
Fog and Edge Oriented Embedded Enterprise Systems Patterns: Towards

Distributed Enterprise Systems That Run on Edge and Fog Nodes

Hamish Sadler

Queensland University of Technology

Hamish.Sadler@qut.edu.au

Alistair Barros

Queensland University of Technology

Alistair.Barros@qut.edu.au

Wayne Kelly

Queensland University of Technology

W.Kelly@qut.edu.au

Abstract
Enterprise software systems enable enterprises to

enhance business and management reporting tasks in

enterprise settings. Internet of Things (IoT) focuses on

making interactions possible between a number of

network-connected physical devices. Prominence of IoT

sensors and multiple business drivers have created a

contemporary need for enterprise software systems to

interact with IoT devices. Business process

implementations, business logic and microservices have

traditionally been centralized in enterprise systems.

Constraints like privacy, latency, bandwidth,

connectivity and security have posed a new set of

architectural challenges that can be resolved by

designing enterprise systems differently so that parts of

business logic and processes can run on fog and edge

devices to improve privacy, minimize communication

bandwidth and promote low-latency business process

execution. This paper aims to propose a set of patterns

for the expansion of previously-centralized enterprise

systems to the edge of the network. Patterns are

supported by a case study for contextualization and

analysis.

1. Introduction

Enterprise systems facilitate the integration and

extending of business processes and workflows among

different business functions within an organization and

between multiple organizations [1]. With focus on

satisfying the needs of an enterprise, enterprise software

systems cover a wide range of functionality like project

management, online payments, business process

management and enterprise content management [2].

The Internet of Things (IoT) focuses on making

interactions between a number of network-connected

physical devices possible via wireless data

communication over the Internet as a global

communication medium [3]. Social graph analysis and

management, big data, and cloud data management,

ontological modeling, smart devices, personal

information systems, and non-functional requirements

such as location-independent response times, security

and privacy are some of the typical challenges and

concerns of IoT architectures [4]. Security and privacy

in IoT with concerns like object identification,

authentication and authorization, software

vulnerabilities and backdoor analysis as well as malware

remain some of the most important issues to address [5].

Edge computing is a computing paradigm in which

data is processed at the edge of the network where most

data is generated [6]. As opposed to cloud computing,

this paradigm helps address issues and limitations like

time sensitivity and data volume [7].

Low latency requirements, network bandwidth

constraints, resource-constrained devices and

uninterrupted services with intermittent connections

have all been cited as some of the architectural

challenges that have led to the concept of “fog

computing”. In fog computing, rather than relying upon

centralized cloud or the processing power of edge

devices, computation, communication, control and

storage responsibilities are handled by fog nodes that are

closer to the edge of the network [8]. Fog computing has

the characteristics of low latency, location awareness,

geographic distribution, end device mobility, capacity

of processing high number of nodes, wireless access,

real-time applications and heterogeneity [9]. Fog

computing has been cited to be useful for healthcare,

urgent computing, smart energy grids, vehicular fog

computing and Vehicular Ad-hoc Networks(VANET),

smart environments, augmented reality, brain machine

interface and gaming [10]. One important aspect with

fog computing is the fact that with many heterogenous

devices joining and leaving fog networks openly, they

create huge and high-frequency volumes of data [11].

This aspect brings up a range of interesting challenges

when integrating IoT in enterprise systems on a fog

network.

In a traditional sense, the interactions of enterprise

systems with IoT devices have been treated mostly

under “integration of IoT with enterprise systems”. In

this paradigm, enterprise systems mostly reside

centrally on-premises or in the cloud and somehow

interact with IoT devices using some middleware or IoT

gateway. Some of the same architectural concerns like

low latency, high data volumes and frequency, security

and privacy that drove the concept of fog computing can

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 6541
URI: https://hdl.handle.net/10125/80132
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

mailto:Hamish.Sadler@qut.edu.au
mailto:W.Kelly@qut.edu.au

also be drivers to take a different approach to designing

enterprise systems that are heavily integrated with IoT

devices. Most importantly, in this paradigm, business

logic and microservices can be pushed to fog and edge

nodes which helps address some of these common

concerns. This paradigm leads to the need for proposing

a set of architectural patterns focused on pushing

enterprise systems all the way to the edge of the network

under the concept of “embedded enterprise systems”, a

field left partially unattended in the literature.

Aligned with the move towards distributed

embedded enterprise systems, this paper tries to provide

a non-exhaustive list of architectural design patterns that

could help systemize common solutions to common

problems faced during this architectural shift. It also

tries to articulate the trade-offs between the gains and

the losses of such transition.

This paper includes six sections. Section 2

describes the architectural paradigm shift from IoT-

integrated enterprise systems towards embedded

distributed enterprise systems around a case study.

Section 3 discusses previous work. Section 4 presents a

list of patterns for the design of embedded enterprise

systems. Section 5 presents a discussion on the design

trade-offs between centralized and distributed

embedded enterprise systems and finally, Section 6

includes a conclusion.

2. Research Domain and Method

Conventional development paradigms of enterprise

systems have traditionally relied upon some underlying

technologies and concepts like Business Process

Management (BPM), Information Integration and

Interoperability, Enterprise Architecture and Enterprise

Application Integration and Service-Oriented

Architecture (SOA) [1]. However, Internet of Things

enabled sensors and internet-connected devices at

masses have created an environment where a huge

volume of data can be collected from the environments

in which such enterprise systems operate. In an era of

high-frequency and private big data where the volume

of the data generated, collected and sensed by various

devices is more than the amount that can be processed,

for enterprise systems to evolve into their next

generation, their design has to also evolve. Examples

include hospital patient management systems that can

receive live patient status monitoring data directly from

patient-connected sensors, school/student management

systems that receive attendance and student entry/exit

notifications from IoT sensors or mobile devices, power

grid management systems that receive status updates

from IoT sensors, enterprise procurement systems that

receive live updates from IoT sensors alongside the

delivery or procurement pipeline or manufacturing

management systems that receive live updates from a

range of sensors for purposes like efficiency and

predictive repair management. While residing in the

cloud or on-premises, a traditional IoT-integrated

enterprise system may interact with IoT devices through

an IoT gateway and an edge tier, as illustrated in Figure

1. However, a range of architectural concerns like high

volumes of data, challenges with transferring such

volumes of data to the central enterprise systems

combined with the needs to filter, refine and find

patterns in the sensed data as well as tight privacy

requirements require a new way of thinking in designing

future-focused enterprise systems where at least parts of

the core business logic can run closer to the edge of the

network. This evolution of architecture has been

illustrated in Figure 1.

IoT
Gateway

Tier

Centralized
Enterprise

System

Edge
Tier

IoT
Devices

Cloud Cloud

FOG
Nodes

Edge
Nodes

Centralized
Enterprise

System

Microservices

Figure 1 Evolution from IoT-integrated enterprise

systems (left) to distributed embedded enterprise

systems that run on fog and edge nodes (right)

In contrast to typical cloud-based designs, this new

style of building embedded enterprise systems is driven

by a range of architectural concerns. Such concerns

include security and privacy covering the storage of data

on edge and fog nodes as well as the communication of

data from such edge and fog nodes back to the core

enterprise system. Private or sensitive data may be

collected and handled and communicated by such nodes

and without provisions in place, this can lead to

unauthorized disclosure of such data or security

breaches. Some of the basic security and privacy

constructure like authentication, data integrity, non-

repudiation and authorization have to be devised and

thought of before being able to break down an enterprise

system to run on edge and fog nodes. There are also

concerns that unlike cloud-hosted resources, fog nodes

may not be maintained under tight-enough physical

security protocols [10, 12, 13] making this evolution

even further challenging. Performance is another

architecture concern that has to be taken into account.

This covers aspects like limited computing capacity,

Page 6542

limited battery capacity, limited communication

bandwidth as well as limited memory [13-15]. Device

Management is another aspect that can become a

logistical challenge when running and orchestrating

execution of enterprise systems on edge and fog nodes.

This aspect covers areas like device discovery,

deployment, execution orchestration, remote access and

management, device naming and identification [10, 16].

High data volumes and communication bandwidth

constraints stand out as architectural drivers to evolve

typical enterprise systems in advanced manufacturing

[17, 18], as well as predictive maintenance and line

downtime minimization via Cyber–Physical Systems

and digital twins which form the foundations of smart

manufacturing together with IoT [19].

One important aspect in IoT-enabled enterprise

systems is the abstraction levels applicable to data, from

sensors that generate raw data, to digital twins and at a

higher level, to a business object, which is relevant to

enterprise systems. Refinement of events, filtering them

and applying business rules to the sensed data are big

differentiators necessary to consider when using IoT-

generated data within enterprise systems. For example,

it is sensible for a blood pressure sensor connected to a

patient for a patient management system to be aware of

the business rules and conditions around that patient and

accordingly, trigger the execution of certain business

processes and logic without necessarily having to

communicate every bit of data back to the central patient

management and monitoring system. In this sense, the

correlation between physical assets, their digital twins

and their presence in enterprise systems are not easy to

understand, leading to the creation of needs to re-think

the use of cloud computing, reshaping thinking around

running parts of enterprise systems on the edge of the

network or at least close to where the data is generated

rather than the cloud.

Accordingly, Table 1 lists a set of architectural

concerns that drive the evolution of conventional IoT-

integrated enterprise systems into distributed IoT-

enabled embedded enterprise systems.

Table 1 Architectural concerns driving the

evolution of IoT-integrated enterprise systems into

distributed IoT-enabled embedded enterprise

systems

Concern Title Description

Privacy

Consumer privacy requirements

may require the storage of private

data on the edge of network in

user-trusted zones [9]

Security

Maintaining data closer to user-

owned edge devices can improve

security [20]

Bandwidth

Bandwidth limitations may

prohibit easy communications to

centralized cloud systems [21]

Reliability

High volume data requires a

more localized and regionalized

setup for connectivity [20, 22]

Low latency

and real-time

communication

Local processing of high volumes

of data generated by IoT sensors

requires low-latency real-time

communications [20]

Mobility

Edge devices may be mobile and

may join and leave localized fog

networks [20]

 These requirements in the design of IoT-integrated

enterprise systems can lead to a set of common design

and architecture themes for which there could be

common solutions as patterns. Such patterns can help

enterprise and solutions architects design such new

generations of enterprise systems with more insights.

This paper attempts to provide a set of such common

architectural themes and provide a set of common

solutions for such themes in an attempt to make the

design of such embedded enterprise systems more

streamlined and straightforward for its architects. And

in doing so, it contextualizes a manifesto around a

revelatory case study as the research method.

2.1. Case Study: Xiippy.ai, Privacy

Preservation in the Context of Enterprise

Customer Relationship and Loyalty

Management

A Customer Relationship Management (CRM)

system is a system used by organizations to manage

their interactions and relationships with their customers

using data analysis over large datasets [23]. A Customer

Loyalty Management System is a system used by

organizations to design, create, manage, and analyze

loyalty programs [24]. There is empirical evidence of

direct correlations between the effectiveness of

marketing and loyalty management and utilizing

customers’ purchase history [25]. Customer relationship

management can be heavily affected by regulatory and

compliance related aspects due to requirements around

personal data collection. One key driver in this space is

that personalization opportunities increase significantly

for registered customers [26]. These observations point

towards an organization’s tendency for collecting

customer details to build a database of customers [27].

However, such needs are heavily under the impact of

regulatory limitations. For example, California's Song-

Beverly Credit Card Act, Civil Code section 1747.08

prohibits offline retailers from requesting or requiring

“personal identification information” (PII) in

Page 6543

connection with consumer credit card transactions [28].

This shows that the goal of building a database of

customers for offline retailers can be quite difficult if not

impossible. Most traditional approaches on designing an

enterprise Customer Relationship Management and

Customer Loyalty Management system are based upon

the assumptions that such enterprises own their

customers’ details and even their purchase history. As a

result, for physical retail enterprises, building effective

CRMs and loyalty management systems are under the

influence of certain “requirements” around consumer

privacy and data ownership that point towards having to

take a different approach on designing such systems.

We hereby propose a contemporary platform that

has taken a different approach on building an enterprise

CRM and loyalty management system for the retail

industry where collecting personal details at the counter

and owning such data may not be feasible, especially for

all customers.

Xiippy.ai is a multi-patented privacy-preserving

data-rich payments, receipts, loyalty, rewards and

customer relationship management platform for retail.

Xiippy’s web-based enterprise dashboard is used by

retail enterprises to manage concepts and constructs like

customer relationship, customer engagement, customer

loyalty, orders, reports, campaigns and

access/permission/roles control and is an example of an

enterprise system that has been designed in a specific

way to address some underlying requirements around

consumer privacy and data ownership [29].

Retailers’ avoidance to share itemized sales data,

consumer privacy and lack of standardization have been

cited to be the most prominent barriers against the

adoption of digital receipts [30]. The underlying logic

prohibiting outcomes in this space is that no party can

be trusted by all retailers and shoppers at the same time

to be the source of truth for all sales and purchase history

and that consumers are not comfortable providing

personal details at the counter to identify themselves.

These are some of the issues Xiippy.ai resolves [29].

For Xiippy, privacy needs of retail enterprises and

their customers have been a strong driver to take a

different design approach for enterprise customer

relationship and loyalty management systems,

especially aimed for retail franchise enterprises,

whereby business logic that determines rewards

eligibility is pushed all the way to the edge of the

network, on consumers’ personal devices where private

purchase history is securely stored. To protect privacy,

end-to-end encryption is used to transfer digital receipts

and statements directly from Point-of-Sale systems,

operated by merchants to consumers’ personal devices.

This helps establish a private channel to transfer

itemized statements while the data transfer intermediary

(i.e. Xiippy.ai) maintains no knowledge of such data.

Merchants’ copy of statements together with privacy-

preserving customer identifiers are made available to

merchants under the enterprise dashboard, as illustrated

in Figure 2 [31].

End-to-end

encrypted

data

transfer

Xiippy.ai Software

Development Kits

Point of Sale System

Integration &

key

management

Xiippy

Web & Mobile

Apps

Private Purchase

History &

Keys

Consumers'

Private

Device

Enterprise

Merchant

Dashboard

Private

Sales

History &

Keys

* Multi-tier chain-level and

individual merchant access

* Reports

* Analytics

* Marketing

* Rewards & loyalty

End-to-end

encrypted

data

transfer

Xiippy.ai cloud-hosted platform

Microservices

Figure 2 The high-level architecture of the

Xiippy.ai platform [31]

At the core of the Xiippy platform, sits its Point-Of-

Sale (POS) Software Development Kits (SDKs) that

receive transaction data from the POS and facilitate an

end-to-end encrypted transfer of digital statements to

consumer devices. It also enables an end-to-end

encrypted transfer of merchants’ copy of such

statements to the merchants’ enterprise dashboard.

Xiippy uses the keychain storage of consumer devices

as well as WebCrypto APIs to securely store private

cryptographic keys on the edge of the network that

facilitate the decryption of data at the edge [31].

With private purchase history stored on private

consumer devices, business processes related to rewards

eligibility detection can be executed on such devices.

This an example of executing microservices on the edge

of the network that in other design paradigms are

traditionally part of central enterprise systems.

Page 6544

3. Previous Work

Previous attempts to standardize patterns in systems

and software design include those of E. Gamma et al.

providing 23 solutions to commonly occurring problems

in object oriented design [32]. An example of a set of

software design principles is R. Martin’s object-oriented

design principles, commonly known as the SOILD

principles [33] guiding systems developers towards

creating more maintainable and loosely-coupled code.

Other attempts include service-oriented design patterns

T. Erl [34, 35] and cloud-specific design patterns [36-

38], providing a set of service-oriented design rules to

guide the development of service-oriented solutions.

Attempts to catalog enterprise integration patterns

include those of G Hohpe et al. with a great deal of focus

on building messaging mechanisms around enterprise

systems [39]. Barnes’ set of architecture evolution styles

is another example of focusing on abstraction and

componentization of code blocks using formal language

structures [40]. Another example of using a formal

language model for describing evolution patterns is [41]

with examples like edge provisioning, edge code

deployment, edge orchestration and edge diameter of

things (DOT) patterns which mostly cover IoT and

edge-only scenarios without covering enterprise

systems integration aspects. There are also those who

have tried to articulate on-premises to cloud migration

patterns. Examples include [42] with patterns like Re-

deployment, Cloudification, Relocation and Multi-

Cloud Refactoring patterns which mostly include non-

IoT and cloud-only scenarios without covering

enterprise systems integration with IoT for high-volume

high-privacy settings.

In IoT, a range of previous attempts have been put

into compiling architecture patterns. Hasan Derhamy et.

al’s list of commercial IoT frameworks is an example

which have been defined as “a set of guiding principles,

protocols and standards which enable the

implementation of Internet of Things applications”,

with examples including frameworks like IPSO

Alliance, IoTivity, AllJoyn and Thread [43]. R Tkaczyk

et al.’s catalogue of design patterns for IoT artefact

integration include 13 IoT artefact integration patterns

which mostly cover non-fog settings without digging

deep into the problem of IoT-integrated enterprise

systems [44]. Another example includes [45] where

generic software design patterns have been

contextualized in an IoT setting. A set of IoT

interoperability-focused design patterns have also been

catalogued by Rafał Tkaczyk et al. in [46] which

includes examples like IoT Gateway Event Subscription

and D2D REST Request/Response. Privacy and

security specific challenges in IoT have been discussed

in [9, 47] that include trust, privacy preservation,

authentication and key agreement, intrusion detection,

dynamic join and leave of fog node and cross-border

issue and fog forensic. Security and privacy

preservation patterns in fog computing include those of

[48] with examples like Certificate-Less Aggregate

SignCryption scheme (CLASC), aimed for vehicular

crowdsensing using fog computing. Another example is

Patrik Spiess et. Al’s proposal around an SOA-based

architecture for the integration of IoT in enterprise

systems which they name SOCRADES that helps hide

the heterogeneity of hardware, software, data formats

and communication protocols of IoT and embedded

systems [49] leaving fog-oriented scenarios uncovered.

Stephan Haller et al. propose the concept of decomposed

business processes at three layers of backend, network

and edge devices to enable localized distributed decision

making [50] as another example of attempting to

integrate IoT within enterprise systems which also

leaves fog-networking scenarios uncovered. Matthias

Thoma et al. attempt to merge ideas from the Internet of

Services (IoS) and the enterprise IT world for describing

and provisioning “IoT-services” [51] forming another

example of merging IoT in enterprise systems. Alfred

Zimmermann et al. propose a metamodel-based

approach for integrating Internet of Things architectural

objects [52]. P. Fremantle’s reference architecture for

IoT provides a layered structure for the internet of things

which includes the layers of client/external

communications, event processing and analytics,

aggregation/bus, relevant transports , and devices [53]

which also leaves architectural concerns relevant to

high-data-traffic high-privacy IoT integrated enterprise

systems uncovered. D. Repta et al.’s efforts in

formulating the concept of Cyber Intelligent Enterprise

is yet another attempt to propose a way forward for

integrating physical objects in virtual environments

which covers the three main goals of information

processing, domain representation and object

abstraction [54].

A review of the previous work in integrating fog-

connected edge devices within enterprise systems has

revealed that the problem of evolving the architecture of

a large-scale and potentially monolithic enterprise

systems to an open distributed IoT-enabled setting has

not been fully addressed or analyzed via common

themes or problems or styles or patterns in the literature,

leaving the field of fog and edge oriented embedded

enterprise systems unaddressed.

4. Fog and Edge Oriented Enterprise

Systems Patterns

This chapter proposes a non-exhaustive set of

architectural design patterns for edge and fog oriented

distributed embedded enterprise systems with each

Page 6545

pattern highlighting a problem, a solution and some use

cases for contextualization.

4.1 Intermediated Eventing Pattern

Problem

Enterprise systems that require receiving events and

data from IoT devices, mostly require events at a higher

abstraction layer and lower frequency. For such

enterprise systems, anomalies in input data streams that

belong to business objects have a much higher level of

significance compared to raw data streams. How might

we filter, analyze, detect and transform raw data into

meaningful data that such enterprise systems expect?

Solution

The process to analyze raw data, apply sensible

business logic to the data, derive and extract patterns

and trigger a business process can happen on either edge

nodes or fog nodes as a data flow intermediation layer.

Provided that there is an initialization of state and

business rules on fog and edge nodes, such nodes will

possess all they need to detect anomalies or patterns in

IoT-generated data streams and eliminate the challenge

of having to communicate all the sensed data to the

central enterprise system. The benefit of this pattern is

to eliminate avoid high data volume conversations with

the centralized system.

Use Cases

In geo-tracking farm cattle use cases, proximity to

certain regions of the farm may be of significance rather

than all locations the cattle traverse on the farm. The

Intermediated Eventing Pattern can help transform and

translate input data streams to of-interest output events.

Another example includes IoT-enabled patient

management systems in which only certain patterns in

the sensed data need to be reported back to the central

enterprise system.

4.2 Buffered Eventing Pattern

Problem

Intermittent network connectivity issues, high data

volumes and high local reliability requirements for IoT

devices that act as sources of data for enterprise systems

make it difficult to send all the data to such systems.

How might we ensure no such data are lost despite the

high volumes?

Solution

Rather than trying to send all the sensed data

directly to the enterprise system, edge IoT devices and

sensors can rely upon fog nodes to act as buffers to IoT

data and events before publishing them to cloud-hosted

brokers. This enables local resiliency and helps resolve

the intermittency of connectivity to central cloud. The

benefit of this pattern is to improve the reliability of the

enterprise system and ensure no enterprise-important

data is lost without the need to send all data to the

centralized system in real-time.

Use Cases

In real-time health analytics and monitoring, the

Buffered Eventing Pattern can help deal with high data

volumes, intermittent connectivity and availability

issues hence preventing chances of critical data loss.

4.3 Business Object to Thing Multi-Binding

Pattern

Problem

Enterprise systems own their users and trust

models. A mapping of enterprise business objects to IoT

devices needs to be securely established before data and

events can be deemed to belong to such enterprise

business objects. This issue gets more complex when the

same IoT device is supposed to interact with more than

one enterprise system. How might we make it possible

for an IoT device to interact with multiple enterprise

systems interested in receiving data and events from

such devices?

Solution

Through an initial mapping exercise, the identity of

the enterprise business object is diffused and extended

to the IoT device(s), owned by or relevant to such

business objects. This mapping or binding exercise

could include the issuance of temporary access tokens

digitally signed by an identity provider trusted by the

enterprise system. Any further interactions of edge

devices with fog nodes, cloud components or the

enterprise system itself can be validated by validating

the digital signatures of the supplied tokens by the edge

device. Locally-deployed microservices and business

logic must handle state management and maintenance of

such tokens in cases where multiple tokens from

multiple enterprise systems are to be used to interact

with multiple enterprise systems. The benefit of this

pattern is to facilitate “thing sharing” between multiple

independent enterprise systems while maintaining a

robust and secure trust model.

Use Cases

In IoT enabled procurement and order fulfillment

enterprise systems, the same IoT sensor may need to

interact with both procurement and order fulfillment

systems. Examples include drone-delivered goods or

goods that must remain under constant monitoring

during shipping. In such settings, a multi-binding

between the same IoT device and multiple enterprise

systems can create the fluidity and dynamicity required.

Page 6546

4.4 Hot Microservice Swapping Pattern

Problem

In settings where edge devices join commodity fog

networks, there may be a need for loading and executing

business process microservices specific to that fog

network or specific to a regional enterprise system. How

might we enable the seamless execution of business

logic from such enterprise systems despite the fluidity

of the commodity fog network?

Solution

As an initialization step, upon joining a commodity

network, the IoT device must establish trust and receive

state, business rules and microservice logic from the

relevant enterprise system to be able to process local

data and events and apply relevant business rules to

them. The benefit of this pattern is to enable centralized

enterprise systems to interact and integrate with a

dynamic list of IoT devices on the fly.

Use Case

 Downloading region-specific business process

microservices on smart cars that would dynamically

extend a regional traffic management system all the way

to the edge of the network requires the hot swapping of

such microservices as the car can fluidly join and leave

such commodity local fog networks. A regional traffic

management system can then enforce different business

rules to the sensed data.

4.5 Democratized Trust Pattern

Problem

In multi-layered fog networks where it is a

requirement for the data and events created by edge

devices to be persisted as they arrive irrespective of

connectivity between cloud-to-fog and fog-to-fog

nodes, the refresh of temporary credentials issued to

edge devices may need to happen when connectivity to

the centralized cloud identity provider is not available.

How might we make it possible to continue

authenticating edge devices fulfilling the reliability of

data/event collection without having to refresh

credentials via a trusted centralized identity provider?

Solution

Certain building blocks like identity providers can

be replicated at the middle fog layers to provide

autonomy in authentication and authorization after the

initial authentication and authorization of edge devices

using a centralized identity provider. Via an initial

establishment of trust between all identity blocks at the

fog levels, each of these middle-layer identity providers

can remain enabled to issue new temporary credentials.

The benefit of this pattern is to minimize dependencies

on centralized access, authentication and authorization

control in settings with intermittent connectivity issues.

Use Cases

In healthcare settings where edge devices report

patients’ details to fog nodes that are locally hosted at

the hospital level as well as to a patient management

system, the process to keep recording the generated data

while relying upon temporary credentials can be

achieved using the Democratized Trust Pattern.

4.6 Protected Data Synchronization Pattern

Problem

Given the privacy and security needs in IoT and

assuming that the only trusted zone for plain data to

exist in is the edge of the network, limited storage

capacity makes it difficult to store large volumes of data

possible. This alludes to the need to rely upon cloud

storage or fog node storage as the long-term permanent

storage of data. How might we preserve privacy while

treating public cloud or fog nodes as the long-term

storage provider for private IoT data?

Solution

Rather than maintaining large volumes of data on

the edge, only the portion of data that is required is

retrieved and processed on the edge in plain format. Fog

nodes and cloud nodes are then used to only maintain

encrypted data that have been encrypted with keys only

maintained on the edge devices. This facilitates

synchronization mechanisms in which cloud and fog

nodes only maintain non-plain data. The benefit of this

pattern is to make cloud storage for inherently-private

data possible to extend the limited storage capacity of

edge and IoT devices privately and securely.

Use Cases

For privacy-preserving big data and federated

machine learning settings like purchase needs

prediction, the Artificial Intelligence (AI) models can be

trained on edge devices. In settings where multiple

devices belong to the same user, the Protected Data

Synchronization Pattern can be used to synchronize

private datasets on multiple edge devices provided all

such devices can establish a common trust model with

their owner. Edge-executed microservices can then be

used to determine predictive offers exposed by

enterprise systems hence eliminating the need for such

enterprise systems to maintain knowledge of

consumers’ purchase history.

4.7 Zero-Knowledge Data Transfer Intermediacy

Pattern

Problem

An enterprise system may need to receive data and

events from edge devices that are connected to

commodity fog networks. Such commodity fog

networks must maintain zero knowledge of the contents

Page 6547

of such data despite transferring data to the enterprise

system. How might we enable the persistence of edge-

generated data securely on commodity fog nodes?

Solution

Given that the enterprise system and edge devices

are deemed the only trusted zones where data can exist

in plain format, following and initial establishment of

trust, such edge devices and the enterprise system utilize

a public key infrastructure to exchange public keys and

agree upon common secrets to encrypt and decrypt data

while utilizing the fog network as a data transfer

medium. The benefit of this pattern is to facilitate

private secure communication between an enterprise

system and commodity devices that dynamically join a

network and require private secure communication with

the enterprise system.

Use Cases

High-volume sensor data in vehicular fog

computing settings that are to be shared with traffic or

smart city enterprise systems may need to be persisted

on fog nodes first to be later on transferred to the right

recipients. In such settings, the Zero-Knowledge Data

Transfer Intermediacy Pattern could be used to

eliminate the need for real-time transfer of high data

volumes to the central enterprise system.

4.8 Distributed State Synchronization Pattern

Problem

Given that the IoT edge nodes or fog nodes can run

microservices and may require to maintain enterprise-

important state to apply business rules and logic to the

sensed data locally, it is important for the central

enterprise system to synchronize state with edge and fog

nodes to maintain integrity of state and apply the

relevant business processes and rules to such state at a

global level. How might we keep the integrity of global

state while allowing the distribution of state?

Solution

Regional fog nodes must be initialized with a set of

business rules to achieve a locally-wholistic view of

state and instruct edge devices with the right updated

business rules to maintain integrity of operations. They

can then synchronize state with the central enterprise

system lazily. The benefit of this pattern is to make it

possible to orchestrate a distributed but common state

management model.

Use Cases

In a healthcare setting where IoT sensors report the

status of a patient to an enterprise patient management

system, multiple independent sensors monitoring the

same patient must synchronize their local state and

business rules to execute a wholistically-correct set of

steps against the same patient when it comes to

triggering alarms and detecting anomalies in the sensed

data. The Distributed State Synchronization Pattern can

help in such scenarios to ensure a wholistically-correct

but yet distributed state management mechanism.

5. Discussion

The decision to distribute enterprise systems and

expand them to the edge of the network comes with a

range of trade-offs between gains and losses.

Accordingly, Table 2 lists a number of such trade-off

points.

Table 2 Architectural trade-offs between a

traditional centralized design of IoT-integrated

enterprise systems and distributed embedded

enterprise systems

Trade-off

Aspect
Description

Privacy

In cases where privacy

requirements make centralized

storage of data difficult, a

distributed embedded enterprise

system design can have

advantages.

State

Management

State management in centralized

systems is simpler to handle.

Event

Orchestration,

clock and time

synchronization

Centralized orchestration of

business process steps and events

is much simpler in centralized

systems.

Reliability

A distributed embedded design of

enterprise systems can provide a

higher level of reliability & fault

tolerance due to minimum

dependencies on centralized

systems.

Low latency

and real-time

responsiveness

A distributed embedded design of

enterprise systems fulfills latency

and real-time response

requirements better.

Decision

Making

Locality

Decision making on business

process execution and triggering

can be localized in a distributed

embedded enterprise system in a

more effective way.

Complexity

The design of a distributed

embedded enterprise system

imposes a range of complexities

that are not normally faced with

centralized systems.

Scalability

A distributed embedded design

for enterprise systems provides a

higher degree of scalability due

to minimizing dependencies on

centralized resources.

Page 6548

Security

Centralized enterprise systems

are simpler to secure whereas

distributed enterprise systems

impose a range of security issues

as a result of being physically

distributed among many edge or

fog nodes

Operations

Management

Deployment, distribution, release

management and disaster

recovery in distributed embedded

enterprise systems is inherently

harder than centralized ones due

to distributed state management

and storage.

6. Conclusion

Enterprise software systems are used in enterprise

settings for a range of purposes mostly covering the

integration and execution of business processes. In an

IoT-enabled world, the need for the interaction of

enterprise systems to IoT devices have increased

significantly, however, aspects like high data volumes,

privacy, reliability, and low latency requirements have

made it challenging to simply integrate centralized

enterprise systems with IoT devices. Fog computing and

its benefits in terms of inclusion of localized close-by

computing and storage capacity can solve certain

problems in IoT-enabled enterprise systems. Based

upon a case study for privacy-preserving customer

loyalty and relationship management, this paper

presents a non-exhaustive catalogue of patterns around

a paradigm in which enterprise systems are designed to

be distributed inherently and expand into fog and edge

nodes with possibilities for the execution of

microservices on edge and fog nodes as an enabler to

resolve some of these specific requirements. As a

limitation, this research does not include an exhaustive

list of applicable patterns for edge and fog enabled

embedded enterprise systems and further work can lead

to a wider range of such patterns.

7. References

[1] L. Da Xu, "Enterprise systems: state-of-the-art and future

trends," IEEE Transactions on Industrial Informatics, vol.

7, no. 4, pp. 630-640, 2011.

[2] R. Giachetti, Design of enterprise systems: Theory,

architecture, and methods. CRC Press, 2016.

[3] E. Borgia, "The Internet of Things vision: Key features,

applications and open issues," Computer

Communications, vol. 54, pp. 1-31, 2014.

[4] L. Bass, P. Clements, and R. Kazman, Software

architecture in practice. Addison-Wesley Professional,

2003.

[5] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-

K. Chen, and S. Shieh, "IoT security: ongoing challenges

and research opportunities," in 2014 IEEE 7th

international conference on service-oriented computing

and applications, 2014: IEEE, pp. 230-234.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge

computing: Vision and challenges," IEEE internet of

things journal, vol. 3, no. 5, pp. 637-646, 2016.

[7] redhat.com. "Cloud vs. edge."

https://www.redhat.com/en/topics/cloud-

computing/cloud-vs-edge (accessed.

[8] M. Chiang and T. Zhang, "Fog and IoT: An overview of

research opportunities," IEEE Internet of Things Journal,

vol. 3, no. 6, pp. 854-864, 2016.

[9] M. Mukherjee et al., "Security and privacy in fog

computing: Challenges," IEEE Access, vol. 5, pp. 19293-

19304, 2017.

[10] C. Zhou and X. Zhang, "Toward the Internet of

Things application and management: A practical

approach," in Proceeding of IEEE International

Symposium on a World of Wireless, Mobile and

Multimedia Networks 2014, 2014: IEEE, pp. 1-6.

[11] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, "Fog

computing: A platform for internet of things and

analytics," in Big data and internet of things: A roadmap

for smart environments: Springer, 2014, pp. 169-186.

[12] P. Desai, A. Sheth, and P. Anantharam, "Semantic

gateway as a service architecture for iot interoperability,"

in 2015 IEEE International Conference on Mobile

Services, 2015: IEEE, pp. 313-319.

[13] L. Da Xu, W. He, and S. Li, "Internet of things in

industries: A survey," IEEE Transactions on industrial

informatics, vol. 10, no. 4, pp. 2233-2243, 2014.

[14] H. Yin, Y. Jiang, C. Lin, Y. Luo, and Y. Liu, "Big

data: transforming the design philosophy of future

internet," IEEE network, vol. 28, no. 4, pp. 14-19, 2014.

[15] A. Krylovskiy, M. Jahn, and E. Patti, "Designing a

smart city internet of things platform with microservice

architecture," in 2015 3rd International Conference on

Future Internet of Things and Cloud, 2015: IEEE, pp. 25-

30.

[16] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M.

Aledhari, and M. Ayyash, "Internet of things: A survey on

enabling technologies, protocols, and applications," IEEE

communications surveys & tutorials, vol. 17, no. 4, pp.

2347-2376, 2015.

[17] D. Mourtzis, E. Vlachou, and N. Milas, "Industrial

big data as a result of IoT adoption in manufacturing,"

Procedia cirp, vol. 55, pp. 290-295, 2016.

[18] J. Wan et al., "Toward dynamic resources

management for IoT-based manufacturing," IEEE

Communications Magazine, vol. 56, no. 2, pp. 52-59,

2018.

[19] F. Tao, Q. Qi, L. Wang, and A. Nee, "Digital twins

and cyber–physical systems toward smart manufacturing

and industry 4.0: Correlation and comparison,"

Engineering, vol. 5, no. 4, pp. 653-661, 2019.

[20] P. Hu, S. Dhelim, H. Ning, and T. Qiu, "Survey on

fog computing: architecture, key technologies,

applications and open issues," Journal of network and

computer applications, vol. 98, pp. 27-42, 2017.

Page 6549

[21] M. Aazam, S. Zeadally, and K. A. Harras, "Fog

computing architecture, evaluation, and future research

directions," IEEE Communications Magazine, vol. 56, no.

5, pp. 46-52, 2018.

[22] S. Yi, C. Li, and Q. Li, "A survey of fog computing:

concepts, applications and issues," in Proceedings of the

2015 workshop on mobile big data, 2015, pp. 37-42.

[23] M. Bardicchia, Digital CRM-Strategies and

Emerging Trends: Building Customer Relationship in the

Digital Era. 2020.

[24] g2.com. "Loyalty Management Software."

https://www.g2.com/categories/loyalty-management

(accessed.

[25] P. E. Rossi, R. E. McCulloch, and G. M. Allenby,

"The value of purchase history data in target marketing,"

Marketing Science, vol. 15, no. 4, pp. 321-340, 1996.

[26] S. Legler. "Digital CRM 2.0 Building customer

relationships in the digital landscape."

https://www2.deloitte.com/content/dam/Deloitte/de/Docu

ments/strategy/Deloitte_Digital_Digital_CRM_Study_2.

0_2019.pdf (accessed.

[27] M. O. E. A. a. Communications, "Feasibility Study

Showcase D: Borderless Real-Time Economy (RTE)

Spearhead: eReceipt," 2019. [Online]. Available:

https://likta.lv/wp-content/uploads/2019/08/eReceipt-

Feasibility-Study_22.08.2019_final.pdf.

[28] casetext.com, "Capp v. Nordstrom, Inc.," 2013.

[Online]. Available: https://casetext.com/case/capp-v-

nordstrom.

[29] Xiippy.ai. "Xiippy.ai - Frequently-Asked

Questions." https://xiippy.ai/FrequentlyAskedQuestions

(accessed.

[30] K. F. Johannes Hübner, Fabian Schmid, Bedrija

Hamza. "Digital Receipt Study: Drivers and Barriers to

Adoption of Digital Receipts."

https://www.autoidlabs.ch/projects/digital-receipts-for-

the-consumer-iot/ (accessed.

[31] Xiippy.ai. "Xiippy.ai Security Architecture."

https://xiippy.ai/security-architecture (accessed.

[32] E. Gamma, Design patterns: elements of reusable

object-oriented software. Pearson Education India, 1995.

[33] R. C. Martin, Agile software development:

principles, patterns, and practices. Prentice Hall, 2002.

[34] T. Erl, Service-oriented architecture: concepts,

technology, and design. Pearson Education India, 2005.

[35] T. Erl, Soa: principles of service design. Prentice

Hall Upper Saddle River, 2008.

[36] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T.

Swanson, "Cloud Design Patterns," Microsoft, 2014.

[37] "Cloud Patterns." http://cloudpatterns.org

(accessed.

[38] T. Erl, R. Puttini, and Z. Mahmood, Cloud

computing: concepts, technology & architecture. Pearson

Education, 2013.

[39] G. Hohpe and B. Woolf, Enterprise integration

patterns: Designing, building, and deploying messaging

solutions. Addison-Wesley Professional, 2004.

[40] D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku,

"Evolution styles: Foundations and tool support for

software architecture evolution," in 2009 Joint Working

IEEE/IFIP Conference on Software Architecture &

European Conference on Software Architecture, 2009:

IEEE, pp. 131-140.

[41] D. Tamzalit and T. Mens, "Evolution patterns:

Designing and reusing architectural evolution knowledge

to introduce architectural styles," arXiv preprint

arXiv:1605.06289, 2016.

[42] P. Jamshidi, C. Pahl, S. Chinenyeze, and X. Liu,

"Cloud migration patterns: a multi-cloud service

architecture perspective," in Service-Oriented Computing-

ICSOC 2014 Workshops, 2015: Springer, pp. 6-19.

[43] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller,

"A survey of commercial frameworks for the internet of

things," in 2015 IEEE 20th Conference on Emerging

Technologies & Factory Automation (ETFA), 2015: IEEE,

pp. 1-8.

[44] R. Tkaczyk et al., "Cataloging design patterns for

internet of things artifact integration," in 2018 IEEE

International Conference on Communications Workshops

(ICC Workshops), 2018: IEEE, pp. 1-6.

[45] M. Koster, "design patterns for an internet of

things—a design pattern framework for IoT architecture,"

Iot-datamodels. blogspot. com, 2014.

[46] S. Qanbari et al., "IoT design patterns:

computational constructs to design, build and engineer

edge applications," in 2016 IEEE First International

Conference on Internet-of-Things Design and

Implementation (IoTDI), 2016: IEEE, pp. 277-282.

[47] W. Wei, A. T. Yang, W. Shi, and K. Sha, "Security

in internet of things: Opportunities and challenges," in

2016 International Conference on Identification,

Information and Knowledge in the Internet of Things

(IIKI), 2016: IEEE, pp. 512-518.

[48] S. Basudan, X. Lin, and K. Sankaranarayanan, "A

privacy-preserving vehicular crowdsensing-based road

surface condition monitoring system using fog

computing," IEEE Internet of Things Journal, vol. 4, no.

3, pp. 772-782, 2017.

[49] P. Spiess et al., "SOA-based integration of the

internet of things in enterprise services," in 2009 IEEE

international conference on web services, 2009: IEEE, pp.

968-975.

[50] S. Haller, S. Karnouskos, and C. Schroth, "The

internet of things in an enterprise context," in Future

Internet Symposium, 2008: Springer, pp. 14-28.

[51] M. Thoma, S. Meyer, K. Sperner, S. Meissner, and

T. Braun, "On iot-services: Survey, classification and

enterprise integration," in 2012 IEEE International

Conference on Green Computing and Communications,

2012: IEEE, pp. 257-260.

[52] A. Zimmermann, R. Schmidt, K. Sandkuhl, M.

Wißotzki, D. Jugel, and M. Möhring, "Digital enterprise

architecture-transformation for the internet of things," in

2015 IEEE 19th International Enterprise Distributed

Object Computing Workshop, 2015: IEEE, pp. 130-138.

[53] P. Fremantle, "A reference architecture for the

internet of things," WSO2 White paper, 2015.

[54] D. Repta, I. S. Sacala, M. A. Moisescu, and A. M.

Stanescu, "Towards the development of a Cyber-

Intelligent Enterprise System Architecture," IFAC

Proceedings Volumes, vol. 47, no. 3, pp. 827-832, 2014.

Page 6550

	1 . Introduction
	2 . Research Domain and Method
	2.1 . Case Study: Xiippy.ai, Privacy Preservation in the Context of Enterprise Customer Relationship and Loyalty Management

	3 . Previous Work
	4 . Fog and Edge Oriented Enterprise Systems Patterns
	4.1 Intermediated Eventing Pattern
	4.2 Buffered Eventing Pattern
	4.3 Business Object to Thing Multi-Binding Pattern
	4.4 Hot Microservice Swapping Pattern
	4.5 Democratized Trust Pattern
	4.6 Protected Data Synchronization Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern
	4.4 Hot Microservice Swapping Pattern
	4.5 Democratized Trust Pattern
	4.6 Protected Data Synchronization Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern
	4.4 Hot Microservice Swapping Pattern
	4.5 Democratized Trust Pattern
	4.6 Protected Data Synchronization Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern
	4.4 Hot Microservice Swapping Pattern
	4.5 Democratized Trust Pattern
	4.6 Protected Data Synchronization Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern
	4.7 Zero-Knowledge Data Transfer Intermediacy Pattern

