
Public Safety Secretariat of Mato Grosso Microservice Environment

João Paulo Preti
Federal Education Institute

Mato Grosso, Brazil
preti.joao@ifmt.edu.br

Adriano Souza
Federal Education Institute

Mato Grosso, Brazil
ah.driano@gmail.com

Tiago Lacerda
Federal Education Institute

Mato Grosso, Brazil
tiago.lacerda@ifmt.edu.br

Evandro Freiberger
Federal Education Institute

Mato Grosso, Brazil
evandro.freiberger@ifmt.edu.br

Abstract
This paper presents the microservice environment

of the Public Safety Secretariat of Mato Grosso
(SESP-MT) which was conceived to allow a migration
process from SESP-MT monoliths and to absorb new
organizational agile requirements. Despite the hype of
microservice oriented architecture, it's an architectural
style, with some general principles and as the nature of
distributed systems, it can be organized in many
different ways. As a result of this research, supported
by IFMT, FAPEMAT and SESP-MT, 22 containers with
several tools and services were assembled, tested and
deployed in the SESP-MT environment integrated with
the DevOps pipeline. Therefore the contribution lies in
the successful environment implementation that can
help other organizations.

1. Introduction

The Public Safety Secretariat of Mato Grosso
(SESP-MT) is responsible for formulating,
coordinating, executing and monitoring the State
policy for the preservation of public order and safety in
the State, which plans, coordinates and monitors
several activities like ostensive police, investigative
activities, fire fighting and prevention, weapons
control, traffic safety, national security assistance, and
partnerships with the Federal Government to enhance
security in the State [1].

The wide variety of SESP-MT activities led to the
development of big monolithic software applications
that are not agile, take a long time to deploy software
updates and that suffers from third software
components that are incompatible with the legacy
technologic stack.

With the aid of Mato Grosso State Research
Support Foundation (FAPEMAT) and the Federal
Institute of Mato Grosso (IFMT), a research project
was carried out to deploy an environment that supports
the development of microservices applications
observing SESP-MT restrictions.

The project lasted 12 months and the activities
were organized according to agile scrum methodology
with sprints of 4 weeks duration. The first sprint was
used to understand the organization of SESP-MT
systems and the MoSCoW requirements prioritization
technique was used for sprint planning. From the
second sprint on there were monthly deliveries of
executable products and a tested environment with a
demo presentation followed by the next sprint
planning. The activities addressed the following
challenges: authentication and authorization, data
repository, messaging, data log, monitoring and
distributed transactions. The last sprint of the project
was used for technology transfer with 7 workshops for
the SESP-MT development team and for the teams of
the two outsourced software houses.

Due to confidentiality agreements and security
reasons the real applications and data schemas cannot
be presented, but an hypothetical scenario and a
functional prototype were developed to demonstrate
and validate the microservice environment and serve as
a microservice template as well.

Therefore the paper is organized as follows:
section 2 presents the scenario utilized as a reference
for the development of the functional prototype.
Section 3 presents the project decisions for
microservice base implementation. From section 4 to 8
are presented how the previous challenges were
addressed. Finally, section 9 presents the full
environment organization deployed in SESP-MT.

2. Scenario

This section describes the functional prototype
business process scenario, a particular case of 190
service (e.g. 911 USA). Is a vehicle theft scenario,
where the victims must contact 190, identifying
themselves and informing them of the data related to
the fact, such as location, description of the car and
even the suspects. After that, the victim has to go to the
nearest police station and finalize the police report.
Figure 1 describes the process.

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7784
URI: https://hdl.handle.net/10125/80278
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

Figure 1. Functional prototype scenario for a vehicle theft.

In the scenario, the call center can record the
suspect theft characteristics which is included in a
wanted list that can be used by police patrol. The
victim is oriented to address to the nearest police
station in order to officialize the occurrence and to
complement the record with more details. The absence
of the victim in a police station in the next 24 hours
implies the cancellation of the started workflow.

Meantime, the nearest police patrol is notified
about the occurrence of the vehicle theft and directed
to the theft location. Patrols can notify the call center
which are responsible for notifying the victim.

In this particular scenario we extracted 5 domains:
● the occurrence, which represents the vehicle

theft occurrence in the scenario;

● the wanted list, that contains suspects and
people that are being in search by police;

● the police patrol, which represents police cars
and its route plans;

● the human resources, that can represent
police officers and administrative staff;

● a global registry, which contains citizens data
and location addresses. This domain can be
used by several other domains, like the
occurrence domain to obtain address data of
the location of the vehicle theft or data about
the victim.

These domains led to the definition of five
microservices which can establish a communication
relationship as shown in Figure 2.

Page 7785

Figure 2. Five Microservices of the functional prototype.
3. Project

Each microservice is a spring boot project with
endpoints mapped based on the REST Resource
Naming Guide. All microservices are based on:

● Microservice domain: core of the
microservice that represents entity classes
and/or value objects;

● Service: contain the business logic;
● Controller: provides an access interface to the

microservice, exposing its visible operations,
as well as establishing a format for input and
output data;

● JSON/HTTP: general communication
protocol;

● JSON/AMQP: communication protocol based
on message queues;

● RESP/TCP: redis serialization protocol for
caching;

● GELF/UDP: graylog extended log format for
data log;

● Database connector: for data persistence;

● Oauth: for authentication and authorization
using JWT.

All data exchanged through microservices is in
JSON format converted from a Data Transfer Object
(DTO) [3]. The external exposure of DTO is in order to
hide the domain model organization or complexity [4].

In view of the previous scenario, its tasks
ramifications and business domains of the process, it is
possible to reach the model represented by a class
diagram in Figure 3, identifying the concepts that must
be dealt with, presenting their relationships and
respective minimum data [2].

4. Repository Model

In a microservice architecture there is the
“Database Per Service” design pattern that establishes
the policy of one service per database. This means that
each microservice operates as an intermediary between
the customer and their data and these can only be
modified through the interface of that service [5].

Page 7786

Figure 3. Global schema with different colors referencing five different microservices domains.

Regarding data access, it is important to highlight
that SESP-MT pointed out the impossibility of
immediately adopting a microservice architecture in
which each microservice has its own database.

Thus, two strategies were proposed to be adopted
for the microservices that share the same database [1]:

● Permissive: allow the visibility and reading of
entities that are out of their context (just read
access, never write access);

● Restrictive: deny the reading of entities that
are out of their context, a request must be
made to the responsible microservice.

The strategy choice is not mutually exclusive,
but aiming to facilitate a future migration process to a
microservice architecture, the restrictive strategy is
more appropriate since it minimizes the dependence on

the global database schema and facilitates the process
of a physical separation [6]. The recommendation
followed by the team is to always use the restrictive
strategy first, but not limited to it.

In view of the distributed system characteristic and
the granularity of microservices, the use of a
client-server caching at the service level was
configured to improve response time [7]. An
investigation of client-server tools led to the choice of
Redis as a cache product solution [1].

5. Authentication and Authorization

The authentication step consists of identifying
users and systems, authorization, on the other hand, is a
later step and is related to the privileges that are

Page 7787

granted to a given user [8]. To provide these
capabilities to the functional prototype architecture,
three approaches and the characteristics of each, need
to be considered.

In the local authentication and authorization
approach, each microservice is responsible for both
authentication and authorization and establishes a
strong relationship with the concept that each
microservice must be autonomous and independent
[9][10]. Despite providing the most loosely coupled
architecture, the probability that each microservice
needs different authentication mechanisms is very low,
which would result in the multiplicity of the same code
in different microservice projects and would
significantly increase the effort of corrective and
evolutionary maintenance of this requirement in
different projects.

On the opposite side, the global authentication
and authorization is an all-or-nothing approach, that
is, if the microservice is registered and the user is
identified, then he is authorized [11][12]. As positive
aspects we do not need to replicate the implementation
of this non-functional requirement, so corrective and/or
evolutionary maintenance becomes easier due to
centralization. It also helps to keep focused on business
rules. On the other hand the microservice has no
control over what the user can or not do, that is, a finer
granularity of permissions is not achieved, therefore
unwanted occurrences should be investigated through
log auditing, for instance. Also availability is impaired,
considering that because it is centralized, a failure can
cause disruption of the system as a whole.

We opted for an hybrid approach, global
authentication and authorization as part of the
microservice. As positive aspects there is the finer
granularity of permission aspects and centralized
management becomes easier, as it has fewer
responsibilities. There is also no network latency
regarding authorization aspects and authorization
failures are limited to the microservice where the
failure occurred. On the other hand there is more code
for the developer, since he must implement these
aspects for each microservice and a permission matrix
is needed to understand the context of user permissions
on each microservice.

Although the understanding that an authentication
and authorization strategy implemented by each
microservice is completely adherent to the weak
coupling, autonomy and independence between
microservices, it is extremely costly, bringing relevant
negative aspects and little-justified practical benefits,
being able, for example, to use redundancy to increase
the availability of global authentication.

5.4. Identity and access management tools

Eight tools were considered: Keycloak, Identity
Server, Gluu, CAS, OpenAM, Shibboleth IdP,
LemonKDAP and Okta. The analysis observed seven
characteristics: OpenID Connect and OAuth support,
multi-factor authentication support, presence of an
administrative user interface, identity brokering
support, open source, commercial support and github
stars.

Despite these tools being very similar, Okta is not
open source, Shibboleth IdP does not have an
administrative user interface and CAS, Shibboleth IdP
and LemonLDAP have just commercial support by
third party companies. For the remaining tools, the
main characteristic which led to the choice of Keycloak
was its support by the community which is the largest
and most active.

6. Messaging

The purpose of messaging is to allow each
microservice to handle, exchange messages and
collaborate with other microservices to meet a
customer's request [13]. This communication can be
managed directly or through a broker/bus.

The advantage of using a broker/bus is the use of
an advanced, customizable, language-independent set
of features, maintained and tested by a community or
organization with frequently updated versions
providing greater security and robustness. The
downside is that we have one more centralizing
element in the architecture where a failure in the
messaging service can compromise the availability of
various services.

It is not within the scope of this paper to elucidate
the differences between a message broker and a
message bus, but to investigate two widely used
products in the market and what led to the choice of
one of them to compose the microservice environment
[14].

Among the best known products on the market are
RabbitMQ and Apache Kafka, although Redis can be
used as a broker, its focus of use is caching, which is
already used in the SESP-MT microservice
environment for that end. Kafka and RabbitMQ are
both open-source and support the publish-subscribe
model.

RabbitMQ supports several protocols that are
industry standard such as AMQP, MQTT, STOMP,
XMPP and JSON-RPC, which allows its use in

Page 7788

Figure 4. AMQP entities for the five microservices of the functional prototype.

different scenarios. The use of standardized protocols
also allows the exchange of RabbitMQ for any other
AMQP broker.

Kafka uses its own protocol over TCP/IP for
communication between applications and the cluster,
that is, Kafka cannot simply be exchanged as it is the
only one to implement the protocol.

Considering that the architecture and environment
established for communication between microservices
is not intended for a specific product, but rather a
flexible architecture and environment to support a
gradual migration process of several SESP-MT
software products, it is understood that RabbitMQ is a
more suitable product for this purpose, as it supports
several standardized protocols and supports a greater
variety of communication models between
microservices.

6.1. Implementation

In Figure 4 there is the representation of all AMQP
entities (Exchanges, Queues, Bindings) present in the
functional prototype.

There is no general convention applied to the
naming of messaging resources. For this reason, each
institution can adopt a standard that best suits the
team's needs. Thus, the standard adopted in the
implementation is a proposal that aims to facilitate the
identification of resources by interpreting their name.
This pattern divides the resource name into levels,
separated by dots, as shown:

resource_type.publisher|consumer.entity[.action | type]*

We defined three minimum levels that generally
apply to any scenario, but this study should also take
into account the problem domain and should be
suitable for new or migration projects.

Level 1: Identification of the resource type, which
may contain one of the following values: de (direct
exchange), fe (fanout exchange), he (header exchange),
te (topic exchange), q (queue) and rk (routing key).

Level 2: Identification of the service responsible
for the resource. We chose to use the publisher in the
composition of the name.

Level 3: Identification of the entity referring to the
resource.

Page 7789

Level 4: Optional, identifies the action related to
the resource or a separation by type of instances of the
entity. This level will be exclusively used by resources
such as Queue and Routing Key.

Below is an example of a value for a routing key
used in the functional prototype:

rk.occurrencemanagement.occurrence.new

It is noticed that the resource is a routing key (rk),
whose microservice publisher is the Occurrence
Management that will publish messages containing as
payload an Occurrence whenever a new one is created.

7. Data Log

Logging is related to recording relevant events in a
computer system. This record can be used to restore the
original state of a system or for an administrator to
know and analyze the application's historical behavior.
A log file can also be used for auditing and diagnosing
computer system problems.

As for the log related to a monolith and a
microservice architecture there are several differences.
The first difference is that in microservices there are
more components, which ends up generating more logs
since each microservice generates its own set of logs.
The second, is that the logs of each microservice in
isolation are not enough to understand the flow of
events, since microservices are constantly
communicating with others to achieve a goal. It is
necessary to understand how microservices are
interacting.

Another challenge is the scope and types of logs
generated by each microservice, which tends not to be
uniform, since the independent and distributed nature
of this architecture is not only a technological solution,
but also a scope and teams.

7.1. Good Practices

We enumerate good practices that help effectively
address these logging challenges in a microservices
architecture [16].

Aggregate and analyze log data at a centralized
point for a holistic view of the application.

Use personalized and unique identifiers to
contextualize and map interactions between
microservices.

Write custom filters for the central log as the
structure can vary from one microservice to another.

Persist log records. Microservices often run inside
infrastructure such as a container - which lacks

persistent storage. A basic and essential best practice in
this case is to ensure that the log data is written
somewhere it will be persistently stored and will
remain available if the container is shut down.

It is possible to achieve persistence by modifying
your container's source code or settings to ensure that
logs are written to an external storage volume. An
easier approach, however, is to run a logger that will
collect data from the containerized microservice in real
time and aggregate it into a trusted storage location.

It is interesting to keep all the logging code in the
application source code in production. Thus, it is
possible to create a strategy to enable a greater or lesser
detail of events, without the need to restart the
application.

If an ERROR occurs, collect and record as much
information as possible. This action can take time but
is not critical as normal processing has failed, rather
than waiting for the same condition to occur.

Allow the application to change the logging level
dynamically without the need for a reboot.

Remember that logs are often used for monitoring,
identifying and troubleshooting issues.

7.2. Data Log Attributes

As for the pertinent information that is registered
in the log, we list: microservice ID, user ID, IP address,
request ID, correlation ID, instant of time (UTC),
method/operation name, running stack trace.

The HTTP protocol allows the use of Request-ID
and X-Correlation-ID headers. The request
identification allows identifying all the events occurred
by that request, whereas the correlation identifier is
very important in distributed systems as it allows
tracking the flow of events by task (which can involve
several requests). Without the use of this type of
information, we could filter the logs by user and track
the timestamp to identify the order of the execution,
but this would not be enough to identify when the log
of a specific activity triggered by this user starts and
ends.

As for the level of logging enabled in the
SESP-MT environments, these were defined as follow:

● TRACE/DEBUG: Level utilized only in
development environments and therefore
disposable. The purpose is to assist the
developer in debugging the service;

● INFO: The test environment is intended to
help system users who are testing/validating
the services that will be made available.
Considering the reduced scope of users, usage

Page 7790

time, data and even performance, the INFO
level is sufficient for application validation.

● WARN: Level utilized in production
environment, since the log is only used to
identify problems or check if there is a
shortage of computational resources.

7.3. Technical Solution

It is important to mention that a test was carried
out with Spring Boot Admin as a possible
decentralized strategy for monitoring log events, but it
proved to be unfeasible considering that the tool does
not allow a holistic view of events, only an isolated
view per microservice, not allowing the follow-up of
the communication flow.

An alternative for consolidating and centralizing
log messages is the use of its own messaging broker
(RabbitMQ), creating its own queue for receiving log
messages. This type of solution can be interesting for
performing customized actions and also allows for a
simple centralization solution of log messages in
distributed systems, but does not provide any
additional resources for storage, filtering and analysis,
being in charge of its own implementation and/or use
of third/additional software. One must also take into
account the overhead that this type of solution can
cause to the broker, requiring a resizing of
computational resources for messaging.

The test and final choice was based on
Elasticsearch and Logstash tools. These are two very
popular open-source tools for large data storage,
processing and log data collection, respectively.

Logstash is used to aggregate data log from all
microservices simultaneously and transform that data
before it is indexed in Elasticsearch, which can run
complex queries to retrieve complex summaries of the
data.

8. Monitoring

Monitoring is a process of capturing the behavior
of a system through health checks and metrics over
time. This helps detect anomalies: when the system is
unavailable, has an unusual load, exhausts certain
resources, or otherwise does not behave within its
normal (expected) parameters. Monitoring involves
collecting and storing long-term metrics, which is
important, more than anomaly detection, but also root
cause analysis, trend detection and capacity planning
[17].

In this project, the focus is on monitoring
microservices, the message broker and data log [18].
Monitoring of bare metal resources, virtual machines
or containers is not in the scope, this monitoring is in
charge of the tools used by the operation team.

We envision three elements for monitoring the
functional prototype environment:

1. Microservice: observe each microservice and
its execution status;

2. Message Broker: observe the AMQP entities
and the Erlang VM itself;

3. Data log: observe the historical behavior of
the microservices as a whole and use this data
to identify problems or possible events that
may be compromising the use of the system.

Monitoring microservices is a necessary task in
order to ensure that systems behave as intended. More
than just checking its status at the moment, that is,
whether it is active or not, metrics such as memory
usage, storage, input/output rates, logs and requests
contribute to the identification of performance issues
that can impact the application and cause its fault.
Since microservices are Spring Boot projects, the use
of Spring Boot Actuator was a natural choice, which is
a subproject of Spring Boot that includes features that
help monitor and manage Spring applications. It is
possible to obtain metrics, application health data and
auditing in a simple way, either through HTTP requests
or with the help of JMX.

For the message broker, RabbitMQ allows the
monitoring of messaging broker metrics and system
metrics through a graphical management interface and
HTTP API that exposes a series of RabbitMQ metrics
for nodes, connections, queues, message rates and so
on. This is a convenient option for development and in
environments where external monitoring is difficult or
impossible to introduce. However, RabbitMQ's
management UI has limitations, the monitoring system
is interconnected with the system being monitored, it
only stores recent data and generates a certain amount
of overhead.

Long-term metric storage and visualization
services such as Prometheus and Grafana are more
suitable options for systems in production, since it
decouples the monitoring system from the system
being monitored, allow a long-term metric storage,
access to other related metrics such as Erlang runtime
and a a more powerful and customizable user interface.

Another positive aspect is that Prometheus can
collect metrics from microservices, serving as a
centralizing and persistent point of metrics for various
elements of the architecture.

Page 7791

As for visualization tools, two are very popular:
Grafana and Kibana, but since SESP-MT already
knows and uses Grafana, this was the selected tool.

Data log lacks a visualization tool that eases the
construction of filters and log visualization. Two tools
are very popular in this scenario: Graylog and Kibana.

The Graylog tool was selected to compose the
microservice environment because it is specialized in
logs, has a lower learning curve and makes the alert
system available free of charge.

9. Complete Environment

The complete environment is composed of 22
containers, as can be seen in Figure 5.

In this figure the containers are separated in four
different layers. Containers in one layer may directly

connect to containers in the same level and in the layer
right below. The containers were named according to
the applications inside them.

The first layer has a single container, the Theft
Management. This is the frontend of the solution. It is a
SPA that was built using Angular framework. This
application makes direct requests to all the services in
the second layer and provides a graphical user interface
to the solution.

The second layer is represented by the business
logic containers. There are six containers inside this
layer, five of them are related to the theft management
business itself and the last one - the authentication
service - holds the authentication logic.

Figure 5. 22 Containers of the microservice environment.

The authentication service was created to isolate
and centralize the authentication logic regarding the
Keycloak connection and the social authentication.
This service also provided an interface to the
authentication endpoints for external applications,
which are those that are not deployed on the same
network as Keycloak.

The third layer is the biggest one. There are eleven
containers related to the tools used by the business
logic services. Tool, in this context, can be understood
as a software that was not built from scratch, but is part

of the overall solution, being an existing software that
was configured according to the needs of this solution.
This layer is composed by the following tools:

1. LDAP Admin: an interface for the LDAP
Service in the fourth layer. This tool is used to
manage the users, groups and roles used by
Keycloak;
2. Redis: an in-memory data structure store.
Redis is used by the business logic services to
store the cache data;
3. Keycloak: an identity and access
management solution used to manage the
authentication and authorization to the business

Page 7792

logic services using both the LDAP Data and the
authentication data inside the DB Apps database;
4. DB Apps: a PostgreSQL database used by the
business logic services and Keycloak;
5. RabbitMQ: an AMQP broker used for
message exchange between the business logic
services;
6. Graylog: a log management solution used to
centralize the logs produced by the business logic
services;
7. Alert Manager: an alert tool used by
Prometheus and Graylog to manage the alerts
regarding infrastructure warnings;
8. Prometheus: a monitoring tool that serves as
an interface for the metrics and alert data to be
used by Alert Manager and Grafana;
9. Grafana: a monitoring tool used to create
dashboards. Uses data from Prometheus to
generate graphs regarding the resources
consumption and state of the services. Also uses
the SMTP Server to send email alerts when
necessary;
10. Spring Boot Admin: a monitoring tool that
provides a basic dashboard with the business
logic services state;
11. SMTP Server: a SMTP solution used to
provide the capability to send emails for the Alert
Manager and Grafana.

The fourth and last layer is represented by the
storage containers. These containers were necessary
because some of the tools in the third layer needed to
store data. There are four containers in this layer
represented by both relational and non-relational
databases.

In the functional prototype the container
environment was initially orchestrated using Docker
Compose, but currently at SESP-MT these containers
are deployed in a kubernetes cluster managed by the
Rancher tool and the continuous integration pipeline is
based on GitLab CI/CD.

10. References

[1] Preti, J.P., A. Souza, E. Freiberger, and T. Lacerda,
“Monolithic to Microservices Migration Strategy in
Public Safety Secretariat of Mato Grosso”, ICECCE
2021, (2021).

[2] Khononov, V., Learning Domain-Driven Design:
Aligning Software Architecture and Business Strategy,
O’Reilly Media, S.l., 2021.

[3] Martin, R.C., Clean Code: A Handbook of Agile Software
Craftsmanship, 2008.

[4] Newman, S., Building Microservices: Designing
Fine-Grained Systems, O’Reilly Media, 2015.

[5] Khononov, V., Balancing Coupling in Software Design:
Successful Software Architecture in General and
Distributed Systems, Addison-Wesley Professional, S.l.,
2021.

[6] Publications, Z., Migrating to Microservice Databases:
Good database design principles explained, O’Reilly
Media, 2017.

[7] Pacheco, V.F., Microservice Patterns and Best Practices:
Explore patterns like CQRS and event sourcing to create
scalable, maintainable, and testable microservices, Packt
Publishing, 2018.

[8] Bánáti, A., E. Kail, K. Karóczkai, and M. Kozlovszky,
“Authentication and authorization orchestrator for
microservice-based software architectures”, 2018 41st
International Convention on Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), (2018), 1180–1184.

[9] Gutierrez, F., “Security with Spring Boot”, In F.
Gutierrez, ed., Pro Spring Boot. Apress, Berkeley, CA,
2016, 177–209.

[10] Dikanski, A., R. Steinegger, and S. Abeck,
“Identification and Implementation of Authentication
and Authorization Patterns in the Spring Security
Framework”, pp. 7.

[11] ShuLin, Y., and H. JiePing, “Research on Unified
Authentication and Authorization in Microservice
Architecture”, 2020 IEEE 20th International Conference
on Communication Technology (ICCT), (2020),
1169–1173.

[12] Bánáti, A., E. Kail, K. Karóczkai, and M. Kozlovszky,
“Authentication and authorization orchestrator for
microservice-based software architectures”, 2018 41st
International Convention on Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), (2018), 1180–1184.

[13] Bakshi, K., “Microservices-based software architecture
and approaches”, 2017 IEEE Aerospace Conference,
(2017), 1–8.

[14] T, S., and S.N. K, “A study on Modern Messaging
Systems- Kafka, RabbitMQ and NATS Streaming”,
arXiv:1912.03715 [cs], 2019.

[15] Ionescu, V.M., “The analysis of the performance of
RabbitMQ and ActiveMQ”, 2015 14th RoEduNet
International Conference - Networking in Education and
Research (RoEduNet NER), (2015), 132–137.

[16] Kim, T., S. Kim, S. Park, and Y. Park, “Automatic
recommendation to appropriate log levels”, Software:
Practice and Experience 50(3), 2020, pp. 189–209.

[17] Jiang, Y., N. Zhang, and Z. Ren, “Research on
Intelligent Monitoring Scheme for Microservice
Application Systems”, 2020 International Conference on
Intelligent Transportation, Big Data Smart City
(ICITBS), (2020), 791–794.

[18] Cinque, M., R. Della Corte, and A. Pecchia,
“Microservices Monitoring with Event Logs and Black
Box Execution Tracing”, IEEE Transactions on Services
Computing, 2019, pp. 1–1.

Page 7793

