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Abstract 
Enterprise software systems enable enterprises to 

enhance business and management reporting tasks in 

enterprise settings. Internet of Things (IoT) focuses on 

making interactions possible between a number of 

network-connected physical devices. Prominence of IoT 

sensors and multiple business drivers have created a 

contemporary need for enterprise software systems to 

interact with IoT devices. Business process 

implementations, business logic and microservices have 

traditionally been centralized in enterprise systems. 

Constraints like privacy, latency, bandwidth, 

connectivity and security have posed a new set of 

architectural challenges that can be resolved by 

designing enterprise systems differently so that parts of 

business logic and processes can run on fog and edge 

devices to improve privacy, minimize communication 

bandwidth and promote low-latency business process 

execution. This paper aims to propose a set of patterns 

for the expansion of previously-centralized enterprise 

systems to the edge of the network. Patterns are 

supported by a case study for contextualization and 

analysis.    

1. Introduction  

Enterprise systems facilitate the integration and 

extending of business processes and workflows among 

different business functions within an organization and 

between multiple organizations [1]. With focus on 

satisfying the needs of an enterprise, enterprise software 

systems cover a wide range of functionality like project 

management, online payments, business process 

management and enterprise content management [2].  

The Internet of Things (IoT) focuses on making 

interactions between a number of network-connected 

physical devices possible via wireless data 

communication over the Internet as a global 

communication medium [3]. Social graph analysis and 

management, big data, and cloud data management, 

ontological modeling, smart devices, personal 

information systems, and non-functional requirements 

such as location-independent response times, security 

and privacy are some of the typical challenges and 

concerns of IoT architectures [4]. Security and privacy 

in IoT with concerns like object identification, 

authentication and authorization, software 

vulnerabilities and backdoor analysis as well as malware 

remain some of the most important issues to address [5].  

Edge computing is a computing paradigm in which  

data is processed at the edge of the network where most 

data is generated [6]. As opposed to cloud computing, 

this paradigm helps address issues and limitations like 

time sensitivity and data volume [7].  

Low latency requirements, network bandwidth 

constraints, resource-constrained devices and 

uninterrupted services with intermittent connections 

have all been cited as some of the architectural 

challenges that have led to the concept of “fog 

computing”. In fog computing, rather than relying upon 

centralized cloud or the processing power of edge 

devices, computation, communication, control and 

storage responsibilities are handled by fog nodes that are  

closer to the edge of the network [8]. Fog computing has 

the characteristics of low latency, location awareness, 

geographic distribution, end device mobility, capacity 

of processing high number of nodes, wireless access, 

real-time applications and heterogeneity [9]. Fog 

computing has been cited to be useful for healthcare, 

urgent computing, smart energy grids, vehicular fog 

computing and Vehicular Ad-hoc Networks(VANET), 

smart environments, augmented reality, brain machine 

interface and gaming [10]. One important aspect with 

fog computing is the fact that with many heterogenous 

devices joining and leaving fog networks openly, they 

create huge and high-frequency volumes of data [11]. 

This aspect brings up a range of interesting challenges 

when integrating IoT in enterprise systems on a fog 

network.  

In a traditional sense, the interactions of enterprise 

systems with IoT devices have been treated mostly 

under “integration of IoT with enterprise systems”. In 

this paradigm, enterprise systems mostly reside 

centrally on-premises or in the cloud and somehow 

interact with IoT devices using some middleware or IoT 

gateway. Some of the same architectural concerns like 

low latency, high data volumes and frequency, security 

and privacy that drove the concept of fog computing can 
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also be drivers to take a different approach to designing 

enterprise systems that are heavily integrated with IoT 

devices. Most importantly, in this paradigm, business 

logic and microservices can be pushed to fog and edge 

nodes which helps address some of these common 

concerns. This paradigm leads to the need for proposing 

a set of architectural patterns focused on pushing 

enterprise systems all the way to the edge of the network 

under the concept of “embedded enterprise systems”, a 

field left partially unattended in the literature. 

Aligned with the move towards distributed 

embedded enterprise systems, this paper tries to provide 

a non-exhaustive list of architectural design patterns that 

could help systemize common solutions to common 

problems faced during this architectural shift. It also 

tries to articulate the trade-offs between the gains and 

the losses of such transition.   

This paper includes six sections. Section 2 

describes the architectural paradigm shift from IoT-

integrated enterprise systems towards embedded 

distributed enterprise systems around a case study.  

Section 3 discusses previous work. Section 4 presents a 

list of patterns for the design of embedded enterprise 

systems. Section 5 presents a discussion on the design 

trade-offs between centralized and distributed 

embedded enterprise systems and finally, Section 6 

includes a conclusion.   

2. Research Domain and Method 

Conventional development paradigms of enterprise 

systems have traditionally relied upon some underlying 

technologies and concepts like Business Process 

Management (BPM), Information Integration and 

Interoperability, Enterprise Architecture and Enterprise 

Application Integration and Service-Oriented 

Architecture (SOA) [1]. However, Internet of Things 

enabled sensors and internet-connected devices at 

masses have created an environment where a huge 

volume of data can be collected from the environments 

in which such enterprise systems operate. In an era of 

high-frequency and private big data where the volume 

of the data generated, collected and sensed by various 

devices is more than the amount that can be processed, 

for enterprise systems to evolve into their next 

generation, their design has to also evolve. Examples 

include hospital patient management systems that can 

receive live patient status monitoring data directly from 

patient-connected sensors, school/student management 

systems that receive attendance and student entry/exit 

notifications from IoT sensors or mobile devices, power 

grid management systems that receive status updates 

from IoT sensors, enterprise procurement systems that 

receive live updates from IoT sensors alongside the 

delivery or procurement pipeline or manufacturing 

management systems that receive live updates from a 

range of sensors for purposes like efficiency and 

predictive repair management. While residing in the 

cloud or on-premises, a traditional IoT-integrated 

enterprise system may interact with IoT devices through 

an IoT gateway and an edge tier, as illustrated in  Figure 

1.  However, a range of architectural concerns like high 

volumes of data, challenges with transferring such 

volumes of data to the central enterprise systems 

combined with the needs to filter, refine and find 

patterns in the sensed data as well as tight privacy 

requirements require a new way of thinking in designing 

future-focused enterprise systems where at least parts of 

the core business logic can run closer to the edge of the 

network. This evolution of architecture has been 

illustrated in Figure 1. 
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Figure 1 Evolution from IoT-integrated enterprise 

systems (left) to distributed embedded enterprise 

systems that run on fog and edge nodes (right) 

In contrast to typical cloud-based designs, this new 

style of building embedded enterprise systems is driven 

by a range of architectural concerns. Such concerns 

include security and privacy covering the storage of data 

on edge and fog nodes as well as the communication of 

data from such edge and fog nodes back to the core 

enterprise system. Private or sensitive data may be 

collected and handled and communicated by such nodes 

and without provisions in place, this can lead to 

unauthorized disclosure of such data or security 

breaches. Some of the basic security and privacy 

constructure like authentication, data integrity, non-

repudiation and authorization have to be devised and 

thought of before being able to break down an enterprise 

system to run on edge and fog nodes. There are also 

concerns that unlike cloud-hosted resources, fog nodes 

may not be maintained under tight-enough physical 

security protocols [10, 12, 13] making this evolution 

even further challenging.  Performance is another 

architecture concern that has to be taken into account. 

This covers aspects like limited computing capacity, 
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limited battery capacity, limited communication 

bandwidth as well as limited memory [13-15]. Device 

Management is another aspect that can become a 

logistical challenge when running and orchestrating 

execution of enterprise systems on edge and fog nodes. 

This aspect covers areas like device discovery, 

deployment, execution orchestration, remote access and 

management, device naming and identification [10, 16]. 

High data volumes and communication bandwidth 

constraints stand out as architectural drivers to evolve 

typical enterprise systems in advanced manufacturing 

[17, 18], as well as predictive maintenance and line 

downtime minimization via Cyber–Physical Systems 

and digital twins which form the foundations of smart 

manufacturing together with IoT [19].  

One important aspect in IoT-enabled enterprise 

systems is the abstraction levels applicable to data, from 

sensors that generate raw data, to digital twins and at a 

higher level, to a business object, which is relevant to 

enterprise systems. Refinement of events, filtering them 

and applying business rules to the sensed data are big 

differentiators necessary to consider when using IoT-

generated data within enterprise systems. For example, 

it is sensible for a blood pressure sensor connected to a 

patient for a patient management system to be aware of 

the business rules and conditions around that patient and 

accordingly, trigger the execution of certain business 

processes and logic without necessarily having to 

communicate every bit of data back to the central patient 

management and monitoring system. In this sense, the 

correlation between physical assets, their digital twins 

and their presence in enterprise systems are not easy to 

understand, leading to the creation of needs to re-think 

the use of cloud computing, reshaping thinking around 

running parts of enterprise systems on the edge of the 

network or at least close to where the data is generated 

rather than the cloud. 

Accordingly, Table 1 lists a set of architectural 

concerns that drive the evolution of conventional IoT-

integrated enterprise systems into distributed IoT-

enabled embedded enterprise systems.  

Table 1 Architectural concerns driving the 

evolution of IoT-integrated enterprise systems into 

distributed IoT-enabled embedded enterprise 

systems 

Concern Title Description 

Privacy 

Consumer privacy requirements 

may require the storage of private 

data on the edge of network in 

user-trusted zones [9] 

Security 

Maintaining data closer to user-

owned edge devices can improve 

security [20] 

Bandwidth 

Bandwidth limitations may 

prohibit easy communications to 

centralized cloud systems [21] 

Reliability 

High volume data requires a 

more localized and regionalized 

setup for connectivity [20, 22] 

Low latency 

and real-time 

communication 

Local processing of high volumes 

of data generated by IoT sensors 

requires low-latency real-time 

communications [20] 

Mobility  

Edge devices may be mobile and 

may join and leave localized fog 

networks [20] 

 These requirements in the design of IoT-integrated 

enterprise systems can lead to a set of common design 

and architecture themes for which there could be 

common solutions as patterns. Such patterns can help 

enterprise and solutions architects design such new 

generations of enterprise systems with more insights. 

This paper attempts to provide a set of such common 

architectural themes and provide a set of common 

solutions for such themes in an attempt to make the 

design of such embedded enterprise systems more 

streamlined and straightforward for its architects. And 

in doing so, it contextualizes a manifesto around a 

revelatory case study as the research method. 

2.1. Case Study: Xiippy.ai, Privacy 

Preservation in the Context of Enterprise 

Customer Relationship and Loyalty 

Management 

A Customer Relationship Management (CRM) 

system is a system used by organizations to manage 

their interactions and relationships with their customers 

using data analysis over large datasets [23]. A Customer 

Loyalty Management System is a system used by 

organizations to design, create, manage, and analyze 

loyalty programs [24].  There is empirical evidence of 

direct correlations between the effectiveness of 

marketing and loyalty management and utilizing 

customers’ purchase history [25]. Customer relationship 

management can be heavily affected by regulatory and 

compliance related aspects due to requirements around 

personal data collection. One key driver in this space is 

that personalization opportunities increase significantly 

for registered customers [26]. These observations point 

towards an organization’s tendency for collecting 

customer details to build a database of customers [27]. 

However, such needs are heavily under the impact of 

regulatory limitations. For example, California's Song-

Beverly Credit Card Act, Civil Code section 1747.08 

prohibits offline retailers from requesting or requiring 

“personal identification information” (PII) in 
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connection with consumer credit card transactions [28]. 

This shows that the goal of building a database of 

customers for offline retailers can be quite difficult if not 

impossible. Most traditional approaches on designing an 

enterprise Customer Relationship Management and 

Customer Loyalty Management system are based upon 

the assumptions that such enterprises own their 

customers’ details and even their purchase history. As a 

result, for physical retail enterprises, building effective 

CRMs and loyalty management systems are under the 

influence of certain “requirements” around consumer 

privacy and data ownership that point towards having to 

take a different approach on designing such systems. 

We hereby propose a contemporary platform that 

has taken a different approach on building an enterprise 

CRM and loyalty management system for the retail 

industry where collecting personal details at the counter 

and owning such data may not be feasible, especially for 

all customers. 

Xiippy.ai is a multi-patented privacy-preserving 

data-rich payments, receipts, loyalty, rewards and 

customer relationship management platform for retail. 

Xiippy’s web-based enterprise dashboard is used by 

retail enterprises to manage concepts and constructs like 

customer relationship, customer engagement, customer 

loyalty, orders, reports, campaigns and 

access/permission/roles control and is an example of an 

enterprise system that has been designed in a specific 

way to address some underlying requirements around 

consumer privacy and data ownership  [29].  

Retailers’ avoidance to share itemized sales data, 

consumer privacy and lack of standardization have been 

cited to be the most prominent barriers against the 

adoption of digital receipts [30]. The underlying logic 

prohibiting outcomes in this space is that no party can 

be trusted by all retailers and shoppers at the same time 

to be the source of truth for all sales and purchase history 

and that consumers are not comfortable providing 

personal details at the counter to identify themselves. 

These are some of the issues Xiippy.ai resolves [29]. 

For Xiippy, privacy needs of retail enterprises and 

their customers have been a strong driver to take a 

different design approach for enterprise customer 

relationship and loyalty management systems, 

especially aimed for retail franchise enterprises, 

whereby business logic that determines rewards 

eligibility is pushed all the way to the edge of the 

network, on consumers’ personal devices where private 

purchase history is securely stored. To protect privacy, 

end-to-end encryption is used to transfer digital receipts 

and statements directly from Point-of-Sale systems, 

operated by merchants to consumers’ personal devices. 

This helps establish a private channel to transfer 

itemized statements while the data transfer intermediary 

(i.e. Xiippy.ai) maintains no knowledge of such data. 

Merchants’ copy of statements together with privacy-

preserving customer identifiers are made available to 

merchants under the enterprise dashboard, as illustrated 

in Figure 2 [31]. 
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Figure 2 The high-level architecture of the 

Xiippy.ai platform [31] 

At the core of the Xiippy platform, sits its Point-Of-

Sale (POS) Software Development Kits (SDKs) that 

receive transaction data from the POS and facilitate an 

end-to-end encrypted transfer of digital statements to 

consumer devices. It also enables an end-to-end 

encrypted transfer of merchants’ copy of such 

statements to the merchants’ enterprise dashboard. 

Xiippy uses the keychain storage of consumer devices 

as well as WebCrypto APIs to securely store private 

cryptographic keys on the edge of the network that 

facilitate the decryption of data at the edge [31].  

With private purchase history stored on private 

consumer devices, business processes related to rewards 

eligibility detection can be executed on such devices. 

This an example of executing microservices on the edge 

of the network that in other design paradigms are 

traditionally part of central enterprise systems. 
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3. Previous Work  

Previous attempts to standardize patterns in systems 

and software design include those of E. Gamma et al. 

providing 23 solutions to commonly occurring problems 

in object oriented design [32]. An example of a set of 

software design principles is R. Martin’s object-oriented 

design principles, commonly known as the SOILD 

principles [33] guiding systems developers towards 

creating more maintainable and loosely-coupled code.  

Other attempts include service-oriented design patterns 

T. Erl [34, 35] and cloud-specific design patterns [36-

38], providing a set of service-oriented design rules to 

guide the development of service-oriented solutions. 

Attempts to catalog enterprise integration patterns 

include those of G Hohpe et al. with a great deal of focus 

on building messaging mechanisms around enterprise 

systems [39]. Barnes’ set of architecture evolution styles 

is another example of focusing on abstraction and 

componentization of code blocks using formal language 

structures [40].  Another example of using a formal 

language model for describing evolution patterns is [41] 

with examples like edge provisioning, edge code 

deployment, edge orchestration and edge diameter of 

things (DOT) patterns which mostly cover IoT and 

edge-only scenarios without covering enterprise 

systems integration aspects. There are also those who 

have tried to articulate on-premises to cloud migration 

patterns. Examples include [42] with patterns like Re-

deployment, Cloudification, Relocation and Multi-

Cloud Refactoring patterns which mostly include non-

IoT and cloud-only scenarios without covering 

enterprise systems integration with IoT for high-volume 

high-privacy settings. 

In IoT, a range of previous attempts have been put 

into compiling architecture patterns. Hasan Derhamy et. 

al’s list of commercial IoT frameworks is an example  

which have been defined as “a set of guiding principles, 

protocols and standards which enable the 

implementation of Internet of Things applications”, 

with examples including frameworks like IPSO 

Alliance, IoTivity, AllJoyn and Thread [43]. R Tkaczyk 

et al.’s catalogue of design patterns for IoT artefact 

integration include 13 IoT artefact integration patterns 

which mostly cover non-fog settings without digging 

deep into the problem of IoT-integrated enterprise 

systems [44]. Another example includes  [45] where 

generic software design patterns have been 

contextualized in an IoT setting. A set of IoT 

interoperability-focused design patterns have also been 

catalogued by Rafał Tkaczyk et al. in [46] which 

includes examples like IoT Gateway Event Subscription 

and  D2D REST Request/Response. Privacy and 

security specific challenges in IoT have been discussed 

in [9, 47] that include trust, privacy preservation, 

authentication and key agreement, intrusion detection, 

dynamic join and leave of fog node and cross-border 

issue and fog forensic. Security and privacy 

preservation patterns in fog computing include those of 

[48] with examples like Certificate-Less Aggregate 

SignCryption scheme (CLASC), aimed for vehicular 

crowdsensing using fog computing. Another example is 

Patrik Spiess et. Al’s proposal around an SOA-based 

architecture for the integration of IoT in enterprise 

systems which they name SOCRADES that  helps hide 

the heterogeneity of hardware, software, data formats 

and communication protocols of IoT and embedded 

systems [49] leaving fog-oriented scenarios uncovered.  

Stephan Haller et al. propose the concept of decomposed 

business processes at three layers of backend, network 

and edge devices to enable localized distributed decision 

making [50] as another example of attempting to 

integrate IoT within enterprise systems which also 

leaves fog-networking scenarios uncovered.  Matthias 

Thoma et al. attempt to merge ideas from the Internet of 

Services (IoS) and the enterprise IT world for describing 

and provisioning “IoT-services” [51] forming another 

example of merging IoT in enterprise systems.  Alfred 

Zimmermann et al. propose a metamodel-based 

approach for integrating Internet of Things architectural 

objects [52]. P. Fremantle’s reference architecture for 

IoT provides a layered structure for the internet of things 

which includes  the layers of client/external 

communications, event processing and analytics, 

aggregation/bus, relevant transports , and devices [53] 

which also leaves architectural concerns relevant to 

high-data-traffic high-privacy IoT integrated enterprise 

systems uncovered. D. Repta et al.’s efforts in 

formulating the concept of Cyber Intelligent Enterprise 

is yet another attempt to propose a way forward for 

integrating physical objects in virtual environments 

which covers the three main goals of information 

processing, domain representation and object 

abstraction [54].  

A review of the previous work in integrating fog-

connected edge devices within enterprise systems has 

revealed that the problem of evolving the architecture of 

a large-scale and potentially monolithic enterprise 

systems to an open distributed IoT-enabled setting has 

not been fully addressed or analyzed via common 

themes or problems or styles or patterns in the literature, 

leaving the field of fog and edge oriented embedded 

enterprise systems unaddressed. 

4. Fog and Edge Oriented Enterprise 

Systems Patterns 

This chapter proposes a non-exhaustive set of 

architectural design patterns for edge and fog oriented 

distributed embedded enterprise systems with each 
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pattern highlighting a problem, a solution and some use 

cases for contextualization. 

4.1 Intermediated Eventing Pattern 

Problem 

Enterprise systems that require receiving events and 

data from IoT devices, mostly require events at a higher 

abstraction layer and lower frequency. For such 

enterprise systems, anomalies in input data streams that 

belong to business objects have a much higher level of 

significance compared to raw data streams. How might 

we filter, analyze, detect and transform raw data into 

meaningful data that such enterprise systems expect? 

   

Solution 

The process to analyze raw data, apply sensible 

business logic to the data, derive and extract patterns 

and trigger a business process can happen on either edge 

nodes or fog nodes as a data flow intermediation layer. 

Provided that there is an initialization of state and 

business rules on fog and edge nodes, such nodes will 

possess all they need to detect anomalies or patterns in 

IoT-generated data streams and eliminate the challenge 

of having to communicate all the sensed data to the 

central enterprise system. The benefit of this pattern is 

to eliminate avoid high data volume conversations with 

the centralized system. 

Use Cases 

In geo-tracking farm cattle use cases, proximity to 

certain regions of the farm may be of significance rather 

than all locations the cattle traverse on the farm. The 

Intermediated Eventing Pattern can help transform and 

translate input data streams to of-interest output events. 

Another example includes IoT-enabled patient 

management systems in which only certain patterns in 

the sensed data need to be reported back to the central 

enterprise system.   

4.2 Buffered Eventing Pattern 

Problem 

Intermittent network connectivity issues, high data 

volumes and high local reliability requirements for IoT 

devices that act as sources of data for enterprise systems  

make it difficult to send all the data to such systems. 

How might we ensure no such data are lost despite the 

high volumes?   

Solution 

Rather than trying to send all the sensed data 

directly to the enterprise system, edge IoT devices and 

sensors can rely upon fog nodes to act as buffers to IoT 

data and events before publishing them to cloud-hosted 

brokers. This enables local resiliency and helps resolve 

the intermittency of connectivity to central cloud. The 

benefit of this pattern is to improve the reliability of the 

enterprise system and ensure no enterprise-important 

data is lost without the need to send all data to the 

centralized system in real-time. 

Use Cases 

In real-time health analytics and monitoring, the 

Buffered Eventing Pattern can help deal with high data 

volumes, intermittent connectivity and availability 

issues hence preventing chances of critical data loss.   

4.3 Business Object to Thing Multi-Binding 

Pattern 

Problem 

Enterprise systems own their users and trust 

models. A mapping of enterprise business objects to IoT 

devices needs to be securely established before data and 

events can be deemed to belong to such enterprise 

business objects. This issue gets more complex when the 

same IoT device is supposed to interact with more than 

one enterprise system. How might we make it possible 

for an IoT device to interact with multiple enterprise 

systems interested in receiving data and events from 

such devices?  

Solution 

Through an initial mapping exercise, the identity of 

the enterprise business object is diffused and extended 

to the IoT device(s), owned by or relevant to such 

business objects. This mapping or binding exercise 

could include the issuance of temporary access tokens 

digitally signed by an identity provider trusted by the 

enterprise system. Any further interactions of edge 

devices with fog nodes, cloud components or the 

enterprise system itself can be validated by validating 

the digital signatures of the supplied tokens by the edge 

device. Locally-deployed microservices and business 

logic must handle state management and maintenance of 

such tokens in cases where multiple tokens from 

multiple enterprise systems are to be used to interact 

with multiple enterprise systems. The benefit of this 

pattern is to facilitate “thing sharing” between multiple 

independent enterprise systems while maintaining a 

robust and secure trust model. 

Use Cases 

In IoT enabled procurement and order fulfillment 

enterprise systems, the same IoT sensor may need to 

interact with both procurement and order fulfillment 

systems. Examples include drone-delivered goods or 

goods that must remain under constant monitoring 

during shipping. In such settings, a multi-binding 

between the same IoT device and multiple enterprise 

systems can create the fluidity and dynamicity required.   
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4.4 Hot Microservice Swapping Pattern 

Problem 

In settings where edge devices join commodity fog 

networks, there may be a need for loading and executing 

business process microservices specific to that fog 

network or specific to a regional enterprise system. How 

might we enable the seamless execution of business 

logic from such enterprise systems despite the fluidity 

of the commodity fog network? 

Solution 

As an initialization step, upon joining a commodity 

network, the IoT device must establish trust and receive 

state, business rules and microservice logic from the 

relevant enterprise system to be able to process local 

data and events and apply relevant business rules to 

them. The benefit of this pattern is to enable centralized 

enterprise systems to interact and integrate with a 

dynamic list of IoT devices on the fly.  

Use Case 

 Downloading region-specific business process 

microservices on smart cars that would dynamically 

extend a regional traffic management system all the way 

to the edge of the network requires the hot swapping of 

such microservices as the car can fluidly join and leave 

such commodity local fog networks. A regional traffic 

management system can then enforce different business 

rules to the sensed data. 

4.5 Democratized Trust Pattern 

Problem 

In multi-layered fog networks where it is a 

requirement for the data and events created by edge 

devices to be persisted as they arrive irrespective of 

connectivity between cloud-to-fog and fog-to-fog 

nodes, the refresh of temporary credentials issued to 

edge devices may need to happen when connectivity to 

the centralized cloud identity provider is not available. 

How might we make it possible to continue 

authenticating edge devices fulfilling the reliability of 

data/event collection without having to refresh 

credentials via a trusted centralized identity provider?  

Solution 

Certain building blocks like identity providers can 

be replicated at the middle fog layers to provide 

autonomy in authentication and authorization after the 

initial authentication and authorization of edge devices 

using a centralized identity provider. Via an initial 

establishment of trust between all identity blocks at the 

fog levels, each of these middle-layer identity providers 

can remain enabled to issue new temporary credentials. 

The benefit of this pattern is to minimize dependencies 

on centralized access, authentication and authorization 

control in settings with intermittent connectivity issues. 

Use Cases 

In healthcare settings where edge devices report 

patients’ details to fog nodes that are locally hosted at 

the hospital level as well as to a patient management 

system, the process to keep recording the generated data 

while relying upon temporary credentials can be 

achieved using the Democratized Trust Pattern. 

4.6 Protected Data Synchronization Pattern 

Problem 

Given the privacy and security needs in IoT and 

assuming that the only trusted zone for plain data to 

exist in is the edge of the network, limited storage 

capacity makes it difficult to store large volumes of data 

possible. This alludes to the need to rely upon cloud 

storage or fog node storage as the long-term permanent 

storage of data. How might we preserve privacy while 

treating public cloud or fog nodes as the long-term 

storage provider for private IoT data?  

Solution 

Rather than maintaining large volumes of data on 

the edge, only the portion of data that is required is 

retrieved and processed on the edge in plain format. Fog 

nodes and cloud nodes are then used to only maintain 

encrypted data that have been encrypted with keys only 

maintained on the edge devices. This facilitates 

synchronization mechanisms in which cloud and fog 

nodes only maintain non-plain data. The benefit of this 

pattern is to make cloud storage for inherently-private 

data possible to extend the limited storage capacity of 

edge and IoT devices privately and securely. 

Use Cases 

For privacy-preserving big data and federated 

machine learning settings like purchase needs 

prediction, the Artificial Intelligence (AI) models can be 

trained on edge devices. In settings where multiple 

devices belong to the same user, the Protected Data 

Synchronization Pattern can be used to synchronize 

private datasets on multiple edge devices provided all 

such devices can establish a common trust model with 

their owner. Edge-executed microservices can then be 

used to determine predictive offers exposed by 

enterprise systems hence eliminating the need for such 

enterprise systems to maintain knowledge of 

consumers’ purchase history.  

4.7 Zero-Knowledge Data Transfer Intermediacy 

Pattern 

Problem 

An enterprise system may need to receive data and 

events from edge devices that are connected to 

commodity fog networks. Such commodity fog 

networks must maintain zero knowledge of the contents 
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of such data despite transferring data to the enterprise 

system. How might we enable the persistence of edge-

generated data securely on commodity fog nodes?  

Solution 

Given that the enterprise system and edge devices 

are deemed the only trusted zones where data can exist 

in plain format, following and initial establishment of 

trust, such edge devices and the enterprise system utilize 

a public key infrastructure to exchange public keys and 

agree upon common secrets to encrypt and decrypt data 

while utilizing the fog network as a data transfer 

medium. The benefit of this pattern is to facilitate 

private secure communication between an enterprise 

system and commodity devices that dynamically join a 

network and require private secure communication with 

the enterprise system.  

Use Cases 

High-volume sensor data in vehicular fog 

computing settings that are to be shared with traffic or 

smart city enterprise systems may need to be persisted 

on fog nodes first to be later on transferred to the right 

recipients. In such settings, the Zero-Knowledge Data 

Transfer Intermediacy Pattern could be used to 

eliminate the need for real-time transfer of high data 

volumes to the central enterprise system. 

4.8 Distributed State Synchronization Pattern 

Problem 

Given that the IoT edge nodes or fog nodes can run 

microservices and may require to maintain enterprise-

important state to apply business rules and logic to the 

sensed data locally, it is important for the central 

enterprise system to synchronize state with edge and fog 

nodes to maintain integrity of state and apply the 

relevant business processes and rules to such state at a 

global level. How might we keep the integrity of global 

state while allowing the distribution of state? 

Solution 

Regional fog nodes must be initialized with a set of 

business rules to achieve a locally-wholistic view of 

state and instruct edge devices with the right updated 

business rules to maintain integrity of operations. They 

can then synchronize state with the central enterprise 

system lazily. The benefit of this pattern is to make it 

possible to orchestrate a distributed but common state 

management model. 

Use Cases 

In a healthcare setting where IoT sensors report the 

status of a patient to an enterprise patient management 

system, multiple independent sensors monitoring the 

same patient must synchronize their local state and 

business rules to execute a wholistically-correct set of 

steps against the same patient when it comes to 

triggering alarms and detecting anomalies in the sensed 

data. The Distributed State Synchronization Pattern can 

help in such scenarios to ensure a wholistically-correct 

but yet distributed state management mechanism. 

5. Discussion 

The decision to distribute enterprise systems and 

expand them to the edge of the network comes with a 

range of trade-offs between gains and losses. 

Accordingly,  Table 2 lists a number of such trade-off 

points. 

Table 2 Architectural trade-offs between a 

traditional centralized design of IoT-integrated 

enterprise systems and distributed embedded 

enterprise systems 

Trade-off 

Aspect 
Description 

Privacy 

In cases where privacy 

requirements make centralized 

storage of data difficult, a 

distributed embedded enterprise 

system design can have 

advantages. 

State 

Management 

State management in centralized 

systems is simpler to handle. 

Event 

Orchestration, 

clock and time 

synchronization    

Centralized orchestration of 

business process steps and events 

is much simpler in centralized 

systems. 

Reliability 

A distributed embedded design of 

enterprise systems can provide a 

higher level of reliability & fault 

tolerance due to minimum 

dependencies on centralized 

systems. 

Low latency 

and real-time 

responsiveness  

A distributed embedded design of 

enterprise systems fulfills latency 

and real-time response 

requirements better. 

Decision 

Making 

Locality  

Decision making on business 

process execution and triggering 

can be localized in a distributed 

embedded enterprise system in a 

more effective way. 

Complexity 

The design of a distributed 

embedded enterprise system 

imposes a range of complexities 

that are not normally faced with 

centralized systems. 

Scalability 

A distributed embedded design 

for enterprise systems provides a 

higher degree of scalability due 

to minimizing dependencies on 

centralized resources. 
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Security 

Centralized enterprise systems 

are simpler to secure whereas 

distributed enterprise systems 

impose a range of security issues 

as a result of being physically 

distributed among many edge or 

fog nodes 

Operations 

Management 

Deployment, distribution, release 

management and disaster 

recovery in distributed embedded 

enterprise systems is inherently 

harder than centralized ones due 

to distributed state management 

and storage.  

6. Conclusion 

Enterprise software systems are used in enterprise 

settings for a range of purposes mostly covering the 

integration and execution of business processes. In an 

IoT-enabled world, the need for the interaction of 

enterprise systems to IoT devices have increased 

significantly, however, aspects like high data volumes, 

privacy, reliability, and low latency requirements have 

made it challenging to simply integrate centralized 

enterprise systems with IoT devices. Fog computing and 

its benefits in terms of inclusion of localized close-by 

computing and storage capacity can solve certain 

problems in IoT-enabled enterprise systems. Based 

upon a case study for privacy-preserving customer 

loyalty and relationship management, this paper 

presents a non-exhaustive catalogue of patterns around 

a paradigm in which enterprise systems are designed to 

be distributed inherently and expand into fog and edge 

nodes with possibilities for the execution of 

microservices on edge and fog nodes as an enabler to 

resolve some of these specific requirements. As a 

limitation, this research does not include an exhaustive 

list of applicable patterns for edge and fog enabled 

embedded enterprise systems and further work can lead 

to a wider range of such patterns. 
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