
Blocked-based Solidity — a Service for Graphically Creating the Smart
Contracts in Solidity Programming Language

Anna Kobusinska
Faculty of Computing and Telecommunications

Poznan University of Technology, Poland
Anna.Kobusinska@cs.put.poznan.pl

Grzegorz Wilczyński
Faculty of Computing and Telecommunications

Poznan University of Technology, Poland
Grzegorz.Wilczynski@cs.put.poznan.pl

Abstract

In the last few years, we can observe a constantly
increasing interest in systems and applications based
on blockchain technology. Undoubtedly, this fact
was significantly influenced by the introduction of the
smart contracts mechanism that is one of the most
popular features of blockchain nowadays, and can be
used across almost any industry. Smart contracts
are programs stored on a blockchain that run when
predetermined conditions are met. Since programming
smart contracts is not trivial, this paper proposes
a service that enables their creation by constructing
diagrams from graphical blocks. The diagrams are
then transformed into a smart contract code written in
the Solidity language. The paper presents the general
idea of the proposed service and selected use cases
illustrating its application.

1. Introduction

With the expanding popularity of blockchain
technology, its adoption across various industries, such
as finance, insurance, retail, healthcare, media, and
many others spreads very quickly and on a broad
scale [1, 2, 3, 4]. The spectrum of solutions and
applications based on blockchain technology is very
wide. An example would be the IBM Food Trust that is
a blockchain-based application used to track the supply
chain of food products [5]. Cryptocurrencies are another
illustration of massive scale blockchain technology’s
adoption, which constantly becomes more and more
popular [6, 7]. Also, governments perceive this
technology as promising when it comes to management
of their citizens’ data [8].

The popularity of blockchain technology comes
from the unique set of features it provides. First of
all, blockchain allows its users to stay anonymous and
keep their identity secret. Another feature is the security
provided by the use of specialised cryptographic tools
and the fact that each transaction is verified by

many entities, completely independent of each other
[9]. Furthermore, the immutability of transactions
builds trust among users of the platform. Finally,
smart contracts, being a new breaking feature that
have appeared in the recent years, further increased
blockchain attractiveness [10, 11, 12].

Smart contracts can be considered as self-enforcing
and self-executing programs that run pre-defined sets
of actions when some conditions embedded in their
code are met [13, 14]. For example, after collecting
a predefined number of digital assets, a smart contract
sends them to the declared receiver. The important and
distinguishing feature of smart contracts is that after
their publication, no one can modify the way it works.

Although the smart contracts are relatively new
mechanism, they have been already successfully used
in the environments where the intermediary institution,
which acts as an independent observer that is designated
to confirm the transaction correctness is required. So
far, such an intermediary role used to be delegated
to a third party (e.g. notary or a bank). However,
engaging this type of institution induces additional
costs resulting from the actions that must be taken to
confirm the transactions’ correctness and to ensure the
possibility of their further verification and finalisation.
To avoid this, the mention above tasks can be offloaded
to blockchain-based smart contracts, which terms
are irreversible, trackable, and therefore there is no
necessity to involve a third party to moderate or carry
out the transaction any more.

With the growing popularity and the possibility of
various applications of smart contracts, the demand
for such solutions also increases. Unfortunately, the
implementation of smart contracts is not an easy task
[13]. Their developers must be familiar with a special
programming language and a wide range of built-in
functions that are indispensable when writing useful
contracts.

Acquiring an experienced blockchain developer is
a difficult task. Therefore, in this paper, we analyse
the language for their creation and propose a service

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7392
URI: https://hdl.handle.net/10125/80229
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



providing a simple graphic interface that allows a
person with little programming experience or limited
knowledge in this field, generating a contract code that
can be published on the blockchain platform. Due to
the popularity of the Ethereum platform, in the proposed
solution, smart contracts graphically arranged by the
user are translated into the Solidity language, which will
enable the launch of these contracts on this platform.

The paper is structured as follows. In Section
2 the general information on blockchain technology
and Ethereum platform are provided. Next, Section
3 presents the basic elements of Solidity language,
and section 4 describes the existing tools that support
programmers in the implementation of contracts or
allow for their graphical design and generation of their
code. Then, the architecture of the proposed service is
proposed in section 5, and the types of proposed blocks
are discussed in section 6. Section 7 provides various
use cases of the service. Finally, section 8 concludes the
paper and presents the directions of the future works.

2. The General Idea of Blockchain and
Ethereum Platform

The blockchain is a cryptographically secured and
immutable ledger, distributed over the participating
nodes that aim to share information among all parties
that access it [15]. It consists of a chain of sequentially
connected blocks, which contain a set of transactions
[9]. Transactions may be understood as a piece of data
representing the flow of values from one node to another,
signed by the node that created the data.

In addition to transactions, blocks also contain the
hash value, calculated by a hash function based on the
hash of the block’s predecessor and a special number
called the nonce. The cryptographic hash function
gives security capabilities to the processed transactions,
ensuring that contents of a transaction recorded on the
ledger will not be tampered with, and thus providing
transactions’ immutability.

Blocks are automatically broadcasted across the
network, verified and added to the blockchain. However,
to successfully append the block to the chain, the
consensus between a majority of nodes has to be met
[16].

Blockchain nodes are divided into two types:
full-nodes and partial nodes. Each full node keeps
a complete copy of the entire ledger, can execute
transactions, and contributes to extending the chain.
Thus, to run a full node application, a sufficient number
of computing resources and memory are required. In
turn, partial nodes communicate with the network only
by downloading and sending transactions. All nodes are

connected in a peer-to-peer network.
One of the key concepts in blockchain technology is

smart contracts, defined as computer programs running
on the ledger verifying and enforcing an agreement
between multiple parties [13, 14]. Source code of a
smart contract (or, for a short — contract) defines the
terms of the agreement and is submitted to the ledger
as a transaction. A user can interact with the contract
by invoking methods exposed by the contract, much like
interacting with a distributed/remote object.

The first blockchain platform for developing smart
contracts was Ethereum [17]. The concept of this
platform was to enhance Bitcoin’s virtual machine
scripting mechanism to give Ethereum contracts a state
and provide a Turing-complete language.

The global state of the Ethereum platform is based
on the set of small objects called accounts. Each account
has a unique 20B identifier. One can divide them
into two subgroups upon the way of managing them.
The account’s behaviour can be specified in the code
of a contract or may execute the user’s orders. The
state of the account consists of a counter of performed
transactions, several collected tokens, and optionally
code of contract and its data.

A transaction in the context of the Ethereum
platform is considered as a single cryptographically
signed instruction [18]. Basically, they can be divided
into two subgroups. Transactions from the first one
result in sending a message, while from the latter one,
create new accounts with the code that describes the
account behaviour.

Ethereum smart contracts consist of code,
resembling definition of a class with methods. Once
the code is written, the contract can be compiled and
deployed on the blockchain [19, 20, 21]. Deploying a
contract means submitting a transaction that includes
the contract code. Later, when a user wants to call
a function of that contract, he can submit his own
transaction regarding the deployment transaction’s
unique identifier, function name, and a list of
parameters. Then, the transaction is broadcast through
the network and verified by all full nodes, effectively
meaning that all full nodes execute every smart contract
function call. Each node executes the function call by
feeding the smart contract code and user input to a
local instance of a Ethereum Virtual Machine (EVM),
which can understand the compiled smart contract
instructions.

To prevent denial of service attacks and maintain
the profitability of processing transactions, Ethereum
introduced payment for the number of instructions that
had to be processed due to the function call. The amount
of work associated with processing the instructions is

Page 7393



measured in gas units, and specific instruction is worth a
fixed amount of gas. Therefore, when the user submits a
transaction, he can choose the value of gas price, which
is how much ether he is ready to spend for one gas unit.
Ether (ETH) is a cryptocurrency featured by Ethereum.

Similarly to fees, transactions with more generous
values of gas price are more likely to be included in
the ledger, because they provide a better incentive to
miners. A high gas price will incentivize full nodes
to quickly process the transaction, whereas a low gas
cost may cause the transaction to never be processed
(as miners choose a minimal the threshold for which
they will mine transactions). An exception to transaction
related fees is made for function calls that do not modify
the state of the blockchain, e.g. checking the account
balance. Those function calls are exempt from fees.
That is because they can be processed locally, without
involving the network.

3. Solidity Programming Language
Overview

There are several languages suitable for smart
contract development on Ethereum to choose from,
including Solidity [22], Vyper [23], Bamboo and LLL
[24, 25].

In the service proposed in this paper, the graphically
illustrated functionality of the smart contract is
translated into the Solidity language. The choice of this
language was dictated by the multitude of features it
provides and its popularity, which ensures a widespread
integration and community support. The information on
Solidity and notions that are essential to this paper are
presented in this section.

Solidity is a programming language [22, 26] mainly
used for smart contracts implementation. Its structure,
abstractions and syntax were inspired by JavaScript and
programming languages from the C family. As a result,
Solidity employs such concepts as functions, classes,
variables, and enables arithmetic operations and string
manipulation.

Smart contract’s structure resembles the structure
of a class known from object-oriented languages. It
consists of the definition of functions (analogous to
methods) and variables (analogous to class fields)
storing the contract’s state in memory. Moreover,
contracts support inheritance, libraries and complex
user-defined types and offer encapsulation and support
inheritance from other contracts.

Each contract deployed on the Ethereum platform
has its own address that enables communication with its
specific instance by utilising the contract’s methods.

Same as C++, Solidity is a statically typed language.

Data types can be split into two groups. The first group
contains a value types, which are mainly the same as
in other programming languages (e.g. bool or int).
In this group, there is a unique type called address
which has a specific destination. It enables to store of a
20-byte value which is an address of an account on the
Ethereum platform. There is a possibility to check the
number of Ethers stored on the account pointed in this
manner. Moreover, after conversion to payable address,
a contract can also use its method send and transfer to
pass Ethers.

The second group contains contracts that may be
used as variables and behave similarly to instances of
Java classes. Each contract has its own Solidity platform
address, so creating a new contract is associated with
creating a new account. As a result, each contract may
be converted into an address that clearly references it.
The opposite conversion (address into contract) is also
valid. To convert a contract into a payable address,
additional requirements have to be met, because the
contract must provide a function that supports receiving
Ethers in such case.

Among the useful data types are dictionaries, called
in the Solidity mappings. They can be declared in
an unusual but readable manner. For example, there
is a possibility to declare a dictionary that returns an
integer value based on the address. In a group of
more sophisticated data types, there are also static and
dynamic arrays and strings. Moreover, programmers
can define their own structures and enumerated types.

Each contract must have its own name, which is
declared next to the contract keyword. After this
declaration inside curly brackets, programmers define a
body of a contract consisting of a few basic elements.

Properties indicate where a contract stores its state.
Properties values are stored in the global platform’s
state. Programmers can tag them with three different
visibility modifiers, namely public, private and internal,
to control their accessibility. It is important to remember
that even if a property is private (not visible for other
contracts), it can be found and read from the global
platform’s state.

Each contract can send information to external
receivers through events. It is a crucial feature when
it comes to integration with applications from outside
of the platform. The events enable to notify parties
that want to receive a piece of information about some
incident, e.g. transferring some tokens. Declaration of
the event must have a unique name and specification of
types of data about sharing with those parties. In the
Solidity code, it is declared with the emit keyword.

Apart from standard visibility modifiers, Solidity
enables programmers to create their own schema,

Page 7394



which validates if the function may be called. This
feature is declared with modifier keyword, name and
parameters which are required to perform validations.
The set of rules should be implemented to utilise
requiring keyword, which is used to check the
conditions for further execution and break it with custom
communication if the condition is not met. At the
end of the set of rules, one must add an underscore
sign which shows that validation ended correctly and
function protected with this modifier can be called.
This approach is beneficial and enables programmers to
avoid code redundancy and improve the readability of
contract.

Same as classes from object-oriented languages,
contracts may have a constructor. It is a method which
is called during contract creation. This is a place where
initial code (like properties set) should be applied. In
Solidity contract may have only one constructor.

The contract consists of many functions. Usually,
a function definition begins with a function keyword, a
name and a list of input parameters in parentheses. Then
visibility modifier is set from the set public, private,
internal and external. Optionally, one can choose which
custom modifier guards the entry to the method. The
next element of the declaration is an optional payable
keyword which determines if processing transactions
may be related to the transfer of Ethers to the contract
account. If this keyword is not used, the programmer
may declare if the function uses the state of the
blockchain. The pure keyword is used if the function
does not access the state of blockchains. The view
keyword is used when the function only reads data from
the global state, and omission of these keywords informs
that function may read and write to the blockchain. The
lastest option in this declaration is the definition of the
type of the result. After performing these steps, one can
declare the body of the function in curly brackets.

A contract may contain two specific functions. The
first one is invoked every time a contract receives some
Ethers to its account. The declaration of this function
is unique and can be defined as follows: receive()
external payable. The second function that is
called every time the calling parameters are not matched
to any function. It is defined in the following way:
fallback() external. This specification may
be extended with the payable keyword to enable this
function Ethers collection.

Based on the above description, it can be seen that
despite Solidity is similar to well-known programming
languages. It also provides some specific and non-trivial
constructs. Creation of the service that automatically
generates Solidity code based on a block diagram may
favourably influence the learning of this language and

give a chance to everybody to create their own simple
contract.

4. Related works

This section presents a short description of the
applications and tools available on the market that
support the creation of smart contracts.

The EtherScripter [27] enables users without
programming experience and the knowledge of the
Ethereum platform’s languages to create smart contracts
with the utilization of block diagrams. The way of
defining smart contracts in the EtherScripter is simple
due to the ergonomic user interface. Moreover, the
availability of a large number of examples simplifies
the work with this tool. The EtherScripter converts
a set of blocks into two languages — LLL and
Serpent. These two languages are recommended for
advanced programmers who have specific requirements
for the created smart contracts, for example, require the
low-level optimization. As a result, EtherScripter is not
a tool intended for beginning users.

Another tool available on the market is FSolidM
[28]. The usage of this software induces a different way
of defining a contract. In the first step, the user has to
define a state diagram that is going to be used to generate
the scheme of the contract. Then it is required to fill
this scheme with the Solidity code. The FSolidM is
enhanced by plenty of plugins, which can be applied to
the contract while its development in order to avoid the
most common vulnerabilities, such as multiple function
calls and authorization. This software requires at least
basic knowledge of the Solidity language, but facilitates
the creation of defining secure and understandable
pieces of code.

Finally, the YAKINDU Solidity Tools [29] is
an integrated development environment that contains
plenty of useful functions, such as quick refactoring and
delivery of schemes of most implementational common
patterns and prompting pieces of code that may be useful
during the smart contract creation. It also supports users
when it comes to some errors related to inappropriate
syntax usage. Additionally, this tool supports automatic
code generation. Modelling the contract in this way is
also based on creating a state diagram where next to
transitions, one must add simple instructions that are
converted to Solidity code.

The solution proposed in this paper enables
the creation of contracts in a way similar to the
EtherScripter platform by enabling the construction of
the block diagrams. However, the main difference
between the proposed solution and EtherScripter is the
language of the resulting contract. In the proposed

Page 7395



service, it was decided that the created smart modelled
in the diagram would be translated into the Solidity
language. Since it is the language recommended
for creating this type of software, people using the
service proposed in this paper will see, based on
predefined examples and self-created schemas, how
specific syntax elements (e.g. functions, loops, events)
should be constructed in the Solidity. The second
important difference is the division of the blocks
from which the schematic is created into thematically
related categories and placed in separate lists, which
is clearly missing when working with EtherScripter.
It is a functionality that significantly simplifies and
streamlines programming because it is easier to find
the necessary elements in smaller groups, starting with
selecting a thematic group.

5. General Concept and Architecture

A relatively small number of tools and applications
that support non-experienced programmers in creating
smart contracts motivated creating a service that
facilitates this task.

The proposed solution assumes that users may use
it despite, having only a basic knowledge of Solidity
programming language. The service provides a set
of blocks to achieve this, which can be graphically
arranged to model a smart contract. The created
diagrams that represent smart contracts are then
translated into the code of the Solidity language.

The architecture of the proposed service is shown in
the Figure 1.

Figure 1: Contract Generator Architecture

In the proposed service, in order to define a smart
contract, the user creates a diagram from the graphic
blocks. For this purpose, the user uses the provided
web application, which illustrates the module Smart
Contracts Generator WebApp in Figure 1. These
diagrams are further converted to text representation

and then passed to the service smart contract generator
represented by the module Smart Contract Generator.
This is the main component of the proposed service,
which is responsible for creating a model of a contract,
its correctness validation and generation of the resulting
code of contract in Solidity language. The correctness
of this non-trivial task is checked by several tests
grouped in two projects, and performed in the modules
GeneratorManualTests and GeneratorTests.

For the graphic layer implementation, the Blockly
library [30] is used. It is an open-source JavaScript
library that supports programmers in developing
applications, which generates code based on block
diagrams. It enables developers to shift the
responsibility for the definition of behaviour (e.g.
motion on canvas) and layout of blocks and focus on the
functional part related to defining smart contract fields,
ways of filling them and rules of connecting the blocks.

The created block diagram is transformed to XML
format and sent to the service server, which is
responsible for converting the diagram to objects
modelling Solidity language components and for
generating the Solidity smart contract code.

6. Contracts blocks

A big challenge in creating the service was to
propose the appropriate blocks from which service users
would construct a diagram representing a smart contract.
By assumption, these blocks should be divided into
appropriate functionally related groups facilitating the
construction of the contract.

Each block type has a different colour and
connection stub shape to make it easier to deduce
which blocks may be connected. The proposed service
provides a built-in validation that prevents users from
creating invalid connections.

As discussed, the blocks are divided into small
groups based on their purpose. As a result, in the
proposed solution, ten various sets of blocks were
proposed. The first one contains only a contract block.
This block helps users define the appropriate contract
scheme and its standard functions, properties, events,
and modifiers. Moreover, it protects users from creating
several constructors or functions, which are perceived as
incorrect in terms of conformance to Solidity syntax.

In the second set that provides contract elements,
users can find all blocks, which can be connected to
the smart contract block. The first gap of the contract
block can be filled with a list of property blocks. These
blocks have one drop-down list, indicating property
visibility, so the service does not let users forget about
declaring it. To have a fully configured property block,

Page 7396



Figure 2: Contract block.

the variable declaration block has to be also connected.
The functionality of this block is discussed later in this
section.

In the next contract gap, users can define a list of
events. First, the event block lets the user declare
its name and define the data it emits. Then, in the
succeeding gap, modifiers available in the scope of
validation steps with their input data are defined.

In the Solidity language, a contract may have only
one constructor so that the user can connect only
one constructor block to the contract block. Similar
constraints apply to the default function (fallback) block
and the function block that receives the Ethereum token.

The most advanced block is related to the contracts
function (figure 3). Users may define as many functions
as needed since the proposed service does not restrict
their number. In the first phase, input parameters,
name and visibility of function are defined. The next
element of the function block is the checkbox, which
value determines whether the function accepts Ethers.
Where it is possible, the dropdown that defines the way
the function uses the global state becomes invisible to
the user because accepting Ethers determines that the
function is read and write type (figure 4). Otherwise,
users may choose from the dropdown if they define a
function of a type read-only, read and write or not even
accessing the global state. One can connect the modifier
call block to the function block if the appropriate
checkbox is checked (figure 5). An analogous situation
relates to defining output type. Users are allowed to
choose it from the dropdown list if the return value
checkbox is checked. Next, it is possible to define
the set of instructions that are executed during function
processing.

In the following set, all blocks that can be inserted
into the instructions gap are gathered. Therefore, this
set contains simple assignment, condition, loop, the
break loop, return blocks and one more specific block,

Figure 3: Basic function block.

Figure 4: Accept Ethers function block.

representing the condition of the execution block. It is
mapped into the requirement construction, containing
a condition and information on what actions should be
performed when the condition is not met.

Built-in functions represent a category that contains
blocks, which are mapped into Solidity built-in methods.
The appropriate usage of these blocks is a key feature in
creating a secure and useful contract. For example, the
first block from this set checks a balance of an account
identified by an address passed as an input parameter. In
turn, the second and the last block of this category is the
transfer block, which transfers Ethers from the contracts
account to another one, identified by an address passed
as an input parameter.

The consecutive three sets are responsible for

Figure 5: Function block with modifier input.

Page 7397



defining variables and performing basic calculations.
The calculation set contains a block that provides access
to transactions special values. Users can use this block
to get information about, among others, Ethereum block
details and the caller of the function. It is a fundamental
thing in authorization because everyone can find the
contract by its address and communicate with it, so
creating appropriate authorization checks is crucial.

Finally, the last three sets are mapped into various
calls. The first two sets represent function calls and
events emissions, respectively. In turn, The third one
is responsible for enabling the users to use modifiers
by connecting them into chosen functions. All blocks
in the mentioned sets are auto-generated based on the
declarations of appropriate components in the contract
(e.g. declaration of function F indicates the generation
of call F block). These blocks also have generated
connection stubs based on input parameters defined in
the appropriate declaration blocks. Thus users may
easily see how many parameters may be passed as
arguments of calls.

7. Use cases

The proposed service has a wide area of potential
usages. In this section, we present just a few built-in
examples that show some of them.

Figure 6: Counter.

A brief examination of provided examples may give
basic knowledge for constructing new contracts. The
first and the easiest example represents a simple counter.
A diagram models it in Figure 6, and it is composed
of property and variable declaration blocks, which are

mapped into listing 1, line 2. The contract also provides
a simple function connected to it, which performs simple
incrementation of declared global variable (Listing 1,
lines 4–6).

Listing 1: Result code for counter example
1 contract Counter{
2 uint public counter;
3
4 function Increment() public {
5 counter = (counter) + (1);
6 }
7 }

In the consecutive example, shown in Figure 7), the
more specific constructions were used. Examination of
this example shows users how to define and call events,
and how to use and define conditional statements.

Figure 7: Change notifier.

Given example uses one variable (Listing 2, line 2)
and one event, which emits two values — oldValue
and newValue (Listing 2, line 4). The event is called
in the public function setValue (Listing 2, lines
7-11), after verification whether a new value is different
from the old one. This event emits two values, namely a
new value and the previous one (Listing 2, line 9).

Page 7398



Listing 2: Result code for change notifier example
1 contract ChangeNotifier {
2 int private value;
3
4 event valueChanged(int oldValue,
5 int newValue);
6
7 function setValue(int newValue) public {
8 if ((value) != (newValue)) {
9 emit valueChanged(value, newValue);

10 value = newValue;
11 }
12 }
13 }

One of the most complicated examples illustrating a
smart contract syntax is a simple auction. To increase
the readability of the block diagram, it was split into
three figures (Figure 8, Figure 9, Figure 10), which
present the consecutive parts of the smart contract.

Figure 8: Auction 1.

Figure 8 presents declarations’ properties with the
declarations of their corresponding variables. There

Figure 9: Auction 2.

Figure 10: Auction 3.

are 5 properties used in this implementation, which is
shown in Figure 3, lines 2–6. Furthermore, in listing
3), lines 8–11, two definitions of events, which inform
about bid increase and auction’s end, are presented.
The constructor declaration and initialisation of required
properties are in listing 3), lines 13–20. Next, in the
figure 9, new bid function is presented. This function
accepts Ethers because the new bid value is equal to the
transferred value (payable keyword in the listing 3, line
22). This function checks the conditions if the new bid
value is greater than the current one and if the auction is
still active (listing 3, lines 23–26 ).

If any of mentioned conditions are not met, the
contract execution is automatically stopped. Then,
there is a condition, which checks if the current bid
is greater than 0, which means some funds should be
returned (listing 3, lines 27–30 ). The function ends with
assigning new values and emission of the event, which
informs about bid increase (listing 3, lines 31–34 ). The
whole contract ends with the invocation of a function,
which is responsible for finishing the auction (Figure
10). This function starts its execution by checking
two conditions. The first one checks whether it is an
appropriate time to end the auction. The latter one
checks whether the auction has already been deactivated
(listing 3, lines 38–41). If these conditions are not
fulfilled, the execution is automatically stopped. Finally,

Page 7399



in the next step, the auction is deactivated (listing 3,
line 43). Next, the contract checks the condition if
the bid value is greater than 0, which means that all
auction participants should transfer some funds to the
beneficiary account (listing 3, line 44–48 ).

Listing 3: Result code for change notifier example
1 contract SimpleAuction {
2 bool public isActiveAuction;
3 address payable public beneficiary;
4 uint public auctionEndTime;
5 uint public highestBid;
6 address payable public highestBidder;
7
8 event highestBidIncrease(uint amount,
9 address payable bidder);

10 event auctionEnded(uint amount,
11 address payable winner);
12
13 constructor(
14 address payable _beneficiary,
15 uint _biddingTime) public {
16
17 beneficiary = _beneficiary;
18 auctionEndTime = _biddingTime;
19 isActiveAuction = true;
20 }
21
22 function bid() public payable {
23 require((msg.value) > (highestBid),
24 "Bid value too small");
25 require((now) < (auctionEndTime),
26 "Too late");
27 if ((highestBid) > (0)) {
28 payable(highestBidder)
29 .transfer(highestBid);
30 }
31 highestBidder = msg.sender;
32 highestBid = msg.value;
33 emit highestBidIncrease(highestBid,
34 highestBidder);
35 }
36
37 function endAuction() public {
38 require((now) >= (auctionEndTime),
39 "Too early");
40 require((isActiveAuction) == (true),
41 "The auction has been already
42 deactivated");
43 isActiveAuction = false;
44 if ((highestBid) > (0)) {
45 payable(beneficiary)
46 .transfer(highestBid);
47 emit
48 auctionEnded(highestBid,
49 highestBidder);
50 }
51 }
52 }

The presented examples of diagrams and the smart
contract codes generated by the proposed service show
that even in complex and demanding smart contracts,
their construction in the proposed service is accessible
and relatively simple. Furthermore, the user is supported
by the internal mechanisms of the service that verify the

compliance of blocks and the validity of a smart contract
code based on the provided diagram.

8. Conclusions and Future Works

This paper proposes a service for creating smart
contracts in the Solidity programming language. The
service offers the possibility of creating even advanced
smart contracts for various applications transparently
and easily. The use of the proposed solution, by
releasing programmers from the need to learn the
Solidity language thoroughly, may positively impact
the popularisation and adaptation of smart contracts
on a large scale. Future works will be related to
introducing structures that simplify the construction
of smart contracts characterised by a high degree of
complexity and consist of many blocks. Another
direction of work is related to the implementation of
tables and dictionaries structures, called mapping in the
Solidity language. Adding the mentioned structures will
increase the potential of the proposed service.

References

[1] T. Gayvoronskaya and C. Meinel, Blockchain - Hype or
Innovation. Springer, 2021.

[2] L. Silva, N. Magaia, B. Sousa, A. Kobusinska,
A. Casimiro, C. X. Mavromoustakis, G. Mastorakis, and
V. H. C. de Albuquerque, “Computing paradigms in
emerging vehicular environments: A review,” IEEE CAA
J. Autom. Sinica, vol. 8, no. 3, pp. 491–511, 2021.

[3] Y. Yan, B. Wang, and J. Zou, Blockchain - Empowering
Digital Economy. WorldScientific, 2021.

[4] O. Ali, A. Jaradat, A. Kulakli, and A. Abuhalimeh, “A
comparative study: Blockchain technology utilization
benefits, challenges and functionalities,” IEEE Access,
vol. 9, pp. 12730–12749, 2021.

[5] M. Lee, J. Luo, J. Shao, and N. Huang, “A trustworthy
food resume traceability system based on blockchain
technology,” in International Conference on Information
Networking, ICOIN 2021, Jeju Island, South Korea,
January 13-16, 2021, pp. 546–552, IEEE, 2021.

[6] H. M. Kim, M. Laskowski, M. Zargham, H. K. Turesson,
M. Barlin, and D. Kabanov, “Token economics in
real life: Cryptocurrency and incentives design for
insolar’s blockchain network,” Computer, vol. 54, no. 1,
pp. 70–80, 2021.

[7] X. F. Liu, H. Ren, S. Liu, and X. Jiang, “Characterizing
key agents in the cryptocurrency economy through
blockchain transaction analysis,” EPJ Data Sci., vol. 10,
no. 1, p. 21, 2021.

[8] J. R. Clavin, S. Duan, H. Zhang, V. P. Janeja, K. P. Joshi,
Y. Yesha, L. C. Erickson, and J. D. Li, “Blockchains for
government: Use cases and challenges,” Digit. Gov. Res.
Pract., vol. 1, no. 3, pp. 22:1–22:21, 2020.

[9] D. Wang, Y. Jiang, H. Song, F. He, M. Gu, and J. Sun,
“Verification of implementations of cryptographic hash
functions,” IEEE Access, vol. 5, pp. 7816–7825, 2017.

Page 7400



[10] I. A. Omar, R. Jayaraman, M. Debe, K. Salah, I. Yaqoob,
and M. A. Omar, “Automating procurement contracts
in the healthcare supply chain using blockchain smart
contracts,” IEEE Access, vol. 9, pp. 37397–37409, 2021.

[11] A. H. Lone and R. N. Mir, “Applicability of blockchain
smart contracts in securing internet and iot: A systematic
literature review,” Comput. Sci. Rev., vol. 39, p. 100360,
2021.

[12] W. Groschopf, M. Dobrovnik, and C. Herneth, “Smart
contracts for sustainable supply chain management:
Conceptual frameworks for supply chain maturity
evaluation and smart contract sustainability assessment,”
Frontiers Blockchain, vol. 4, p. 506436, 2021.

[13] D. Bhattacharya, M. Canul, S. Knight, M. Q. Azhar,
and R. Malkan, “Programming smart contracts in
ethereum blockchain using solidity,” in Proceedings
of the 50th ACM Technical Symposium on Computer
Science Education, SIGCSE 2019, Minneapolis, MN,
USA, February 27 - March 02, 2019, p. 1236, ACM,
2019.

[14] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and
J. Son, “Recent advances in smart contracts: A technical
overview and state of the art,” IEEE Access, vol. 8,
pp. 117782–117801, 2020.

[15] M. N. M. Bhutta, A. A. Khwaja, A. Nadeem, H. F.
Ahmad, M. K. Khan, M. Hanif, H. Song, M. A.
Rashwan, and Y. Cao, “A survey on blockchain
technology: Evolution, architecture and security,” IEEE
Access, vol. 9, pp. 61048–61073, 2021.

[16] M. Li, G. Liu, J. Tian, C. Wang, Y. Yang, and S. Wan,
“Blockchain consensuses and incentives,” in Blockchains
for Network Security: Principles, technologies and
applications, pp. 39–63, 2020.

[17] L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal
analysis of the entire ethereum blockchain network,” in
WWW ’21: The Web Conference 2021, Virtual Event
/ Ljubljana, Slovenia, April 19-23, 2021 (J. Leskovec,
M. Grobelnik, M. Najork, J. Tang, and L. Zia, eds.),
pp. 2258–2269, ACM / IW3C2, 2021.

[18] D. G. Wood, “Ethereum: A secure decentralised
generalised transaction ledger,” 2020.

[19] M. D. Angelo and G. Salzer, “Characterizing types
of smart contracts in the ethereum landscape,” in
Financial Cryptography and Data Security - FC 2020
International Workshops, AsiaUSEC, CoDeFi, VOTING,
and WTSC, Kota Kinabalu, Malaysia, February 14,
2020, Revised Selected Papers, vol. 12063 of Lecture
Notes in Computer Science, pp. 389–404, Springer,
2020.

[20] T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang,
W. Niu, J. Lu, K. Zhou, and Y. Liu, “Transaction-based
classification and detection approach for ethereum smart
contract,” Inf. Process. Manag., vol. 58, no. 2, p. 102462,
2021.

[21] G. Destefanis, “Design patterns for smart contract in
ethereum,” in 18th IEEE International Conference on
Software Architecture Companion, ICSA Companion
2021, Stuttgart, Germany, March 22-26, 2021,
pp. 121–122, IEEE, 2021.

[22] G. Zheng, L. Gao, L. Huang, and J. Guan, Ethereum
Smart Contract Development in Solidity. Springer, 2021.

[23] M. Kaleem, A. Mavridou, and A. Laszka, “Vyper: A
security comparison with solidity based on common
vulnerabilities,” in 2nd Conference on Blockchain

Research & Applications for Innovative Networks and
Services, BRAINS 2020, Paris, France, September 28-30,
2020, pp. 107–111, IEEE, 2020.

[24] R. M. Parizi, Amritraj, and A. Dehghantanha, “Smart
contract programming languages on blockchains:
An empirical evaluation of usability and security,”
in Blockchain - ICBC 2018 - First International
Conference, Held as Part of the Services Conference
Federation, SCF 2018, Seattle, WA, USA, June 25-30,
2018, Proceedings (S. Chen, H. Wang, and L. Zhang,
eds.), vol. 10974 of Lecture Notes in Computer Science,
pp. 75–91, Springer, 2018.

[25] M. Jansen, F. Hdhili, R. Gouiaa, and Z. Qasem, “Do
smart contract languages need to be turing complete?,”
in Blockchain and Applications - International Congress,
BLOCKCHAIN 2019, Avila, Spain, 26-28 June, 2019,
vol. 1010 of Advances in Intelligent Systems and
Computing, pp. 19–26, Springer, 2019.

[26] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey
on formal verification for solidity smart contracts,” in
ACSW ’21: 2021 Australasian Computer Science Week
Multiconference, Dunedin, New Zealand, 1-5 February,
2021, pp. 3:1–3:10, ACM, 2021.

[27] EtherScripter, “Etherscripter - visual smart-contract
builder for ethereum,” 2020.

[28] A. Mavridou and A. Laszka, “Tool demonstration:
Fsolidm for designing secure ethereum smart contracts,”
in Principles of Security and Trust - 7th International
Conference, POST 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, vol. 10804 of Lecture Notes in Computer
Science, pp. 270–277, Springer, 2018.

[29] YAKINDU, “Yakindu solidity tools — the free to use,
open source yakindu solidity tools provide an integrated
development environment for ethereum / solidity based
smart contracts,” 2020.

[30] T. Weingärtner, R. Rao, J. Ettlin, P. Suter, and P. Dublanc,
“Smart contracts using blockly: Representing a purchase
agreement using a graphical programming language,”
in Crypto Valley Conference on Blockchain Technology,
CVCBT 2018, Zug, Switzerland, June 20-22, 2018,
pp. 55–64, IEEE, 2018.

Page 7401


