
One-click Application Deployment - An Approach for Automated
Deployment of Instantiable Cross-platform Mobile Applications

Arnold Arz von Straussenburg
University of Münster

arnold.arz@uni-muenster.de

Friedrich Chasin
University of Cologne
fchasin@uni-koeln.de

Abstract

Deployment of cross-platform mobile applications
remains a task almost exclusively performed by
application developers. Even with applications that are
instantiated multiple times as stand-alone configured
versions of a same application for different clients
or purposes, the deployment requires organizations to
allocate developers’ time and know-how to navigate
the complex process of submitting application instances
to different platforms. We extend the body of
knowledge on cross-platform applications, which is
currently dominated by literature covering aspects of
application development, with a dedicated approach for
cross-platform application deployment. Our approach
enables non-technical roles in an organization to
trigger a ‘one-click’ workflow for deploying instantiable
cross-platform applications and applies to various
scenarios in which stand-alone configurations of the
same applications are required. The approach spurs
academic inquiries into application deployment and
has practical implications for organizations that want
to streamline their application deployment, reduce
required resources, and improve deployment efficiency.

1. Introduction

Cross-platform development is an effective way of
addressing mobile application development challenges
for different target platforms. These challenges include
organizations assigning IT infrastructure, skills, and
time resources to each target platform application.
However, the heterogeneity of mobile platforms
brings challenges beyond application development. In
contrast to the well-research aspect of cross-platform
development [1, 2, 3, 4], little methodical guidance
exists for cross-platform application deployment.
Accordingly, deployment of cross-platform applications
continues to be a task performed for each platform
independently and requiring the involvement of
application developers. This challenge can be multiplied

in situations where organizations require releasing
similar stand-alone applications. In these scenarios,
data, access, and functionalities are separated, leading
to multiple instances of the mobile applications being
generated from the same source code and configured for
specific user groups. Each instance of such applications
represents a stand-alone application and requires
individual deployment. One example is a car-sharing IT
platform, which allows third-party car-sharing providers
to launch their own independent applications for the
system [5].

Multiple reasons exist to create instantiable
cross-platform applications. First, with multi-tenant
solutions such as the shopping platform Salesforce
or the customer relationship management platform
HubSpot, representing a typical solution for separating
business client content, clients can find their corporate
identity insufficiently reflected. Second, business
customer organizations can be interested in controlling
the deployment process themselves to maintain
metadata, screenshots, customer reviews, and
descriptive text that can inform end-users and lead
to more downloads. Third, individual instances can
be subject to continuous feature development and
instance-specific updates. In multiple instances
applications, requirements for the publishing,
deployment, and maintenance process increase
with each additional instance of a released mobile
application. This requires technically skilled developers
to be involved in the deployment process. Against this
background, organizations that require the creation
of multiple stand-alone cross-platform mobile apps
that represent a common set of features currently
have no practical way to reduce their deployment
overhead. Addressing this problem, this work proposes
an approach that enables non-technical roles in an
organization to perform a one-click workflow to the
extent possible to deploy instantiable cross-platform
applications.

The remainder of the manuscript is structured
as follows. In the next chapter, we apply both

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7752
URI: https://hdl.handle.net/10125/80274
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

academic and industrial lenses to examine the domain
of cross-platform applications. The chapter provides
background on the practice and research in the
area of cross-platform application development and
deployment. The chapter 3 focuses on the objectives
of the design-oriented approach taken in this work to
develop the deployment approach. Subsequent chapters
mirror the steps of the research approach and elaborate
upon the design (chapter 4) and the demonstration
(chapter 5) of the proposed deployment approach. We
conclude with a discussion of the developed artifact
in chapter 6, including argumentative evaluation of
the approach against the background of deployment
approaches in academia and practice, the limitations of
the approach, and avenues for further research.

2. Background

The mobile operating system market is currently
divided into two main operating systems, Apple’s
iOS and Google’s Android, henceforth referred to
as mobile platforms. These platforms come with
differences in development, compiling techniques,
different development approaches, and developer
platforms, as well as significant differences in platform
Application Programming Interface (API). For these
platforms, native applications are developed in a
platform-specific Integrated Development Environment
(IDE) like XCode and Android Studio. In addition,
different programming languages are employed. These
are, for instance, Kotlin or Java for Android and
Swift or Objective-C for iOS. Therefore, an application
aimed at customers across different platforms must be
developed from scratch to support each new platform
[2]. To counter this duplication of development effort,
organizations create cross-platform applications that run
on multiple mobile platforms according to the Write
Once, Run Anywhere (WORA) principle.

Various approaches to developing cross-platform
applications exist, as well as a large number of
associated frameworks [6, 7, 8]. These approaches
are differentiated from each other by distinguishable
characteristics of the development frameworks and
include hybrid applications, which in essence provide
a WebView wrapper in a native application, interpreted
applications, which can execute interpreted scripts
written in for instance JavaScript, and cross-compiled
applications, which compile native code for different
platforms from a common code base [2, 1]. There are
also model-driven approaches that follow various code
generation approaches in order to create cross-platform
apps [9, 10]. In addition, there are Progressive
Web App (PWA) [11], which have web applications

with additional functionality to run in an offline
environment and are typically not deployed through the
app stores. However, the naming of the groupings of
frameworks may differ [12]. The field of cross-platform
development is rapidly evolving and attracting research
attention [1, 2, 3, 4]. As a result, new technologies
and approaches are constantly being developed, and
new development frameworks and approaches, which
aim to achieve a native user experience, have become
increasingly popular in recent years [11]. Alongside
the development of the application, deployment is
also an elementary step in the provisioning of mobile
applications [13]. Development and deployment of
an application are two distinct activities differentiated
from each other in the following. Creating the source
code or binary files of the application is only the first
step of a successful application provision, regardless
of the development approach used. Registering an
application on the developer platforms of Apple and
Google, publishing the beta and production versions of
the application, and maintaining metadata for the app
stores are further steps that must follow development.
The same applies to the subsequent updating of the
application via the application lifecycle. These different
phases of deployment are shown in figure 1.

Application
initialization

Application
binary file
creation

Application
beta release

Application

app store release

Phase 1 Phase 2 Phase 3

Application
updates

Phase 4

Figure 1. Deployment phases.

The challenge of making applications available for
different mobile platforms arises in the deployment
and the development of the applications. The goal
of deploying a mobile application via the Apple and
Google app stores is a major challenge for developers
because of the different ecosystems of the platforms
and the different deployment approaches [14]. While
in cross-platform development, the different approaches
allow developing a common code base for both
platforms [2], there is no comparable solution for the
deployment of applications. Often the deployment of
applications on the different platforms is a task that has
to be done manually by a developer for the platforms
separately. This approach can become a problem when
an organization wants to deploy many applications on
different platforms.

No dedicated research on cross-platform mobile
application deployment could be identified in the
literature. However, three different fields that can
be considered related fields to the deployment of

Page 7753

cross-platform applications and have been studied
more intensively are the development of cross-platform
applications, the deployment of mobile applications that
have not been developed in a cross-platform context,
and the deployment of software in a general context.
In contrast to the large body of research concerned
with the first related field to cross-platform mobile app
deployment, the development of cross-platform mobile
applications [2, 15, 16, 17, 18], there is no comparable
body of research on the deployment of cross-platform
applications to different platforms.

In the literature, deployment costs and
time-to-market are recognized as key factors in
cross-platform mobile development [19]. Nevertheless,
deployment is only seen as a factor for choosing the
cross-platform approach to develop the application
despite its importance. Existing research that focuses
on cross-platform mobile application development
treats deployment as an afterthought [20]. The lack of
a holistic view on deployment can be seen in surveys
that address deployment as an aspect of cross-platform
development focusing only on generating application
binaries using various cross-platform frameworks [21].
The subsequent deployment of generated binaries to
the app stores has not been under similar academic
scrutiny. Challenges of deployment are broken down
to establishing deployment mechanisms, like the
platform-independent deployment of web applications
or platform-dependent deployment using, for instance,
Mobile Enterprise Application Platforms [22].

The distinction between deployments to app stores,
enterprise deployments, or ad-hoc deployments is
recognized [22], the additional complexity caused by
deployment via the app stores is seen as a disadvantage
for cross-platform applications [14]. Deployment to
the app store of the respective platform is frowned
upon in certain contexts in the case of web-based
cross-platform approaches [14]. The argument is
made, that cross-platform applications tend to get a
lower prioritization in the recommendations in the
app stores [14]. Additionally, instances arose where
cross-platform applications that only deliver Hypertext
Markup Language (HTML) and JavaScript code in a
thin native container, such as in the case of many
hybrid applications, were outright rejected during the
review process by the platform providers Apple and
Google [14] and consequently published via the app
stores. This is one reason why applications built with
platform-specific, native code still dominate the app
stores [23]. Instead, ways to deploy cross-platform
applications via means other than the app stores are
explored [24]. One possibility is the deployment of
PWAs on web servers [11]. The latter’s advantages

include faster deployment without review procedures,
no installation or updating of applications via an app
store, and guaranteed compatibility to future mobile
devices and operating systems [24]. Moreover, it
allows access from any computer with a modern
web browser, and the standardized web technologies
enable compatibility with a large set of mobile and
non-mobile devices [24]. The continuous evolution of
web technologies, such as the emergence of WebAR,
also increasingly allows complex mobile applications
with features such as Augmented Reality (AR) to be
enabled by mobile browsers [25, 26]. However, these
alternative deployment methods are not always viable
alternatives for organizations that rely on deployment
through the app stores since PWAs still do offer fewer
possibilities to the application developers than other
cross-platform approaches [25].

While in the research on the development of mobile
cross-platform applications, the deployment part of
providing mobile applications is largely ignored, it
is mentioned in the context of non-cross-platform
applications [27], a second related field of research.
Deployment has been subject to research in different
single instance application contexts, e.g., highlighting
challenges of deployment and centralized and
decentralized frameworks [27] or the Continuous
Deployment (CD) of large applications. Still,
in the context of single instance applications, a
difference remains in the research on mobile application
development and deployment. Outside the mobile
application context, there is a larger amount of research,
primarily from the software engineering field, on the
topic of software deployment and CD. The literature
addresses the challenges of adopting CD in practice
[28]. These include testing and integration problems,
which are most common, but also building, designing,
releasing software, and human and organizational
resources of an organization [28, 29].

3. Design objectives

This work is based on Design Science Research
(DSR). The objective is to create innovative solutions
to new and unsolved problems originating in practice
[30]. For this purpose, a Design Science Reserach
Methodology (DSRM) [31] is employed to develop
an approach for deploying instantiations of instantiable
mobile applications.

The overall design objective is to develop a
deployment approach that facilitates organizations
configuring and deploying multiple mobile applications.
The overall objective yields four operational
sub-objectives, which arise from the challenges

Page 7754

from the industry in practice and which an approach
for deployment must fulfill: The first objective is
the repeatability of the approach to a high degree,
the second one is the deployability for different
deployment platforms, relieving technical members
of the organization is the third objective. The fourth
objective is enabling non-technical members of the
organization to perform a deployment. The latter two
objectives arise from the organizational perspective on
the deployment process and are necessary to enable
the high repeatability of the deployment. By fulfilling
these objectives, time and resources spent on creating
different applications that are functionally similar can
be reduced.

For the design objective of developing an approach
that supports organizations in deploying multiple
instances of mobile applications, repeatability is an
essential component and basis for implementation to
create many different instances reliably. Secondly, a
cross-platform approach is needed for the deployment
approach to reach different customers from different
mobile platforms equally. Otherwise, a situation
arises where the deployment for one platform differs
from the deployment for another platform, whereby
the advantages of a joint, comprehensive deployment
approach are missed. To achieve the first objectives
for the deployment approach, especially for the high
repeatability, it is necessary to reduce the responsibility
of technical members for the deployment. The
time and resources of application developers are
traditionally the limiting factors in the deployment
of mobile applications. Thus, the involvement of
technical members of the organization, who are usually
responsible for the deployment of software products, is
to be reduced. After an initial setup of an instantiable
base application and an automated deployment pipeline,
resources of the technical members of the organization
should be freed, which otherwise would have been
committed in the deployment. Enabling non-technical
members of the organization to trigger the deployment
of new instances of an instantiable mobile application
and configure them is fundamental to relieving the
technical members of the organization. The objective
here is to enable a one-click deployment for applications
as far as possible.

4. Design

4.1. Organizational perspective

A high-level overview of the traditional approach to
application development in organizations is shown in
figure 2 to position the approach in the state-of-the-art

deployment. Basic activities that need to be performed
to create a new application and by whom they are
performed are shown. Here, activities are classified
according to whether non-technical or technical
organization members perform them. The most
critical activities in creating a new application include
conceptualizing the application and communicating
with the technical members of the organization. On
the technical side, a sequence of manual activities
commences, starting with creating a new application
base. Even when creating a new application with
minimal new functionality using an existing application
template, manual configuration and possibly feature
development ensues. Subsequently, the application
is compiled by the developer and deployed on the
various platforms of the platform operators. The
application developer is also responsible for creating
application records on the app store operator’s developer
platform and managing application metadata. Finally,
the deployed application can be reviewed and tested by
the requesting non-technical members to be published
publicly afterward. Even if the new application has
no new functionality compared to the organization’s
existing applications, this represents a significant effort
for the technical members. However, non-technical
members already took on determining the functionality
of the application in the first step. Yet, that in itself has
traditionally not been enough to carry out the creation of
a new application.

Non-technical Org. Member

Conceptualize new
instance of a CIA

Communicate with
technical org.

members

Review application
deployment

Technical Org. Member

Create new
application source

code

Build and sign
application

Manage application
records and app store

metadata

Upload binary files
and deploy

application versions

Communicate and
review application

deployment

Figure 2. Traditional deployment approach.

Comparing to the traditional approach, the new
approach proposed here is depicted in figure 3. The
new approach also starts with the conceptualization

Page 7755

of the latest application by the responsible members
of the organization, who do not necessarily have
to be technically skilled. However, the tasks of
the technical members of the organization have been
replaced by an automated system, which takes over
the creation of the new application and can then
deploy it independently. Thus, anyone without further
technical skills can initiate the deployment. Of
course, this requires a valid configuration and a
unique type of application that can be created, a
particular kind of basic application that members of the
organization can deploy as autonomously as possible
to relieve technical members of the organization of the
deployment tasks, which henceforth will be called a
Configurable Instantiable Application (CIA). Any new
applications that provide a subset of the functionality
of the base application and can be configured in their
functionality and appearance are called instances of the
CIA. This base application can be configured, built, and
deployed through an automated pipeline. Given that
such an initial base application has been created and
an automated deployment pipeline has been established,
an arbitrary number of new instances of the can be
created, configured, and deployed by any member of the
organization. This provides a solution to the problem of
deploying multiple feature-like applications with limited
technical resources.

Non-technical Org. Member

1: Conceptualize
instance of a CIA

6: Review application
deployment

Automated deployment pipeline

2: Create new
application source

code

3: Build and sign
application

4: Manage application
records & app store

metadata

5: Upload binary files
and deploy

application versions

Figure 3. Deployment approach for CIA.

Using the approach presented here, non-technical
members of the organization still solely conceptualize
the application and then press a button to trigger
a build. Instead of time-consuming communication
with the technical members of the organization,
the configuration is also performed directly by the
non-technical members. The reduced communication
overhead can thus effectively reduce the effort of the

non-technical members in deploying a new application.
With the new approach, developers are no longer
involved in creating a new instance of CIA. Of course,
it is within their domain to initially develop an CIA, as
well as the capability to configure it. The deployment
pipeline, which is supposed to take over the developers’
tasks, is also set up and adapted by the developers.
However, the initial setup effort and the subsequent time
savings are positively offset when many instances of a
CIA are created.

4.2. Technical perspective

A more technical explanation of how organizations
in practice can realize the approach proposed here for
deploying mobile applications is given to provide a
tangible understanding. An Unified Modeling Language
(UML) sequence diagram-like depictions with labeled
lifelines illustrate the process of deployment.

b: CMSa: Organisation
Member

1: create instance

show configuration screen

2: enter Configuration

validity feedback

validity
Check

loop

... ...

Figure 4. Create a configuration in a Content

Management System (CMS).

Conceptualization of an instance of a CIA by
the responsible members of the organization is the
first step for its creation. To manage the various
configurations of instances of the CIA, a CMS can
be utilized. This is illustrated in figure 4. This
way, the creation of a new instance of the application
is realized by creating a new entry in the CMS,
by making the necessary configurations therein. A

Page 7756

validity check of the configuration by the CMS supports
non-technical members of the organization only to
create configurations that can be further used in the
following activities.

10: request app metadata

5: clone repository

4: trigger app
release

(API call)

b: CMS

c: CD Runner

d: Template
Repository

a: Organisation
Member

...

3: trigger app
build & release

confirmation

configurable
instantiable app

6: configure
runner
environment

app metadata

... ...

...

Figure 5. Triggering the application creation.

With a valid configuration for an application created
in the CMS, members of the organization can trigger the
creation of the application. A one-click interaction with
the CMS triggers an automated deployment pipeline.
Upon triggering the creation of the application, a new
deployment is started through an API call from the
CMS to a server that runs instances of the automated
deployment pipeline, called the CD runner. The API
call to the CD runner provides the basic configurations
to be performed on the new instance by the deployment
pipeline. At this point, the deployment pipeline
takes over the critical activities necessary to create
and deploy a new instance of CIA, independently and
without intervention from a technical member of the
organization. For this purpose, the base application
of CIA, the template, is copied from a central code
repository. This template consists of a common
code base, from which the deployment pipeline can
generate applications for the different mobile platforms
according to the cross-platform approach. Depending
on the platform for which the app is created and
deployed, initial configurations are carried out on the
runner’s virtual environment. Subsequently, additional
information like metadata for the app stores is retrieved
via an interface provided by CMS for the deployment.
These activities are illustrated in figure 5.

Using the configuration retrieved from the CMS, the

9: request
certificates

c: CD Runner

7: generate
app configuration

e: Certificate
Repository

f: Developer
Platform

release
certificates

11: build
application

... ...

...

8: create application record

app instance creation status

opt

Figure 6. Compiling and signing the application

code.

application template of the CIA is configured afterward.
One way of configuring the CIA is to modify the source
code of the application using configuration parameters.
This configuration distinguishes different instances of
CIA from each other. In the next step, a central
repository that holds developer certificates for signing
mobile application code provides the required signing
data. Once the application configuration is complete
and signing certificates are obtained, the application is
compiled and signed for the mobile platform. Provided
that the mobile platform provider’s developer platform
supports the automated creation of application records
for deployment via the app stores through an API,
this step follows based on the previously obtained
application metadata from the CMS. These activities are
depicted in figure 6.

As soon as the compiled application has been
created and an application record exists on the
developer platforms of the mobile platform providers,
the application is uploaded to the mobile platform
provider’s development platform. The application can
now be made available as a beta release, which can then
be tested and tried out. Alternatively, after testing, the
application may be released to be published to the app
store through the app store provider’s review process.
These activities are shown in figure 7.

Page 7757

12: upload to
beta platform

c: CD Runner

...

f: Developer
Platform

...

upload status

upload status

12: submit for
app store release

[beta
release]

[app
store

release]

alt

Figure 7. Deployment of the application for mobile

platforms.

5. Demonstration

In the following, the concept of CIA and the
approach to deploy it are demonstrated. For this
purpose, a series of applications were created for
the event industry. These are built based on an
existing application in the industry and provide the
same functionality as the application that has been
already in use. It was completely redeveloped as a
CIA to allow for the deployment approach. The event
industry is particularly suited for demonstrating CIA.
Event organizers typically organize multiple events.
These may be very similar to one another or completely
different and may occur on a regular or irregular
basis. Multiple events organized by one organizer can
even conceivably take place in parallel. Some events
benefit from a supporting application that digitally
prepares information for the participants. However,
the requirements for the applications supporting these
events are as varied as the events themselves. Providing
different applications for several events usually poses
a great difficulty for the organizers. In addition,
managing data and information about their events is a
core competency of organizers. But technical capacity
for developing and deploying applications can be
limited. The event application demonstrated here allows
participants at digital, hybrid, or physical events to find
out information about the schedule, location and rooms,
speakers and presenters, the event itself and more.
Moreover, the application can be customized not only in
its appearance but also in the functionalities it offers. For
demonstration purposes, two different instantiations of a
common base application have been created, pictured in

App No. No. clicks Available Features Platform

1 <50
Event schedule,
speaker information,
downloads

Android

2 1

Event schedule,
speaker information,
venue map,
notifications screen,
external links,
custom HTML page

iOS

3 >100 (manual)
Event schedule,
speaker information,
downloads

iOS

Table 1. App instantiations.

figure 8. The two instantiations have various features
of the base application enabled. The first application
is an elementary event application, which can only
display basic information about the event, the schedule,
speakers, and available downloadable documents. The
second application is a more feature-rich application,
which offers information about the event, schedule, and
speakers and includes an included map of the venue
and a notifications page. Beyond the enabled features
of the base application, the second application includes
additional content pages that display custom HTML
content and a link to an external web page. The available
features are shown on a start screen as menu buttons.
Both applications were automatically instantiated with a
single click after configuration in an event management
system and deployed as a beta version. But since Google
does not support creating application records on their
developer platform, Google Play Console, this step still
had to be performed manually for the first application.
This resulted in a more complex deployment than
the one-click solution for the iOS application. The
second application was also once created and deployed
manually by a developer. This is a more complex
endeavor in which the application must be manually
created and configured. More manual interaction is then
required with the developer platforms of the platform
providers. An overview of the application features and
mouse clicks required for deploying the application is
shown in table 1. These deployments were performed
on the iOS and Android platforms, respectively. The
number of clicks required is used here as an indicator
of the complexity of the task. We can confidently
report that non-technical members can create a new
instance of the application via the automated approach.
This is not the case with the manual approach of the
third application, which requires a considerably higher
number of interactions with both the IDE and the
development platforms.

Page 7758

Figure 8. Different configurations of the event

application.

The event management system Indico1 is used to
manage the data for the various events. Using the
system, organization members can create data entries
for events, and enter information about schedules and
speakers, among other details. Furthermore, a plugin
that was developed specifically to this end can be
used to manage configurations about the appearance
and functionality of an application associated with the
event and metadata for the app stores directly in Indico.
Information about the event, as well as configuration
parameters of the application, are then available via
an API of the Indico system. Once the event has
been created in the event management system, and the
application has been configured, an automated process,
the deployment pipeline, can be triggered at the push of
a button to create the application and deploy it as a beta
version to the beta platforms of the app stores.

The application created in this project is based on
the cross-platform framework Flutter, which follows
the cross-compilation approach [2]. The choice of the
framework makes it easier to compile applications for
both iOS and Android based on one codebase written in
the programming language Dart, which can be deployed
via the app stores. The CIA approach is implemented
by creating a base application that has the ability to
retrieve design elements such as logos and colors at
application run-time from the API provided by Indico.
By a similar approach, features of the base application
are also enabled or disabled in an instantiation by the

1https://indico.cern.ch/

application retrieving a configuration at run-time via
the Indico API. The base application has a variety of
functions that are not required by every instantiation.
The configuration for an instantiation from the Indico
API thus affects the menu items displayed in the
application and the functionalities a user can access. A
unique event identifier is written to each instance in the
source code at compile-time to enable the retrieval of
dynamic contents at application run-time. This ensures
that an application retrieves configurations from the API
only for the associated event.

Creating an instantiation of the base application
at the push of a button is possible for non-technical
members of the organization. For this purpose, the
processes of creating an instance, configuring it, and
then deploying it were automated as far as possible.
The automation pipeline is based on the automation
framework fastlane. When a new instantiation is
triggered in the Indico system, a Hypertext Transfer
Protocol (HTTP) call is made to a build server,
which then executes the pipeline on the Mac hardware
necessary for building iOS applications. The pipeline,
which is executed on the remote build servers, consists
of several steps: Starting the project and building the
application, configuring the application, compiling it,
and publishing it across beta platforms. The first step
involves copying the code for the base application from
the version control system. An application record,
is also created on the development platforms of the
platform providers Apple and Google. In the second
step, the identifier for the event and information such
as the application name and application logo is defined.
Also, the metadata for the app stores is retrieved from
the Indico API through the pipeline. Subsequently,
in the third step, the application is compiled by the
build server to create the binary files which can be
deployed. In the fourth and final step, developer
certificates are used automatically to sign the binary
files. The application is uploaded to the developer
platforms along with the metadata for the app stores.
Since the exact implementation of these steps differs
between Apple and Google platforms, the pipeline is
implemented for both platforms and is executed once
for each. A subsequent submission for the platform
operators’ review process for publication via the app
stores can consequently be triggered manually.

6. Discussion and conclusion

In this paper, we developed an approach to enable
the repeated deployment of instantiations of CIA. Our
approach enabled non-technical roles in an organization
to trigger the deployment of these instantiations through

Page 7759

a ’one-click’ workflow. This reduces the responsibility
of the technical members of the organization for the
deployment activities. Our approach contributes to
the body of knowledge in application deployment and,
more specifically, cross-platform mobile applications
deployment. This area of research has not been studied
with an emphasis in the past.

The objectives of this approach were firstly the
high repeatability of the deployment, secondly the
possibility to perform the approach in a cross-platform
manner, thirdly a relief of the technical members of
the organization from the activities of the deployment
and fourthly enabling of non-technical members of the
organization to trigger a deployment independently. We
addressed the first repeatability objective by automating
a build and deployment pipeline. With this setup,
instantiations based on a given configuration can be
reliably created, with new configurations. Furthermore,
the deployment of an app with the same configuration
can be repeated arbitrarily. Different instantiations can
even be executed in parallel. The limiting factor for this
is only the technical capacity of the build CD runner.

The second objective of deployability on multiple
mobile platforms was demonstrated for the two
dominant mobile platforms, iOS, and Android.
Demonstration on additional mobile platforms was
foregone due to the dominance of the predominant two
platforms. Since there are significant differences in
implementing the activities required for deployment
to the respective app stores of Apple and Google, the
deployment pipeline needed to be adapted accordingly.
In subsequent works, the applicability of the approach
for the web platform could be investigated. This would
make the deployed application available to even more
user groups.

Reducing the responsibility of the technical
members of the organization, the third objective, is
achieved with the deployment approach to the extent
that a new instantiation with a valid configuration no
longer requires any intervention by these members.
However, this comes at the price of a significant
initial resource investment for creating the CIA base
application and setting up the automated deployment
pipeline. Moreover, interventions of the technical
members may still be needed for bug fixing and
continuous development of the deployment solution.
The limitation of our approach to the initial deployment
of a new instance of a CIA does not consider other
lifecycle events of an application, such as updating.
For these, the approach presented here does not yet
provide any relief for the technical members of an
organization. Provided that a sufficiently large number
of deployments of new instantiations of an CIA is

carried out, the technical members will benefit from a
net reduction in their workload despite the initial efforts.
The freed resources can now be used for activities such
as developing new features instead of for deployment.
Similarly, the fourth objective, enabling non-technical
members of the organization, was achieved under
certain conditions. Configuration management requires
the ability of non-technical members to create valid
configurations. This can be challenging depending
on the complexity of the configurations and level of
abstraction from the technical implementation in the
subsequent build and deployment pipeline. Starting an
automated pipeline with a single mouse click minimizes
the complexity of triggering the deployment. However,
we were only able to implement this approach for
the iOS platform. For the Android platform, it is not
possible to programmatically create application records
in the Google Play Console developer platform via an
API. This step still has to be performed manually even
with our deployment approach, which again increases
the complexity of this approach.

Our approach has practical implications for
organizations that want to streamline their application
deployment, reduce the required resources, and increase
deployment efficiency.

References

[1] A. Charland and B. LeRoux, “Mobile Application
Development: Web vs. Native,” Communications of the
ACM, vol. 54, pp. 49–53, 5 2011.

[2] A. Biørn-Hansen, T. M. Grønli, and G. Ghinea, “A
Survey and Taxonomy of Core Concepts and Research
Challenges in Cross-platform Mobile Development,”
ACM Computing Surveys, vol. 51, pp. 1–34, 1 2019.

[3] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef,
and A. Wahba, “ICPMD: Integrated Cross-Platform
Mobile Development Solution,” in Proceedings of
2014 9th IEEE International Conference on Computer
Engineering and Systems, ICCES 2014, pp. 307–317,
Institute of Electrical and Electronics Engineers Inc., 2
2014.

[4] H. Heitkötter, S. Hanschke, and T. A. Majchrzak,
“Comparing Cross-platform Development Approaches
for Mobile Applications,” WEBIST 2012 - Proceedings
of the 8th International Conference on Web Information
Systems and Technologies, pp. 299–311, 2012.

[5] P. Ringeisen and R. Goecke, “Flinkster: The Carsharing
Platform of Deutsche Bahn AG,” pp. 383–391, Springer,
Berlin, Heidelberg, 2016.

[6] M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai,
“Cross Platform Approach for Mobile Application
Development: A Survey,” in 2016 International
Conference on Information Technology for
Organizations Development, IT4OD 2016, pp. 1–5,
Institute of Electrical and Electronics Engineers Inc., 5
2016.

[7] V. Ahti, S. Hyrynsalmi, and O. Nevalainen, “An
Evaluation Framework for Cross-platform Mobile

Page 7760

App Development Tools: A Case Analysis of
Adobe PhoneGap Framework,” in ACM International
Conference Proceeding Series, vol. 1164, (New York,
NY, USA), pp. 41–48, Association for Computing
Machinery, 6 2016.

[8] C. Rieger and T. A. Majchrzak, “Weighted Evaluation
Framework for Cross-platform App Development
Approaches,” in Lecture Notes in Business Information
Processing, vol. 264, pp. 18–39, Springer Verlag, 2016.

[9] E. Umuhoza, H. Ed-Douibi, M. Brambilla, J. Cabot,
and A. Bongio, “Automatic Code Generation for
Cross-platform, Multi-device Mobile Apps: Some
Reflections from an Industrial Experience,” in
MobileDeLi 2015 - Proceedings of the 3rd International
Workshop on Mobile Development Lifecycle, (New
York, NY, USA), pp. 37–44, Association for Computing
Machinery, Inc, 10 2015.

[10] C. Rieger, “Evaluating a Graphical Model-Driven
Approach to Codeless Business App Development,” in
Proceedings of the 51st Hawaii International Conference
on System Sciences, Hawaii International Conference on
System Sciences, 2018.

[11] A. Biørn-Hansen, T. A. Majchrzak, and T. M. Grønli,
“Progressive Web Apps: The Possible Web-native
Unifier for Mobile Development,” WEBIST 2017 -
Proceedings of the 13th International Conference
on Web Information Systems and Technologies,
pp. 344–351, 2017.

[12] T. Majchrzak and T.-M. Grønli, “Comprehensive
Analysis of Innovative Cross-Platform App
Development Frameworks,” in Proceedings of the
50th Hawaii International Conference on System
Sciences (2017), Hawaii International Conference on
System Sciences, 2017.

[13] F. Chen, J. Zhou, X. Xia, H. Jin, and Q. He, “Optimal
Application Deployment in Mobile Edge Computing
Environment,” in IEEE International Conference
on Cloud Computing, CLOUD, vol. 2020-October,
pp. 184–192, IEEE Computer Society, 10 2020.

[14] K. Shah, H. Sinha, and P. Mishra, “Analysis
of Cross-Platform Mobile App Development Tools,”
in 2019 IEEE 5th International Conference for
Convergence in Technology, I2CT 2019, Institute of
Electrical and Electronics Engineers Inc., 3 2019.

[15] A. Biørn-Hansen, C. Rieger, T. M. Grønli, T. A.
Majchrzak, and G. Ghinea, “An Empirical Investigation
of Performance Overhead in Cross-platform Mobile
Development Frameworks,” Empirical Software
Engineering, vol. 25, pp. 2997–3040, 7 2020.

[16] C. Rieger and T. A. Majchrzak, “Towards the
Definitive Evaluation Framework for Cross-platform
App Development Approaches,” Journal of Systems and
Software, vol. 153, pp. 175–199, 7 2019.

[17] A. Biørn-Hansen, T. M. Grønli, G. Ghinea, and
S. Alouneh, “An Empirical Study of Cross-Platform
Mobile Development in Industry,” Wireless
Communications and Mobile Computing, vol. 2019,
2019.

[18] S. Xanthopoulos and S. Xinogalos, A Comparative
Analysis of Cross-platform Development Approaches for
Mobile Applications. 2013.

[19] A. Sommer and S. Krusche, “Evaluation of
Cross-platform Frameworks for Mobile Applications,”
tech. rep., 2013.

[20] X. Mao and J. Xin, “Developing Cross-platform Mobile
and Web Apps,” tech. rep., 2014.

[21] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein,
“Survey, Comparison and Evaluation of Cross Platform
Mobile Application Development Tools,” in 2013 9th
International Wireless Communications and Mobile
Computing Conference, IWCMC 2013, pp. 323–328,
2013.

[22] M. Popa, “Considerations Regarding the Cross-platform
Mobile Application Development Process,” Economy
Informatics, vol. 13, no. 1, p. 40, 2013.

[23] N. Viennot, E. Garcia, and J. Nieh, “A Measurement
Study of Google Play,” Performance Evaluation Review,
vol. 42, no. 1, pp. 221–234, 2014.

[24] J. Zbick, I. Nake, M. Jansen, and M. Milrad,
“MLearn4web - A Web-based Framework to Design
and Deploy Cross-platform Mobile Applications,” in
ACM International Conference Proceeding Series,
vol. 2014-Novem, (New York, New York, USA),
pp. 252–255, Association for Computing Machinery, 11
2014.

[25] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A New Era for
Web AR with Mobile Edge Computing,” IEEE Internet
Computing, vol. 22, pp. 46–55, 7 2018.

[26] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen,
“Web AR: A Promising Future for Mobile Augmented
Reality-State of the Art, Challenges, and Insights,”
Proceedings of the IEEE, vol. 107, no. 4, pp. 651–666,
2019.

[27] J. LI and X. Guo, “Global Deployment Mappings and
Challenges of Contact-tracing Apps for COVID-19,”
SSRN Electronic Journal, 5 2020.

[28] E. Laukkanen, J. Itkonen, and C. Lassenius,
“Problems, Causes and Solutions when Adopting
Continuous Delivery—A Systematic Literature
Review,” Information and Software Technology,
vol. 82, pp. 55–79, 2 2017.

[29] B. El Khalyly, A. Belangour, M. Banane, and A. Erraissi,
“A New Metamodel Approach of CI/CD Applied to
Internet of Things Ecosystem,” in 2020 IEEE 2nd
International Conference on Electronics, Control,
Optimization and Computer Science (ICECOCS),
pp. 1–6, IEEE, 12 2020.

[30] A. R. Hevner, S. T. March, J. Park, and S. Ram,
“Design Science in Information Systems Research,” MIS
Quarterly: Management Information Systems, vol. 28,
no. 1, pp. 75–105, 2004.

[31] K. Peffers, T. Tuunanen, M. A. Rothenberger, and
S. Chatterjee, “A Design Science Research Methodology
For Information Systems Research,” Journal of
Management Information Systems, vol. 24, no. 3,
pp. 45–77, 2007.

Page 7761

