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Abstract

Decision logic extraction from natural language
texts can be a tedious, labor-intensive task. This
is especially true for legislative texts, since they do
not always follow usual speech and writing patterns.
This paper explores the possibility of using machine
learning and natural language processing approaches
to identify decision rules within legislative documents,
and ultimately provides the possibility of building an
extraction algorithm on top of the solution to extract
and visualize decision logic automatically. Such a
novel method for decision rules identification bears the
potential to reduce human labor, minimize mistakes, and
lessen context dependency. To accomplish this, we use
pre-trained word vectorization in conjunction with a
complex multi-layer convolutional neural network (CNN).
The relevant data used in this project was generated from
the Austrian income tax code and labeled by hand. A
quantitative evaluation shows that our approach can be
trained on as little as a single code of law and still obtain
significant accuracy.

1. Introduction

When implementing the automated rule and
compliance checking into a digitally aided workflow,
we face the challenge of an often prohibitive, extensive
specification effort. The legislative documents that
comprise most legal systems express rules implicitly
in the form of natural language. Building on human
expertise is still the prominent solution to bridge
the gap between natural language and a machine
comprehensible version of its content. The translation
task is knowledge-intensive, slow, and often comes with
high costs. Therefore, the extraction of rules and other
semantic content from legal sources has been a prevalent
topic in natural language processing.

Different approaches to extract decision logic have
been presented in both information systems and computer
science. The approach proposed by Rozinat and van

der Aalst [1] present first efforts in mining decisions
from transaction logs or audit trails through the use of
machine learning techniques. More recently, work by
van der Aa et al. [2] focused on extracting decision
logic and visualizing it as declarative process models
from the natural language, while Arco et al. [3], and
Etikala et al. [4] focused on decision rule extraction and
the decision table and decision requirements diagram
generation. Research on rule-based approaches often
suffers from a lack of annotated source data, and the
inherent complexity of extracting decision logic from
natural texts [5, 6, 7, 8]. While these approaches yield
promising results individually, they are closely tied to
the specifics of use cases. In particular, when using
gazetteers [6], significant work might be needed to adapt
them to different content and context.

In this paper, we address the research problem of
devising an easily adaptable and scalable identification of
decision rules in legislative texts. To accomplish this, we
build on prior research by Kim on sentence classification
using convolution neural networks [9]. In our approach,
we first classified sentences from the Austrian Income
Tax Law based on their deontic expressions: decisions,
obligations, permission, and prohibition. Then, we
implemented a complex multi-layer convolutional neural
network using a pre-trained word vectorization. This
resulted in a scalable method, on top of which rule-based
extraction algorithms can easily be built. Our research
suggests that training data with a number of examples
in the lower thousands are sufficient to train the neural
network, provided care is taken when designing the
model [10]. Additionally, advances in word embedding
have made it possible to create vectorized representations
of words that keep much of their semantic information
[11] allowing for finer-grained classification on the level
of the sentence.

This paper is structured as follows. Section 2 gives a
brief overview of prominent approaches to information
extraction from natural language, especially legislative
texts. Section 3 describes in detail the steps necessary
to collect and preprocess the data and create the neural
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network. Section 4 presents the results. The Discussion
in Section 5 compares the baseline approach, lists
the project’s limitations, and provides insight into the
resulting implications. Section 6 serves as a conclusion
and discusses directions for future research.

2. Theoretical Background

2.1. Rule Extraction Tasks in a Legal Context

In order to analyze automated rule extraction from
legislative language sources, the machine-readable
representation of rules in the text has to be discussed
first. Regarding rule extraction, the focus lies on
the semantic content of individual clauses in a legal
document. Clauses can be categorized into two
general groups: definitional clauses and normative
clauses [12]. Definitional clauses provide definitions
regarding terms and concepts used throughout the source,
while normative clauses comprise deontic modalities, a
linguistic concept indicating how something ought to be.
This includes obligations, permissions, and prohibitions
[13]. For the deontic concepts, annotations can be added
stating the type of deontic expression and defining the
thematic roles agent and theme. The role agent marks
the active entity, theme the entity that is acted on. These
roles are useful due to the subject and object of a sentence
often switching when both active and passive structure is
used throughout the document [6].

2.2. Related Work

Prior work can be largely grouped into two types of
solutions: A rule-based approach and a machine learning
approach.

2.2.1. Rule-Based Approach Rule-based methods
have their creators manually construct a framework of
rules and routines for text processing. When using
such methods, the document is first run through a
parser that annotates the grammatical structure of each
sentence. Then, the output is evaluated, extracting rules
based on syntactic and linguistic patterns. Therefore,
it is necessary to understand how exactly information
is encoded in the relevant document. For all-natural
language texts, attention must be paid to grammar,
vocabulary, and context. However, comprehension of
formal structure, e.g., bullet points and lists, can be
relevant in legal documents.

An example of such an approach is work by Wyner
and Peters [6] which presents "a linguistically-oriented,
rule-based approach" to rule extraction structured around
the use case of compliance issues in highly regulated

industries such as the banking or health service sector.
A 1700-word document generated from US Food and
Drug Administration regulations regarding blood banks
is annotated with the help of a linguistic parser (Stanford
Parser1). The resulting grammatical annotations are then
combined with gazetteer lists and regular expressions
to identify and mark relevant elements like agent and
theme, deontic modals, main verbs, exception clauses,
and conditional sentences. A comparison to a previously
created gold standard for this document reveals that this
method achieves promising results, especially for more
straightforward concepts like deontic modalities and list
structures. While these achieve the ideal result of 100%
in both precision and recall, the more complex patterns
like exception phrases and by-phrase agents can match
this only in precision with recall lacking behind with
rates often under 50%.

A different model using similar components is
presented in [5]. In contrast to [6] the evaluation is not
a linear process but conducts two operations in separate
branches, only crosschecking the results at the end. The
document is again split into sentences in the first branch,
which are consequently parsed with the Stanford Parser.
Then, however, each phrase is further divided into terms.
In this case, "terms" do not represent single words, but
whole sentence components are isolated by their position
in a sentence’s grammatical structure. Each term is
annotated with a deontic tag based on a thesaurus created
with the help of the large lexical database WordNet2.
Resulting in sentences split into deontically tagged terms
which can be arranged to form a logical representation
of the described rule. The second branch creates a
phrase structure representation of a sentence using a
combinatory categorical grammar parser. Finally, the
logical relationships between terms created by the first
branch are checked against the logical representation
created by the second.

The paper by Etikala et al. [4], presents a text mining
technique that is capable of automatic extraction of
decisions and their dependencies from natural language
text and building the decision requirements diagram
(DRD). This approach labelled as Text2Dec uses
open-source tool kits such as Stanford’s core NLP 3,
NLTK 4, neuralcoref 5, and SpaCy 6 libraries to build
the NLP pipeline which enables decision logic extraction.
This approach was evaluated using a real-life use case
of Employee Health Assessment. The results showed
that Text2Dec could generate DRDs that correspond to

1https://nlp.stanford.edu/software/lex-parser.shtml
2https://wordnet.princeton.edu/
3https://nlp.stanford.edu/software/
4https://www.nltk.org/
5https://github.com/huggingface/neuralcoref
6https://spacy.io/
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the manually developed ones in terms of structure and
semantics.

Another recent effort regarding automatic discovery
and generation of decision rules and decision tables
from natural language descriptions is the work by
Arco et al. [3]. Their approach consists of discourse
and semantic analysis, syntactic analysis, and decision
table generation. To accomplish this, the authors
make use of Stanford Parser. The evaluation shows
that this framework can identify and extract decision
rules from decision descriptions in English with high
accuracy for the antecedent-consequent pairs and their
components. Some limitations regarding the syntax
of the approach compared to expert modelers’ syntax,
resulting in occasional decision table extraction that does
not correspond to the experts’ expectations.

All the examples presented above show promising
results, but precision and recall rates often fluctuate
between different categories of deontic concepts.
Additionally, the tests were performed on small, highly
structured, and manually preprocessed data. Therefore,
reproducibility on other documents is not guaranteed.
The exception to this is the paper by Parkash et al.
[14], which was tested on multiple data sets. However,
even this study points that the presented tool (BRMiner)
performs well, as long as the sentences do not consist
of too many dependent clauses. They further state that
their approach can be used to further train and utilize
supervised learning-based models.

2.2.2. Machine Learning Approach With
supervised machine learning, the exact rules for
obtaining a result do not have to be clear from the
beginning. On the contrary, machine learning creates
those rules by finding patterns in the provided data. To
train such a model, data and the result to be predicted
have to be aggregated in a training set. The model
"learns" to generate the wanted output based on the
respective input datum. When presented with new
data, it will generate predictions that fit the patterns
encountered in the training data. A model trained on
a more extensive data set will have more chances to
recognize relevant patterns. Therefore, large data sets
are generally required for model training. Another
requirement is the data being in a format the machine
learning algorithm can work with. In general, a machine
learning model operates on a numeric representation of
the task at hand.

A simple solution for natural language is the
bag-of-words (BOW) method [15]. For each document,
only the absolute number of occurrences or the frequency
of a word in the document relative to the whole corpus is

kept. Disregarding the context and position a word is in
this drastically simplifies the content of a text, but in turn,
enables classification based on relative term frequencies.

In Mikolov et al. [11] and successively in Bojanowski
et al. [16] a more complex alternative to the simple
BOW representation is presented. Mikolov et al. [11]
demonstrate that using their Skip-gram method, a word
can be represented as a multidimensional vector and
keep its context information. Thereby, even complex
relationships between terms can be preserved when
translating them into a numeric format. Bojanowski et
al. [16] improve on this concept by including subword
information in their vectorization model. This enables
the resulting vector to include context information based
on the position of a word in a sentence or document
and based on the position of structurally similar terms.
Conducted tests show that this improves results in word
similarity tests and enables the model to vectorize words
that are not included in the training data as long as similar
terms are included in sufficient quantity.

The paper by Elwany et al. [17] presents the use of
BERT [18] on legal documents. This paper aimed to
assess the performance of a model for classification tasks
based only on a pre-trained BERT language model. For
BERT fine-tuning, the authors used a proprietary corpus
consisting of hundreds of thousands of legal agreements,
while as a classification data set, they used a proprietary
data set consisting of a few thousand legal agreements.
This paper showed that the pre-trained BERT model
significantly improves the classification tasks in the legal
domain.

For even finer grouping, in [9] a convolutional neural
network (CNN) is used to classify single sentences. An
input vector is connected to its corresponding output
vector through a net of consecutive layers of nodes in
a neural network. These nodes also called "neurons,"
take a weighted vector and run it through a mathematical
function to calculate the output. The model "learns"
patterns in the data by iteratively running through the
provided input vectors and adjusting the weights for
each node to fit the desired output vector provided in
the training set. A CNN follows this principle but differs
from a simple "feed-forward" neural network in that it
does not connect all its input neurons to every node on
the next layer. The nodes of a layer are only connected to
individual areas in the input data. When used for image
recognition, the model does not look at the whole picture
at once but singles out smaller areas to find patterns first.
These are accumulated over the subsequent layers to form
complex filters, enabling the model to make sophisticated
classifications.

Kim [9] conducted multiple tests comparing four
variants of a convolutional neural network to other

Page 6249



state-of-the-art sentence classification methods. Of the
four models, three are trained on word vectors created
based on the concepts mentioned above. One, serving
as a baseline, is trained on randomly initialized vectors.
All models are tested on seven standard benchmark data
sets, including tasks such as multi-class classification
of Questions and sentiment prediction of movie and
customer reviews. Results show that for every data set,
the model trained on randomly initialized word vectors
is outperformed by the ones operating on pre-trained
vector representations. Furthermore, the CNNs posted
the highest result for four of the seven data sets.

3. Research Method

Following the previously presented approaches
rooted in machine learning, we implemented a CNN to
label individual sentences based on their deontic content.
After data is aggregated and labeled, the network was
trained and then tested to determine if the proposed
model can reliably reproduce the classification when
applied to new data. In the following subsections, we
describe how our model was constructed and evaluated.
An overview of the approach can be seen in Figure 1.

Figure 1. Workflow of the Implemented Approach

3.1. Classification Labels

Before aggregating and labeling relevant data, the
different categories of sentences are classified and
defined. Primarily, the focus lies on identifying
normative clauses and definitional clauses. Definitions
clauses serve as a de facto catch-all class, which
includes sentences that are not defining the behavior of
taxpayers and tax authorities. Normative clauses are
to be further divided in three subdivisions: obligation,
prohibition and permission. The three subdivisions are
based on deontic logic concepts [19] obligation (OB(a)),
prohibition (OB(¬a)), permission (¬OB(a) ), omission
(¬OB(¬a)), and option ((¬OB(a)&¬OB(¬a))). The
last three have due to their similarity all been grouped
under the label permission. This leaves sentences to
each be labeled as one of four distinct classes: definition,
obligation, prohibition and permission. To be compatible
with the numeric machine learning model each label is
represented by a four dimensional vector with a single
binary digit indicating the occurrence of an expression
(e.g. Def→ [1,0,0,0], Obl→ [0,1,0,0]).

3.2. Data Preparation

3.2.1. Data Source and Preprocessing The Data
Set used to train the machine learning model in
this project is constructed from the publicly available
Austrian Income Tax Code (Einkommensteuregesetz
19887). The choice of resource is three-fold. Firstly,
tax law can be considered as relevant for compliance
considerations both to an enterprise and the legislators.
Secondly, we assume that tax law has less room for
interpretation and a more orderly structure than, for
example, civil law. Finally, the Austrian income tax
code is a well-maintained and relatively new code of law,
reducing outdated terms and expressions.

After choosing the text, we proceeded with the
data preparation in a semi-automated manner. We
separated the text of the law into single sentences
using a programming script. However, complex listings
that finish the start of a sentence with a different
ending for each sub-letter had to be manually identified,
and after identification, each listing was split up
into individual grammatically and semantically correct
sentences. Therefore, the output of the utilized script was
a list of individual sentences, which were subsequently
manually labeled. Although tedious, this process
provided the opportunity to check the automatically
aggregated sentences for grammatical and structural
coherence. Working through the rows showed that the

7https://ris.bka.gv.at/eli/bgbl/1988/400/P0/NOR40205159
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preprocessing scripts work as intended and that only a
handful of sentences must be removed. The remaining
phrases were stripped of unnecessary components such
as punctuation, numbers, and unnecessary white space.
Next, all abbreviations and symbols were converted to
their worded counterparts, and everything was converted
to lowercase. Lastly, sentences with a length of more
than 64 words were discarded to keep the size of a single
input datum reasonably small, preventing a huge input
layer in the machine learning model.

In order to make the most of the limited amount of
labeled data available for this project, simpler statistical
word representation methods were disregarded in favor
of a neural network-based approach, in this case, the
FastText8 library. FastText translates every word into an
n-dimensional vector that makes it uniquely identifiable
and keeps much of its semantic meaning. The framework
achieves this by using both learned word embeddings
from a continuous skip-gram model as introduced by
Mikolov et al. [11] and sub-word information in the
form of n-grams introduced by Bojanovski et al. [16].
This has the advantage of providing both context and
sub-word information in one vector, enabling words to be
represented correctly even if they rarely occur or never
in a document corpus, as long as words consisting of
similar n-grams are present in sufficient quantity. This
is especially useful or even essential when working
with German text due to German nouns often being
concatenations of multiple ones that can otherwise stand
alone. In legislation, this is often used to create precise
technical terms. These would otherwise be difficult to
vectorize, as their occurrences are sparse or non-existent
throughout the training data, preventing a skip-gram
only model from learning them. Using this approach,
a dictionary comprising all unique words in the data set
is generated in applying the concepts mentioned above.
Each word in the dictionary is then converted to its
vector using FastText’s publicly available pre-trained
vectorization model for the German language9. With
the thereby obtained look-up table of words and their
300-dimensional vector representation, each sentence is
translated to a list of vectors.

3.2.2. Final Structure The amount of sentences in
the classification categories was not evenly distributed.
Therefore, to have as many sentences as possible for the
test set, we decided to randomly split the data set into
a training and a test set in a ratio of roughly 9:1 instead
of the usual 8:2. We acknowledge that this proportion
can result in slightly different results than using the usual

8www.fasttext.cc
9https://fasttext.cc/docs/en/crawl-vectors.html

Full Data Training Set Test Set
Definition 1190 1083 107

42% 42% 43%
Obligation 1274 1163 111

45% 45% 44%
Permission 265 240 25

9% 9% 10%
prohibitions 104 97 7

4% 4% 3%

Table 1. Total and relative class label distribution.

8:2 proportion. As it can be observed in Table 1, the
distribution of classes in the entire data set is carried over
both in the training and the test set.

3.3. Machine Learning Model

3.3.1. Vectorization Convolutional neural networks
have first been introduced to be used in image recognition
in the 1990s [20]. On smaller data sets with limited
classification levels like the MNIST digit-recognition
set, machine learning algorithms applying these concepts
are achieving almost human performance levels with
error rates lower than 0.3% [21]. Even on large sets with
thousands of classes, CNNs show respectable results with
error rates of around 15% [22].

For this project, in trying to extend the advantages and
achievements of CNNs to natural language classification,
sentences are essentially treated as images. The
vectorization described in section 3.3.1 converts each
word into 300 numeric values between -1 and 1. To
format a sentence like an image, each word vector of
300 values is written in a new row creating a matrix with
300 columns, very similar to a 300 by n pixel image, n
being the number of words in the sentence. With the
data formatted like this, the same methods perfected for
image classification can be used on sentences without
any changes to the architecture. Similarly, as described
by Kim, [9] a convolutional neural network is used to
classify single sentences. The constructed network is
of increased complexity to mitigate the disadvantage
of having only a small amount of training samples, as
suggested in Lopez and Kalita [10]. Therefore, rather
than having a single convolutional, pooling, and fully
connected layer each, this network consists of multiple
convolutional and pooling layers feeding into a fully
connected sequential neural net with five hidden layers.
A visualization is provided in Figure 2.

3.3.2. Input The network takes as input a matrix with
300 columns and 64 rows. To standardize the input and
cope with different sentence lengths, each input is padded
to the required length by adding rows of zeros to the end
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Figure 2. Structure of the Convolutional Neural Network

until a length of 64 is reached. A matrix is introduced
since most sentences are much shorter than the maximum
length bias of relevant information being mostly situated
at the beginning of each sentence. Later layers address
this problem, for it could lead to the model identifying
patterns that occur later in a long sentence worse or not
at all.

3.3.3. Dropout When a complex model is trained on
a small data set, it is prone to overfitting, especially when
training the model in repeated epochs on the same data.
One simple solution without the need for an increase
in training data is "dropout," a concept introduced by
Hinton et al. in [23]. A dropout layer randomly discards a
fixed percentage of the values in each input datum before
handing it over to the next layer. The following layers
never get to see the whole datum, preventing memorizing
all individual training examples and forcing them to learn
the meaning of a single value detached from other units
around it. This essentially achieves the same result as
model averaging, a process in which many models are
trained, and their results on the test data are averaged, at
a fraction of the computational cost [23].

The here described model includes two dropout
layers, one in the beginning before feeding into the first
convolutional layers and a second in front of the fully
connected sequential network at the end (see fig. 2).
Instead of a dropout percentage of 50% as described in
[23], each of the layers discards only 10% of its input
units. The comparably low dropout rate results from
several tests showing that high and low rates prevented
overfitting equally well, but higher rates also reduced the
overall accuracy in both test and training sets.

3.3.4. Convolutional Layers Each of the first four
parallel convolution layers has the same number of 512
filters, but the window size varies. The first layer has

the filter window set to one row (1-word vector or 300
units) of the input matrix. For the remaining three layers,
the stride length stays the same. However, the window
size increases to 3, 7, and then 9 rows, or respectively
900, 2100, and 2700 units. The smaller window sizes
are supposed to enable the model to learn features
to single words and their positions, while the larger
ones should create longer sub-sentence features. All
convolution layers use the Rectified Linear Unit (RELU)
[24] as activation function. The RELU function f(x) =
max(0, x) is non-saturating, mathematically defined as
| lim
z→∞

f(z)| = +∞, meaning it does not confine its input

into a range of real numbers, as is done for example by

the logarithmic function (f(t) =
1

1 + e−t
aka. Sigmoid).

Non-saturating functions allow for faster training due to
not flattening the gradient of its output at the borders
[22]. For the second set of convolution layers, only
the filters and size of the filter windows are adapted
to fit the differently structured input received from the
merging and reshaping operations. The details of which
are explained in section 3.3.5. The task of the second
set is to combine and reduce the many simple features
created in the first set into less but more complex features.

3.3.5. Pooling The resulting filter maps obtained
from each convolution layer are then fed into a global
max-pooling function. For the convolution layers in
the first set, this means that all 2048 (4 x 512) filter
maps, previously of different sizes due to varying filter
window sizes, are reduced to a single value each. The
pooling operation is again a computationally inexpensive
method to address multiple problems mentioned above
and helps improve the model’s overall effectiveness. The
first general benefit of applying a pooling layer after
a convolution is to select out positions where the filter
matches best. Pooling reduces how well the pattern is
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represented in different areas of a sentence to the single
value of the one location it fits best. It significantly
decreases the volume of data passed on to later layers,
separating the important activation signals from the
ones less so [25]. Secondly, concentration on relevant
values has increased a model’s ability to generalize [23]
mitigating the risk of overfitting. Lastly, pooling helps
to rule out bias introduced into the model by varying
sentence length in the input data [9]. Due to padding
each input datum with trailing zeros to achieve a uniform
length, the information density is highest at the beginning
of each datum. Without mitigation, this would lead to a
part of the network to mostly encounter zeros, hindering
learning and possibly leading to patterns occurring only
at the end of long sentences not to be recognized. With
pooling after the first layer, this effect is contained to the
beginning of the network, assuring that later layers will
receive information equally proportioned to all nodes.

The model includes a pooling layer after each
convolution layer. This transforms the output of each
layer, 512 matrices of varying sizes, into four vectors of
512 values each. Before they are handed forward to the
next layer, the four vectors are merged and restructured
to a 128 by 16 matrix, again creating an image-like
format(see merge & reshape in fig. 2). After the second
set of pooling layers, the output, four-vectors with 128
values each, are only merged without reshaping to a
matrix due to the following fully connected layers not
requiring any special input formatting.

3.3.6. Sequential Neural Net The last section of
the model comprises a five-layer deep, fully connected
feed-forward neural net and a four-node softmax output
layer. Its task is to assign each input datum to one of the
four classes derived in section 3.1 based on the features
learned in the convolution layers. In each subsequent
layer, the number of nodes is halved, reducing the number
of features from 512 to 32 over 4 layers. Fully connected
means that every output of every node in a layer is
calculated by taking the weighted sum of all outputs
of the previous layer and applying an activation function
to it. In this model again the rectified linear unit is used:

output = relu(

n∑
i=1

xi × wi)

Where xi is the output value of node i of the previous
layer, n is the number of nodes in the previous layer, wi

is the weight this value is multiplied with and relu()
is the aforementioned rectified linear unit activation
function f(x) = max(0, x). Therefore, the result of
one layer is a vector of values between 0 and ∞ with

Epochs: 48
Training Acc.: 99%
Definition Acc.: 92.5%
Obligation Acc.: 97.3%
Test Acc.: 93.6%
Permission Acc.: 92%
Prohibition Acc.: 58.1%
F1: 87.4%
Precision: 90.1%
Recall: 84.7%

Table 2. Summary of the model’s results.

a length corresponding to the number of nodes in the
layer. However, the output layer functions the same way
as its predecessors, using the Softmax activation function.
Softmax returns a value between zero and one for each
node, with the additional property that the sum of all
nodes always equals one. The output can be read as a
probabilistic estimate of the classification label ([0.05,
0.8, 0.05, 0.1]→ [0,1,0,0]).

3.3.7. Training In a first step, a "loss" function
measuring how close the model got to recreating the label
provided with the input datum has to be defined. For this
project, the Huber loss [26] function was applied. It
presents a more robust alternative to common functions
like the squared error, meaning it is less likely to be
disproportionally influenced by outliers in the data. The
goal of training a network is to find the global minimum
of the model’s loss equation. A popular method is to
adjust the weights and biases descending along the loss
function’s gradient [27]). In this project, the Nadam
[28] optimizer included in Keras 10 is used. It can be
classified as a stochastic gradient descent optimizer. By
including Nesterov momentum, it is an improvement on
the popular Adam [29] (adaptive moment estimation)
optimizer. With momentum, the size of the step taken
after each iteration of calculating the gradient is increased
on the way to a minimum and reduced when getting close
to it. This generally accelerates learning, improving
overall training time and preventing overshooting a
global minimum. The model was trained in epochs
of iteration over 2500 training examples. Despite the
complexity of the network training, a model for 60
epochs takes only five minutes without any specialized
hardware or GPU processing due to the limited amount
of training data.

4. Results

For evaluation, 10 models are trained for 75 epochs
each. Figure 3 shows that with increasing epochs, the

10https://keras.io/optimizers/
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Figure 3. F1, precision, recall, train and test
accuracy with increasing training epochs.

Figure 4. Accuracy of individual classes with
increasing training epochs.

training accuracy approaches 100%, increasing only
marginally after the 25th epoch. Regarding the test
data, however, the accuracy already levels off at around
93% after 20 epochs. With increasing training epochs,
the training accuracy increases continually, which does
not translate to the testing accuracy due to overfitting.
However, since precautions have been taken to minimize
the possibility of overfitting, instead of peaking and
decreasing, the testing accuracy levels off after reaching
its maximum.

Accuracy, giving only an overall assessment of the
model’s performance, cannot measure how well the
model is adapted to the individual classes. In order to
see how much the bias in the data affects the model’s
ability, the harmonic mean between precision and recall
or F1 score is calculated [30]. If the model’s errors
were distributed equally over all classes, the F1 score
would equal the overall accuracy. The more unevenly
the mistakes are distributed, the lower the F1 score falls
below the accuracy. Figure 3 also shows that following
the same pattern as training and test, accuracy F1 levels
off below 0.8. However, it slightly decreases after epoch
50, which might result from overfitting, favoring classes
for which more examples are provided to achieve higher
accuracy. In Figure 4 the reason for accuracy and F1
differing can be clearly seen. Likely as the result of too
few training examples, the accuracy of the prohibitions
class never exceeds 50%. With a total of 104 sentences,
prohibitions account for only four percent of the training
data, which is seemingly just too little to classify them
accurately.

Interestingly, however, permissions, also presenting
only a minority of the examples, are classified equally
well as the more abundant classes. On the one hand, this
could be explained by the fact that permissions are with
250 instances more than twice as frequent as prohibitions.

On the other hand, permissions differ linguistically from
the other classes more than prohibitions. Whereas
prohibitions are often the negation of an obligation
or permission, differing only in including a ’not,’
permissions are signified by unique clauses like ’shall
be authorized to.’ Due to this more clear distinction,
permissions might require fewer training examples to be
correctly classifiable.

In summary, the best model trained using this method
achieved a test accuracy of 93.6% and an F1 score of
87.4%. The low F1 score is the result of lacking accuracy
in classifying prohibitions. Here it only achieves an
accuracy of 58.1%, low compared to the other classes,
which all range above 90%.

5. Discussion

5.1. Comparison to Baseline Solution

To facilitate comparability of the new proposed
method a simple baseline was established using a Bag
of Words11 (BoW) approach to convert the natural text
to a numeric format and a Random Forest Classifier12

(RFC) to handle the multi-label classification. Instead of
vectorizing the pre-processed sentences, the data frame
is transformed into a 2800 row long, 5300 column wide
sentence-term matrix. By this process, all grammar and
sentence structure forms are disregarded in favor of a
simple numeric word frequency measure. Finally, a
Random Forest model is used in a 5-fold CV to collect
the baseline results.

Using the same accuracy and macro-averaged F1
score as with the machine learning model, the baseline

11https://scikit-learn.org/stable/modules/generated/
sklearn.feature_extraction.text.CountVectorizer.html

12https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html
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method achieves an accuracy of 73% and an F1 score
of 0.53. This relatively high, and considering the low
F1 score somewhat misleading, accuracy value results
from the model devolving into a one rule classifier for
two of the four classes. Due to the uneven distribution
of positives to negatives for the last two classes, the
model arrives at only guessing negatives. This results in
a decent accuracy but an abysmal F1 score and highlights
the shortcomings of a simple approach like this when
confronted with limited training data. However, even
for the more readily available classes like ’obligation’,
the BoW-RFC method presents inferior results, with an
accuracy of 72% and an F1 score of 0.63. It sits far
behind the accuracy of 96% and F1 of 0.85 for the same
class and the CNN Model in our approach. Overall, the
proposed new method outperforms the baseline by 20
percentage points in accuracy and an increase in F1 for
roughly 0.27.

5.2. Limitations

Most of the limitations result from the limited amount
of data and the effort its aggregation entails. Legislative
texts do not necessarily follow the patterns of regular
speech and writing. Therefore, already available tools
for natural language processing (e.g., sentence splitters)
are insufficient to preprocess the data independently, and
manual processing is necessary. Furthermore, this project
serves as a de facto proof of concept, not all sentences of
the code of law being included in the data can be justified.
In a use-case scenario, this would likely not be an option.

Additionally, it is worth noting that the uneven
distribution of classes in the training and test set, which
hindered both accuracy and F1 scores, is the result of an
uneven distribution thereof in the underlying code of law.
Even if more data is collected and more laws are included,
the performance for these small classes might not grow
in proportion to the performance of other classes. This
could lead to a model continually adopting some form of
bias when trained on the complete data.

Next, when assigning sentences one of the four
discussed labels, a problem presents itself. In German
especially, but likely also in other languages, not
all obligations stemming from a legal document are
presented as obligations in the text. The sentence
"Unternehmen sind steuerpflichtig." (Companies are
taxable.) for example, is written as a definition. Only the
adjective "taxable" brings the fact that this entails a duty
to pay tax, which makes it an obligation. For this project,
all sentences were classified as the deontic modality,
so the example sentence above would be labeled as a
definition. Finally, it is worth mentioning that we did not
perform cross-validation, which is something that needs

to be rectified in the future and could possibly result in
slightly different results.

5.3. Implications

When discussing the implications of our approach,
we can observe that, first, the gathered results show that
combining a context-independent vectorization model
and a context-dependent classification model is a viable
method for sentence classification when confronted
with a limited amount of training data. If the data is
first transformed into context retaining word vectors,
a convolutional neural network can reach competitive
levels of accuracy even when trained on very limited
data, such as a single code of law. Second, the resulting
accuracy of 93.6% is sufficiently high for the output
to be used in subsequent rule-based processing steps
that can not yet be replaced by machine learning. If
similar accuracy can be achieved when applying the
same method to other equivalently sized data sets with
different classification levels, it could show that this way
of pre-labeling sentences can be applied in a wide range
of natural language processing tasks.

6. Conclusion and Future Research Steps

This paper presented the first approach for the
automated identification and classification of decision
rules from legislative texts in the German language
using machine learning methods. We created a scalable
model using a multi-layer convolutional neural network
is created and trained to classify sentences in a code of
law based on their deontic expression. A quantitative
evaluation showed that our approach achieves high
accuracy and precision, with the best model trained using
this method reaching a test accuracy of 93.6%. Therefore,
we can say that our approach provides a good starting
point on top of which rule-based extraction algorithms
can easily be built. This would significantly reduce the
effort needed for automatic extraction of decision rules
from legislative tests, a task that is otherwise manual,
complex, and tedious.

In future work, we aim to extend our approach in
several directions. First, we aim to conduct a more
thorough evaluation of our model compared to other
established approaches on the same data set, such are
BERT [18] and ELMo [31]. Second, we plan to aggregate
more data in hope of reducing the difference in accuracy
between classes, as well as to collect data from more
than one code of law in order to study how well the
algorithm performs when trained on the first, but tested
on the second document. Finally, we plan to create a
rule-based extraction algorithm on top of this approach,
which will be able to automatically visualize extracted
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decision logic as decision trees or DMN decision tables.
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