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Abstract 
In this paper, we examine Proof-of-Concept 

activities in the presence of Artificial Intelligence (AI). 

To this end, we conducted an exploratory, revelatory 

case study at a leading automotive OEM that 

constantly explores new technologies to improve its 

manufacturing processes. We highlight how AI 

properties affect specifics in project execution and 

how they are addressed within the focal company. We 

carved out four key areas affecting underlying 

activities, i.e., data assessment, process alignment, 

value orientation, and AI empowerment. With our 

findings, we provide practical insights into AI-related 

challenges and corresponding pathways for action. 

Drawn upon, we develop novel, timely, and actionable 

recommendations for AI project leaders planning to 

implement this novel technology in manufacturing. 

This shall provide empirically grounded and 

conceptually sound guidance for researchers and 

practitioners alike, and ultimately foster the success of 

AI in manufacturing. 

1. Introduction 

Since the first industrial revolution, waves of 

technological innovations have transformed 

manufacturing companies [1]. These changes were 

mainly driven by organizations that incorporate 

technologies to increase efficiency, improve decision 

making, or create new business opportunities [2]. 

Growing computing power and Big Data gave rise to 

AI technologies, hence it is today a fixed point on the 

agenda of many companies aiming to leverage AI in 

their respective business context [3, 4]. AI allows for 

automating functions that are vastly associated with 

the human mind, such as sensing, perceiving, 

interacting with the environment, problem-solving, 

learning, or decision-making [5, 6]. AI is a 

“misleadingly used [...] umbrella term” (p. 3), 

nowadays mainly referring to applications based on 

Machine Learning [7], and provides vast innovation 

opportunities for companies, promising to enable the 

automation of cognitive tasks. As AI advances are 

fueling the pace of automation [8], this worldwide 

trend is expected to cause great business impact for 

companies across all industries [9]. Our paper focuses 

on the manufacturing industry, where the degree of 
automation is estimated to increase from globally 10% 

to around 25% [5]. Combined with the increasing 

availability of data, this is likely to impact the 

workforce more fundamentally than the first industrial 

revolution [10]. 

However, while technological progress seems 

limitless, new applications can face new barriers and 

unprecedented challenges [11]. For instance, it is 

reported that many of the current AI initiatives fail 

[12], and that the initial hype and accompanying high 

expectations have now been replaced by a more 

pessimistic and sober view towards AI [13]. If 

manufacturing organizations intend to benefit from 

AI, they need a sophisticated understanding of the 

tools and associated challenges, e.g., to avoid the 

pitfall of underestimating its potential costs [14]. 

Hence, it is decisive to gain further insights on how to 

establish new value creation mechanisms with AI, and, 

therefore, to evaluate AI particularly in the 

manufacturing context, i.e., in terms of specific tasks, 

and compared to alternative investments [14]. In this 

gap between value expectation and value realization, 

Proof-of-Concepts (PoCs) play an important role for 

manufacturing organizations when it comes to 

engaging with new technologies and understanding 

them in their own business context. Previous literature 

revealed that the specific characteristics of AI 

challenge previous technology selection processes and 
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for successful technology implementation, companies 

need to explicitly consider the specifics of AI [15]. 

Against this backdrop, the role of PoCs changes due to 

the distinguishable technological properties of AI, 

e.g., its experimental character, black box 

characteristics, context sensitivity, and learning 

requirements [16]. Accordingly, the goal of this paper 

is to support AI project leaders in their AI PoC 

activities based on solid, empirical, real-world 

insights. For this occasion, we pose the following 

research question: How do AI properties affect the 

PoC activities in manufacturing organizations? To 

answer this research question, we conducted an 

exploratory, revelatory case study at a leading 

automotive OEM that explores AI technologies to 

improve its production processes and make them more 

efficient.  

2. Conceptual Background 

2.1 Implementing AI in Organizations 

AI is a general-purpose technology that provides 

a wide variety of potential opportunities for 

organizations. It can be characterized along the 

following properties, which research has identified 

[16]: (1) experimental character, (2) context 

sensitivity, (3) black box character, and (4) learning 

requirements. We briefly summarize them as follows: 

(1) The experimental character of AI refers to the 

outcomes of AI systems being probabilistic rather than 

deterministic, i.e., do not follow rule-based “if-then” 

structures [17]; (2) the context sensitivity refers to AI 

systems’ performance depending on the data their 

context provides to explain and predict this context 

[18]; (3) the black box character refers to AI systems, 

especially in the field of deep learning, facing 

challenges in delivering explanations to humans on 

what happens between data input and AI output [19]; 

(4) the learning requirements of AI refer to the need 

for AI solutions to learn and develop experience from 

data-based examples with the goal to improve their 

performance over time [20]. 

These AI properties are facilitated by the 

advancements in computing power and the 

pervasiveness of data (storage) [3, 4]. On the one hand 

they facilitate novel opportunities for organizations, 

on the other hand, they induce novel technology 

implementation challenges into organizations. This 

means that mere technological advancements are not 

causal to business goal achievement [21] and "while 

technology advancements may have no limit, its 

applications may encounter bottlenecks and 

unprecedented barriers” ([11], p. 69). Thus, effectively 

ensuring the fit between technologies and business 

processes in given organizational contexts makes the 

difference between an organization's success or failure 

[22]. With AI being context-sensitive, this is even 

more relevant for highly specialized environments, 

since in many cases, such as in highly specialized 

manufacturing, it is not possible to simply buy 

readymade plug-and-play AI solutions. Hence, 

understanding the technology and implementing it in 

a value-adding way is a vital capability for 

organizations. 

Research on AI implementation is nascent but 

quickly emerging. This is reflected in recent calls for 

research on how different AI technologies can be 

integrated within organizations (e.g., [5]). In the same 

vein, Loureiro et al. [23] raise the question: “[h]ow 

should organizations manage and implement AI 

systems in their organizations?” (p. 921), and Duan et 

al. [11] highlight the need to identify critical success 

factors for the implementation of effective and 

acceptable AI applications based on empirical 

evidence, which then can provide guidance for 

organizations to focus on most critical aspects. On that 

note, PoCs as an activity in the early phases of AI 

implementation projects play a particularly crucial 

role and have the potential to support organizational 

decision-makers define their AI project portfolios. 

This then also benefits investment decisions, resource 

allocation, and portfolio risk management. 

2.2 Proof-of-Concept in IS Research 

Neto et al. [24] revealed that PoC practices are 

largely under-researched in scientific literature. PoCs 

are means to demonstrate that a potential solution is 

functionally feasible [25]. In the Oxford English 

Dictionary, a PoC is broadly defined as “evidence 

(usually deriving from an experiment or pilot project) 

demonstrating that a design concept, business idea, 

etc., is feasible” ([26], p. 737). On a more abstract 

level, a PoC can be understood as a research practice 

aiming to generate new knowledge through 

experimental tests [27]. From a different angle, PoC 

activities aim to broaden problem understanding and 

provide space for scientific activities to create new 

knowledge that informs further design decisions, 

hence contribute to the future feasibility of a solution 

[25]. In this paper, we adopt the definition proposed 

by Neto et al. [24] and define a PoC as “an activity 

system […] in a socio-technical context, with the 

purpose of evaluation, understanding, validation and 

exploration, and with the aim of learning about 

technological artifacts and their phenomena under 

study by organizations and PoC practitioners” (p. 2). 
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2.3 The Need for Empirical Research on AI 

PoCs in Manufacturing 

PoCs are important for organizations for making 

sense of new (technological) opportunities. 

Organizations conduct PoCs to gain new knowledge 

and to validate new concepts, e.g., through test setups, 

simulations, or analyses. This poses a strategic 

organizational capability, which can make the 

difference between successful and failing companies 

in volatile, uncertain, complex, and ambiguous 

environments [28]. When it comes to making sense of 

AI, it is important to consider that the unique AI 

properties require novel considerations prior to its 

implementation in business processes. It can therefore 

be assumed that, within AI PoCs, other or adapted 

activities need to be addressed, which then lead to 

relevant knowledge on AI-specific aspects. 

Based on the introduction of AI properties in the 

prior section,we present a high-level reasoning of how 

these properties affect PoCs, which is further 

empirically substantiated in this study: First, AI is 

context-sensitive, which imposes the need to rethink 

PoCs, moving from a merely technical feasibility 

perspective to one that accounts for the organizational 

embedding. Second, AI has learning requirements as 

AI algorithms are trained rather than programmed. 

This leads to a shift in risk distribution over time as 

once all the data is gathered, cleaned, and fed into the 

algorithmic models, a large share of the project effort 

is already done. This requires novel approaches for 

designing, scoping, and timing PoCs for AI. Third, this 

largely relates to the experimental character of AI, 

which means that non-deterministic results are 

produced in a manner of probabilism. This changes the 

notion of PoCs from “this system works” to “this 

system likely works”, which imposes novel challenges 

on project (portfolio) planning, risk, and stakeholder 

management. Hence, the advent of AI with its novel 

properties imposes novel PoC implementation barriers 

on organizations. ID01: “[T]his high uncertainty at 

the beginning as well as low success rates are such a 

main differentiator [of AI PoCs]” 

However, so far there has been no sound and 

empirically grounded research on PoCs for AI 

implementation in manufacturing organizations. 

Therefore, we examine the cause-effect relationships 

of AI characteristics and the AI PoC activities in the 

context of manufacturing. 

3. Research Design: In-Depth Case Study 

Our research aims to identify AI-induced PoC 

activities – a new phenomenon in a contemporary real-

life context. Therefore, a single case study sets a 

suitable foundation [29, 30]. We engaged in an 

exploratory qualitative case study by conducting semi-

structured interviews within a leading global original 

equipment manufacturer (OEM). Such an approach is 

suitable given the novelty of the topic, lack of theory, 

and its relevance for practice. By selecting an industry 

leader, we aim to base our research insights on a 

revelatory case foundation. In doing so, we also 

account for the context-dependence of PoC activities 

in AI implementation projects. 

3.1 Case Selection 

The manufacturing context of an automotive 

company is suitable for this research due to the 

topicality of the subject in the industry. For example, 

Winkler et al. [13] conclude that automotive 

companies are still facing AI implementation 

challenges and strive to deduce business value from 

PoCs. Automotive companies are under constant cost 

pressure and consistently strive to improve their 

manufacturing efficiency. As a result, tinkering and 

making sense of emerging technologies is a constant 

imperative for staying competitive in the automotive 

industry. In the German-speaking area, the latest 

technological movement is referred to as ‘Industry 

4.0’ and describes “primarily IT driven [...] changes in 
manufacturing systems” ([31], p. 241). 

We seized the unique opportunity to collect our 

data in the context of a leading global automotive 

OEM (Original Equipment Manufacturer) that we 

refer to as ‘Automotive AG’. The case company has 

already successfully deployed AI as well as employs 

AI experts and data scientists. Moreover, Automotive 

AG stands on the edge of implementing AI-based 

Computer Vision in its manufacturing context on a 

larger scale. A recent study shows that practitioners 

assess the use of AI-based Computer Vision for, e.g., 

visual quality control, as both highly realizable and 

highly valuable [32], what we acknowledge in our data 

collection strategy. 

3.2 Data Collection and Analysis 

The research team had comprehensive access to 

company data which enabled the use of multiple data 

sources, as well as triangulation of findings during 

data analysis. Data sources included on-site visits, 

interviews, and observations (within heterogeneous 

groups), secondary data (e.g., internal presentations, 

and public statements), as well as domain expertise 

within the research team. 

All interviewed practitioners were involved in at 

least one AI PoC thus could provide first-hand 

information. Altogether, the experience of the 
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interviewees spans a multitude of cases within the 

situated organizational context. As summarized in 

Table 1, we purposefully selected three cases in detail, 

as well as a collection of early AI PoC ideas to allow 

for a high level of variation between AI PoC cases. 

Furthermore, the cross-case analysis of distinct AI 

PoCs bases our empirical research insights on a 

broader conceptual basis. 
 

Table 1. Scope of focal AI PoCs 
#1 – Crack detection 

Implementation of a prototype to detect cracks on deep-drawn parts in the 

press line using Convolutional Neural Networks (CNN) to assist workers and 

reduce manual effort. 

#2 – Welding point quality inspection 

Integration of a condition monitoring system based on Supervised Learning 

algorithms that analyzes various sensor data to detect quality problems and 

optimize welding parameters of robots. 

#3 – Tire information readout 

Building a prototype to localize labels on vehicle tires using CNNs, and 

processing information using state-of-the-art Optical Character Recognition 

(OCR) algorithms to document information according to legal requirements. 

#4 – Early AI PoC ideas 

Exploration of further use case ideas at an early AI PoC stage. This particularly 

refers to the implementation of AI-based Computer Vision solutions, mainly 

in the field of quality assurance. 
 

We conducted 12 semi-structured interviews with 

experts on the four focal AI PoC cases (see Table 2). 

Conducting the interviews allowed for a natural flow 

and to adapt the conversation to emerging themes. All 

interviews were conducted by the authors. To 

substantiate our data collection, we participated in 

several PoC meetings and reviewed case documents 

made available before and after the interviews. 
 

Table 2. Overview of data collection 
ID Position # Focal AI PoCs Duration 

1 2 3 4 

01 ML Engineer x x   65 min 

02 Data Scientist   x  60 min 

03 Data Analyst x x   70 min 

04 Product Owner x    135 min 

05 Product Owner  x   30 min 

06 Data Scientist  x   60 min 

07 Digitalization Expert    x 60 min 

08 Data Analyst   x  50 min 

09 Technology Manager x x x  55 min 

10 Technology Expert    x 55 min 

11 Technology Expert   x x 55 min 

12 Digitalization Expert    x 75 min 

Total 12 h 50 min 

#1 – Crack detection 

#2 – Welding point quality inspection 

#3 – Tire information readout 

#4 – Early AI PoC ideas 
  

Our data analysis followed a three-step coding 

process [33] that comprised (1) open coding, (2) axial 

coding, and (3) selective coding to elaborate on the 

effects of AI properties on AI PoC activities at 

Automotive AG. In the (1) open-coding stage, codes 

emerged through case write-ups and summaries which 

were used to condense the transcripts to obtain an 

initial overview of all case data [30]. In the (2) axial 

coding stage, the research team condensed all data 

based on recurring themes. Finally, (3) selective 

coding allowed to sharpen the focus on AI PoC 

challenges at Automotive AG. To analyze and manage 

the collected data systematically, we used ATLAS.ti 

as our qualitative data analysis software. During 

coding, the research team triangulated the insights 

with obtained results from analyzing the internal (e.g., 

internal presentations) and external (e.g., public 

statements) case material. In cases of disagreement, 

the research team could reconnect with the 

interviewees to validate its findings, or to gather 

additional case materials. 

4. Case Study Results: Tackling 

Challenges of AI PoCs at Automotive AG 

4.1 Case Background and Drivers of AI PoCs 

at Automotive Corp 

Automotive AG’s customers can individualize their 

vehicles and select amongst a wide range of optional 

features such as autonomous driving functions. This 

individualization leads to increasing product 

(portfolio) variance, which Automotive AG must 

handle in its manufacturing context. To operate 

efficiently in this increasingly complex context, 

flexible automation solutions and the digitization of 

products and processes are decisive competitive 
factors. For this reason, Automotive AG nowadays 

heavily explores data-driven technologies such as AI. 

To test and prove how to deploy AI technologies in a 

value-adding manner into manufacturing, PoCs are an 

essential means at the focal company, as they facilitate 

the creation of organizational knowledge, build 

relevant AI skills, and validate potential use cases at 

an early stage. Hence, AI PoCs enable Automotive AG 

to conduct more accurate cost estimations, and to build 

a value-oriented AI portfolio. For Automotive AG, 

developing and testing novel technologies such as AI 

in PoCs before deploying them in high-performance 

manufacturing environments is a critical capability 

and competitive differentiator. 

4.2 Challenges in the Implementation of AI 

PoCs at Automotive AG 

In this section, we present four identified clusters 

of AI PoC challenges (data assessment, process 

alignment, value orientation, and AI empowerment) 

and the respective counterstrategies (pathways for 

action) derived from the analysis of the Automotive 

AG case (see Table 3). We further map our findings to 

the related AI properties that induce the AI PoC 

challenges: experimental character (E), black box 
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characteristics (B), context sensitivity (C), and 

learning requirements (L). In doing so, we provide 

empirical evidence on why and how these challenges 

formed. In the following subchapters, we elaborate on 

the pathways for action with reference to our case. 
 

Table 3. Challenges and Pathways for Action 
AI PoC challenges 

(related AI properties) 
Pathways for action in AI PoCs 

Data assessment 

Infrastructure and 

automation (L) 

- Deploy a digital platform to harmonize data 

from all manufacturing sites 

- Implement a detailed process model for 

collecting data in a reproducible manner 

- Use data checklists as self-assessment tools to 

identify blind spots early 

- Use synthetic data to train algorithms 

- Qualify a team of internal factory workers as 

full-time data annotators 

Data collectability (L) 

Data labeling (C) 

Process alignment 

Problem-centricity (B) - Embed the PoC in an existing production 

business scenario (e.g., consider lean principles) 

- Analyze the processes before getting started 

- Involve AI experts early in the PoC definition 

phase in a consulting role 

Business process 

mapping (C) 

Mathematical problem 

definition (E) 

Value orientation 

Use case simplification 

(C) 

- Define the actual technical-mathematical 

question or hypothesis to be retrieved  

- Deploy agile project management principles 

- Adapt a comprehensive guide for potential 

customers to understand the metrics used to 

evaluate the algorithms in place 

Business case 

unpredictability (E) 

Success metrics (E) 

AI empowerment 

Demystification (B) - Offer AI training on an organizational level 

- Present and discuss use cases in tech talks 

- Create a common understanding of AI right in 

the definition phase of the AI PoC 

- Involve subject matter experts early 

- Install innovation hubs 

- Explore AI under near-production conditions 

Customer enablement 

(L) 

Capability building (B) 

E - experimental character; B - black box characteristics; C - context 

sensitivity; L - learning requirements 

 

4.2.1 Data Assessment. First, learning requirements 

of AI induce a challenge in the realm of infrastructure 

and automation. Ten interviewees stated that the lack 

of automated solutions for ingesting streaming or 

batch processing data from relevant sources is a 

challenge, and to make it accessible through a 

centralized storage, e.g., data lake. In the crack 

detection case (#1) it became obvious, during the 

collection of images showing cracked parts to train an 

algorithm, that creating an image dataset by hand was 

not manageable and would have resulted in an 

excessive workload. ID04: “Even if the images are on 

a drive and you must take them somewhere else for 

labeling or processing, which can be very time 

consuming, you realize more and more that it is 

absolutely necessary that everything in the data 

acquisition is automated: from image capturing to 

storing examples in a database […] and because of all 

this data handling, it happens often that you suddenly 

have duplicates in there.” Automotive AG solved this 

challenge by developing a dedicated manufacturing 

cloud platform to harmonize data from all global 

manufacturing sites. This platform is used as 

technological basis for most of the analyzed use cases 

and made it possible to combine data from various 

domains for complex automation ideas. Second, the 

learning requirements of AI induce data collectability 

challenges. This refers to the need for data to be 

technically collectable from the manufacturing context 

to conduct an AI PoC. As stated by ID03, manual 

processes cannot be automated without implementing 

data acquisition tools such as cameras to capture the 

required images for training AI algorithms: “So from 

that point of view, data quality and data availability 

are clearly an issue because otherwise I can't perform 

a PoC in the simplest case. If I can't access the data 

and if it's not available to me then it won't be in a later 

industrialized state either.” In many cases, the first 

step in a successful AI PoC is therefore not to train a 

deep-learning model, but to set up and deploy the tools 

required for collecting the dataset. Even when data can 

be captured from a technological perspective, the 

specific characteristics of industrial data can be 

challenging. On the one hand, the possibility of a 

customer-specific configuration of the products leads 

to high product variability and complexity in 

production. On the other hand, high standards of 

manufacturing mean that datasets are often highly 

skewed with very few examples of damaged parts. 

This makes it difficult to map all possible part variants 

and assembly situations in the training data of the 

algorithm. As modern production systems strive for 

zero-defect production, the appropriate composition of 

the data set must therefore be carefully planned and 

already considered in the PoC to estimate the 

robustness in series production at an early stage. ID04: 

“That's why the data set should be so diverse that it is 

precise enough for the application that you actually 

want to implement later, so that you can judge quite 

well whether it meets the requirements or accuracy 

that the process needs.” The myriad options for 

vehicle customization can further slowdown the 

process to collect representative datasets. ID12: “We 

also have exotics, where parts are only installed every 

few thousand vehicles and if you want to store exactly 

such an installation condition with maybe 20 images 

each, then you will have a hard time getting exactly 

these images […] to exaggerate, if you can get the AI 

algorithm to work properly with additional 10 training 

examples for a new part, then it is feasible. However, 

if you need 50.000 images for each new variant, then 

the question really is where to get the 50.000 images 

from?” To resolve this challenge, Automotive AG 

implemented a detailed process model to ensure that 

data for AI PoCs are collected in a reproducible 

manner. A checklist, which is used as a preliminary 

self-assessment tool for new PoCs estimates the 
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suitability of the available data to train robust 

algorithms. ID06: “If a dataset is specially prepared 

for the PoC, then the reproducibility is often 

questionable. Therefore, we have defined a 

comprehensive checklist to query relevant criteria 

upfront.” Furthermore, to handle the problem of long-

lasting data gathering new state-of-the-art methods to 

train deep neural networks get investigated. One 

promising method is the use of synthetic data to train 

algorithms. By using sophisticated digital rendering 

tools, training images are generated from CAD 

images. This decreases the need for real world image 

gathering. Third, we observed a data labeling 

challenge that is rooted in the context sensitivity of AI. 

As the AI output is only as good as the data the context 

provides, this directly links to data quality. Data 

labeling can often be outsourced to third-party 

suppliers if generic problem solving is needed, which 

does not require extensive domain knowledge. One 

prominent example is street-scene segmentation, 

which is needed for Autonomous Driving tasks. In the 

case of Automotive AG, labeling very specific 

manufacturing datasets requires profound knowledge 

and experience of the domain’s context, because, e.g., 

material defects can be hard to spot for an untrained 

observer. Consequently, labeling the images by 

domain experts results in a higher quality of the 

dataset. ID04: “It was a huge effort [in our PoC] to 

look through all the images. I had to exactly explain to 

the labeler how to label the images. One could see a 

difference in data quality because the labelers were 

from our press-shop and had extensive knowledge of 

the process.” From a different stance, labeling images 

by domain experts can lead to quality issues if they 

must fulfill the labeling tasks beside their main duties, 

which are critical for keeping operational production 

lines running. ID04: “I once had the data labeling 

done by my colleagues from the technology 

department. The labeling was not very consistent. 

Some images were labeled very detailed and others 

very rough. Also, there were things labeled which 

were actually no cracks at all.” To resolve this 

challenge, Automotive AG qualified a large team of 

internal factory workers as data annotators. The 

internal labeling team consists of domain experts with 

years of work experience in the manufacturing 

industry. This ensures that the context sensitivity 

aspect of AI PoCs is addressed. Data quality is further 

ensured by including expelled domain experts in the 

labeling process to perform quality checks. Before 

sending a labeling assignment to the internal labeling 

crowd a detailed labeling guide is created in an 

iterative manner. For that purpose, a draft labeling 

guide together with a data-subset – the so-called “gold 

standard” – gets send to multiple experts. Next, 

relevant metrics are calculated automatically based on 

the consensus of the experts. If metrics are not met yet, 

the labeling guide gets refined. This process runs 

iteratively until the required quality is achieved. 

 

4.2.2 Process Alignment. First, we find that problem-

centricity is key to motivate AI PoCs. This is rooted in 

the black box characteristics of AI. People tend to 

initiate PoCs for the sake of promoting a novel 

technology, which is particularly significant in view of 

the AI hype. ID03: “So I think you have to put the 

brakes on the hype a bit and simply question again 

whether everything really has to be solved with AI.” 

The hype-induced bounded rationality needs to be 

mitigated in AI PoCs by embedding it in a clear and 

realistic business scenario. Our case context shows 

that in the field of image recognition and Computer 

Vision, the use of camera and sensor technology is 

often sufficient. Therefore, Automotive AG is 

challenging the necessity of AI systems in this area 

and, so to speak, puts AI into competition with classic 

approaches during a PoC. ID04: “You don't deploy AI 

for the sake of AI, because in the end it's just a means 

to reach the goal what should always be in the 

foreground of such a PoC – to have a goal that you 

want to achieve or a problem that you want to solve. 

And the AI is then only a means to an end.” One 

success factor that was frequently mentioned during 

the case interviews is that motivation must come from 

a concrete problem. PoCs that focus on AI (and often 

prominently feature the term “AI” in their project title) 

are often questionable. Here, valuable problem-

solution pairs need to be developed, challenged, and 

validated in terms of feasibility. In the manufacturing 

context, lean principles are therefore still essential and 

process orientation is the basis to define AI-

appropriate problems. To resolve this challenge, 

Automotive AG uses the early AI PoC phase to 

substantiate the suitability assumption for an AI 

technology in view of both the given context and the 

intended objectives. ID03: “Detecting cracks in the 

press shop is a very old topic. It's been around for tens 

of years and a wide variety of technologies has already 

been tested, but the technological limits to date have 

always been reached relatively quickly. From that 

stance, the idea arose that we could try out whether AI 

can really recognize these cracks automatically.” To 

this end, work is carried out from the outset in 

heterogeneous teams comprising domain experts and 

AI technology experts, keeping in mind the principle 

that is reflected in ID10: “So I see added value for 

production less in the AI itself and more in the use 

cases that then improve production. You don't solve 

any problems with pure AI itself.” Second, we could 

observe in all PoCs that we investigated at Automotive 
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AG that the context sensitivity of AI makes a rigorous 

business process mapping inevitable. In contrast to 

Big Data Analytics (where the focus is on gaining 

knowledge from data), AI capabilities allow for 

automating complex tasks and processes. Therefore, it 

is important to first make sure that there is a formal 

understanding of the process itself – what inputs get 

passed into a process and how these get processed to 

form an output. In some cases, formal process models 

do not follow the actual practice, as manufacturing 

processes get optimized over time without detailed 

documentation. Then, it is important to properly 

record the process first before approaching the use of 

AI. ID08: “I would have looked at the entire process 

from front to back and then said if the process is not 

followed, then an AI will not solve your problem. So, 

you first must get the process clean. And if the claim is 

still that we're not getting anywhere here, then you can 

think about some AI or camera or something.” To 

resolve this challenge, Automotive AG encounters the 

necessity to first put a particularly strong focus on 

processes analysis. By requiring distinct information 

from the outset, e.g., what are process inputs for 

decision making and what are the outputs, it can be 

ensured that the process gets formalized properly, 

hence the future AI assisted process can be 

implemented successfully. Third, we encountered the 

need for successful AI PoCs to be translated to a 

mathematical problem definition. This is rooted in the 

experimental character of AI, which requires the 

problem to be described in quantitative terms. This is 

especially tangible in the field of Computer Vision. If 

the task is to identify parts, then the problem can be 

described as a classification task. If the task is to locate 

paint defects on a car body, then one could map the 

problem as a segmentation- or localization task. ID06: 

“Basically, the business problem must first be 

translated into an analytical question, and then, of 

course, the question whether the available data is 

fundamentally suitable for the purpose and whether it 

is available in the required quantity and quality has to 

be resolved.” This problem definition is crucial to 

various other fields as apparent in the quote above. Not 

only is the algorithm choice dependent on how the 

problem is described but also the collection and 

annotation must be aligned. To resolve this challenge, 

Automotive AG encountered the need to involve AI 

experts early in the stage of AI PoC definition in a 

consulting role. This ensures that user stories for new 

AI PoCs are described in a way which is 

comprehensible for Machine Learning Engineers. 

Also, problems are subdivided into discrete categories 

to further streamline the evaluation process.  

 

4.2.3 Value Orientation. First, there needs to be a 

sound decision-making regarding the right level of use 

case simplification within the AI PoC. This is 

especially relevant as the context sensitivity of AI 

requires organizations to decide how to simplify 

complex manufacturing tasks and processes for the AI 

PoC to avoid the cost of a full-scale productive 

solution on the one hand, but on the other hand to be 

able to make a statement about the technical 

feasibility, i.e., to grasp relevant data about the task at 

hand and its contextual factors to account for 

transferability of PoC insights to a live deployment. 

ID01: “Of course, one cannot say ex-ante without 

having to spend time and effort, whether an idea really 

can be implemented with given requirements. So, I 

basically can't really get around data annotation, and 

I also must think about what is state of the art, and 

which algorithms are suitable. And that means it is 

important to implement the PoCs at a certain level of 

maturity.” To resolve this challenge, Automotive AG 

puts great emphasis on defining the actual technical-

mathematical question or hypothesis to be retrieved 

within the PoC. ID01: “In any case, it makes sense to 

really ask yourself at the beginning of the PoC what 

might be these critical aspects which I want to 

challenge or proof? Sometimes, I perceive a mindset 

like how to make a PoC as pleasant as possible or how 

to make it a success in any case? PoCs which 

primarily act as a marketing tool tend to focus on 

fancy looking UI or some sort of interactivity. This 

might be great for the short term, but likely not useful 

to solve the actual AI question.” Second, the business 

case unpredictability is rooted in the experimental 

character of AI. As a result, the business case is not 

deterministically predictable before the PoC. Even 

after completion, it is usually not possible to make a 

conclusive statement, as the future algorithm 

performance can only be roughly estimated. 

Furthermore, the effort to rapidly integrate evolving 

technologies into a stability-centric IT landscape can 

provoke unforeseen costs. ID04: “Because although 

we knew that the current non-AI solution did not work 

well, we did not know exactly how high the costs 

incurred would be. So, part of the PoC was to 

determine this in collaboration with the Controlling 

department. In addition, it was important to have a 

certain basic understanding of AI, to estimate the 

effort to further tune the algorithm for a company-

wide scaling.” To resolve this challenge, AI projects 

at Automotive AG are developed in an agile manner, 

especially in early phases. User stories in the 

beginning of an AI PoC typically focus on quantifying 

the business case. The results can then be used to 

derive performance requirements for an algorithm. 

User stories in a later stage can then customize the 
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requirements for data acquisition and algorithm 

development. Third, the experimental character of AI 

requires a definition of success metrics with a strong 

mathematical focus. In contrast to other PoCs, success 

in AI projects is not immediately tangible. In many 

interviews, it became clear that defining the 

mathematical metrics and interpreting them is a 

challenge. To assure that the anticipated value also 

transfers to the real manufacturing context, the context 

sensitivity of AI requires the definition of a metric that 

is transferable to the actual problem context. This 

transferability challenge between measuring success 

in the PoC phase and later project phases is 

emphasized by ID01: “Evaluating AI PoCs is not 

trivial. The performance metrics can be difficult to 

understand. Especially in the field of Computer Vision 

you need to make sure that customers understand how 

exactly you evaluate whether an algorithm is working 

properly. This ensures that it meets their individual 

requirements.” To resolve this challenge, Automotive 

AG produced a comprehensive guide for potential 

internal customers on how typical AI PoC metrics are 

calculated. This ensures that there is a common ground 

of understanding between AI experts and the domain 

experts when evaluating PoCs. 

 

4.2.4 AI Empowerment. First, we found that due to 

the black box characteristics of AI, and the fuzziness 

of the AI term, there is a fundamental need for 

demystification of AI across the organization. This is 

also reflected in our case context, which reveals that 

“[t]he main problem is that most people don't know 

whether AI can work or not. Many also have far too 

high expectations. Many don't even know what it can 

do, and some think it can do everything and automates 

itself” (ID02). At Automotive AG, it is therefore 

important to convey a basic understanding of AI as a 

digital technology in a still very physical production 

environment. This enables employees to set proper 

expectations for AI. At Automotive AG, therefore, on 

an organizational level, different AI training courses 

are offered to the employees according to their level of 

knowledge, and use cases are presented and discussed 

in technology talks. During AI PoCs, technological 

empowerment of involved stakeholders is ensured. 

ID11: “In a common PoC you physically install a 

system to try whether something works. What makes it 

special for me in the presence of AI is that, if you think 

of image processing, you don't see the actual AI that 

runs behind it.” To resolve this challenge on a project 

level, it is essential to create a common understanding 

of AI as early as the definition phase of the AI PoC to 

leave no room for speculation and to place the project 

on a technically sound basis. Consequently, the fuzzy 

term gets more tangible and trustworthy. ID04: 

“Although I think it is always important to involve 

people, it is especially important for AI. The special 

thing about AI is that people understand it in very 

different ways, and sometimes have very wild ideas. I 

always came up with a few standard answers to 

explain to them what AI can do. In other words, to 

explain it in one or two sentences, always in a very 

basic way.” Second, due to the AI learning 

requirements, a higher rate of customer involvement 

in technical tasks is required in AI PoCs, what relates 

to customer enablement. As it is the goal in an AI PoC 

to digitize human intelligence and collective 

knowledge, the department of the internal customer 

must take on important tasks for this. This includes, 

e.g., to actively participate in data annotation, and to 

describe the focal processes. A key success factor here 

is a basic understanding of AI learning requirements 

on the part of the context specialists so that the 

importance of qualitative data and how labeling 

influences the algorithm quality becomes 

comprehensible. ID05: “So to speak, the 

democratization, i.e., to bring that AI knowledge into 

the field and explain it in simple language to people 

who are non-specialized in AI. That's a big 

challenge.” To resolve this challenge, Automotive AG 

involves subject matter experts at an early stage of an 

AI PoC, who stand by as advisors as the use case 

progresses. ID04: “So it helped a lot to have an AI 

expert tell me what is feasible with AI, to get an 

understanding of what is feasible and what is rather 

unrealistic. Of course, it was helpful that I was able to 

assess this so that I could explain it to people who are 

even further away from AI.” Third, the black box 

characteristics of AI require internal capability 

building to be able to evaluate the AI technology 

potential for the corporate application context, and to 

assess its value in comparison to other technologies. 

This challenge is multiplied by both a lack of 

platforms and infrastructure, and a lack of internal 

Machine Learning skills, and difficulties of accessing 

talent on the market. Against the backdrop of the AI 

hype, it is important to be able to estimate expenses 

associated with AI and to be able to evaluate AI in 

comparison to other solutions; often even "classic" 

data analysis tools offer great added value so that one 

does not necessarily need to ‘shoot at a sparrow with a 

cannon’. This is brought to the point by ID03: “From 

my point of view, we simply have to gather experience 

now and then also be able to categorize all these 

requests that we are currently receiving from the 

manufacturing areas – whether it really makes sense 

to solve such a problem with AI or not, whether 

something is basically feasible or not.” To resolve this 

challenge, the Automotive AG has installed 

innovation hubs, which explore AI among other data-

Page 6858



based technologies, and explore and test the 

technology under near-production conditions. ID09: 

“By analogy with ‘don't trust any statistics that you 

haven't falsified yourself’, I would state today ‘don't 

trust any AI PoC that you haven't set up yourself.’” 

5. Recommendations for Action 

Based on the case findings, we provide four 

actionable recommendations for project leaders who 

plan to realize AI PoCs in the manufacturing context: 

Prepare the manufacturing organization for 

data utilization at scale. Encountering data 

assessment challenges requires manufacturing 

companies to provide a connected data infrastructure 

and establish data governance that allows for data 

collectability. Moreover, qualitative training data was 

rated higher for project success than tuning the 

algorithm, as evidenced by the large portion of 

challenges identified in this domain. 

Thus, project leaders should induce the necessary 

changes into organizational structures and IT 

landscapes through top management buy-in. Two 

areas in particular stand out here. First, the deployment 

of a manufacturing data platform for collecting data 

from different production plants in a harmonized and 

consistent manner are advisable to facilitate efficient 

and effective AI PoCs. Second, decision makers 

should establish a domain-focused labeling team – 

preferably from internal sources – to ensure a high 

standard of data quality.  

Make complex manufacturing processes 

transparent and upskill yourself. Encountering 

process alignment challenges requires manufacturing 

companies to take a process-oriented approach to 

problems, which, after process recording, ultimately 

enables a mathematical problem definition. 

Thus, project leaders should question the 

contextual problem with the greatest care in the early 

AI PoC phase and incorporate AI experts early to 

ensure the problem transfer into an AI-appropriate 

structure. Therefore, the project manager should have 

contextual understanding of manufacturing and 

acquire basic knowledge of state-of-the-art AI 

technologies to moderate between the parties in cross-

functional teams. 

Ensure value orientation by establishing a PoC 

Takeoff and Landing checklist. Encountering value 

orientation challenges requires manufacturing 

companies to manage an AI portfolio, which covers 

scalable AI solutions and strategically relevant 

manufacturing aspects, based on vague assumptions 

that stem from AI PoCs. 

Thus, project leaders should promote the agile 

project procedure in AI PoCs and define start and stop 

criteria that are regularly adjusted to the AI portfolio 

strategy. The three focal areas of this list should be (1) 

the presence and formulation of quantitative success 

metrics (2) termination criteria and (3) the critical 

aspects which the AI PoC wants to prove. Project 

leaders should draw particular attention to the third 

aspect and assess which individual characteristics of 

their company context could hinder the success of the 

AI idea. 

Use AI PoCs as a communication instrument to 

educate and empower the manufacturing 

organization. Encountering AI empowerment 

challenges requires manufacturing companies to send 

a clear signal to its employees that they want to make 

AI accessible to them and that everyone can make an 

important contribution to its use. 

Thus, project leaders should ensure that their AI 

prototypes get communicated so that the AI 

phenomenon becomes tangible across the organization 

– following the principle “show don't tell”. Especially 

in the physical manufacturing context, it is valuable to 

promote AI "in action" to explore new application 

ideas in discussion with domain experts or even to be 

able to scale one's own project. 

6. Concluding Remarks  

In this study, we empirically identified challenges 

in AI POCs in the context of a manufacturing 

company. Our results illustrate how the specific 

characteristics of AI give rise to these challenges. 

Based on that we provide four recommendations for 

building PoCs successfully in manufacturing contexts: 

(1) prepare the manufacturing organization for data 

utilization at scale, (2) make complex manufacturing 

processes transparent and upskill yourself, (3) ensure 

value orientation by establishing a PoC Takeoff and 

Landing checklist, and (4) use AI PoCs as a 

communication instrument to educate and empower 

the manufacturing organization. Our study has 

highlighted opportunities of AI PoCs in the 

manufacturing context. Even within technology-savvy 

organizations there is still a bridge to gap when 

implementing and scaling AI solutions, which should 

encourage further research to contribute to this 

emerging and increasingly relevant stream of research. 
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