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Abstract 
The digitalization of science has resulted in the 

development of essential, specialized, devices and 

software. Computational science, as a branch of 

science, is specifically identified as an important, 

potential area for which it would be helpful to apply 

design science research. This paper examines 

computational science, identifies its past and ongoing 

challenges, and suggests that progressing 

computational science with design science research 

can serve as an important area of inquiry for 

continuing design science research.  

Keywords: Computational science, design science research, 

sciences of the artificial, digital science, digital artifact, 

Science 2.0 

1. Introduction

In 1969 (now over fifty years ago), Nobel 

Laureate Herbert Simon set a broad distinction 

between two kinds of academic disciplines: the 

sciences of the natural that study and describe our 

natural environment, and the sciences of the artificial 

that prescribe and create artifacts that change our 

environment [1].  These sciences of the artificial 

spanned professional schools, such as law, business, 

and information systems, that primarily design and 

create artifact that are useful to society. 

But even fifty years ago, many scientists in nearly 

every field of natural science were creating artifacts to 

assist them in their work. In Simon’s time, these 

devices were typically measuring devices for sensing 

and observing natural phenomena.  Today, however, 

much work in science occurs in silico: within digital 

simulation systems where sensors, calculations, 

displays, etc., reflect observations of a reality that is 

not natural, but rather simulations that are digitally 

created [2]. The natural sciences have become 

increasingly dependent on complex, special purpose, 

digital assemblies of computational devices, software, 

and data.  

Over the course of these five decades, the natural 

sciences and its disciplines have spawned 

computational science and its various branches. 

Computational biology emerged from biology, 

computational geoscience emerged from geoscience, 

etc.  Computational science is the use of computers, 

software, and algorithms to solve complex problems 

and needs [3]. In computational science, there are 

many rapid advances via simulations (e.g., 

astronomy), mining of massive data sets (e.g., 

bioinformatics and medicine), and other technology-

based discovery techniques. These natural science 

advances require the development of essential, 

specialized, devices and software.  

As computational science become ubiquitous 

within each branch of science, a natural scientist 

increasingly must design and program their 

experiment in the digital world.  In a survey of 2000 

scientists, 38% spent at least a fifth of their time 

developing software, 45% reported this workload was 

increasing, 47% lacked an understanding of software 

testing; yet only 34% felt software development 

training was necessary [4].  In other words, natural 

scientists are poorly prepared, yet deeply engaged in 

designing, creating, and depending on digital artifacts. 

Furthermore, engineering branches have emerged 

in concert with the computational sciences.  Biological 

engineering emerged with computational biology, 

ecological engineering emerged with computational 

geoscience, etc. In this sense, contemporary 

developments have gradually advanced the natural 

sciences to become what Simon considered to be 

sciences of the artificial. 

It seems obvious from the names given to these 

advances (computational geoscience, ecological 

engineering, etc.) that the fields of computer science 

and engineering are important. But what of 

information systems? As a branch of systems science 

concerned with “information and the complementary 

networks of hardware and software that people and 

organizations use to collect, filter, process, create and 

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 5768
URI: https://hdl.handle.net/10125/80043
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



also distribute data” [5], there should be a contribution 

to the modern version of the natural sciences. 

The field of information systems certainly offers 

the sciences knowledge about organizational 

infrastructure systems. These systems enable data and 

information functions in scientific organizations as 

well as any other kind of organization.  But further, the 

information systems field has proven to be a pioneer 

in developing design science research methods. The 

concept of a scientific design of computational 

artifacts is a direct contribution to the fundamental 

principles of any computational science. 

Design science research traces its genesis to a 

chapter in Simon’s Sciences of the Artificial entitled 

The “Science of Design” [6].  In this chapter, Simon 

complains, “In terms of the prevailing norms, 

academic respectability calls for subject matter that is 

intellectually tough, analytic, formalizable, and 

teachable. In the past much, if not most, of what we 

knew about design and about the artificial sciences 

was intellectually soft, intuitive, informal, and cook-

booky” (p. 112). 

While designing inevitably engages the creativity 

of the designer [7], Simon advocated professional 

design practices that are not only soft and intuitive art, 

but also seek to incorporate as much teachable, formal, 

analytical science as possible. The resulting designs 

are not only reusable, but testable and verifiable. In the 

field of information systems today, the paradigm of 

design science research has provided methods for 

theorizing, designing, and developing digital artifacts. 

In this paper, we briefly survey examples in the 

research literature of how important digital artifacts in 

the natural sciences have reflected the more formative 

kinds of design practices, soft and intuitive -- like 

those in information systems that predate Simon’s 

vision. Our objective is to show the feasibility of 

computational science as a potential area of inquiry for 

design science research and especially show how 

design science research can contribute to 

computational science activities that involve the role 

of science in the design, creation, evaluation, and reuse 

of digital artifacts. This contribution reveals broad 

new arenas, and very important arenas, viz. the natural 

sciences, for information systems design science 

researchers. In this way, design science research that 

emerged from information systems can contribute the 

theory-based design practices and well-validated 

digital artifacts that science demands.   

2. Artifact Design in Computational

Science

Like the rest of society, the natural sciences have 

gone digital. Terms like computational science, digital 

science [8], science 2.0 [9], etc., are indicators that the 

sciences are leading, or at least keeping up with, the 

trends.  But going digital is also creating new risks and 

new challenges across society [10]. Computational 

science is no different.  For example, scientists are 

using data analytics and machine learning with 

massive amounts of data [11-13] gathered through 

interdisciplinary research that combines open 

scientific outputs, citizen science, and data-intensive 

science [9, 14]. There are risks in the dependence on 

nontransparent AI and challenges to social well-being 

through occupational and cultural shifts [10] 

While evidence that justifies such social and 

cultural concerns is still formative, the evidence of 

poorly designed and developed digital artifacts in 

science is more substantial.  

2.1 Design Risks in Computational Science 

Research in computational science is important 

because of its potential high impact on people in 

multiple societies. Nevertheless, there is a history of 

failures in computational design and development [3, 

4, 15].  

Scientific programming often involves 

researchers developing their own software artifacts 

with little or no training in programming. Yet, this 

software is critical for correctly carrying out research 

that involves modeling biological structures, or 

simulating data on evolution, and so forth [4]. These 

software artifacts are also needed by other researchers 

who attempt to build upon prior work; hence the need 

for making software open source [16]. 

The development of software artifacts can result 

in reuse problems when the programs do not scale, or 

work properly in different applications, or provide 

errors or inaccurate results that would not have been 

obtained had the software been designed properly.  For 

example, a UC Davis biologist designed code for 

comparing genomes of closely related organisms. 

Unknown to him, other biologists used the code to 

compare genomes of distantly related organisms 

beyond the program’s working range. The result was 

a publication of totally wrong results [4].  

The digital artifacts developed in computational 

science are often complex. Failure to deal properly 

with this complexity can lead to the creation of 

artifacts that are poorly designed, constructed, or 

tested, thus limiting the falsifiability, repeatability, and 
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reproducibility of the results [17].  For example, a 

specific small error occurred when a program 

mistakenly changed a minus sign to a plus sign. The 

development process was designed without proper 

testing and evaluation. The result was the retraction of 

five published research papers from the Scripps 

Research Institute [4].   

Although incorrect conclusions are obviously 

problematic, some situations have further 

consequences. For example, the “Climategate” 

scandal resulted from the exposure of incorrect data 

[3].  In another situation, researchers Robiou-du-Pont 

et al. [18] tested a popular web-based bioinformatics 

tool, SNAP (single nucleotide polymorphisms 

(SNPs)), and found evidence of 17.6% and 36.6% 

false negatives. In the Duke cancer research scandal, 

the data analysis was conducted using graphical and 

spreadsheet tools, which led to questionable or 

incorrect results [19, 20]. That investigation led to a 

full retraction of 10 published research articles and 

either corrections or partial retraction of an additional 

seven [21]. In high-risk applications, mistakes can 

have a very large impact. Scientists need to be 

knowledgeable in software design and development 

and in the application domain. It is important that they 

realize when they are creating a solution to a narrow 

problem [22]. 

2.2 Design Challenges in Computational 

Science 

Many observers may be quick to conclude that the 

risks evident in computational science are often due to 

poor programming. This conclusion is not 

unreasonable from a programming perspective. A 

software engineering perspective would lead us to a 

parallel conclusion that bad software engineering is 

the problem. Undoubtedly, it would help to get more 

people in the sciences to follow received software 

engineering practices. But there is the rub.  As noted 

in the introduction, most scientists view formal 

software training as unnecessary.  Part of the problem 

is people: a part that researchers in sociotechnical 

systems, like those in information systems, understand 

well.  

The defects in computational science systems 

exist on multiple levels if they additionally have poor 

project management, poor software engineering, and 

poor systems design. These are the types of issues that 

design science research addresses by foregrounding 

design of artifacts: constructs, models, methods, as 

well as software.  Not only do such methods improve 

the science in natural science, but they also elevate 

reusability and reproducibility to the level of design 

theories and principles. Research in computational 

science is also an important, societal area of research. 

Table 1 shows six examples of current challenges 

in computational science that provide important 

opportunities for new, groundbreaking design science 

research.  We selected these examples because: (1) 

they provide indications of the breadth of research 

opportunities; and (2) the underlying challenges have 

been published in the scientific literature.  While the 

list is likely incomplete, it shows deep opportunities 

for expanding our knowledge of design science 

research by tackling problem arenas that may be more 

complex than business and management. 

Table 1: Examples of Challenges in 

Computational Science 

Computational 

Science Challenge 

Published Examples of 

Challenges 

Semantics/culture 

gap 

Semantics of technical language 

different in computational science. 

Fields develop unique information 

systems cultures. [3] 
Lacking broad 

systems design 

view 

Computational scientists view the 
problem as a matter of 
programming errors; there is a 
failure to recognize that 
digitalization of experimental 

science has created a digital 
ecosystem that spans all branches 
of science (and beyond).  

Example: [23] 
Dynamic goals of 

computational 

artifacts 

Science is exploratory; therefore, its 

software development is 

exploratory.  Requirements 

discovered iteratively. Formal 

software processes overly constrain 

research.  Verification and 

validation are emergent. Example: 

[3] 
Technology-push 

diffusion 

Cutting-edge technologies adopted 

rapidly without deep understanding 

(e.g., machine learning, data 

analytics). Example: [24] 
Technical debt Future working obligations that are 

the consequence of technical 

choices made for short-term benefit. 

E.g., writing bad code under

time/resource pressure. Example:

[25]
Partial 

understanding of 

system life cycles 

Scientists often self-taught 

programmers; broader training in 

systems development lacking. 

Example: [15] 

Some scientists may be simply unprepared to 

program.  While many of the sciences include formal 
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training in common educational formats, there may be 

only informal training in software development. In the 

sciences, software developers are more reliant on 

learning from individuals and activities, such as 

mentors and peer learning, which exist primarily 

outside of a normal education environment. Coding 

skills are typically learned informally [15]. Under the 

assumption that the essential problem is poor 

programming habits, one obvious solution to the 

challenge of creating digital artifacts is to train 

researchers in software engineering. While this 

solution is an important start, the solution scope will 

need to be broader for the future; otherwise, such 

challenges with computer systems (Table 1) will 

continue to inhibit science. The "gap" or "chasm" 

between software engineering and scientific 

programming remains a serious risk to the production 

of reliable scientific results [17].  

For scientific software artifacts, Johanson and 

Hasselbring [3] argue that sound engineering practices 

are needed, but that software engineering should be 

separated from computational science because of the 

nature of scientific challenges, limitations of 

computers, and cultural environment of scientific 

software development. They identify three specific 

reasons:  

[1] Requirements are not known up front.

[2] Overly formal software processes restrict

research.

[3] Verification and validation are difficult and

strictly scientific.

These are fundamentally deep problems in the 

systems of computational science. From an 

information systems perspective, poor programming 

skills and habits may not be the main problem. They 

may, instead, be symptoms of the problem, which is 

why software engineering can only be a partial 

solution.   

Digitalization means that systems are being 

constructed using multiple devices and platforms. 

Integrating the devices and platforms so they can be 

used together is more than just software engineering. 

It is actually an architecture.  Moreover, the problem 

is sociological, organizational, and cultural. 

Computational science needs to value high quality 

digital artifacts. Scientific research organizations need 

scientists who are qualified software engineers; they 

need software project management; they need systems 

designers and architects; they need systems designed 

to fit the scientific enterprise. In short, they need 

information systems expertise. 

3. Perspective on Research

Design science research focuses on theory and 

methods for developing useful artifacts to address real-

world problems [26, 27]. Design science, thus, strives 

to produce well-validated digital artifacts, consistent 

with the needs of science. It also recognized the need 

to maintain the novelty and creativity required to 

address complex, real-world problems and to be able 

to represent the generative process of artifact creation 

in addition to the artifact itself [7]. Information 

systems broadly, and design science, specifically, 

deliver the kind of theory-based designs, with well-

validated digital artifacts, required by science. What is 

more, the challenges that computation science places 

before design science research offer a novel range of 

research venues and questions for design scientists 

[28]. 

Table 2 summarizes possible dual contributions of 

design science research with computational science.    

Table 2: Complementary Research: Design 

Science Research and Computational science 

Computational science 

Perspective  

(DSR -> D-Science) 

Design Science Research 

Perspective 

(D-Science -> DSR) 

Well-developed design 

theory about embedded 

phenomena, nascent design 

theory (knowledge as 

operational 

principles/architecture), 

situated implementation of 

artifact to Computational 

science 

Computational science 

provides area of research 

for fundamental 

improvements to design 

science research or 

information systems per se 

Design theories and 

principles, constructs, 

methods, models, 

technological rules, 

instantiations of software 

products or implemented 

processes 

New design science 

methods, concepts, 

constructs, applications, 

subjects, scope, or scale 

In conjunction with Table 1, Table 3 shows how 

computational science presents new research 

opportunities for design science research.  These 

opportunities will improve our knowledge of design 

science research and broaden the impact of 

information systems research. Table 3 lists six 

common design science research activities, together 

with examples of how such activities can find new 

research questions (RQ) posed by computational 

challenges detailed in Table 1.  Each of these activities 

and the features of the challenges in computational 

science is discussed in the following subsections. 
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Table 3. Design science research applied to 

computational science 

Design Science 

Research Activities 

Research opportunities in 

computational science   

1. Problem

formulation

Challenge: Semantics/culture 
gap 

RQ: How can a design science 
approach reduce gaps between 
scientific fields? 

• More dynamic kind of

wicked problem

• Problem formulation

unstable

• New social theories need to

be applied

• Dynamic methods of

problem formulation

2. Meta problem 
identification

Challenge: Lacking broad 

systems design view 

RQ: What generalized goals 

inhabit computational science 

artifacts? 

• Assess availability and 
value of scientific 
information platforms and 
tools

• Organize scientific 
procedures to operate
with digital artifacts

3. Theorize the

design

Challenge: Dynamic goals of 

computational artifacts 

RQ: How can design principles 

and theories define classes of 

computational science artifacts? 

• Understand how scientific

theories interacts with a

design or kernel theory

• Explore how relationship

between design theory,

kernel theory, and context’s

scientific theory can

enhance science with better

digital artifacts

4. Design the

artifact

Challenge: Technology-push 

diffusion 

RQ: How will design principles 

and theories affect innovation 

diffusion in computational 

science? 

• Accommodate uniqueness

of the design challenges of

digital artifacts

• Create new design

guidelines to account for

uniqueness scientific data

or artifact

5. Make the artifact Challenge: Technical debt 

RQ: How will iteratively 

matching artifact characteristics 

and environments affect 

technical debt?  

• Build correct and efficient

artifact that forms

foundation for research

problem

• Recognize importance of

artifact in scientific

endeavor

• Identify new ways of

making an artifact or new

guidelines

• Create or identify

development techniques for

dealing with the uniqueness

of digital artifacts in the

scientific community

6. Evaluate the

artifact

Challenge: Partial understanding 

of life cycles 

RQ: How will user (scientist) 

participation in full, iterative 

artifact life cycles improve 

evaluation? 

• Create new assessment

techniques to accommodate

changing access to large

databases, ontologies, or

other stocks of knowledge.

• Adapt and extend existing

evaluation guidelines to

natural sciences. May

require new methods for

scientific code.

3.1 Problem Formulation 

A major challenge for system designers in 

computational science is the vast difference in 

terminology and technical semantics present from the 

beginning of their technology design projects. 

Variations in technical semantics means that different 

fields refer to the same underlying technology with 

different technical terms.  Essentially these language 

conflicts reflect a technological culture gap developed 

by dominance of different technological architectures 

in different scientific fields. 

The challenge is one of translating ideas that form 

local truths in different scientific fields.  There are not 

really any agreed upon global semantics (a global 

truth) between fields.  Designers faced with defining 

problems in one science field, must currently relearn 

the language for problems and technologies when 

defining problems in a different field [29]. 

This activity is usually an opportunity for a design 

scientist to find a problem that is common across 
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similar settings. Ideally, the challenge is not only a part 

of a unique, one-time problem, but is also one that is 

generalizable as a class to other scientific applications.  

In the sciences, identifying a class of design problems 

is complicated by differing research cultures, 

terminology, and even the exact semantics of common 

terminology. Discovering the problem may be 

iterative itself in order to deal with these differences. 

Most design science approaches commence by 

clarifying the fundamental problem.  In computational 

science, the general class of problems are wicked: 

questions in natural science involve unknowns that are 

often difficult to formulate, confusing, value-laden, 

and stated in terms of different solutions (alternative 

hypotheses) [30, 31]. Design science researchers may, 

thus, discover new kinds of “wicked” real-world 

problems that require an artifact [32]. 

Scientific applications have a more dynamic kind 

of problem in which the artifact and its environment 

co-define each other along a continuum of technical 

and scientific change. The design problem formulation 

will rarely be sufficiently stable to permit designs to 

be deduced from their context. In computational 

science, problems can among themselves be made 

dynamic by the rapid progress of science in general. 

Design science research can encompass new 

social theories and dynamic methods of problem 

formulation. Science settings are of a kind where the 

design context (research problem) is highly interactive 

with the design problem. Therefore, design science 

research can emphasize studies on the reflexive quality 

of digital artifacts. That is, how these artifacts affect 

the formulation of their context. For example, rather 

than regarding problem formulation as a separate 

stage, the iterative methods of design science allow a 

continuous problem formulation process that operates 

in parallel throughout the lifespan of a design science 

research project. This characteristic has parallels with 

agile systems development.  By using design science 

research, building science systems can become more 

closely aligned with mature work in building 

information systems. 

For example, Johanson and Hasselbring [3] 

elaborate how the semantics of technical language are 

different in computational science, both from the 

language of computing fields and from the language of 

other scientific fields.  They show how different fields 

develop unique information systems cultures.  

These issues with problem formulation raise new 

kinds of research problems for design science 

research.  These issues regard formulating problems 

when context is one of wicked problems described in 

differing terminology, with differing technological 

cultures. An example of a research question for design 

science research could be: “How can a design science 

approach reduce gaps between scientific fields?” 

Another example could be: “How can broader views 

of system life cycle models help better define artifact 

design problems in the computational sciences?” 

3.2 Meta Problem Formulation 

Many of the software problems endemic to 

computation sciences arise from the one-time-use 

assumptions of the developers. They assume their 

problem is so unique that related types of systems 

solutions would not exist. Users in science may be 

deeply familiar with digital systems. Nevertheless, the 

notion that their problem solutions may represent a 

class of scientific artifacts applicable in many fields of 

science may be overlooked. They may even be able to 

adapt existing approaches to solve their problem. 

Design science researchers should consider the 

availability and value of scientific information 

platforms and tools to adapt in their own work. They 

can investigate better ways to organize scientific 

procedures to effectively operate with digital artifacts. 

Science settings also present design science 

researchers with a different kind of user.  More work 

is needed to determine if general categories or classes 

of scientific problems exist and the degree to which 

scientific problems can be generalized to a class of 

problems, as well as whether researchers can discover, 

or develop, generalized tools or platforms.   

Even though scientific projects and experiments 

have become increasingly complex and digitalized, 

many are still not formally organized. Consequently, 

many settings in science appear to operate as clan 

organizations in which information systems folks, if 

present at all, operate as a separate clan.  Although the 

digital artifacts may actually define much of the 

research framing, these artifacts might be delegated to 

an independent clan or constructed by clan-based 

amateurs.  Either way, there are too few in science 

project organizations that are knowledgeable about the 

broader availability, technical quality, and value of 

scientific information platforms and tools. The 

grounding of design science research in information 

systems connects known solutions to such problems. 

For example, information systems research discovered 

processes by which systems can help informate clans 

and enable more constructive clan-based control [33]. 

By operating in the sciences, we broaden the 

scope of design science research in information 

systems.  Design science research should address 

better ways to organize scientific procedures in order 

to more effectively operate with digital artifacts. 

Researchers will confront the need to further classify 

their problems. Science needs theories, principles, and 

methods to organize their projects, classify science 
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and design science research problems, better 

characterize the conditions under which different 

design science research methods operate, and develop 

problem frameworks that are broader in scope than 

existing ones defined in the information systems field. 

For example, a computational science issue is that 

digital science views the problem as a dependency on 

complex computer code or as a failure to recognize 

that experimental science has grown into a complete 

digital ecosystem [23].  

Design science research can provide further 

research into this issue because it could be addressed 

in the phase that deals with meta problems. This work 

includes access availability and the value of scientific 

information platforms and tools. This work could 

address the need to manage computational science 

artifacts within the ecosystem of computational 

science platforms and tools.  An example of a design 

science research question could be: “What generalized 

goals inhabit computational science artifacts?” 

Another example is: “How do different technological 

terminologies affect instances of similar problems in 

different branches of computational science?” 

3.3 Theorize the Design 

For digital artifacts in science, the formulation of 

the design theory or design principles is deeply 

entwined in the formulation of the digital artifact and 

the class of research problems or questions being 

considered. The requisite class must be theoretically 

feasible. Such an entwinement is inevitable because 

the range of research problems/questions must be 

“researchable,” just as with specific research problems 

or questions. This entwinement means the requisite 

class of digital artifacts must be theoretically feasible. 

Theorizing the design involves establishing a 

relationship between the class of problems (i.e., the 

general problem) and a class of solutions (i.e., the 

general solution).  This design activity takes place at 

an abstract level where the researcher develops a 

theoretically general solution for a theoretically 

general problem.  In this way, design science research 

helps respond to challenges of computational science 

by generating a solution to a range of problems. 

Science settings present design science 

researchers with increased importance of design 

theories and design principles because the problem 

formulations are unstable and dynamic.  Empirical 

work is needed to demonstrate that theoretically sound 

design science, within the context of the sciences, is 

both possible and desirable. Researchers need to 

understand how scientific theories interact with a 

design or kernel theory. It may be possible that the 

relationship amongst the design theory, the design 

science research kernel theory, and the context’s 

scientific theory can provide the key to bettering 

overall science with better digital artifacts.  We need 

to learn whether this relationship means that these 

kinds of theories collide within design science 

research, whether they form a junction, or whether 

they interact in the form of a nexus [34]. 

The scientific applications can lead to the use of 

new kernel theories specific to science. These may be 

required because of the need to process different kinds 

of data. For example, text mining theories and 

applications may be needed. The scientific context’s 

theories are likely to interact with design theories in a 

manner similar to the interaction of the science 

problem and the design problem. We have little 

understanding of how a theory driving a design 

context interacts with a design theory or a kernel 

theory in design science research.  There are multiple 

theories interacting to drive a class of design problems 

and solutions.  

Needed is an exploration of how relationships 

between design theory, kernel theory, and the 

context’s scientific theory can enhance science with 

better digital artifacts. Since computational science 

involves poorly defined and wicked problems, this is 

a good area for research into design theorizing for 

computational science projects.  Examples of design 

science research questions that arise from this need 

include: “How can design principles and theories 

define classes of computational science artifacts?” 

Also: “How does design theorizing in the 

computational sciences differ from design theorizing 

in business and organizational fields?” 

3.4 Design the Artifact 

Artifacts are designed to address ill-structured, 

novel problems. Generalizable designs for scientific 

digital artifacts need to be created. Digital science 

requires essential, specialized devices and software to 

support scientific research. The artifacts may need to 

be designed with the capability to accommodate the 

large volumes of various types of data that are being 

generated due to digitalization.  

In this activity, design science researchers 

translate the general, theorized design from the 

previous activity into the specific, unique instance at 

hand. Design science researchers need to understand, 

describe, and generalize the uniqueness of the design 

challenges of computational science artifacts. They 

need to create new design principles and guidelines to 

account for the unique characteristics of the scientific 

data or equipment for specific application domains. 

Because of the expansion of the application domains 

to science, it may be possible to identify new ways of 
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designing novel artifacts: for example, the creation of 

a digital artifact that simulates past behavior of the 

spread of a contagious disease when accurate data is 

not available. 

Design in the computational sciences can be 

complicated by the mode of technology diffusion 

called technology-push [35]. Scientists in every field 

will be kept aware of the latest available information 

technologies and often work to push these 

technologies into their labs.  While this technology 

may indeed be ideal, research-based designs may find 

that the specific problem does not inherently demand 

an advanced technology. For example, Sculley et al. 

[24] explain how computational scientists are

motivated to rapidly adopt cutting-edge technologies

such as AI, machine learning, and big data analytics.

Such adoptions are often made without a deep

understanding of how these technologies work, and

how they might contribute to the scientific research

being undertaken.

Computational science offers design science 

researchers a novel challenge to accommodate the 

uniqueness of design problems for digital artifacts. 

This may require the creation of new design guidelines 

to account for such uniqueness in the scientific data or 

artifact. Examples of design science questions that 

arise from this challenge include: “How will design 

principles and theories affect innovation diffusion in 

computational science?” Another is: “How can design 

science research examine the role of platforms in 

highly unique problem and design settings?” 

3.5 Make the Artifact 

Essential artifacts must be built that match the 

scientific research problem. Researchers require an 

accurate understanding of the importance of such 

artifacts. Digital artifacts need to be developed for new 

applications and design knowledge extracted from 

these efforts. The creation of digital scientific artifacts 

should follow the same guidelines as those established 

in design science research. This is true even for 

scientific artifacts that might appear to be simplistic 

and employ easy-to-use technology, such as the 

spreadsheets in the public debt project economies [17, 

36, 37].  

In this activity, design scientists implement the 

design from the previous step.  In the computational 

sciences, digital artifacts have particularly stringent 

needs to follow and must adhere to established 

development and implementation guidelines. For 

design science researchers, such artifact creation can 

be more critical than in many business and 

organizational settings. Given the potential for societal 

impact, a lack of exactness can be disastrous.  This is 

a new challenge for design science researchers whose 

artifacts in the past have stopped as administrative 

prototypes. For computational science, these artifacts 

must often solve their scientific problem and be able 

to replicate their results exactly. 

From the development of new digital artifacts for 

new application domains in the natural sciences, it 

should be possible to extract design knowledge. 

Building a correct and efficient artifact that forms the 

foundation for the research problem may require a new 

way of making an artifact or new guidelines for doing 

so.  New efforts may be required to address issues of 

large databases and large numbers of variables in 

analysis and simulations [38].  Thus, it is necessary to 

create or identify development techniques for dealing 

with the uniqueness of digital artifacts in the scientific 

community. The uniqueness could be large sets of, 

perhaps, biological or disease data; interfaces to 

known corpus of data for testing and assessment; or 

use of, for example, biomedical ontologies [39]. 

Design science research offers science its experiences 

in designing big data analytics processes such as social 

media analytics and health analytics.  

We need to build a correct and efficient artifact 

that forms the foundation for a research problem, thus 

recognizing the importance of an artifact in a scientific 

endeavor. This may require identifying new ways of 

making an artifact or new guidelines. It may involve 

creating or identifying development techniques for 

dealing with the uniqueness of digital artifacts in the 

scientific community. Examples of design science 

research questions driven by this requirement include: 

“How will iteratively matching artifact characteristics 

and environments affect technical debt?” Another 

example is: “How can we build prototypes that do not 

create or deepen technical debt?” 

3.6 Evaluate the Artifact 

Artifacts need to be created that avoid costly 

mistakes and/or decrease credibility within the 

scientific community. This requires the development 

and diligent application of stringent evaluation 

techniques and procedures. Any appropriate 

evaluation method needs to take into consider the 

types of digital artifacts being developed, with the 

most recognized guidelines for artifact evaluation 

found in FEDS [40] and its adaptations. The guidelines 

include observation and participation techniques, such 

as case studies, as well as empirical assessments, 

involving experiments, simulations, and prototypes. 

Other efforts to understand an appropriate evaluation 

method for an artifact have also been carried out;  for 

example, Prat et al. [41]’s taxonomy of artifact 

evaluation methods.   
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In computational science, standards for artifact 

performance are stringent. Like making the artifact, 

evaluation must meet higher standards than many 

business and management applications.  Indeed, 

computational science aspires to a degree of proof-of-

performance that sustains very exact repeatability. 

This degree of performance confronts design science 

research with challenges to improve evaluation 

processes to meet much higher expectations for 

exactness in performance and replicability.   

Existing evaluation guidelines may need to be 

adapted or extended for the natural sciences, which 

may require new methods for scientific code. Needed, 

for example, may be new methods to identify when 

scientific code has not been tested thoroughly or at the 

extremes, and case examples for both routine and 

unusual situations.  New assessments techniques may 

need to be developed to deal with other challenges in 

computational science such as: changing access to 

large databases that might be used or shared by 

scientists; large sample sizes; large number of 

variables; simulations (e.g., those that re-create 

historic weather and environmental patterns); and 

other characteristics as they appear in contemporary 

scientific endeavors. Examples of design science 

research questions that proceed from these research 

opportunities include: “How will user (scientist) 

participation in full, iterative artifact life cycles 

improve evaluation?”  Also, “How do we evaluate the 

goals of dynamic computational science artifacts?” 

4. Discussion and Conclusion

Computational science has emerged from the 

recognition of the need for digital artifacts (research 

software) to support research in science, which, as 

described by Hasselbring et al. “can be an object of 

study itself [because the software is used to advance 

our] understanding of natural systems, answering 

questions that neither theory nor experiment alone is 

equipped to answer” [16] (p.84).  However, there are 

many instances where the development of digital 

artifacts for computational science have been 

considered as a one-time development activity and the 

digital artifacts have suffered from the inability to be 

reused. In this sense, both the digital artifact and the 

design knowledge inherent in the artifact become what 

we call digital artifact exhaust.  

More importantly, though, the field of 

computational science is a meaningful area of inquiry 

for design science research, thus expanding the fields 

to which design science research can make a 

contribution. Much research in design science has 

focused on small relatively small problems, such as 

those one might find in business or non-profit 

organizations. Some of these efforts have resulted in 

well-defined artifacts, but are presented only as 

prototypes or proof of concept attempts. In contrast, 

many outputs from computational science can have 

significant impacts on society. The problems 

addressed in computational science require more than 

proof of concept efforts, which would make design 

science research ever more meaningful.  

Researchers in information systems can 

contribute to addressing grand challenges as related to 

science, and in doing so, significantly contribute to 

society.  Future work is needed to further formalize 

and address the proposed research questions outlined 

in this paper and to apply and expand design science 

research to many of the varied kinds of inquiry found 

in computational science.  
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