rA  is the occupation rate of each residential building, which is 249 

100% in this study as stated in Assumption 2. Figure 3 illustrates the proposed method for 250 

estimating the population size for each manhole associated with the residential buildings.251 

252 

Figure 3 Illustration of the population size estimate for each manhole253 

To enable the computation of Equation (3), it is necessary to estimate the value of  , which 254 

can be different at different cities. In this study, a simple survey can be conducted to enable 255 

the determination of  . More specifically, within the area of the FSS, the model practitioners 256 

can investigate a few housing estates in the city to acquire the total number of population of a 257 



particular set of residential buildings, thereby estimating the value of  . In many countries, 258 

such as China, the average number of persons per building volume can be easily acquired 259 

from the local government. In this study, a constant value of   is determined and used in the 260 

entire FSS model based on the total building capacity and total population data from the local 261 

government.   262 

Note that Equation (3) is only used for residential buildings. For the commercial/public 263 

buildings, their corresponding manhole inflows are estimated from water consumption data 264 

recorded by the smart water meters (Bailey et al., 2019) as shown below,  265 

)(W)()( tStTFtDS jjj  (4) 

where )(tDS j  is the discharges of the jth commercial/public buildings at time t; )(W tS j  is 266 

the water consumption data of the jth commercial/public buildings provided by smart water 267 

meters at time t; )(tTF j  is the transfer factor between water consumption and discharges at 268 

time t, which is caused by the inevitable loss during the transporting process within the 269 

facilities of the users (Behzadian and Kapelan, 2015).  270 

2.2 Identify daily inflow pattern for each manhole 271 

2.2.1 Partitioning the FSS into different subsystems based on sewer flow meters 272 

This study aims to develop an accurate offline model (i.e., static model), where each manhole 273 

has only one inflow value at each time across different days. This is because, despite their 274 

variations at a certain degree caused by many external factors such as temporary population 275 

mobility, the total discharges from each building with many users are statistically similar at 276 



each time over different days (Bailey et al., 2019).  277 

Typically, a FSS is often large in spatial scale, resulting in challenges for the calibration of 278 

model parameters, such as manhole inflows. To this end, this study proposes a two-sage 279 

optimization approach, aimed to reducing the calibration complexity. As part of the proposed 280 

two-sage optimization approach, the entire FSS is partitioned into different subsystems based 281 

on the available sewer flow meter sensors. The rationale behind such a partitioning approach 282 

is that a FSS often possesses a tree-like structure and hence observations of each sewer sensor 283 

primarily represent the hydraulic properties of the upstream part of the sensor location. In this 284 

study, each subsystem is assumed to have an identical time-series pattern of manhole inflows 285 

as the properties of the water users (user types and habits of water usages) in a local region is 286 

likely to be the same. Such an engineering heuristic has been widely used in urban water 287 

supply and drainage research area (Zhang et al., 2018, Bailey et al., 2019). It is noted that 288 

only flow meter sensors are considered for FSS partitioning in this study. This is done 289 

because (i) the residential users within each local region/subsystem (the outlet is typically 290 

monitored by a sewer flow meter) are highly likely to have a similar discharge pattern, (ii) the 291 

water depth data is overall less sensitive compared to the flow data as a result of inflow 292 

changes due to that the diameter size of a sewer is often relatively large, and (ii) the 293 

consideration of the water depth sensor may result in a significantly increased number of 294 

decision variables. For instance, if a 30-minute time resolution is used (Zhang et al., 2021), 295 

48 decision variables have to be optimized in order to identify the flow patterns in each 296 

subsystem. For a realistic FSS, if the number of water depth sensors is 30 (this number is 297 

often significantly larger than that of the sewer flow meters), the total number of decision 298 



variables can be up to 1440. This can bring large challenges for model calibration.” 299 

By using this partitioning method, the entire system can be divided into N subsystems, where 300 

N is the total number of sewer flow meters in the FSS. Figure 4 illustrates the results of the 301 

proposed partitioning method. As shown in this figure, a total of three sewer flow meter 302 

sensors are available and hence three subsystems are identified (shaded regions in Figure 4). 303 

Flow observations in Sensor A represent the manhole inflow properties at its upstream FSS. 304 

Similarly flow data in Sensor B and C can be used to calibrate the manhole inflows within its 305 

corresponding subsystem. In this study, the hydraulic interactions between different 306 

subsystems are handled by a hydraulic software called Storm Water Management Model 307 

(SWMM, Gironas et al., 2010).  308 

309 

Figure 4 The identified subsystems for a FSS with three sewer flow meters310 

2.2.2 Calibrate time-series pattern of total inflows for each subsystem (stage-one 311 



optimization) 312 

As previously stated, the time-series pattern of flows associated all residential manholes in each 313 

subsystem is considered to be identical in this study. This is done to reduce the number of 314 

variables to be calibrated. Note that such an assumption has been widely used for nodal demand 315 

calibration in water distribution systems, which has achieved great success within practical 316 

applications (Zhang et al., 2018).  317 

The formulation of the stage-one optimization problem is as follows,  318 
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where Q is the decision variable matrix, representing the total inflow of each subsystem at each 319 

time step, which is defined as )( aj tq in Equation (6); j=1,2,…,N is the jth subsystem, where 320 

N is the total number of subsystems (i.e., total number of sewer flow meters); at =321 

Ttt ,...,2,   with T  representing 24 hours as the daily time-series inflow pattern is 322 

considered in this study; eT  is the time period with observations used for FSS calibration 323 



with a model time resolution of t ; wT  is the warming-up time period for model setting up 324 

(Guo et al., 2020); M is the total number of water depth sensors at the manholes; )(two
i  and 325 

)(tf o
j  are observed water depth at manhole i and observed flow rate at sewer pipe j at time t326 

respectively; )(tws
i  and )(tf s

j  are simulated water depth at manhole i and simulated flow 327 

rate at sewer pipe j at time t respectively; ()g  is a linear function used to convert water 328 

depths and pipe flow rates into the same scale, thereby enabling both terms in the right side of 329 

Equation (5) are approximately equivalent in terms of the objective function value. In this 330 

study, 
minmax

min)(
xx

xx
xg




  is used, where minx  and maxx  is the minimum and maximum 331 

value of the variable x being considered respectively. )( atMI  in Equation (8) is the manhole 332 

inflow vector at time at  and the )( atMI  value is determined by Equation (7); )( a
s tW =333 
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s tftftf  are the vector of the 334 

water depth and flow predictions at all sensor locations at time at  respectively.  335 

The aim of the stage-one optimization is to identify Q through minimizing F(Q) (Equation 5). 336 

As shown in Equation (6), for a FSS with N subsystems and with t  time resolution ( t  can 337 

be half of an hour), the total number of the decision variables (daily dry-weather inflows at 338 

manholes) in the matrix of Q is t

T
N
  (T=24 hours), which is calibrated using the stage-one 339 

optimization in this study. As shown in Equation (7), for the manhole h that is physically 340 

connected to residential buildings, if it belongs to the subsystem j ( jh H ), its manhole 341 

inflows at time at  are estimated by the total inflow )( aj tq  times by the fraction of the 342 

population size of manhole h ( )(hP ) relative to the all manholes (Hj) in this subsystem (n), 343 



i.e., 


jH

h

hP
1

)( . If the manhole h is physically connected to commercial or public buildings, its 344 

manhole inflows at time at  are estimated by the total discharges of these buildings, with h(r) 345 

representing the total number of commercial or public buildings associated with manhole h 346 

(Equation 7). )( aj tDS  is defined in Equation (4). For the case that a manhole receives 347 

discharges from both residential and commercial/public buildings, its inflows are the sum of 348 

the two terms in the right side of Equation (7). 349 

After each manhole has been assigned an inflow estimate at time at  using Equation (7), a 350 

hydraulic simulation model (SWMM is used in this study) is used to solve equation (8), 351 

thereby generating predictions at all sensor locations. These predictions are then compared 352 

with the observations as shown in Equation (5). In this study, an evolutionary algorithm (EA) 353 

combined with the FSS hydraulic software SWMM (Zhang et al., 2021) is used to solve 354 

Equations (5-8).  355 

2.2.3 Determine the daily time-series inflow pattern for each manhole (stage-two 356 

optimization) 357 

The stage-one optimization has identified the total inflow time-series pattern for each 358 

subsystem, where daily time-series inflows of each manhole within the subsystem are 359 

proportionally assigned based on its estimated population size. Given that the population size 360 

estimate at each manhole may deviate from the true value to a certain extent due to the two 361 

assumptions stated in Section 2.1.2, the stage-two optimization is conducted to further improve 362 

manhole inflow estimates based on the results of the stage-one optimization. The formation of 363 

the stage-two optimization problem is as follow,  364 
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where 
T

Hkkk ],...,[ 21K  with hk  representing the inflow adjusting coefficient for manhole 365 

h (only for the residential users). This indicates that Stage-two optimization aims to identify 366 

hk  for each manhole based on the given time-series inflow )( an tq  determined by Stage-one 367 

optimization as shown in Equation (10). Therefore, the total number of decision variables in 368 

Stage-two optimization is the number of manholes that are physically connected to residential 369 

buildings. Equation (11) is used to simulate values of the hydraulic variables to enable the 370 

objective function computation (Equation 9) based on the )( ah tMI  that is defined in 371 

Equation (8). mink  and axmk  are the minimum and maximum adjustment coefficients 372 

respectively. As the same for the stage-one optimization, an EA with the SWMM software are 373 

jointly used to minimize the objective function defined in the stage-two optimization stage 374 

(Equations 9-12). 375 

The main merit of the proposed two-stage optimization is that the optimization complexity is 376 

significantly reduced. This is because the number of decision variables considered at each 377 

stage is substantially lower than the traditional approach where all manhole inflows are 378 

directly considered. For example, for a FSS with four flow meters (i.e. four subsystems) and 379 

100 manholes with a time step of 30 minutes, the number of decision variables considered at 380 



the stage-one and stage-two optimizations are 192484   and 100 (100 different k values) 381 

respectively in the proposed method. The total number of decision variables considered in the 382 

traditional optimization approach for this case is also 292. Using the proposed two-stage 383 

optimization method, the number of decision variables at stage-one and stage-two are 192 384 

and 100 respectively. Consequently, the complexity of the proposed optimization method can 385 

be significantly lower than the traditional optimization approach with 292 variables 386 

simultaneously considered.  387 

2.3 Identify uncertainty ranges for manhole inflows  388 

The proposed two-stage optimization method provides the averaged or expected daily 389 

time-series dry-weather inflow pattern for each manhole. These simulations may neglect the 390 

potential variability associated with these inflows. To address this issue, an uncertainty 391 

analysis approach is proposed in this study. The proposed uncertainty analysis method for 392 

manhole inflows is based on the stochastic properties of water consumption data that are 393 

taken from smart water meters. The rationale for this analysis is based on the existing 394 

physical connection between water supply and the wastewater discharges for each residential 395 

building (Bailey et al., 2019).  396 

Figure 5 illustrates the physical relationship between water consumption and wastewater 397 

discharge within a specific building. Generally, a large proportion of clean water (delivered by 398 

the water distribution system) at time t  ( )(tWS  in Equation 4) is discharged into the sewer 399 

system ( )(tDS ) after a short time delay t  (water travelling time period within the 400 

building). The transfer factor between water supply and discharges is TF (Equation 4) as 401 



shown in Figure 5(a), which is caused by various losses during the consumption process. 402 

Despite the deviation between water supply and wastewater discharge at time t , it is 403 

reasonable to map the demand time series and discharge pattern using similar trends (Figure 404 

5(b)). In other words, the expected manhole inflows are expected to have a similar time 405 

pattern as water consumption data, with the former slightly decreased by a factor of TF406 

compared to latter after t , as illustrated in Figure 5(b). Consequently, both the water supply 407 

and its corresponding discharges should have a similar stochastic distribution (Figure 5(b)), 408 

and thus the uncertainty ranges of the manhole inflows can be mapped from the water 409 

consumption data analysis based on records from smart water meters. It is noted that this 410 

study does not consider the infiltration/exfiltration within the sewer pipes, in order to focus 411 

the main methodology of this proposed method. However, it is straightforward to add an 412 

infiltration/exfiltration estimate within the calibration process of the proposed method. 413 

414 

Figure 5 Uncertainty mapping between water consumption and wastewater 415 

discharge of a single residential building416 



2.3.1 Determine stochastic properties of water consumption data 417 

In this study, the stochastic properties of water supply flows are determined based on 418 

real-time data collected by available smart water meters installed for residential buildings. 419 

More specifically, the following steps are used to quantify the stochastic properties of water 420 

consumption data.   421 

Step 1: Determine the daily average time-series water consumption data. For each building 422 

or water user with a smart water meter, their real-time water consumption data are 423 

collected often with an half an hour time resolution. This is followed by the computation 424 

of the averaged water consumption at each time of the day based on records over many 425 

different days. Consequently, the daily average/expected time-series water supply data 426 

with a particular time-resolution can be determined for each smart water meter.   427 

Step 2: Compute the coefficient of variation for each time a day. For each time a day, all the 428 

records from smart water meter divides their corresponding average values, thereby 429 

producing the coefficient of variation (CV, Zhang et al., 2018). Using this approach, a 430 

large number of CV values (some are greater than 1 and some are smaller than 1) is 431 

generated for each time of the day based on each smart water meter.  432 

Step 3: Establish a sampling pool for each time t at the day. For each time t of the day, all CV 433 

values over different smart water meters are collected to form a sampling pool ( )(t ). 434 

In other words, if the time resolution is 30 minutes, a total of 48 sampling pools are 435 

generated using the proposed method. The CV values in different )(t  can be 436 

significantly different, representing various stochastic properties at different time 437 

periods at a day. This is a novel aspect of the proposed uncertainty analysis method as it 438 



can capture the underlying variation of the manhole inflows at different time periods.  439 

These established sampling pools based on water consumption data ( )(t ) represent the 440 

stochastic properties of the water supply data at each time of the day, which will be used to 441 

for uncertainty analysis for the manhole inflows.  442 

2.3.2 Quantify sewer uncertainty range based on stochastic properties of water 443 

consumption data 444 

Typically, the causes of hydraulic variability within sewer systems can be divided into two 445 

types: random and systematic factors. The random factor mainly includes the temporal 446 

population mobility as well as the natural variability of water used by persons (e.g., different 447 

shower time over different days). The systematic factor mainly includes the sudden 448 

temperature changes that can affect the water use habits (e.g., shower time or frequency) of 449 

many persons in the residential buildings, as well as the holiday time-period where many 450 

people leave the city. It is noted that many countries such as China, the population density of 451 

some cities can be significantly varied during the holiday time-period due to the economic 452 

structure properties (i.e., many people work in a city but may live in another city). Therefore, 453 

the number of people is consistently reduced or increased for each building during the holiday 454 

time-period (this is a systematic factor), but the population mobility in working time-period is a 455 

random factor as it can increase for some residential buildings but decrease for some others.  456 

In recognizing the two different types of causes that affect the sewer variability, this study 457 

proposes a new uncertainty analysis method to account for both types of causes, as shown in 458 

the following,  459 
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where )(tCVh  is the coefficient of the variation for manhole h at time t, which is randomly 460 

selected from the established sampling pools ( )(t ) based on water consumption data 461 

( )(t ); Rand() is a function for random sampling. )(tMI u
h  is the updated inflows for the 462 

manhole h (h=1,2,…,H) that is physically connected to residential buildings at time t; 463 

)(tMI h  is the manhole inflows at time t determined by the proposed two-stage optimization 464 

method (See Section 2.2).  465 

In addition to Equation (13) that considers the random factor of the manhole inflows, 466 

Equations (14) and (15) are used to account for the systematical factor,   467 

)(),()()( tCVtMItCVtMI L
hh

L
h

u
h  (14) 

)(),()()( tCVtMItCVtMI S
hh

S
h

u
h  (15) 

where )(tCV L
h  and )(tCV S

h  are the coefficients of the variation for manhole h at time t. 468 

More specifically, )(tCV L
h  is greater than 1, and hence it is randomly selected from the 469 

values that are greater than 1 in )(t . Conversely, )(tCV S
h  is smaller than 1, and hence it is 470 

randomly selected from the values that are smaller than 1 in )(t . 471 

Figure 6 illustrates the proposed uncertainty analysis method for a FSS with seven manholes 472 

(Figure 6(b)) at a particular t, where Figure 6(a) and Figure 6(c) represent the sampling 473 

results using equations (13) and (15). As shown in Figure 6(a), for the seven CV  values 474 

generated using Equation (13), some values are greater than 1 and the others are smaller than 475 



1; but all CV values are smaller than 1 for those produced by Equation (15). 476 

477 

Figure 6 Variability of sewer inflows due to random (Equation 13) and systematic 478 

(Equation 15) factors 479 

2.4 Demonstrate the utility of the proposed method480 

2.4.1 Traditional calibration and uncertainty analysis methods481 

To demonstrate the effectiveness of the proposed method in this study, its performance is 482 

compared to the traditional calibration methodology on real-world case studies. The 483 

traditional calibration method often takes runoff contributing area or/and sewer pipe lengths 484 

as prior information to enable the manhole inflow allocation (Chu et al., 2021). While various 485 

heuristics can be used as prior knowledge for FSS hydraulic modelling, i.e., based on pipe 486 



length or on contributing areas, they have similar implications for simulation results. In this 487 

particular case (the two case studies considered), the pipe-length heuristics procedure is 488 

considered as the traditional approach due to it simple implementation (Zhang et al., 2018). It 489 

is highlighted that the only difference between the proposed method and the traditional 490 

approach in this study is that the former considers the population sizes associated with each 491 

manhole as the prior information, but the latter considers the pipe length as the initial 492 

knowledge. In other words, the proposed two-stage optimization is also used in the traditional 493 

approach. The proposed uncertainty analysis method is also compared to the traditional 494 

uncertainty analysis approach that uses assumed specified distributions overall all manholes 495 

across different time periods at the day (Jin and Mukherjee, 2010, Sun et al., 2014).  496 

2.4.2 Comparison with the traditional calibration method 497 

In this study, four statistical metrics are used to evaluate the performance of the proposed 498 

method for calibrating FSS hydraulic models, including the relative error (RE) or absolute 499 

percentage error (APE), the coefficient of determination ( 2R ), the Nash-Sutcliffe model 500 

efficiency (NSE), and the Kling-Gupta Efficiency (KGE). Note that these assessment matrices 501 

have been widely used for hydraulic model evaluation in the field of water system analysis 502 

(Guo et al., 2020). These equations are defined as follows. 503 

(1) Relative error (RE) and absolute percentage error (APE): 504 
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where iY  is the thi  observation and iŶ  is its corresponding simulated value. APE is the 505 

absolute value of RE.  506 



(2) Coefficient of determination ( 2R ): 507 
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where Y  and Y
~

 are the mean values of observed and simulated data, and n is the total 508 

number of data points.  509 

(3) Nash-Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970): 510 
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(4) Kling-Gupta efficiency (KGE) (Knoben et al., 2019):  511 
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where r  is the Pearson product-moment correlation coefficient; simσ  and obsσ  are the 512 

standard deviation of simulations and observations; simμ  and obsμ  are the mean values of 513 

simulations and observations. A lower value of RE or APE represents a better model 514 

performance. In contrast, a large value of 2R , NSE or KGE) indicates that the simulations 515 

can match observations better, with the value of 1 representing the best model performance. 516 

2.4.3 Performance in addressing the “equifinality” issue and comparison with the 517 

traditional uncertainty analysis approach 518 

In this study, the proposed method is compared to the traditional method in addressing the 519 

“equifinality” issue, i.e., the simulation performance of hydraulic variables at locations 520 

without sensors. Specifically, for the FSS locations without sensors but with available water 521 



smart meters, the water consumption data are used to indirectly assess the accuracy of the 522 

simulated sewer discharges. To assess the performance of the proposed uncertainty analysis 523 

approach, its results as well as the uncertainty ranges determined by the traditional 524 

uncertainty analysis method are compared with observations collected by the installed water 525 

depth sensors and sensor flow meters in the FSS. 526 

3. Case studies 527 

3.1 Case study description  528 

The proposed method is demonstrated on two real-world FSSs in China, namely the Benk 529 

network (BKN) and the Xiuzhou network (XZN). These two FSS with significantly different 530 

scales can also be used to explore how the proposed method performs when dealing with the 531 

increased system complexity. The BKN case study has 64 manholes, 64 sewer pipes (9.4 km 532 

length) and one outlet, and the XZN case study has 1,214 manholes, 1,214 sewer pipes (86 533 

km pipe length) and one outlet as shown in Figure 7. The average pipe slopes of the BKN and 534 

XZN case studies are 0.65% and 0.27% respectively. As shown in Figure 7, one sewer flow 535 

meter and three water level sensors have been installed in the BKN. For the XZN case study, 536 

three flow meters and eight water level sensors have been deployed in the system. All sensors 537 

in these two systems collect real-time data with a 30-minute time resolution. While two FSS 538 

case studies are designed to solely deliver wastewater discharges, runoff in the rainy days 539 

may inevitably affect the hydraulics of the sewer pipes through infiltration. Therefore, 540 

observations for a period of consecutive 31 days without rainfall events are used for FSS 541 

model development and uncertainty analysis, in order to minimize the impacts of the 542 

infiltration. 543 



For the BKN and XZN case studies, 16 and 152 residential users have smart water meters 544 

respectively (red circles in Figure 7), where these water consumption data with an 30-min 545 

time resolution are used for uncertainty analysis and model performance demonstration. In 546 

addition to these residential users with water smart meters, all commercial/public buildings 547 

also have water smart meters (red squares in Figure 7) and these data facilitate the model 548 

development and calibration. The records of the water smart meters at the same time period 549 

with the sewer sensors (a period of consecutive 31 days) are considered in this study.  550 



551 

552 

Figure 7 The layouts of two FSS case studies and the information of the smart water 553 

meters (P1 and F1-F3 represents sewer flow meters in the two case studies respectively, 554 

S1-S3 and D1-D8 represents manhole water level sensors in the two case studies 555 

respectively, R1-R4 represent four typical manholes without sensors which will be used 556 

in Figure 11)557 

3.2 Parameterization of the proposed method 558 

In this study, SWMM5.1 (Gironas et al., 2010) has been used to simulate the hydraulic 559 



behaviour of these two FSSs. The model simulations are implemented with a time resolution 560 

of 30-minutes, matching the time resolution of the measurement data. For the entire 561 

simulation period of 31 days (i.e., the data collection period), the first three days (Tw=3 days 562 

in Equation (5) and (9)) are regarded as the warming-up time for model set up, to ensure 563 

appropriate initial conditions for FSS simulation. The observations between the 4th and 17th564 

day are used for model calibration, and the remaining observed data are utilized to validate 565 

the model simulation performance on unseen data.  566 

For each case study, the water consumption data from smart meters are used to derive the 567 

stochastic properties of the water use with method described in Section 2.3.1. This leads to an 568 

establishment of the total sampling pool )(t  for each time t a day, with various CV values 569 

included for inflow uncertainty analysis for residential users. Each stage of the proposed 570 

two-stage optimization (Equations 5-12) is optimized using the Borg evolutionary algorithm 571 

(Hadka and Reed, 2013). This optimization algorithm is chosen as it has been demonstrated 572 

to efficient in addressing complex problems in the area of urban water resources and 573 

engineering optimization (Zheng et al., 2016). For both case studies, the initial population 574 

size is set as 500, and the maximum number of allowable solution evaluations is 100,000 575 

based on a preliminary algorithm parameter calibration. The other Borg parameters use the 576 

default values as presented in Hadka and Reed (2013).  577 

For the BKN and XZN case studies, the population size per building volume   defined in 578 

Equation (3) is 0.96 and 0.97 np/(100m3) respectively, as provided by the local government. 579 

For each commercial/public building, the transfer factor )(tTF j  between water consumption 580 



and discharges (see Equation (4)) is assumed constant over different time at a day, where 581 

8.0)( tTFj  is used in this study (Zhang et al. 2021). 85.0min k  and 15.1ax mk  are used 582 

in Equation (12) (Zhang et al., 2018), representing the inflow updating range in the stage-two 583 

optimization. To enable the uncertainty analysis for the manhole inflows (only for residential 584 

users), equation (13) is used to generate the random samples from the )(t . This is followed 585 

by the use of equations (14) and (15) to produce samples with CV values greater than 1 and 586 

smaller than 1 respectively. More specifically, for each time t of the day, 20000 samples are 587 

randomly taken from the )(t  using Equations (13), (14) and (15) respectively for the BKN 588 

case study. For the XZN case study, 50000 samples are randomly taken from the )(t  using 589 

the same approach. For the traditional uncertainty analysis approach, a constant of value with 590 

1.15or 85.0)( tvch  is randomly selected for each manhole (Zhang et al., 2018) based on the 591 

expected inflow values identified by the proposed two-stage optimization method.  592 

4. Results and discussion  593 

The proposed method is applied to the two FSS case studies, with identified physical 594 

connections between sewer manholes and residential buildings illustrated in Figure 8(a), 595 

which is a small region of the XZN case study. The density distributions of the estimated 596 

population sizes for the two case studies are shown in Figure 8(b) based on the geotagged 597 

data from public databases using the proposed method in Section 2.1. Given that one and 598 

three flow meters are installed in the BKN and XZN respectively, one and three 599 

corresponding subsystems are identified for these two case studies based on the approach 600 

described in Section 2.1.1. This is followed by the application of the proposed two-stage 601 

optimization method, with results presented below.  602 



603 

Figure 8 Results of the physical connections and estimate population sizes of the 604 

manholes for the two case studies605 

4.1 Performance comparison of the hydraulic simulations at FSS locations with sensors606 

Figure 9 compares the performance of the proposed method and traditional model in 607 

simulating hydraulic variables at FSS locations with sensors for both case studies. It is noted 608 

that simulation results at typical FSS sensor locations with seven days within the validation 609 

time period (from 18th day and 24th day) are presented in Figure 9 to enable the clear 610 

presentation. Figure 10 is the results of one day (18th day) taken from Figure 9, in order to 611 

further clearly show the differences between the proposed and traditional methods. 612 

As shown in Figures 9 and 10, both the proposed and traditional methods are able to capture 613 

the overall trends of the manhole water depth and pipe flow observations at P1 and S1 of the 614 

BKN case study (see Figure 7(a)), as well as F1 and D1 in the XZN case study (see Figure 615 

7(b)). For the BKN case study, the average APE values for the simulated flows of the 616 

proposed and traditional methods are 8.78% and 9.67% respectively (Figure 9(b)), and these 617 



two values are 3.57% and 3.63% respectively for the water depth simulations at S1 (Figure 618 

9(d)). For the XZN case study, the average APE value is 6.29% for the flow simulations at F1 619 

from the proposed method, and this value is 6.46% from the traditional approach. In terms of 620 

the water depth simulations at D1, the mean APE values of the proposed and traditional 621 

methods are 4.50% and 7.60% respectively. This implies that both the proposed and 622 

traditional approaches can overall accurately simulate hydraulic variables at P1, S1, F1 and 623 

D1 sensor locations (Figure 7), but the former performs consistently slightly better than the 624 

latter. 625 

It can be seen from Figure 9 that while the mean APE value is consistently below 10% for the 626 

manhole water depth and pipe flow variables, its maximum value can be up to about 30% for 627 

the both the proposed and traditional methods. We also observe that the majority of the large 628 

APE values occur at the time periods with relatively low manhole water depths or pipe flows. 629 

Therefore, it can be deduced that the large APEs can be related to the low values of the 630 

denominator in Equation (16).  631 

Tables 1 and 2 present the values of performance metrics for simulations at FSS locations 632 

with sensors for both case studies. It can be seen from these two tables that the proposed 633 

method shows an overall similar performance for the small BKN case study, but a slightly 634 

better performance for the large XZN case study relative to the traditional method. This can 635 

be proven by that the mean NSE and KGE values across all FSS sensor locations of the 636 

proposed method are 0.90 and 0.93, which are all larger than those from the traditional 637 

approach (0.81 and 0.88). More specifically, the NSE values of the traditional approach at 638 



D1-D5 in the XZN are consistently lower than 0.75, which are significantly lower than those 639 

from the proposed method (consistently larger than 0.85). Results in Tables 1 and 2 can 640 

demonstrate that the proposed method is able to exhibit a better performance than the 641 

traditional approach in accurately simulating hydraulic variables for relatively large FSSs. 642 

This is because the manhole inflow combinations for a larger FSS can be larger relative to a 643 

small FSS, resulting in a more complex calibration process. For such cases, the use of the 644 

population size as the domain knowledge as did in the paper exhibits a more prominent 645 

performance compared to the traditional approach.   646 



647 

Figure 9 Results of observations versus simulations and the absolute percentage error 648 

(APE, %) values at the typical FSS sensor locations (P1, S1, F1 and D1 are shown in 649 

Figure 7)  650 

(a) P1: BKN  case study

(b) P1: BKN  case study

(c) S1: BKN  case study

(d) S1: BKN  case study

(e) F1: XZN  case study

(f) F1: XZN  case study

(g) D1: XZN  case study

(h) D1: XZN  case study
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651 

652 

Figure 10 Observations versus simulations at a typical day (18th day) of two sensor 653 

locations (S1 and F1 are shown in Figure 7)  654 

Table 1 Metric values of simulations at validation time period for the BKN case study 655 

Monitoring 

locations 

Traditional method Proposed method 

R2 NSE KGE R2 NSE KGE 

S1 0.92 0.92 0.96 0.93 0.92 0.95 

S2 0.91 0.89 0.90 0.92 0.90 0.91 

S3 0.88 0.87 0.80 0.90 0.87 0.78 

P1 0.91 0.91 0.92 0.92 0.91 0.94 

Mean 0.91 0.89 0.89 0.92 0.90 0.89 

Table 2 Metric values of simulations at validation time period for the XZN case study 656 

Monitoring 

locations 

Traditional method Proposed method 

R2 NSE KGE R2 NSE KGE 

D1 0.91 0.73 0.85 0.90 0.90 0.93 

D2 0.92 0.70 0.82 0.92 0.89 0.89 

D3 0.90 0.74 0.88 0.89 0.88 0.94 

D4 0.93 0.73 0.82 0.93 0.92 0.91 

D5 0.90 0.68 0.81 0.89 0.89 0.91 

D6 0.91 0.82 0.88 0.90 0.89 0.92 

D7 0.90 0.86 0.86 0.90 0.90 0.90 

D8 0.88 0.86 0.93 0.86 0.85 0.92 

F1 0.94 0.94 0.96 0.93 0.92 0.95 

F2 0.958 0.96 0.95 0.96 0.96 0.96 

F3 0.938 0.94 0.95 0.93 0.93 0.96 

Mean 0.92 0.81 0.88 0.91 0.90 0.93 
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As previously stated, given that the static simulation is considered in this study (i.e., the water 657 

depth or flow time-series pattern is identical over different days), the simulations (expected 658 

simulations of hydraulic variables) are unable to capture the variations of the hydraulic 659 

variables over different days as shown in Figure 9. To mitigate this, an uncertainty range is 660 

often combined with the static simulation results, in order to provide abnormal warning, with 661 

results presented in Section 4.3.  662 

4.2 Performance of the proposed method in addressing the “equifinality” issue 663 

It is noted that section 4.1 focuses on the performance analysis at the FSS locations with 664 

sensors where observations are available. This section aims to compare the performance of 665 

the proposed and traditional methods in accurately simulating the sewer variables at FSS 666 

locations without sensor observations, i.e., the ability in addressing the “equifinality” issue. 667 

To attain this goal, water consumption data are compared with the inflow simulations of the 668 

manholes (without sewer observations) that are physically connected the residential buildings 669 

with installed water smart meters.  670 

Figure 11 shows water consumption data versus sewer inflow simulations at four FSS 671 

manholes (shown in Figure 7) without sensors. It can be seen from this figure that the 672 

simulation results of the traditional model at R1, R3 and R4 (blue lines in Figure 11) are 673 

consistently substantially larger than the water consumption data. For the results at R2, the 674 

manhole inflows are always significantly lower than their corresponding water consumption 675 

data (Figure 11(b)), implying that a rather low proportion of water consumption is discharged. 676 

Both cases above do not actually conform to the real engineering practice where the 677 



wastewater discharges of the residential buildings are often slightly lower than their 678 

corresponding water supply amount (TF in Equation 4 is between 0.80 and 1.0 as stated in 679 

Zhang et al. (2021)). Conversely, the manhole inflow simulations of the proposed method in 680 

this study (red lines in Figure 11) are overall slightly lower than their corresponding water 681 

consumption data. This indicates a good performance in accurately simulating the sewer 682 

hydraulic variables at FSS locations without sensors (R1, R2, R3 and R4). 683 

684 

Figure 11 Water consumption data versus sewer inflow predictions at four FSS manholes 685 

(R1-R4 are shown in Figure 7) without sensors686 

To further evaluate the overall performance of the proposed model in addressing the 687 

“equifinality” issue, the values of TF for all manholes (only for residential users) with 688 



available water consumption data are presented in Figure 12. More specifically, for each of 689 

the two methods (the proposed and traditional methods), a TF value is computed for each 690 

manhole with available water consumption data at each time step (30 minutes) at the 691 

validation time period. The probability density distributions of these TF values from the 692 

proposed and traditional methods are plotted in Figure 12 to enable the comparison. It is seen 693 

from this figure the majority of the TF values of the proposed method are around the value of 694 

1.0, which is practically reasonable. However, many TF values from the traditional method 695 

are either significantly lower than 1 or substantially larger than 1. This implies that the 696 

proposed method can match better the real conditions than the traditional method at manholes 697 

without sensors. This means that the proposed method can better address the “equifinality” 698 

issue.699 

700 

Figure 12 Probability density distributions of the transfer factor (TF) values between the 701 

water consumption data and the corresponding wastewater discharges for residential 702 

users703 

4.3 Performance with respect to uncertainty analysis704 



As previously stated, uncertainty analysis is essential to the static FSS model as it can assist 705 

modellers in identifying the potential impact of the stochastic nature of sewer formation and 706 

flow processes. The density distributions of the CV values over different smart water meters 707 

in the sampling pool ( )(t ) (see Section 2.3.1 for details) are presented in Figure 13, where 708 

each line represents the density distribution of a particular time t at a day with 30-minute 709 

resolution. As shown in this figure, while the stochastic property of the water consumption 710 

data is overall similar over different time at a day, small to moderate variations are still 711 

observed. Therefore, it can be derived that the use of the constant a CV value over different 712 

time periods at a day as did in the traditional method is not reasonable. This also highlights 713 

the novel aspect of the proposed uncertainty analysis method as it can capture the underlying 714 

variation of the manhole inflows at different time periods at a day. 715 

716 

Figure 13 The density distribution of CV values in each sampling pool ( )(t ), with 48 717 

lines included for each case study718 

As stated in Section 2.3.2, the sampling methods described in Equations (13)-(15) are used to 719 



estimate the uncertainty range of the sewer simulations based on the )(t , where the 720 

hydraulic simulations based on these samples are used to determine the uncertainty ranges 721 

(i.e., the maximum and minimum values) as well as the expected values (the mean value). 722 

Figure 14 shows the uncertainty ranges and expected values based on the samples taken from 723 

the )(t  for the FSS sensor locations with observations within the validation time period. 724 

The red and blue dotted lines represent the results from the proposed and traditional 725 

( 1.15or.)t(CVh 850 ) uncertainty analysis method respectively. As shown in this figure, 726 

the observations of the sewer hydraulic variables can be significantly varied at the same time 727 

periods but different days (grey lines in Figure 14). 728 

729 

Figure 14 Uncertainty ranges for the FSS sensor locations within the validation time 730 

period (S1, P1, D1, D4, F1 and F2 are shown in Figure 7)731 

It can be observed from Figure 14 that the proposed uncertainty analysis method is able to 732 



capture well the underlying variations of the observations at different FSS sensor locations. 733 

However, this is not the case for the traditional uncertainty analysis approach, as many of the 734 

observations are outside of the predicted ranges. To further visualize the performance of these 735 

two methods, Figure 15 shows the uncertainty analysis results on the 24th day within the 736 

validation time period. As shown in this figure, the performance of the proposed uncertainty 737 

analysis method is appreciably better than the traditional approach in simulating the 738 

variations of the water depths or pipe flows. However, it is observed that few observations are 739 

still beyond the ranges identified by the proposed uncertainty analysis method (Figure 15). 740 

This can be caused by a lack of the consideration of infiltration in this study, which should be 741 

accounted for in a future study. Similar observations can be made for other FSS sensor 742 

locations. This implies that the proposed uncertainty analysis method (based on the water 743 

consumption data) is significantly better than the traditional approach in representing the 744 

stochastic properties of the sewer hydraulic variables.  745 

746 

Figure 15 Uncertainty ranges for two XZN sensor locations on the 24th day (validation 747 

period, D7 and F3 are shown in Figure 7) 748 

5. Conclusions 749 
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The present study proposes a new method for effectively calibrating the foul sewer system 750 

(FSS) model by using geotagged data and water consumption data from smart water metering. 751 

Based on the results obtained from two real case studies, the following conclusions are made: 752 

(1) The proposed method provides similar or slightly better FSS hydraulic prediction 753 

accuracy at the locations with sensors when compared to the traditional approach. 754 

However, the proposed method produces significantly better prediction results at the FSS 755 

locations without sensors. This indicates that the proposed method can significantly 756 

improve the model performance by addressing the “equifinality” problem. 757 

(2)  The proposed uncertainty analysis method provides means to accurately estimate the 758 

variation bounds for water depths and flows influenced by different uncertainty factors. 759 

Therefore, it has the potential to improve the performance of certain practical applications 760 

(e.g. detection of blockages) when compared to traditional uncertainty estimation 761 

methods currently used. 762 

Having said above, some potential limitations remain to be addressed as part of future work 763 

of the proposed method, which are given as follows: (i) the inability to account for the 764 

impacts of the infiltration/exfiltration process, which may affect the model accuracy 765 

especially in an aged FSS or FSS in an area with groundwater; (ii) the incapability to deal 766 

with combined sewer systems where catchment runoff is present too; (iii) reliance on smart 767 

water metering data or geotagged data which may not be available and (iv) dealing with more 768 

complex FSSs that contain pumps, weirs and other control structures. 769 
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