
HoneyTree: Making Honeywords Sweeter

Kuntal Das, Jafar Haadi Jafarian, Ersin Dincelli, Ellen Gethner, Thomas Bekman
University of Colorado Denver

{kuntal.das, haadi.jafarian, ersin.dincelli, ellen.gethner, thomas.bekman}@ucdenver.edu

Abstract

Cyber deception is an area of cybersecurity based
on building detection systems and verification models
using decoys or controlled misinformation to confuse or
misdirect the adversaries into revealing their presence
and/or intentions. In the era of online services where
our data is usually protected on the cloud relying on
a secret key, even the most secure cyber systems can
get compromised, losing highly confidential data to
the attackers, including hashed passwords that can be
cracked offline. Prior work has been done in carefully
placing traps in the systems to detect intrusion activities.
The Honeywords project by Juels and Rivest is the most
straightforward and successful technique in detecting
and deterring offline-password brute-force by placing
multiple plausible decoy passwords together along with
the real password. In this paper, we enhance this
approach and combine it with the concept of the Merkle
tree to build a new model called HoneyTree. Our model
achieves twice the level of security as the Honeywords
project at the same storage cost. We perform a detailed
comparison of our approach to the original Honeywords
project and analyze its pros and cons.

1. Introduction

Nowadays, most online account security is based
on textual passwords, which need to be stored on
third-party servers in some form to verify the actual
user during authentication. However, since these servers
can get compromised and the credentials can get leaked,
passwords are not stored in their plaintext form. Instead,
the system computes a hash of the password using a
cryptographic hash function, such as MD5, SHA1, and
SHA256, and stores the hash instead. Hash functions
being lossy cannot be inverted, and so even if the
database gets leaked, the plaintext passwords cannot be
obtained back from the hashes. However, in reality, the
attackers use an ingenious technique known the hash
inversion to obtain the plaintexts from the hashes.

Precisely, this form of attack is not about inverting
the hash. In this case, attackers use various techniques
like high-performance cluster computing (HPCC), a
smaller scale brute-force using multiple cores and
threads running in parallel, or online lookup tables, such
as rainbow tables, to find their plaintext counterparts
or pre-images [1]. Since these kinds of attacks usually
happen away from the source or offline, the site owners
have no mechanism to protect their data against these
attacks. Once a pre-image is discovered, the attackers
try it online to get access to the victim’s account.

In some cases, the result of the hash inversion does
not match with the actual password, although they
correspond to the same hash. This property of hash
functions in which multiple plaintexts generate the same
hash is called hash-collision [2]. As a result of the
collision, the actual password sometimes does not get
revealed. However, when it comes to compromising
accounts, it makes no difference as the attacker can
use any pre-image of the hash and gain access to the
account as the authentication system verifies the hash of
the password, and all the pre-images generate the same
hash. The system cannot differentiate the real password
from the other pre-images as the server does not store the
actual password or any of its lossless forms. To counter
this, cyber deception mechanisms are introduced into
the authentication systems to add detectability [3].

In this paper, we discuss the use of decoy passwords
in detecting offline brute-force. The idea is to introduce
a bunch of decoy passwords in the database along with
the real password and have a different server as the
verification agent. If the attacker uses the decoys instead
of the real password, they will be detected. The idea
was originally used in the Honeywords project [4].
Based on this concept, we designed our approach, called
HoneyTree, which serves as a structural improvement to
the original work. Our contribution lies in applying the
Honeywords concept in Merkle tree [5] and designing a
new way of achieving about twice the security standard
using the same number of honeywords as compared to
the original Honeywords project.

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7637
URI: https://hdl.handle.net/10125/80259
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 offers
an overview of our approach, defines the terminologies
and the notations that are used throughout the paper.
Section 4 discusses the methodology of HoneyTree,
the associated components like the server models, their
communication policies, their file systems, and the
underlying assumptions in finer detail. In section 5,
we define the algorithms we discuss in section 4 from
adding to verifying users. Finally, in section 6, we
analyze the various aspects of the scheme with regards to
the known attacks and the execution overheads. We also
perform a detailed comparison with the Honeywords
project and discuss the pros and cons of our approach.

2. Related Work

Passwords serve as the front line of defense to
prevent unauthorized access to users’ sensitive and
confidential information [6]. The brute-force attack
is one of the most common methods for cracking
passwords. To counter brute-force attacks, several
mechanisms have been proposed that use decoys
in adversary detection like the Honey Encryption
[7] and D3CyT [8]. However, these methods are
most suitable for encryption purposes that sometimes
generate believable fake values upon decryption using
the wrong key. Another method called the collisionful
hash function [9] generates multiple collisions upon
inversion of even the simplest of hashes, out of which
only one is correct. However, it fails to deterministically
generate meaningful pre-images, which is why the
actual password can be distinguished. It is more suitable
for systems based on nonsensical passwords managed
by password managers. Since here we are dealing with
meaningful user passwords, collisionful hash functions
cannot be used.

The Honeywords project [4] by Juels and Rivest is
one of the most-studied approaches that popularized
the concept of the use of decoy passwords. In
this system, the server stores multiple plausible
passwords (honeywords) together with the real
password (sugarword) of the user in the form of
a list called the sweetwords. The index of the
sugarword is stored in a separate, highly secure server
called the Honeychecker. During authentication, the
Honeychecker fetches the index of the requested user
and passes the index to the main server, which then
retrieves the sugarword from the list and compares it
against the one entered by the user.

Suppose an attacker found a copy of the database
and, using hash inversion, discovered all the plaintext
forms of the sweetwords for a particular user. To access

the account, they try to authenticate by guessing the
sugarword. If the entered password is correct, the
attacker gets authenticated. However, if they enter a
honeyword instead, the system flags it as a successful
detection. Since it is completely based on probabilities,
the authors recommended using about 19 honeywords
per user so that the chances of getting caught is 19/20
or 95%, which is significantly higher than guessing the
right one successfully, which is 1/20 or just 5%.

However, in reality, the probabilities of all the
sweetwords are not necessarily equally flat. This brings
us to the problem of flatness which measures how
equally likely each of the sweetwords appears [4, 10].
By using passive information or techniques like pattern
recognition, some of the sweetwords can be eliminated,
and the list can be narrowed down.

A lot of the works built on the foundation of the
Honeywords project focus on qualitative advancement,
which involves improving the mechanism of generating
plausible passwords or achieving flatness. This
is mostly done using either surveys [10] or using
Deep Adversarial Neural Network-based models like
PassGAN [11]. The number of honeywords can also
be increased to achieve better security. However, this
requires a lot of space, and it becomes inefficient while
up-scaling. None of the relevant prior works focused
on the quantitative side or worked on optimizing the
scheme.

In the following section, we discuss a potential
approach called the HoneyTree to cut the storage
overheads of honeywords by half making it more
efficient. Or conversely, one can achieve about double
the effective security by spending the same storage
cost. Since this is purely quantitative advancement, any
honeyword generation technique based on improving
the quality of the honeywords or achieving flatness
[4, 10] can be coupled with this approach.

3. Methodology Overview

In our approach, we define an online service where
n users have registered with their respective user-ids
and passwords. The user-ids are defined by u0, u1, u2,
...un, where ui denotes the user-id of the ith user. We
represent pi as the password of ui. Upon sign-up of a
user ui with input password pi, we first select a tree
depth d, which is a global constant. The value of d is
stored in a system file called Fsys.

Next, we generate ni honeywords for the user
based on the chosen d and hash them along with
the real password. Suppose hi,0 denotes the hash of
real password, and hi,1, . . . , hi,ni

denote the hash of
honeywords.

Page 7638

Figure 1. A complete binary tree formed by hierarchical SR-XOR

Given d, ni, and hi,js, we generate a complete
binary tree of depth d where hi,js are randomly
distributed on nodes such that for every parent node and
its two siblings, at most two of them are assigned. Then,
the value for the remaining unassigned node is computed
by applying a modified version of bitwise xor , called
SR-XOR, between the two other assigned nodes.

The result of this modified xor is an arbitrary binary
string with the same size as real hashes; however, given
that the output size of a hash function has a fixed size,
any arbitrary string should be the hash of an infinite
number of inputs. We refer to these computed binary
strings as honeyhashes. Unlike hashes of honeywords,
the pre-images of honeyhashes are not known. Figure
1 shows a complete binary tree of depth 4. The
honeywords are marked using a diamond symbol, while
the real hash is marked with a star symbol. The rest of
the nodes represent honeyhashes.

For a depth d, the tree has k = 2(d−1) leaf nodes
which are either assigned with hi,js or a computed
honeyhash. Suppose

Li = {li,1, li,2,, li,k}

denote the values assigned to leaves of this tree. For
each user, we only store values in Li in the database.

For authentication of user ui, we first retrieve Li.
Then starting from the leaves, we calculate the value
of every parent by performing the SR-XOR of its
two children in a bottom-up fashion until the root is
computed. Then, the hash of the given password is
compared against node values, and the index of the
matching node is sent to the Honeychecker. If the index
is verified, the user is successfully authenticated. If the
hash matches that of a node in the tree but is not the
sugarword, then an alarm is raised.

Given d, for user ui, the maximum number of
honeywords that could be assigned to the tree is

ni = 2d−1 − 1

To be able to reconstruct the tree, we need to store
2d−1 = ni + 1 leaf values. This is exactly equal to the
space required for the Honeywords approach.

Since the tree is full and complete, it includes Ni =
2d − 1 nodes. Therefore, if an adversary discovers the
database and correctly recovers Li, they have to try to
reverse Ni ' 2 · ni hashes. Out of these Ni values,
only one is the hash of the real password, almost half of
them are honeyhashes, and the other half are hashes of
honeywords. In theory, the adversary has a probability
of 1/Ni to succeed. Therefore, HoneyTree doubles both
the effort required for reversing the hashes, and the
likelihood of detection while requiring the same extra
space as compared to the Honeywords project.

However, in practice, HoneyTree complicates
the reversing process because the attacker can not
distinguish between hashes of real passwords and
honeyhashes. Therefore, if they try to brute-force a
hash, this confusion does not let them know when to
stop, since they do not know if they are trying to break
a honeyhash, which could be very hard to brute-force,
also known as toughnuts [4], or the hash of a real but
strong password.

Especially by selecting a strong password for the
user (longer than ten characters) while choosing weak
but believable passwords as honeywords (7-8 characters
using dictionary words), the adversary could be given a
higher likelihood of successfully - and potentially only -
breaking and trying the honeywords.

Page 7639

4. Detailed Methodology

In this section we discuss all the components of the
HoneyTree approach in details.

4.1. The Components

In our HoneyTree approach, we have the following
components. There are two servers: The authentication
server Sauth and the index server Sind. The
authentication server, Sauth receives the initial request
for authentication, user registration, user deletion,
password change, and all others types of requests
related to accounting information management and
modification. This server contains two different files
Fsys and Fusr that can be accessed by all the algorithms
running on Sauth, but not Sind. The file Fsys contains
the global constants, which are assumed to be public
information. The constants include the depth of the tree
d and a value v, known as the pivot. The Fusr file, as
we already mentioned, contains a table of the users and
their corresponding leaf nodes required to build the tree.

The index server Sind, on the other hand, is a highly
secure server that verifies whether the tree generated
and sent by the Sauth corresponding to a particular user
is legitimate or not during authentication. During user
registration, it generates the tree based on the password
sent by Sauth and sends the leaf nodes back to it. It
contains two different files Fpass and Find. Fpass serves
as the honeyword repository of HoneyTree. It contains
hashes of real passwords obtained from secure online
sources and is assumed to be frequently updated. The
second file Find contains a table of the users, the userids,
and their corresponding real index r. For a user ui, ri
acts as the position of the hash of their real password in
their tree.

4.2. Registration

During user registration, Sauth sends the new user’s
login credentials which are basically the userid ui and
the hashed password pi, and the global constants, depth
d, and pivot v, to Sind, through a secure channel,
for building the tree. Upon receiving the information,
Sind uses algorithm 1 and d to calculate the total
number of nodes of the tree. Next, it uses algorithm
4 to calculate the nodes of the tree one by one in
a top-down fashion. In the beginning, the algorithm
selects 2d−1 − 1 honeywords randomly from Fpass,
inserts the real password in the list, and shuffles them
together randomly to form a list of sweetwords s.

Next, at the root, it generates a random number
between [0, 1] to determine if the root node will be an
entry from s or a similar length random number that

will act as a honeyhash. The root can be any sweetword
(the real hash or a honeyword) or a honeyhash. If
the root happens to be a honeyhash, we assign a
random number of the same length as that of the pi
to the root node and remove one honeyword from
s. During all other node operations, we first pick a
sweetword as the left-child, compute the honeyhash as
the right-child using algorithm 2, and choose a random
number between [0, 1]. Based on this number, we either
keep the ordering or swap the children. We discuss
the swapping process in section 4.5 in detail. Once
the entire tree is built, the real hash pi is located. We
denote its index by ri. Finally, the leaf nodes Li are
returned back to Sind, and ri is stored in Find along
with the userid ui. As this server is secure, all the
intermediate processes and values stay confidential from
the adversaries. Once the leaf nodes are received, Sind

stores them in file Fusr corresponding to the new user
ui, and the registration gets completed.

4.3. Authentication

During user authentication, Sauth sends the
requested userid ui, the leaf nodes Li, the hash of the
entered password pi, and the constants d and v, to Sind

through an encrypted channel, for authentication. Upon
receiving the information, the algorithm 5 first looks up
in Fusr for checking the validity of the requested user. If
the user does not exist, a “FAILURE” flag is returned;
otherwise, algorithm 3 is invoked to generate the tree.
This algorithm first fetches the real index ri of the user
from Find. Then it uses SR-XOR on the leaf node
values in a bottom-up fashion using a queue to build the
entire tree in a level-order format. Next, it checks if the
received hash pi is present at ri index of the tree from
the top. If it does, the algorithm returns True otherwise
False. Finally, Sind returns either “SUCCESS” or
“FAILURE” based on the output of authentication.
Sauth on getting a “SUCCESS” response redirects the
user to the profile page. On the contrary, upon receiving
a “FAILURE” response, it flashes a failure message
stating that either the userid or the password is incorrect.
In algorithm 5 two timer functions can be noted. The
first function start timer(200) initiates a timer of
200ms in a separate thread and assigns the reference to
a variable t0. The timer runs in the background, and
t0 gets updated after every millisecond. The second
function timer wait(t0, 0) pauses the current thread
till t0 becomes 0. That means no matter how much
time has elapsed on the main thread; it will only be
able to return an output after the 200 milliseconds mark
from the start is reached. These functions essentially
add noise to flatten the time requirements for all the

Page 7640

Figure 2. A schematic of the HoneyTree Topology for user authentication

possible outcomes to make them look equally likely.
In other words, this noise prevents the attackers from
launching a side-channel timing attack for passive
information gathering. We discuss the details of these
two functions and the attack in section 6.3. Figure 2
presents a schematic of the authentication process.

4.4. Index Server / Honeychecker (Sind)

The index server is considered to be a highly secure
and hardened machine with strict security standards.
All the communications with this server are through
encrypted channels. Considering all these policies, we
assume that this machine and its contents will never get
compromised. The motivation has been drawn from the
concept of Honeychecker from the Honeywords project
[4]. It consists of a file Find that contains indices of the
real password of all the users as shown in Table 1. For
any given user ui, these indices are values ranging from
0 to 2d − 2.

userid index
john123xy 5

kent 94 2
cool maurice2 12

beth@ny 17
max 007 25

. .

. .

. .
katie cute 9

Table 1. Structure of Find

4.5. SR-XOR

As mentioned in Section 3, we build a tree of hex
strings where each nodal operation is performed using
function 2. We call this operation SR-XOR (denoted
by �), which stands for Split-Reverse xor. It is used
instead of regular xor to make the attack on our system
exponentially harder or time-consuming as it makes the
operation non-commutative. Here, we perform a simple

transformation on the first operand before xor-ing it
with the second one. The transformation has three parts;
namely, split, reverse and merge. First, we split the
string into two parts from a pivot index v. The element
at the pivot index is included in the first half. Next, we
reverse the two strings, and finally, we merge them back
as described in Algorithm 5.2. Figure 3 shows the flow
of the entire operation, performed on two example hex
strings, with a pivot value of 6.

Properties of SR-XOR

Non-Commutative: The main reason we transform the
xor operation is to achieve non-commutativity. In other
words, unlike normal xor, for a given v, a � b is not
same as b � a except for very rare cases. We choose
SR-XOR to make brute-force attacks exponentially
harder compared to ordinary xor. In Section 6.6, we
discuss why we choose SR-XOR instead of ordinary
xor. Also, for a given pair of strings, if we change v, the
output changes as well. However, we consider the pivot
to be public knowledge, and hence it does not actively
contribute anything towards the deception of the system.
So we arbitrarily choose a pivot value for the system at
the beginning and keep it unchanged. We also like to
mention that if both of the substrings of the first operand
about the pivot are palindromes, the operation works the
same as ordinary xor. However, since we are dealing
with password hashes and some random numbers, the
chances of having two palindromic substrings merged
at the given pivot value are rare. We tested the same
by generating a mixture of md5 hashes of 500, 000
different texts and 128 bit random hexadecimal numbers
with different pivot values. None of them contain two
palindromic substrings around any of the pivots.

Child Swapping: For SR-XOR, we follow the in-order
traversal convention (leftchild, parent, rightchild).
This means we perform leftchild�parent to calculate
the rightchild. By this convention, the leftchild will
always be a honeyword, and the rightchild will be
honeyhash, defeating the purpose of the approach. To
counter that, we swap the leftchild and rightchild

Page 7641

with a 50% probability, such that:

rightchild� parent = leftchild

First, we assign the honeyword to the rightchild. Next,
we split-reverse the parent string (XOR with 0 causes no
change) and finally apply SR-XOR on the rightchild
and the split-reversed parent, with the same pivot v, to
calculate the left child as:

leftchild = rightchild� (parent� 0)

Generating Parent: To generate the parent node from
the children, we calculate SR-XOR between the left and
the right child as follows:

parent = leftchild� rightchild

5. Algorithms

In this section we define all the algorithms used in
this paper.

5.1. Add User

Algorithm 1 shows the pseudo-code of the user
addition process.

Algorithm 1 add user(ui, pi)
user dict := file read to dict(Fusr) #read the file
as a dictionary
if ui in user dict.keys() then

return “FAILURE”
end if
d, v = file read(Fsys) #get depth and pivot
leaf list = gen tree(pi, d, v)
user dict[ui] = leaf list
Write F ile(Fusr, user dict) #function to write to
file
return “SUCCESS”

5.2. SR-XOR

Algorithm 2 shows the pseudo-code of the SR-XOR
algorithm. Initially, we split the first operand about a
pivot element v, reverse each of the segments and then
merge it back. Once the split-reverse transformation is
complete, we xor it with the second operand to get the
result.

Algorithm 2 sr xor(x, y, v)
end := |y|
y1 := y[0 : v] #v is the pivot
y2 := y[v + 1 : end− 1]
y3 := string reverse(y1)||string reverse(y2)
z := x⊕ y
return z

5.3. Password Verification

Algorithm 3 shows the pseudo-code of the password
verification process.

Algorithm 3 verify password(ui,pi,Li,d,v)
tree = Li.copy()
tree.reverse()
temp = Li.copy()
lvl list = []
l = d− 1 #level
count = 0
while temp.length() > 1 do
val = sr xor(temp[0]), temp[1], v)
temp.append(val)
temp.pop(0) #pop the left child
temp.pop(0) #pop the right child
count = count+ 2
lvl list.append(val)
if count == 2l then
lvl list.reverse()
tree = tree+ lvl list #merge list
lvl list.clear() #clear level list
l = l − 1 #level decrease
count = 0 #reset level counter

end if
end while
tree.reverse() #ascending order
ui, ri = file get record(ui)
r = tree.index(pi)
if r == ri then

#index matched
return TRUE

else
return FALSE

end if

5.4. Tree Generation

Algorithm 4 shows the pseudo-code for tree
generation.

Page 7642

Figure 3. A schematic depiction of SR-XOR operation with two 128-bit hex strings

Algorithm 4 gen tree(pi, d, v)
tree list = [] # create an empty list
honey list = file randomFetch(Fpass, 2

d)
r0 = random(0, 1)
if r0 == 1 then
#RandomRoot
root = randomHex(pi.length)
honey list.pop(0)
r1 = random(0, honey list.length)
honey list[r1] = pi

else
#SweetwordRoot
r1 = random(0, honey list.length)
honey list[r1] = pi
root = honey list[0]
honey list.pop(0)

end if
tree list.append(root)
j = 0
while honey list.length 0 do
parent = tree list[j]
left = honey list.pop(0)
right = sr xor(left, parent, v)
r2 = random(0, 1)
if r2 == 1 then
right = left
left = sr xor(right, sr xor(parent, 0, v), v)

end if
tree list.append(left)
tree list.append(right
j = j + 1

end while
leaf nodes = tree list[2d−1 − 1 : 2d − 2]
return leaf nodes

5.5. Authentication

Algorithm 5 shows the pseudo-code of the
user-authentication process.

Algorithm 5 authenticate(ui, pi)
t0 = start timer(200)
#read the file as a dictionary
user dict := file read to dict(Fusr)
if ui not in user dict.keys() then
timer wait(t0, 0)
return “FAILURE”

end if
Li = user dict[ui] #List of Leaf nodes
d, v = file read(Fsys) #get depth and pivot
correct = verify password(ui, pi, Li, v, d)
if correct == True then
timer wait(t0, 0)
return “SUCCESS”

else
timer wait(t0, 0)
return “FAILURE”

end if

6. Analysis

In this section, we perform several analyses on our
proposed HoneyTree approach.

6.1. Resilience against Hash Inversion attacks

In hash inversion brute-force attacks, we assume
that the attacker has already performed an exfiltration
on Sauth and dumped a copy of the Fusr and Fsys

on their disk for offline analysis. Being offline, these

Page 7643

attacks are a lot more effective than the previously
mentioned blind guessing. We assume that the attacker
already knows the HoneyTree algorithm as well as
the base hashing algorithm, which is MD5 here, as
it is required to perform the hash inversion. Upon
downloading the files, the attacker runs a script that
generates the trees using the leaf node values from Fusr,
corresponding to each user. Next, they perform a hash
inversion on each of the 2dmax − 1 nodes of the tree
using pre-computed hashtables. In our system, we used
dmax = 5. Therefore, out of all the 31 nodes, 15 of
them are sweetwords including the correct password,
and the remaining 16 are honeyhashes, which are there
only to waste their computational power and time and
occasionally mislead them.

6.2. Attack on the Index Server

The index-server contains the information which, if
obtained by any means, will be sufficient to compromise
the HoneyTree system. Although this server is assumed
to be secure, we need to have a fail-safe mechanism as
well to make sure the system remains safe in case it
fails or crashes due to encountering an unprecedented
situation. In this case, if the index server is offline
due to maintenance or a DDoS attack, the system falls
back to a fail-safe mode, in which every password will
be rejected. This helps in preventing the attackers
from testing the outcomes of their hash inversion attack
to discover the sugarword. In this way, our fail-safe
mechanism ensures that even if the server fails, no user
data or passive information about their account gets
leaked.

6.3. Side-channel Timing Attack

Side-channelling refers to a form of passive
information gathering using which the attacker narrows
down their search space. The side-channel timing attack
is based on calculating the average time for different
login scenarios [12]. This type of attack is very effective
against systems involving multiple servers like ours. Let
us consider the first authentication scenario to be using
a correct user id and a wrong password. The second
scenario is based on logging in using an userid not
known to the server. If the user is not present, the system
returns a “FAILURE” flag. On the other hand, if it
exists, then the password check is computed, and if it
does not match, then a “FAILURE” flag is returned.
Although the failure message corresponding to the
failure flag says ”incorrect userid or password” figuring
the precise reason is not difficult. The attacker enters
some gibberish string as an userid to get the timing
for non-existent users and then calculates their average

after some trials. Next, they check against some of the
most common userids as per the online repositories of
leaked credentials. Now, if there is an userid that is
present on the server’s records, the timing shoots up as
the authentication server processes further if and only
if the user id exists. The latencies include intra-server
communication with the index server, reading from
the disk, and some extra computation. This helps
in guessing which userids are present on the server’s
records. We ran several simulations using Python 3.
User authentication, on average, took about 135ms,
when the userid exists in Fusr. The maximum delay
reached up to 186ms. However, when the user did not
exist in Fusr, the timing was 42ms on an average with
the maximum touching about 73ms.

To counter this, we add some noise [13]
using two functions, start timer(initial mark)
and timer wait(timer object, fin mark). At
the beginning of the authentication routine, the
start timer() function is invoked in a separate thread
Tchild and an timer object t0 is returned. The function
works like a timer, initialized with an initial value. We
used 200ms in our implementation. We chose it to be
slightly greater than 186ms, which is the maximum
delay we encountered during our simulation. To
determine the best value for the timer, one needs to run
several tests in their setup and pick a number slightly
greater than the maximum delay they found. Once
invoked, the function keeps on decreasing the counter
every millisecond by 1. While this is running in the
background, the main operations run on the main thread
Tmain. The second timer function, timer wait()
running on Tmain, waits for t0 to reach the desired
final mark which is 0 in our case. In this way,
the timer wait() function pauses the authentication
function and prevents it from returning any output flag,
until t0 reaches the final mark. This whole process
ensures that the duration of authentication at the server’s
end will always be the difference of the initial mark
and the final mark irrespective of the outcome.

6.4. Time and Space Complexity

In this section, we evaluate the time and space
requirements of different components and operations of
HoneyTree. We assume our hash function has an output
hash of x bits. We also assume that the maximum length
of password allowed is comparable to the length of
the hash and that computing a hash requires a constant
number of passes on the string; therefore its complexity
is O(x). For MD5, x is 128.

SR-XOR: The number of characters in hexadecimal

Page 7644

will be x/4. The time required to split and reverse the
first string takes θ(x/4). Next, the xor operation of
the two strings takes θ(x). Therefore, the total time
required to compute the SR-XOR of two hex strings
is of the order O(x). In terms of space, computing
SR-XOR takes up at most the length of the hash, which
is x bits. Therefore its space complexity is in O(x).

Now, further assume we have n leaf nodes per
user, which means n = 2d−1, where d is the depth of
the tree. Also, for a tree of depth d, we have at most
n + 1 sweetwords. We evaluate the time and space
requirements for both Tree Generation and Password
Verification.

Tree Generation: For each sweetword other than
the root node, we have one SR-XOR operation.
Therefore for n + 1 sweetwords we have a total of
O(x) ∗ (n + 1) operations. Hence the time complexity
is of the order O(nx).

In terms of space, the maximum list size it uses is
equal to the size of the tree, which has 2n − 1 nodes,
each of which is of x bits. This makes the total space
requirements of the order O(x) ∗ (2n − 1) or simply
O(nx).

Password Verification: For each node pair, we
have one SR-XOR operation. Therefore we have at
most n such operations, as the last node or the root
node is a single hash. As mentioned before, each
SR-XOR takes up O(x) operations. So we have a total
of O(x) ∗ (n) operations. Hence the time complexity is
of the order O(nx).

In terms of space, like tree generation, the maximum
list size required is equal to the size of the tree, which
has 2n−1 nodes, each of which is of x bits. This makes
the total space requirements of the order O(nx).

6.5. Comparison with Honeywords

Since HoneyTree is based on the Honeywords
project, we also compare the pros and cons in
this section. In the Honeywords project, during
password verification, the actual index is sent from the
Honeychecker to the database server for fetching the
real password before comparison. This design choice
has a flaw. When the attackers get into the system
and dump the database, it is likely to assume that they
have some control over the database server. Therefore
the sugarword, once fetched, will be present in the
memory, which might be accessible to them as well. In
HoneyTree, we send the password to the index server
along with the stored leaf nodes, and it only returns
“SUCCESS” or “FAILURE” flags based on the

results of the comparison. This prevents the sugarword
from getting revealed at the database server even if it
gets compromised.

The actual Honeywords project placed honeywords
in the user database along with the real password.
It uses the userid to fetch the secret index and
retrieve the password, which was then sent for
comparison. Comparing two passwords of x bits require
O(x) comparisons which are significantly better than
HoneyTree, which takes n times more computation
where n is the number of leaf nodes which is about half
of the number of honeywords stored in the Honeywords
project.

This brings us to the space comparison. HoneyTree
takes up about half of the space required by the
Honeywords project as it generates the other half during
authentication. The Honeywords project also introduced
the concept of toughnuts or hard-to-crack hashes, which
they insert into the sweetword set randomly. In our
approach, we use the honeyhashes for the same purpose,
but it is more deterministic, which could be worse if
the sweetwords are easy to crack; otherwise, it helps
by slowing down the brute-force significantly more
than the toughnuts in the Honeywords project. Finally,
the introduction of the time variables helps to prevent
side-channel timing attacks, which were not considered
in the Honeywords Project.

6.6. Advantages of SR-XOR over XOR

The strength of the HoneyTree approach comes from
the Merkle tree structure of combining hashes. For a
depth d, we have 2d−1 leaf nodes and 2d − 1 nodes in

the entire tree. So we have a total of 22
d−1 possible

trees. Out of all these possibilities, only one tree is
correct and only one way of combining the leaf nodes to
generate that. The nature of the actual xor (⊕) operation
is commutative. Therefore, for any two numbers (A,B),
A ⊕ B = B ⊕ A. Now suppose we use xor instead of
SR-XOR. Then, we can combine every pair of siblings
in two different ways instead of a particular order. The
total number of sibling pairs in a tree is given by 2d−1−
1. Therefore, the total number of possible ways of

solving a tree is given by 2(2
d−1)−1. Since the security of

our system relies on combining the correct values in the
correct order, the commutative property of xor reduces
the complexity of the problem of combining the correct
pairs. For d = 5, this value becomes 215. So instead
of one correct way of combining the sibling pairs, we
have 32768 ways. To avoid this, we designed SR-XOR,
which is non-commutative by nature (except in very
rare cases as discussed in Section 4.5). So at every

Page 7645

node calculation, one needs to know the exact order to
build the correct tree. In other words, SR-XOR makes
brute-force exponentially harder than ordinary xor.

6.7. Limitations of HoneyTree

Although our HoneyTree approach opens up a wide
range of possibilities surrounding the actual concept of
Honeywords, it has its own limitations. As we have seen
in Section 6.5, it reduces space requirements by adding
extra computations, which negatively impact the time
needed for authentication. Moreover, it uses a lot more
and a predictable number of honeyhashes which could
be easier to detect if the sweetwords are not strong.
Furthermore, like the Honeywords project, the system
relies on the unbreakable security of the index server,
which is unrealistic to assume in real life. Also, there is a
design-based limitation in the Honeywords project when
it comes to applying cyber deception, and HoneyTree
is no exception. The problem comes from the fact that
multiple words are packed together, out of which only
one is correct. This immediately raises suspicion due
to the bodyguard of lies surrounding the real password.
The attacker may decide not to step on the trap. While
this causes deterrence and the attack can be avoided, it
also reduces the chance of studying the attackers, their
exploits, and the flaws in the server’s security which they
used in the first place to download the password file.

7. Conclusion and Future Work

In this study, we reviewed a few cyber deception
schemes and how they can be used to detect the presence
of passive adversaries. We designed HoneyTree, a
very efficient technique of storing honeywords and
verifying user credentials that can be deployed in any
honeyword-based authentication system irrespective of
their underlying honeyword generation schemes. Next,
we conducted a neck-to-neck comparison with the
original Honeywords project with respect to various
security and performance metrics and studied its pros
and cons. We concluded that with the same space
requirements, one could achieve twice the level of
security offered by the original Honeywords project,
although it comes with an additional computation
overhead. As a part of future work, we plan to extend
our current model by adding more features like variable
tree depth and designing a new variant of xor that uses
the pivot for another level of deception. We also plan
to partially combine multiple HoneyTrees from different
users to build a HoneyForest making it several times
harder to crack with the same space overhead.

References

[1] K. Kim, “Distributed password cracking on gpu nodes,”
in 2012 7th International Conference on Computing and
Convergence Technology (ICCCT), pp. 647–650, IEEE,
2012.

[2] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for
hash functions md4, md5, haval-128 and ripemd.,” IACR
Cryptol. ePrint Arch., vol. 2004, p. 199, 2004.

[3] P. Aggarwal, C. Gonzalez, and V. Dutt, “Cyber-security:
role of deception in cyber-attack detection,” in Advances
in human factors in cybersecurity, pp. 85–96, Springer,
2016.

[4] A. Juels and R. L. Rivest, “Honeywords: Making
password-cracking detectable,” in Proceedings of the
2013 ACM SIGSAC conference on Computer &
communications security, pp. 145–160, 2013.

[5] E. Mykletun, M. Narasimha, and G. Tsudik, “Providing
authentication and integrity in outsourced databases
using merkle hash trees,” UCI-SCONCE Technical
Report, 2003.

[6] E. Dincelli and I. Chengalur-Smith, “Choose your
own training adventure: Designing a gamified seta
artefact for improving information security and privacy
through interactive storytelling,” European Journal of
Information Systems, vol. 29, no. 6, pp. 669–687, 2020.

[7] A. Juels and T. Ristenpart, “Honey encryption: Security
beyond the brute-force bound,” in Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, pp. 293–310, Springer,
2014.

[8] K. Das, E. Gethner, E. Dincelli, and J. H. Jafarian,
“D3cyt: Deceptive camouflaging for cyber threat
detection and deterrence,” in Advances in Information
and Communication, pp. 756–771, Springer
International Publishing, 2021.

[9] L. Gong, “Collisionful keyed hash functions with
selectable collisions,” Information Processing Letters,
vol. 55, no. 3, pp. 167–170, 1995.

[10] N. Chakraborty, S. Singh, and S. Mondal, “On
designing a questionnaire based honeyword generation
approach for achieving flatness,” in 2018 17th IEEE
International Conference On Trust, Security And
Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), pp. 444–455,
IEEE, 2018.

[11] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz,
“Passgan: A deep learning approach for password
guessing,” in International Conference on Applied
Cryptography and Network Security, pp. 217–237,
Springer, 2019.

[12] M. Čagalj, T. Perković, and M. Bugarić, “Timing
attacks on cognitive authentication schemes,” IEEE
Transactions on Information Forensics and Security,
vol. 10, no. 3, pp. 584–596, 2014.

[13] N. Chakraborty, G. S. Randhawa, K. Das, and S. Mondal,
“Mobsecure: A shoulder surfing safe login approach
implemented on mobile device,” Procedia Computer
Science, vol. 93, pp. 854–861, 2016.

Page 7646

