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Abstract
This paper proposes an algorithmic solution to Group 
Key Management (GKM) in Wireless Sensor Networks 
(WSN), which could address a single point of failure in 
cybersecurity.  The paper moves away from the 
traditional (de)centralized and distributed solution in 
GKM and focuses on GKM decision making based on a) 
the context in which WSN and their nodes communicate, 
and b) the semantic which describes the environment 
where WSN and their nodes reside. The proposed 
algorithm defines which node, within the WSN, could
start a re-keying process by generating a group key, and 
why/how this decision on the re-keying has been made. 
The algorithm is computable and thus it would be 
feasible to implement it in software applications built
upon a set of WSN nodes in constantly changeable and 
dynamic mobile computing environments.

1. Introduction 

In the last few decades the advances in the Group 
Key Management (GKM) for wireless Sensor Networks 
(WSN) focused on (de)centralized, and distributed 
management of encryption/ decryption keys.  However, 
it is also known that there is no universal solution to the 
cybersecurity problem in WSN, in either literature or
practice. Numerous publications highlight the level of 
complexity of the problems associated with the 
cybersecurity in WSN [1,2,3] and outline that it is rather 
difficult to find a proof that a single point of failure in 
WSN has been eliminated [4].

This paper focuses on the issue of addressing the 
problem of GKM for WSN with the goal is to bring 
novelty to the field by considering: 

“what should an algorithm, responsible for GKM, 
contain in terms of decision making, i.e. how, when 
and why we generate cryptographic keys for 
messages passed in WSN which may address a 
singe point of failure”.

The idea promoted in this paper is based on the context, 
the term coined by computer scientists two decades ago 
and associated with mobile and pervasive computing
plus self-tuning software applications [5,6]. At that time 
software applications started “reacting” to the 

environment, i.e. context in which they resided. This 
proved to be essential if we wanted address constant 
changes in dynamic environments, where we started 
performing computing.  Decision making, based on the 
context, where software applications reside is the 
essence of contextualisation, which has been performed 
in the last two decades in many problem domains in 
computer science, with proven results [7,8,9]. We can 
mirror the same situation in WSN environments.  They 
are highly dynamic and create numerous (probably 
unpredictable) contexts in which they operate.  

It is hard to believe that constant changes in WSN 
do not affect all existing solutions, which claim to guard 
GKM and address the single point of failure in WSN.  
The vast literature, which originally started with 
centralized and decentralized GKM, but now focusing 
on block-chain and clustering, in order to address  the 
problem, do not bring anything new to helping with 
GKM and WSN vulnerability.  They are mostly very old 
and tried software technologies and ideas, suitable for
the 80s and 90s and used in software engineering, far 
before wireless and mobile technologies matured.  
Using clustering in particular in GKM is not prudent and 
should not be encouraged.  Clustering is a recycled old 
idea from computer science during the 60s, when we 
used powerful mainframes in order to start addressing 
storage and operating system functions on mainframes, 
data management and potential distribution of computer 
programs, far before database management systems  
were invented. By applying the same ideas in a 
completely different environment: highly dynamic and 
probably un-predicable WSN of the second decade of 
the 21st century, we are actually using the ideas, which 
are not fit for purpose. 

We would argue that there is no way forward in 
resolving problems in cybersecurity by recycling old 
technologies which do not address the most precious 
nature of our modern computer networks: dynamics and 
constant, un-predictable changes. In our connected 
world of Internet of Everything, where we join on an ad-
hoc basis, and compute on devices which can be found 
at an unexpected “places” (e.g. from cyborgs to coastal 
defense drones), how could we talk about cyber security 
if we do not incorporate the semantics of such 
environments into cyber-security algorithms?  If we 
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expect that computer science would answer to the 
modern problems of GKM in WSN, then we should 
interweave the semantic of this constantly changing 
environment into computational models, which use 
those semantics.  Consequently, contextualization of 
decision making in GKM may be one of the ways
forward and the abandonment of the old, unsuccessful
ideas might not be a bad thing to do.

At the time of writing this paper, no published 
sources have been found, which define and manipulate 
context where cryptographic keys are created and 
managed, as a part of GKM practices. Therefore we are 
not able to juxtapose or challenge our ideas with any 
other work.  However, contextualization, as defined in 
computer science, without any doubt is one of many 
possibilities, which could be used by academics/
practitioners in order to move forward in the 
complicated world of cybersecurity.

What would be the contribution of the 
contextualized decision making in this problem domain, 
as advocated in this paper?

First, the computational algorithm for GKM, must 
be based on the context, i.e. the semantic collected at a
particular moment, as a part of the GKM, which secures 
that decision making on the re-keying process is 
dependent on that context.  This may be a situation 
extracted from WSN, in terms of WSN nodes, families 
and current, valid and potentially shared keys.  
However, the context is an open term, which illustrates 
all possible situations we can experience within WSN.  

Second, the context must be defined and formalized 
in advance and, as such, should encompass relevant 
semantic for managing GK and secure computations of 
the management through formalism. In this paper, we 
introduce Family Key Paradigm and End-time ticket, as 
a context, within which we operate and perform 
algorithmic decision making in GKM.   This is by no 
means the only context in which one can exercise 
contextualization.  However, this one gives the semantic 
of the GKM environment through its paradigm and uses 
numerical values (as opposed to textual information) for 
defining/manipulating end-time ticket.

Third, the algorithm which would support decision 
making in GKM must not be obscured, it must be 
explainable and computable. Therefore, decision 
making must be based on simplicity (and not 
complexity) of examining numerous conditions within a 
WSN, delivered through the semantic stored in the 
paradigm, and making decisions based on evaluation of 
these conditions. “True” evaluations could take us to
safe decision making in GKM, but “false” verdicts 
require attention.  Therefore the robustness of the 
algorithm is in managing “false” verdicts, which in turn 
would depend on the actual “context” in which an 
algorithm runs (the status of the Family Key Paradigm 

and the values in End-time ticket).  “False” verdicts are 
always a signal that we either have to react, include 
human intervention, or change the decision on the 
GKM, but they must not be obscured in any
formalization and in any algorithm.

Finally, there is one simple aspect of GKM which 
should be achieved.  It should be difficult, if not 
impossible to guess, or to know in advance, when, why 
and how a new key is generated within a family of 
nodes, or across a set of families in WSN. This decision 
would always depend on the exact context, and this is 
when we can utilize it to its maximum: the detected 
change(s) in the WSN, change the context and in turn 
would require changes in the GKM by, for example, 
triggering the start of the re-keying process.  It would be 
impossible to predict or guess, when and where the re-
keying process starts, without understanding the 
relevant context, which triggers the change.  If we can at 
least achieve this, we will be able to look at the issue of 
single point of failure completely differently. Most of 
our current worries such as trusting nodes, compromised 
nodes, key confidentiality and similar become 
immaterial.

The paper is organized as follows.  Section 2 looks
at the complexity of this research problem, summarizes 
its challenges and defines the main research question. 
Section 3 formalizes the proposal by giving definitions 
of Family Key Paradigm and End-time ticket, proposes 
and illustrates the algorithm and outlines the outcome 
from the proposed contextualization. Section 4 
overviews the inadequacy of using block-chain and 
clustering mechanism in modern WSN and GKM, 
section 4 evaluates the research and section 6 defines 
future work.

2. The Research Problem

The complexity of the cybersecurity problem,
cryptography and GKM is well known.  It is particularly
challenging in WSN and constantly changeable 
environments, such as the Internet of Things (IoT),
where devices and WSN nodes cohabit, exchange 
messages and utilize the infrastructures of WSN [10,11].

Having strict control of the process of re-keying in 
GKM, as is in (de)centralised schemes might seem 
reassuring in the management of cybersecurity. 
However, centralisation in computer science does not 
necessarily create flexible solutions [12,13] and thus it
might be seen as a rigid way of protecting our data and 
traffic across WSN. Also, centralization may impose 
security risks, as monitoring of data traffic through 
eavesdropping may reveal critical information 
necessary for carrying out an active attack, such as DoS-
ing, on the node responsible for re-keying in GKM [14]. 
In the worst-case scenario, disabling the affected node 
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might provide the attacker the additional time needed to 
break the cryptographic key. Distributed and 
collaborative schemes mitigate this threat, but they are 
afflicted with the same strictness in the process of re-
keying in GKM. In collaborative schemes, we know 
that all the nodes in a group will contribute to the re-
keying process, and the distributed scheme, as defined 
in [15], is affected by the same weakness because an 
attacker will know that the last joining node will be 
responsible for re-keying.

Cryptographic keys are of a finite space, and 
everything you can hope to “keep as a secret” is the 
cryptographic key.  However, all cryptographic 
algorithms, except “one time pad” are possible to break
[16,17]. Due to space restriction we do not elaborate on
the cryptographic algorithm metrics as in [18]. Also, the 
threat of quantum computing, combined with Shor’s 
algorithm, posed on modern cryptographic algorithms
[19] with respect to Rivest-Shamir-Adleman 
encryption, is real and thus relying on cryptographic 
keys in resolving cybersecurity problems has to be 
completely revisited.

Furthermore, the challenges of GKM are also 
numerous and include 
(i) The re-keying, as a measure to maintain 

forward and backward secrecy, and 
(ii) Scalability [11], which occurs when managing 

an increasing number of nodes in the WSN [16].
The problem of single point of failure is another

challenge in any GKM-scheme where a single entity is 
responsible for managing a network, as in in centralised 
schemes from [4]. Any issue leading to a failure in the
managing nodes/keys might lead to grave security issues 
such as failure of re-keying or managing nodes in a 
network. The problem of single point of failure for 
decentralized solutions [20] may allow a single node to 
be responsible for group key management. Some 
distributed schemes contribute in generating a 
cryptographic group key, thus avoiding the problem of 
single point of failure by design. 

Other problems in distributed GKM, have been
explained in [14]. They argue that nodes in distributed 
schemes must be aware of all the other group members 
in order to be able collaborate or distribute the group key
and thus requires more memory in each node. However, 
distributing the workload among the nodes, leads to the 
higher processing time and communication costs [21],
as the number of rounds and exchange messages 
between members during group operation grows.

In summary it is reasonable to address these 
research problems by focusing primarily on mitigating
a single point of failure, when managing the re-keying
process in GKM. It is also important to rethink both:

a) deciding when the re-keying process is going to 
occur, and 

b) selecting the network node group member(s) 
which would be responsible for carrying out the re-
keying process.

Therefore the problem of cybersecurity in WSN 
could be scaled down to the problem of GKM, which 
would eventually eliminate a single point of failure.

3. The Proposal 

The paper proposes a shift of thinking about the re-
keying process within GKM, where the context, i.e. the 
semantic of the environment in which WSN exist would 
determine how/when the re-keying process may start 
and which algorithm it will follow. 

There are four different aspects in this proposal.
First, it exploits the semantic of the context, in a 
particular moment or in a specific situation, which 
would determine where (in which node) and when (in 
time) the cryptographic group key will be generated. 
Second, the algorithm for the GKM, and re-keying in 
particular, should be based on the premise that each 
node in a WSN is capable of generating a  random
number to be used as parameter for a mathematical 
function to determine the maximum time a 
cryptographic key can be in use. This shall correspond 
to a time frame, according to the semantic defined in the 
same context. Third, we could consider that the 
existence and role of a network provisioner [17] may 
play an important role in defining the context. We 
should explore its role: from its traditional place in 
(de)centralised GKM to the potential reasoning 
mechanism, which would define the exact context for 
deciding about re-keying in GKM [9]. Fourth, the issue 
of “randomness” is an important principle in 
cryptography. By adding levels of randomness in GKM 
we can obscure the attack surface of the WSN and make 
the work of the cryptanalyst harder.

The proposal consists of three parts. 
x Definitions of WSN nodes and their families as a 

path to establishing the context in which WSN 
operates.  

x Definition of the context, named as Family Key 
Paradigm with end-time-tickets for each node, 
which in turn determines the length of the validity 
of any key

x The algorithm itself which manages the re-keying 
process.

3.1. Definitions of Family of Nodes

Let us assume that we have up to ∊ ℕ uniquely 
and addressable, and authorized nodes { | =
1, 2, 3, … , } in a network which are grouped by a 
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provisioner P to up to ∊ ℕ families =
1, 2, 3, … , }. 

For simplicity reasons and due to space restrictions
we illustrate this definition by having 5 nodes per 
family. There is no particular scientific rationale behind 
using 5 nodes, but this appears to be a minimum for 
illustrating the ideas from the proposal and easy to draw. 
Neither context definition nor algorithm depends on 
exact number of nodes.in a WSN.

Each node within a family is one hop reach of any 
other node in that family. Figure 1 a) shows that all 
nodes in one family is within one hop reach from each 
other. Each family must have a symmetric 
cryptographic key , for encrypting messages 

= , and decrypting messages = ,
sent to a node in the family. Before encryption the 
address of the intended recipient node must be added to 

  This is illustrated in Figure 1 b).

Figure 1: Illustrations of a family of nodes.

Figure 2: Illustration of family friendly connection, 
between two families.

A node (j) in family may establish one, and only 
one connection to one other node in a different 
family . The two nodes must be within a one hop range 
of each other. The connection between (j) and (l)

and , in the families and , is called a family 

friendly connection , . The nodes making up a FFC 
connection must share a unique symmetric key ( , ) for 
encryption and decryption of messages sent between (j)

and (l), and consequently between the two families 
and . Nodes that contribute in FFC’s, adopt the role 
of intermediaries. This connection is illustrated in Fig.
2. By allowing family friendly connections, we are 
actually allowing extensions of the number of nodes in 
families: FFC may trigger a single group key for 
friendly families.

3.2. Introducing the Context: Family Key 
Paradigm and End-time ticket

A family key Kj has a predefined time to live, defined 
by the time frame t(Fj). Correspondingly, t(Fj) has an 
upper and lower limit tmin

(Fj) and tmax
(Fj) defining a 

window within which Kj must be replaced by a newly 
generated Kj

’. The responsibility of re-keying the 
family key Kj must not be fixed to one specific node. 
Rather, all nodes (j) in family Fj arbitrarily take turns 
in generating and distributing the new family key Kj

’

among the family nodes. Ensuring this is done by 
implementing the end-time-ticket tNj

(j) applicable to any 
node. 

An algorithm taking advantage of the family-key-
paradigm is continuously running in all nodes tNj

(j) in 
family Fj . An end-time-ticket tNj

(j) is generated in the 
node, with a value between tmin

(Fj) and tmax
(Fj), as shown 

in Figure 3. As this happens in each node in the family 
at the same time, a parallel process is created wherein 
the first node to reach its end-time-ticket will be 
responsible for generating and distributing the next 
family key (Kj

’ ). This parallel process is illustrated in 
Figure 3.

Figure 3: Family Key Paradigm with End-time Tickets
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When a newly generated family key Kj
’ is acknowledged 

by all nodes it starts functioning as Kj and is to be used 
for encryption and decryption of messages sent within 
the family. This acknowledgement also starts a new time 
frame, and updates a Family-Key-Paradigm, for the 
family key, as described above. When a new time frame 
t(Fj) starts, each node (j) in family Fj must generate an 
end-time-ticket tNj

(j) for that specific node. The node’s 
end-time-ticket tNj

(j) is based on a random number 
generated by the node. In turn, this random number is 
used as a parameter in a mathematical function, creating 
a number within the window of the time frame, defined 
by tmin

(Fj) and tmax
(Fj). It goes without saying that the 

generated end-time-ticket tNj
(j) is to be kept secret by all 

nodes (j)  . We assume that nodes would not publicize
their end-time-tickets.

3.3. The Proposed Algorithm 

The basic algorithm, shown in Figure 4 introduces the 
main philosophy of the proposal.  According to it, a re-
keying process starts only in cases when either:
a) is informed that another node reached its 

end-time-ticket 

b) is NOT informed that another node reached 
its end-time-ticket BUT reaches its own 

end-time-ticket 
This means that the algorithm will run without any 

need to start the re-keying process until either a) OR b) 
becomes true.

Therefore, the re-keying process will depend on a 
context or situation collected through/explained by the 
Family-Key-Paradigm.  The paradigm contains the 
exact information which will allow the algorithm to 
evaluate a) and b) above.

There are three important aspects of the proposed
algorithm in Figure 4:
x It is a simple algorithm and easily explainable;
x It follows structured-programing If-THEN-ELSE 

sentences, which are directly computable in any 
language (apart from functional, mark-up and 
specific languages, which do not rely on control 
structures) and this the implementation is trivial.

x a) and b) above are implemented as main backbone 
/ structure of the algorithm.
However, this basic idea on, how to manage GKM, 

given in Figure 4 should be extended with explanations 
on how to implement the logic which is commented as 
/* Explanations ….” using blue and green and italic 
font. We may have various options here in order to 
define when the rekeying process must start, but the 
structure of the algorithm may never change.

Figure 4: The Proposed Algorithm 

Due to space restrictions we show only one part of the 
explanation commented as /* Explanation….  from 
Figure 4.  The expansion of the proposed algorithm for 
cases when ( is informed that a node reached its end-
time-ticket   is given in Figure 5.  In other words,
Figure 5 gives an extension to the algorithm form Figure 
4, which explains exactly what would happen in the 
“THEN close of the IF statement from Figure 4”. 
Consequently, Figure 5 defines decision making 
relevant to the re-keying process, but only in the 
situation when is informed that another node 
reached its end time ticket .

The re-keying process is relatively simple: All nodes 
replace the current family key Kj sent by node Ni and all 
nodes generate a new individual end-time-ticket 
(Family Key Paradigm has been updated!).

The re-keying process, from Figure 5 would depend 
on a set of conditions, which need to be satisfied before 
the re-keying starts. These conditions are evaluated in 
five lines from Figure 5 which define IF sentences, and 
which clearly specify the conditions.  Only when these 
conditions are all met, may the re-keying process start. 
Obviously, by evaluating all these five conditions, we 
could issue ALARMs, because the conditions may not 
be met and the re-keying could not start (as expected).  
We call them ALARMs but they could also be warnings, 
because they may have numerous purposes.  This would 
depend on the situation in which we experience 
anomalies in satisfying conditions for re-keying.

IF ( is informed that a node reached its end-time-
ticket   ) THEN DO {
/* Explanations on how the nodes should respond when 
notified that another node has reached its end-time-
ticket, for re-keying the family key ( ← ), and 
establishing a new family-key paradigm ( ← ∗) */
}
ELSE ( is not informed that another node reached 
its end-time-ticket   ) DO {

IF ( reaches its own end-time-ticket ) THEN 
DO {
/* Explanations on how the nodes node should 
react  when reaching its end-time, for re-keying the 
family key ( ← ), and establish a new family-
key paradigm ( ← ∗) */ }

ELSE ( did NOT reach its own end-time-ticket 
) continue under current paradigm (do not re-key)

}
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Figure 5. Algorithm for Re-keying: Reached its End-
Time-Ticket 

3.4. Illustration of the Algorithm

Figure 6: Illustrating the Proposal: An Example when 
is Informed that Node Reached its End-time-ticket

(ETT) 

The algorithm shown in Figure 6 is an illustration of the 
proposal and shows a situation in which is informed 

attempts to inform all nodes it reached its end-time-
ticket 

IF( informs nodes it reached its end-time-ticket )
DO {

attempts to generate a new family key 
IF( manages to generate new family key ) DO {

attempts to distribute to all other nodes in 
IF ( manages to distribute to all nodes in )
DO {
All nodes attempt to acknowledge to they
received 
   IF (All other nodes manage to acknowledge to 
  that they received ) DO {
   attempts to instruct all other nodes in to

abolish current paradigm ( )
   IF ( manages to instruct all other nodes in to
  abolish current paradigm ) DO {
   All nodes acknowledge to they abolished
  current key paradigm 
   IF (All nodes manage to acknowledge to they
  abolished current key paradigm ) DO {
   All nodes replace the current family-key with the 
   new key /*( ← )*/
   All nodes generate a new individual end-time-ticket  
/* ← ∗*/ }
   ELSE (All nodes did not manage to acknowledge
  to they abolished current key paradigm )
   Issue Alarm 6: Abolishment of Current paradigm 

was not acknowledged by all nodes }

   ELSE ( did not manage to instruct all other
  nodes in to abolish current paradigm )
   Issue Alarm 5: Abolishment of Current paradigm 

was not instructed }

   ELSE (All other nodes did not acknowledge to 
  that they received )
   Issue Alarm 4: Distributed family key not
    received by all nodes }
ELSE ( did not manage to distribute to all 
other nodes in )
Issue Alarm 3: Newly generated family key was 
not distributed }
ELSE ( did not manage to generate new family 
key )
Issue Alarm 2: New family key not generated }

ELSE ( did not manage to inform all other nodes it has 
reached its end-time-ticket )
Issue Alarm 1: Re-keying process was not initiated }

IF( is informed node reached its ETT )DO {

generates a new family key ( )
distributes to all other nodes in 

    IF (All nodes acknowledged to they received ) 
   DO {

instructs nodes in to abolish paradigm 
       IF (All nodes ackn. to they abolished par )
     DO {
      All nodes replace the current with new key 
     /* ← */
      All nodes generate their own new ETT
       /* ← ∗*/ }

      ELSE (Not all nodes ackn. to they abolished
      par. )
       Issue Alarm 7: Abolishment of Current paradigm
ELSE (Not all nodes acknowledge to that they
received )

  Issue Alarm 8: Fam. key ( ) not received by all }
ELSE ( NOT inform. it reached ETT ) DO {

IF ( reaches its own ETT ) DO {

informs all nodes in it has reached its ETT

generates a new family key ( )
distributes to all other nodes in 

IF (All nodes acknowledged to that they received 
) DO {
instructs all nodes in to abolish paradigm ( )

   IF (All nodes ackn. to they abolished par. )
  DO {

replace the current with new key /* ← */
generate a new individual ETT /* ← ∗*/}

   ELSE (Nodes NOT ackn. to abolish. par. )
   Issue Alarm 7: Abolishment of Current par. }
ELSE (All nodes did not acknowledge to they
received )
Issue Alarm 8: Distributed family key ( ) not received 
by all} 
ELSE ( did NOT reach its own ETT )
continue under current paradigm (Do not re-key)
}

Page 7439



that another node reached its end-time-ticket 
. ℎ generates a new family key ( ), 

distributes to all other nodes in , all nodes 
acknowledge receiving , and all other nodes in 
acknowledge to that they abolished paradigm 
There are only two alarms issued in such cases: not all 
nodes abolished and not all nodes received .

The illustration in Figure 6 shows different 
possibilities when deciding which node will oversee the 
re-keying process and when.  If everything goes 
“according to plan”, i.e. there are no changes in the 
Family Key Paradigm, and all the conditions for 
deciding which node will generate a key were met, the 
algorithm will execute the re-keying process according 
to the semantic stored in the Family Key Paradigm.  If 
for any reason, these conditions are not met any more,
we have a range of choices: from completely disabling 
the automation of the algorithm and placing human 
intervention in charge of the re-keying process to a 
forceful start of a new Family Key Paradigm.  These two 
diverse options could be very efficient and used 
interchangeably.

3.5. Outcomes of the Proposal

There are three unexpected outcomes from the
proposed algorithm:

(A) The algorithm from Figure 4 is the essence of 
the proposal and it is NOT negotiable.  However, all 
other extensions from the algorithm are negotiable 
because they need to be debatable across the 
cybersecurity communities to measure if we really want 
such a detailed examination of each possible situation, 
which may occur in WSN and affect the GKM.  Thus 
the contents of Figures 5 and 6 should be debated.

(B) The proposal disclosed the severity of this 
problem in general, and outlines how many ALARMs
can be issued.  They should all attract the attention of 
cybersecurity specialists, because they may affect the 
current cyber security philosophies, which claim to 
resolve the same problem using different ideas
(methods?).  Where and how are these ALARMS 
described and analyzed in any other approach to GKM?

(C) Figure 5 shows the severity of checking upon
various conditions, before the re-keying process may 
start, but this needs further attention.  Should we decide 
in future which one of these conditions need urgent
human intervention, and which we can afford to leave 
unattended? Should we also resolve this by extending 
the context in which these decisions are being made?
The illustration from Figure 6 shows how easily 
computable (and thus implementable) the proposal is, 
but do we need such precision in evaluating conditions 

in the defined context (Family Key Paradigm)?  Would 
the answer for this question come from a cyber security 
specialist or computer scientist? 

In the light of the above, it would be almost 
impossible for an attacker, to guess in advance which 
node will be responsible for generating the next 
cryptographic family key, and also when the re-keying 
process will start. This will all depend on the semantic 
stored in the Family Key Paradigm and the values of 
end-tickets (which should not be broadcast!). This 
appears to be an ideal context in this model of GKM.

Finally Figure 6 gives an illustration of how the 
algorithm would work in a particular situation, which 
was tested during this research. It is likely that in most
of these cases, in real life, we will be able easily to 
manage GKM using the illustrative example. For 
readers interested in the way ALARMs are being 
classified further and which role they may have in 
changing the semantic of the re-keying process, we refer 
them to [22].  However, there is still work to be done. 
We must debate about

(a) which level of human intervention we might need 
in resolving this problem and how this would affect the 
classification of ALARMS and

(b) to which extent we should automate decision 
making in cyber-security?  Unfortunately, there is no 
consensus in the cybersecurity discipline on that.

4. Block-chain and Clustering in WSN

As mentioned in the introduction, no published 
papers focused on exploiting the semantic of the 
environment through contextualization in order to 
secure messaging by GKM in WSN. However, there 
was something interesting, which surfaced in exploring 
the literature. First, due to the popularity of block-chain 
technology in modern times, there are publications,
which apply it to WSN and the problem of securing safe 
encryption/decryption. Examples are [23,24] However
attractive the idea of using block-chains to distribute 
keys is, it requires scrutiny. WSN are highly dynamic 
and in many instances, such as IoT,   they require a high 
level of flexibility, at least when creating families of 
WSN nodes. On the other hand, Block-chains, by their 
inherent nature, may inhibit this flexibility and convert 
our families of nodes into a set of static structures. This 
would not accommodate the mobile nature of 
applications of WSN and particularly in IoT. More 
work has to be done before we can assume that block-
chain technology is suitable for modern mobile and 
wireless operating environments of the 21st century. The 
advances in technologies and software technologies in 
particular are galloping forward too fast and we should 
never go back in the 21st century to rather static
structures in creating software solutions.
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Second, there are papers which push forward a very 
old and tried world of clustering in computer science 
and use it for GKM in cybersecurity [25,26].  These 
ideas did appear in the past in various heterogeneous 
software applications, which tend to federate (as in 
federated databases in the 90s) and cluster computing 
according to software technologies or data used at that 
time. These ideas might come close to ideas of 
contextualization, but there are still huge differences.

Could clusters address the enormous dynamism of 
WSN and mobile computing? When creating clusters, 
the GKM becomes complex and thus understanding the 
context which explains WHY a particular cluster has 
been created and having a mechanism of using its 
elements “on the go”, are essential.  However, 
applications such as IoT can only handle lightweight 
computations to manage GKM.  We would need a new 
paradigm, which could associate clusters of WSN with 
dynamics of pervasive computing with reasoning [9]. 
Even then, the question remains unanswered: Is 
clustering changeable? Can it model constant changes in 
WSN? Could it help a family of nodes defined in this 
formal proposal for GKM? Could the families of nodes 
become clusters: remove/add nodes to the family on the 
go, without prior notice?

In this section we overview just a few papers which 
hint the use of clusters. In [26] distributed GKM is used, 
but the authors differentiate between transport-and 
application-level encryption, because they also talk
about confidentiality. Their clustered and distributed 
key management framework is a step too close to the 
block-chains, which means that their interesting idea of
notification propagation among clusters is buried in the 
rigid structure of these clusters.  

In [25] the authors focuses on secure cluster-based 
hybrid hierarchical group key agreement for large 
wireless and ad-hoc networks and propose a cluster-
based hybrid hierarchical-group key agreement (CHH-
GKA) framework based on splitting a large group into a 
certain number of clusters. The last member of each of 
the clusters is designated as a cluster head and the last
member of the group is designated as the group 
controller. In [27] the authors propose a cognitive key 
management technique (CKMT) in a cluster-based
mobile environment. They claim that it reduces the re-
keying process, which is required for a mobile node 
when it enters a new location area, thereby reducing the 
computational overhead and enhances the scalability to 
large size network. Finally the authors of [28] introduce 
an interesting concept of cognitive networks, which may
come closer to the ideas from this research and 
contextualization. They look at the potential for
teamwork where wireless communication progresses 
from an individual, device-centric approach toward 
group and team behavior.

5. The Evaluation

The summary of the Proposal states that the basic 
algorithm from Figure 4 contains the main philosophy 
of GKM. The re-keying process may not start if (i) 
is NOT informed that another node has reached its 
end-time-ticket and (ii) has NOT reached its 
end-time ticket. Therefore this idea, together with the 
formal definitions of the families of nodes, and their 
Family-Key-Paradigm (context!) have secured enough 
semantic to cover the re-keying process (when it is 
allowed to happen). This re-keying process, from Figure 
5 can take various debatable and negotiable forms. It 
makes decisions on which node will be in charge of 
generating the new family key and when. However, the 
algorithm reveals various situations in which the re-
keying process must be stopped (ALARMS?) for many 
reasons:
(a) we work in cybersecurity and all anomalies must be 
detected, even if they are not considered dangerous,
(b) these situations might trigger user intervention, 
which could be welcome in cybersecurity [29].  It would 
challenge perceptions that automated computations can 
resolve problems associated with these anomalies;
(c) ALARMs are exit points from running the algorithm, 
which is needed to leave no stone unturned when 
implementing computations.  It also contribute towards 
the completeness of the algorithm,
(d) ALARMS open doors to discussions and further 
evaluation of the proposal, but at this moment alarms
depend on the context!

The next outcome from this proposal would be a 
discussion on how we can implement these algorithms. 
They are presented in a computable format. Considering 
that the focus in the algorithm is on decision making 
(and not on encryption) when managing keys, then this 
software application generated from the algorithms
would be easily deployable within either Android/iOS 
operating environments, server-cloud computing, or 
even on cloud edges. A software architectural model 
could be generated from the formal conceptual model of 
the proposal as in [29,30,8], potentially opening doors 
for using many different software technologies. One 
would be to replace the traditional role of the 
provisioner in WSN with the reasoning mechanism 
available through Semantic Web Technologies and thus 
enable, for example, reasoning upon how to create
x a family of nodes according to the definitions from 

the proposal and 
x define and maintain the Family Key Paradigm 

when circumstances change.
We can use computational reasoning to make decisions 
on the nature, severity and impact of alarms. They 
should result in either creating a new family-key-
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paradigm or closing down the network, as two extreme 
but efficient actions in WSN management. In principle,
managing the context relevant for the re-keying process, 
as in this proposal, comes very close to the management 
of pervasive computational spaces: which proved to be 
very efficient in the context management [8].

6. Future Work

There are numerous pathways from this research. 
Firstly computer scientists should sit around a table 

and have discussions with cybersecurity and WSN 
communication specialists in order to address the GKM 
problem, by using software technologies which have not 
found its space in the cyber security field.  This is 
particularly true for pervasive and semantic software 
technologies [31,8] which could have helped in context
management, if there was any interest from 
cybersecurity discipline to use them. 

Second, there should be some investment in this 
research, which would finance a full-scale 
implementation of the algorithm. It should seek the 
support of semantic computing as implemented in [9], 
and thus might address the novel trends of having
cognitive WSN and their applications. It is obvious that 
the proposal is easily implementable in many 
programming environments. 

Third, we should re-examine the re-keying process 
from Figure 5 and its illustration in Figure 6. by 
investigating its level of precision. This would apply to 
cases when we change our mind and decide to look at
different contexts, i.e. move away from the Family Key
Paradigm and end-time-ticket.   It is important to note 
that we run all these algorithms in one particular 
moment, and the Family Key Paradigm can 
unexpectedly change at any moment.  However, the 
proposed algorithm will give results according to this 
change, because it can not use anything else apart from 
the available context, in that moment.

The immediate work should really be on the 
following.

Expanding contextual decision making, by lifting
responsibility away from the provisioner and removing 
it eventually, would be an important step forward. 
Having a provisioner is one of the weakest points in any 
GKM and it should not be maintained. Including
computational reasoning as elaborated in [31] to 
maintain the semantic in Family Key Parading and the 
values of end-time tickets is feasible.   However, this is 
not the only reason why we should use computational 
reasoning, as in semantic web, in order to manage the 
semantic of our context. Any issue with 
x the number of nodes in a current family, 
x potential FFC,
x initialization of GKM, 

x manipulation of the history of  end-ticket per each 
nodes, or

x interpreting the nature of interruptions (from node 
failing to acknowledge that it received a new key to 
abolishing the current key paradigm)

could all be addressed through reasoning, which will not 
require extra computational power. This is a very 
important step forward if we wish any contextualization
to succeed in cybersecurity.

There are many other smaller problems which must 
be addressed in future.  Apart from re-keying, we need 
to investigate if contextualization may select which 
nodes are to form families (groups), and how we would 
authenticate them.  Decision making, on which nodes 
from families of nodes may connect through FFCs also 
needs attention.  This is because some of these nodes are 
very likely to form a natural border between families. 
We did mention earlier that families can share the family 
key and thus the key either becomes a part of one family 
or the other (or both).  However, giving freedom by 
expanding and changing families freely, affects the 
semantic of the Family Key Paradigm and, for example,
it might in future increase the number of conditions to 
be evaluated in Figure 5. There is always a trade-off in 
computer science and we should keep this in mind.

This paper is written by computer scientists to 
cybersecurity specialists for the purpose of opening a 
dialog on the current shortcomings of using software 
technologies when addressing problems in GKM and 
WSN.  There is no evidence there is a shift in thinking, 
on the horizon, in the cyber security field, regarding the 
management of WSN.  If this paper eventually triggers 
a dialog, this would be the first step forward towards full 
exploitations of the ideas from this research. Computer 
scientists can see the feasibility of implementing context 
aware GKM. Family Key Paradigm is only one of the 
ideas for illustrating contextualization. We hope that 
cybersecurity specialist can see the opportunity to use it. 
Without them on board, this research will never 
materialize.
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