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Abstract 
 

Unmanned aerial vehicles (UAVs) have 
applications in search and rescue operations and such 
operations could be more efficient by using 
appropriate artificial intelligence (AI) to enable a UAV 
agent to operate autonomously. Sensor resource 
management (SRM), which leverages capabilities 
across location intelligence, facilitates the efficient and 
effective use of UAVs and their sensors to complete a 
set of tasks. Furthermore, multiple UAVs, each with 
different sensor configurations, must be considered 
when maximizing mission effects. Instantiating 
operational autonomy for such teams requires 
considerable coordination. One AI approach relevant 
to this task is multi-agent reinforcement learning 
(MARL). However, MARL has seen limited prior use in 
SRM.  This work evaluates the trade-space of MARL 
algorithms with respect to performing heterogeneous 
sensor resource management (SRM) tasks, considers 
the concept of evaluating MARL in a test and 
evaluation framework and compares a suit of 
algorithms with random and Bayesian hyperparameter 
optimization methods.          

 

1. Introduction  

 
Location intelligence involves the complex 

intersection of fields such as analytics, geographic 

information science, routing/scheduling, remote 

sensing, visualization, operations research, and 

computer science to solve different problems [1]. One 

particular problem that overlaps these areas is the 

tasking and routing of sensor platform for search and 

rescue (SAR). where big data sources, remote imagery, 

and unmanned systems must find the target in a timely 

manner.  Inherently, SAR tasks involve the interaction 

between and tasking of sensors and unmanned assets, 

particularly unmanned aerial vehicles (UAVs). Such 

applications require sensor resource management 

(SRM) which involves data exploitation (e.g., remote 

sensing object recognition), tasking, scheduling, 

planning, routing, and optimization [2].   

SAR with UAVs has the potential to revolutionize 

the location intelligence field through edge processing 

for the real-time use of multiple sources of data to 

quickly find individuals in need [3]. However, 

challenges exist in SRM which enables the efficient use 

of data, coordinating operations when developing or 

deploying appropriate search algorithms for a region of 

interest that has minimal manual/human intervention.   

While SAR actions can be considered for a single 

UAV, to quickly search a large area multiple assets are 

needed. Thus, multiple-agent SRM is needed. SRM 

involves developing a decision approach to create an 

effective policy for any given sensor operation. 

Reinforcement learning (RL) enables an agent to gather 

data through interaction with their environment with 

rewards given based on choice outcomes. From their 

collected experience, agents learn to maximize positive 

rewards and avoid negative rewards. RL has been 

applied to real world robotics controls [4], video games 

[5], and even financial markets [6].  UAV and search 

and rescue operations are conceptually similar to both 

robotics controls and video game operations whereby 

both learn from sparse and/or time-delayed rewards 

with actions coming from a large or complex space. 

Additionally, UAV and SAR operations often balance 

exploration and exploitation of data gathered as well as 

handle imperfect/incomplete information, similar to 

many video games in which RL has been successfully 

applied.    

A key tradeoff of RL algorithms is exploration and 

exploitation. Exploration describes the process of 

trying new actions to learn more about the reward 

function and potentially find better solutions, while 

exploitation describes the process of using previously 

gained knowledge gained by exploring to make the 

current best choice given what is known about the 

options [7].  While such a problem has direct parallels 

to typical RL problems, RL has seldom been applied to 

sensor resource management, e.g. [8]. 

Many search and rescue operations are instantiated 

with multiple UAVs, and thus, are beyond simple RL. 

In such cases, multi-agent RL (MARL), see [9], is 

needed whereby the swarm/group of UAVs gains 
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rewards as they operate in a collaborative manner. 

UAVs  can be outfitted with different sensors and 

capabilities, for instance consider two UAVs operating 

together: one UAV with a high resolution narrow field 

of view camera and another with a low resolution and 

wide field of view camera.  Thus, of particular 

importance to UAV search and rescue operations are 

MARL approaches which can permit cooperation 

between heterogeneous agents.   

Prior work, c.f. [10] [11], proposed RL for SAR 

applications. However, multiple heterogeneous agents 

trained via MARL and/or a broad understanding of the 

performance of the currently available MARL 

algorithms were not considered. Prior MARL 

comparisons are limited, c.f. [12] [13] [14] [15], 

consider only a small number of MARL algorithms 

[12] [14], focus on deep learning MARL algorithms 

only [13], or focus on only a small set of not commonly 

available algorithms [15]. Additionally, none of these 

MARL comparisons considered SAR tasks.  

This work primarily aims to answer the following 

questions:  

R1) Can MARL algorithms be applied to the general 

SRM for SAR task?   

R2) What MARL algorithms provide utility for SAR 

and SRM tasks? 

R3) Can an experimental framework be created to test 

and evaluate MARL algorithms as they become 

available? 

The contributions of our paper are thus, as follows. 

This work introduces the concept of MARL for 

autonomous SRM with heterogeneous sensor agents 

which enable SAR through UAVs for location analysis. 

This work expands upon prior studies by comparing 9 

MARL algorithms for SRM of heterogeneous agents, 

encompassing all of the readily available model-free 

MARL algorithms in code. The importance of the 

study is that it demonstrates the utility of model-free 

MARL algorithms for SRM in unknown environments. 

To evaluate MARL algorithms, this work further 

develops a repeatable experimental design framework 

and ecosystem to compare these algorithms with 

hyperparameter optimization (HPO) to provide 

effective algorithm performance evaluation and 

facilitating future comparisons as both new algorithms 

and scenarios come available.    

 

2. Background 
 

Control of UAVs ranges from full manual 

operations via remote control to a potential future of 

fully autonomous operations [16]. Higher levels of 

UAV autonomy provide a reduction in operator 

demands and could enable an operator to control 

multiple UAVs and/or enable UAVs to complete 

missions with limited oversight.  As UAVs increase in 

application and use, autonomy is central to providing 

rapid responses to emerging events in a complex 

operational space, such as SAR. Critical to enabling 

fully autonomous UAV operations are the location 

intelligence capabilities that include planning, sensor 

data exploitation, and sensor data fusion.  Collectively, 

the intersection of these areas is known as SRM. 

 

2.1. Sensor Resource Management (SRM) 
 

SRM encompasses sensor tasking which considers 

the resources and capabilities of each sensor that is 

available for a sensing task [17].  This includes sensor 

scheduling, planning, task oversight and associated 

sensor platforms [17] [18]. SRM is conceptualized in 

Figure 1 whereby high-level tasks are determined by a 

human operator.  As discussed in [18], tasks from the 

operator are processed by the sensor manager, which 

then compares the tasks against the current system 

state(s). The prioritized tasks are then scheduled with 

appropriate sensor/platform plans. Sensor data is 

processed by executing these plans/actions and the 

processed sensor data is used to generate/update an 

operating picture to both the system and the operator. 

 

 
Figure 1. Sensor Resource Management 

(SRM) in a nutshell, adapted from [18] 
 

 A wide variety of approaches to SRM exist, 

including operations research and decision theoretic 

approaches [2] [17]. One way of considering the SRM 

problem is the need to use a computational decision 

approach to create an effective policy or decision for a 

given sensor exploitation task [8]. When stated this 

way, SRM sounds akin to a typical RL problem, but RL 

has seen limited prior use in SRM [8] [17].  

 

2.2 Reinforcement Learning  
 
 The general goal, as conceptualized in Figure 2, of 
RL is to learn a policy that maximizes a given reward, 
Rt, based on an agent’s action, At, and its impact on the 
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measured environmental state, St for t time [19]. This is 
accomplished by defining the reward function and then 
allowing an agent to collect data against this reward 
function by interacting with the environment; the agent 
is trained to adjust its policy to maximize the reward 
[20]. The reward is a function of the action, selected by 
a policy, and the state.. The formulation of the problem 
and the optimization methodologies applied to solve it 
are where approaches to RL generally differ.   

 
Figure 2. General Conceptualization of RL  

 

2.3. Multi-Agent Reinforcement Learning  
 

Multi-agent RL (MARL) extends RL to consider 

multiple agents that each receive a reward [9].  Often 

such agents are required to cooperate to accomplish a 

task [9]. A common convention is to include 

information about the other agents’ states in the state 

information passed to any given agent participating in 

the overall task. This significantly extends general RL 

whereby MARL considers multiple agents and 

maximization of the shared rewards within a shared 

environment. The advantage of MARL is that a 

decentralized team of agents can be created to 

independently work towards collective goals. This is 

conceptualized in Figure 3 where there are individual 

states, rewards, and actions for each agent, but a shared 

environment. However, training MARL agents 

introduces obvious complexities when compared to 

single-agent RL, i.e. partial observability and 

environment nonstationarity [9].  

 
Figure 3. General Conceptualization of Multi-

Agent RL (MARL) Problems 
 

To simplify the solution space, MARL algorithms 

often assume that the agents have similar in 

capabilities. However, Real world UAV assets often 

have different sensors and capabilities and thus MARL 

for heterogeneous assets is of concern for real-world 

SAR applications [9]. Thus, due to the sequentially 

added complexity, not all RL algorithms can learn 

MARL problems without modifications, and fewer still 

can consider heterogeneous agents.  

 

2.4. RL Algorithms  
 
 Extending beyond these general concepts are the 

algorithmic approaches to RL. As conceptualized in 

Figure 4, RL methods are generally divided into two 

high-level categories: model-based and model-free. 

Model-free learning focuses solely on maximizing the 

reward by learning to choose the optimal action for a 

given observation of the environment; model-based RL 

attempt to predict the output from the environment that 

they act in, rather than directly training to maximize 

reward from actions [20]. Due to these expectations 

and a desire for general applications to any 

environment, this work does not consider model-based 

approaches and focuses on mode-free approaches.  

While other taxonomies of RL exist, see [9], this 

general taxonomy will facilitate the MARL relevant 

algorithm space discussed herein.  

 Model-free approaches can be divided into value-

based, policy-based, and hybrid (both value and policy) 

methods.  Under this taxonomy, many RL algorithms 

exist, as seen in Figure 4 and undoubtedly more RL 

algorithms exist than are seen in this figure. The 

selection in Figure 4 is expansive, but not exhaustive; 

we highlight the examples that are both more cited and 

more accessible in software form. 

 Within the taxonomy of Figure 4, not all RL 

algorithms are equally capable when extended to multi-

agent considerations.  Some RL algorithms, e.g. CMA-

ESX, cannot handle multiple agents.  Then, of the 

remaining RL algorithms that can handle multiple 

agents, only some can handle heterogeneous agents; 

these are indicated in Figure 4 with an asterisk.  

 

2.5. MARL with Heterogeneous Agents  
 

Considering the available algorithms which meet our 

constraints, we are left with the following possible 

algorithms for consideration:  

1. Value-based: DQN, DDQN, C51/Rainbow 

2. Policy-based: PPO, PG, CMA-ES 

3. Hybrid: DDPG, TD3, SAC, A2C, A3C, IMPALA 

4. Model-based: Dyna, PlaNet 

Model-based methods were removed from 

consideration because of their lack of availability or 

inability to handle discrete action spaces. TD3 and 

DDPG are designed to work in continuous action 

spaces only, for some applications operating in a  
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continuous vs discrete space matters and these 

algorithms were not included. CMA-ES is available in 

common algorithm repositories, e.g. RLLib, but not for 

multi-agent environments. Thus, we considered the 

nine following algorithms in this study:  PG, Rainbow, 

A2C, A3C, SAC, DQN, APPO, and IMPALA.  

  

2.5.1. Value-based Methods All value-based models 

considered in the selection in Section 2.5 were variants 

of Q-learning. Q-learning uses the reward function to 

optimize predictions regarding the value of each state 

action pair [20]. The agent then selects the action given 

the state as the input to maximize reward. In the Deep 

Q-learning Network, the Q-learning algorithm 

employs an underlying neural network structure [21]. 

Many modifications to the base DQN model have 

been proposed and both [22] and [23] review this 

literature further. Of interest herein is Dueling DQN 

(DDQN), which look at both the value of being in a 

particular state and the advantage of a given action vs 

a different action [24]. This allows the network to 

contain a representation that assesses whether an 

action given a particular state leads to greater reward, 

or if the state itself is what leads to greater reward. The 

two DDQN variants we will consider are Rainbow 

DQN, which applies multiple RL variants jointly [25], 

and Ape-X DQN, which uses an experience replay to 

allows for scalable, distributed prioritization of 

experience use in training [26]. 

 

2.5.2. Policy-based methods.  In contrast to value-

based methods, policy-based methods view the policy 

as a function with an environment episode as input, 

and reward as output. Over the course of an episode, 

the policy receives reward for certain actions in given 

states, and policy-base algorithms use gradient ascent 

on the entire policy to update the policy’s tunable 

parameters [27]. A simple policy-based method, 

Policy Gradient (PG), implements this approach. PG 

methods of interest herein are Proximal Policy 

Optimization (PPO) which optimizes the policy with 

respect to its local surroundings, rather than the global 

maximum [28], and Asynchronous PPO (APPO), with 

an asynchronous architecture applied to PPO [29].  

 

2.5.3. Value Policy Hybrid Models. Hybrid models 

use both a value-based component and a policy-based 

component. All hybrid models tested in this paper 

were Actor-Critic models. Actor-Critic methods use a 

value-based critic to analyze different states and 

actions, while simultaneously having a policy-based 

actor that finds a policy with the best reward based on 

the critic’s estimate. This way, the value function 

doesn’t get stuck, and the policy can have a 

better/faster direction to optimize rewards [30]. 

Methods of interest are Advantage Actor-Critic 

(A2C), which modifies the Q-learner by training it to 

predict the advantage of a given action in a given state 

[31], Asynchronous Advantage Actor-Critic (A3C), 

which runs different versions of the actor parameters 

 
Figure 4. General taxonomy of families of RL approaches, annotated (*) for algorithms with both 

heterogeneous MARL capability and availability.  
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asynchronously in in identical environments [31], Soft 

Actor-Critic (SAC), which focuses on maximizing the 

entropy object, rather than reward directly [32], and 

IMPALA, which introduces a training scheduler, V-

trace, to improve agent learning [29]. 

 

 

2.6. Hyperparameter Optimization (HPO) 
 
As it becomes increasingly difficult to hand-craft 

algorithms which yield reliable results, see the variety 

of hyperparameters for the MARL algorithms in Table 

1, hyperparameter optimization (HPO) is of interest 

[33]. A general taxonomy of HPO is presented in [33], 

which is largely separated into model-free and model-

based approaches. Model-free approaches range from 

1) grid searches, 2) haphazard/expertise based, to 3) 

random searches [33]. Due to its simplicity, the random 

HPO method can provide a baseline comparison [34]. 

In contrast to model-free, model-based approaches 

employ a wrapper with a greedy search approach 

around the algorithm of interest [33].  

Of particular interest in model-based HPO is 

Bayesian Optimization (BO) which is one of the most 

effective and efficient HPO methods [33]. One 

variation is known as Sequential Model-based 

Bayesian Optimization (SMBO) which uses data from 

previously tested parameters whereby it estimates the 

probability that a set of parameters will result in a high-

scoring model; parameters are selected based on an 

acquisition function which evaluates expected 

improvement over the prior best result [35]. 

Additionally, and of critical interest to RL, is how 

long HPO trials are allowed to run.  Thus, stopping a 

trial that is poorly performing is beneficial and HPO 

approaches that enable such assessments are of interest. 

The successive halving algorithm (SHA) is one such 

approach whereby parallelization is used to evaluate 

multiple parameter combinations in parallel with 

under-performing candidates terminated early in 

processing [36]. Asynchronous SHA (ASHA) extends 

SHA, which has been shown to have performance 

advantages over SHA [37].   

Of interest herein is Bayesian ASHA (BASHA), 

which combines the advantages of both SMBO and 

ASHA whereby the informed SMBO searches find 

good settings and ASHA quickly terminates poor-

performing candidates; in operation BASHA functions 

by iterating between SMBO and ASHA.   

 

2.7. Quantifying Algorithm Performance 
 

 RL algorithm performance is based on maximizing 

the reward received, for instance, getting the highest 

score in a game. However, RL has been known to result 

in unsafe and useless actions which, nevertheless, 

maximize rewards [38]; such approaches are akin to a 

toddler following the rule “don’t get your clothes dirty” 

by taking off said clothes and then getting themselves 

dirty. Thus, beyond the primary stated reward, 

ancillary metrics, such as raw performance values, are 

also of interest in order to provide another assessment 

of overall performance.       

 

2.7.1.  Observational Metrics. Fundamental to RL are 

observed rewards that correspond to agent state. In 

many applications, time is also an observed reward 

component, i.e. completion time and total time used. 
 
2.7.1.  Reward Metrics.  RL algorithm performance is 

based on maximizing the reward received. In some 

instances, i.e. games, this is predefined based on score 

and thus RL involves maximizing this score.  Rewards 

for robotics or real-life scenarios can be tricky since 

simulations may not have all the nuances of the real 

world and similarly all possible outcomes might not be 

predictable. When considering multiple agents, the 

problem is compounded. Current work involves 

understanding the action and reward spaces and 

developing metrics that can include multiple 

conditions. 

 

3. Evaluation Ecosystem  
 
 To facilitate the current and future evaluation of RL 
and MARL algorithms for sensor resource 
management, an evaluation ecosystem was developed. 
This ecosystem consists of general agents, worlds to 
explore, and a quickly integrateable interface to try new 
algorithms as they become available, conceptualized in 
Figure 5. The environment was built from the OpenAI 
Gym base environment class [39]. 
 

3.1. Repeatable Ecosystem 
 
 The general approach is further wrapped up into a 

repeatable ecosystem to address R3. This ecosystem is 

conceptualized in Figure 5. The ecosystem allows one 

to select various tunable parameters in a study, 

including 1) environmental/experimental settings, then 

2) the algorithm and its associated libraries, and 3) the 

hyperparameter optimization and research design 

process. The ecosystem allows for an arbitrary scaling 

of grid size, duration of the scenario, number and types 

of agents in the scenario, and number of targets. 

 A custom grid-world environment is built from the 

OpenAI Gym base environment class. The time-step 

corresponds to the duration of time that passes between 

two actions that a given agent takes. In the current 

instantiation, only discrete action spaces are considered  
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and it is a simplification that allows for quick 

prototyping of possible scenarios.  

 The custom environment logs information about 

reward, agents, time spent training, hyperparameters 

selected, etc. HPO can then monitor the environment 

state for algorithms that may require information about 

reward received for any given trial in order to select the 

next hyperparameter(s) iteration. The process in Figure 

5 can be used in various means: single runs can be 

explored to test the feasibility of concepts, or an 

experimental design can be wrapped around the 

ecosystem. 

 

3.2. Custom Environments and Agents 
 

 A general UAV search and rescue operation can be 

visualized in terms of a grid-based world. This mimics 

the general representation provided by UAV sensor 

feeds after processing and include both road segments 

and targets/objects of interest. The two types of agents 

of interest were developed for the ecosystem: 

1) UAVLR—a low resolution screening agent 

which searches a large area. 

2) UAVHR—a high resolution agent which has a 

smaller sensor collection area.  

Table 1. Hyperparameters Associated with RL Algorithms of Interest 
 ALGORITHM  

HYPERPARAMETERS 
DQN w/ 

Ape-X  

RAINBOW 

DQN 
PPO IMPALA APPO PG 

A2C, 

 A3C 
SAC DESCRIPTION 

ANN Architecture X X X X X X X X 
Number and size of layers in the 

network 

ANN Learning Rate X X X X X X X X Training step size 

RL Discount factor, γ X X X X X X X X Weight assigned to future rewards 

RL Gradient Clip X X X X X  X X 
Maximum global norm for each 

gradient calculated 

Value function and 

Entropy Coefficients 
  X X X  X  

Number and size of layers in the 

network  

Memory Buffer Size X X       
Number of experiences to save and 

sample from for learning 

Epsilon Time-steps X X       
Time-steps over which to anneal 

epsilon for exploration 

Learning Start Time-

step 
X X       

Number of steps to infer before 

training 

Prioritized replay X X       
Boolean to use the prioritized 

replay strategy  [40] 

Target Network 

update frequency 
X X       

Number of steps between updates 

to the target network 

Clip Parameter   X  X    
Parameter to set maximum clip of 

the objective function 

Use V-trace    X X    
Boolean to use V-trace algorithm   

[29] 

 

 

 
Figure 5.  Developed ecosystem to train, evaluate, optimize, and assess RL agents 
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A general grid world road network is presented in 

Figure 6 with the road network in white, the target as a 

red square, and the agents represented by their fields of 

view: orange for the low resolution agent and blue for 

the high resolution agent. 

   

 
Figure 6. Grid environment with examples of 
sensor footprints of two types of scanning 

UAVs. 
 

 Observations in this world are composed of two 

parts. The first part is the coordinate position of a UAV 

on top of a map. The second part of the observations is 

a binary flag that indicates if the target is in the agent’s 

field of view. In the experimental framework, the target 

can be instantiated randomly or in a specific location; 

similarly, the agents can be specified to start at a 

specific point, notionally the center of the map.  Thus, 

multiple replications could be explored for the same 

grid world but with the target appearing at a random 

point for each iteration.   
 

4. Experimentation and Results 
 

The experimentation’s general ecosystem follows 

the ecosystem in Figure 5 where environments can be 

setup quickly (1) with considerations made to ensure a 

broad comparison of the MARL algorithms. 

Computationally, in Python, Rllib [41] agents were 

used for training, and HyperOpt was used for HPO. 

 

4.1. Experimental Setup 
 

To test R1 and R2, an experiment was constructed 

that employed the selected MARL algorithms and 

employed the two types of UAV agents. The challenge 

is to properly balance reward for finding the target with 

UAVLR, with reward for finding the target with UAVHR.  

 

4.1.1.  Reward Function. The reward function needs 

to be designed with the general goal to test each MARL 

algorithm’s ability to learn strategies for heterogenous 

sensor agents. This was designed to balance the 

advantages of both agents with a small, dense reward 

for each timestep for UAVLR with the primary objective 

for this team being for the UAVHR to locate and verify 

the target, either randomly or after being cued by the 

UAVLR. The reward given for completing that task is 

greater but is only provided once. When the target is 

found, i.e. the task is accomplished, the episode ends. 

The overall reward is equal to the number of steps taken 

to locate the target subtracted from the maximum 

episode length. This is presented as:  

 
𝑅𝑡 = (𝐿𝑒 − 𝑡) ∥ (𝑈𝐴𝑉𝐻𝑅) + 0.25 ∥ (𝑈𝐴𝑉𝐿𝑅) (1) 

 
where Le is the maximum episode length, t is the current 

timestep, and 𝑈𝐴𝑉𝐻𝑅  and 𝑈𝐴𝑉𝐿𝑅  are binary when the 

respective agent has the target in view.  For each 

timestep the target goes undetected, this potential 

reward value in (1) is decremented by one.  The 𝑈𝐴𝑉𝐻𝑅  

reward is implicitly 1.0 and the 𝑈𝐴𝑉𝐿𝑅  reward is set to 

less than 1.0 for reasons mentioned above; through 

hueristic-based tuning 0.25 was found to provide 

reasonable resutls.   

 

4.1.2.  Grid World Scenario. The grid world 

employed for this experiment was a 1609x1609 pixel 

map. While both UAVs are searching the entire area, if 

the UAVLR finds a target, the binary target flag is used 

to communicate its presence to the UAVHR . The goal is 

for the UAVLR to search the area efficiently, then stay at 

the target’s location when found. The UAVHR should 

learn to search efficiently, but then learn to approach 

the UAVLR if the UAVLR spots the target. The episode 

ends if UAVHR finds the target, and the agents receive a 

final large reward based on how quickly UAVHR found 

the target. 

 

4.1.3.  Experimental Considerations. The overall 

experiment aimed for repeatability as laid out by [42].  

The process in Figure 5 was employed throughout with 

a common reward function (4.1.1) and common 

scenario for all experiments (4.1.2). Each selected 

MARL algorithm (2.5) performed for 100 different 

trials (a trial being RL training with a given selection 

of hyperparameter values) for both random and 

BASHA. Each trial was then trained on the scenario for 

200 environment runs (a run being the environment 

started, the target randomly placed). Subsequent to 100 

runs per algorithm, qualitative and quantitative analysis 

leads to a threaded discussion and conclusion where 

both note many significant insights of the research. 

For this experimental study, the sensor footprint of 

UAVLR was set to 320x160 pixels and the sensor 

footprint of UAVHR was set to 80x80 pixels. Both 
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UAVs are permitted to move in one of 4 directions, 

with a movement of 80 pixels per timestep in the 

direction they choose. For the grid environment under 

consideration, 1609x1609 pixels, this movement 

corresponds to the map being a 20x20 grid. Thus, the 

maximum episode length, Le, was set to 70 in (1), 

which is slightly fewer timesteps than needed for the 

UAVHR to individually search the whole space. The 

system is further randomly initiated with the target 

being randomly placed in each episode.  Since the 

target location is unknown, logically, the UAVLR 

should search possible locations first with the UAVHR 

searching towards a middle region of the map. 

 
4.2. Hyperparameter Design Region 
Considerations 
 
 As noted in [33], while HPO removes the general 

problem of finding effective algorithm settings, manual 

intervention is needed to bound the search region. 

Table 2 presents the general search regions considered 

for all algorithms. HPO can find continuous valued 

parameters anywhere within the specified intervals 

whereas categorical parameters must be one of the 

specified search values.  

 

Table 2. General Hyperparameter Search 
Region for MARL Algorithms 

Parameter 
Interval 

Scale 

Initial Search 

Interval 

ANN Learning Rate Logarithmic [10-7, 10-2] 

ANN Architecture: Number of 

Hidden Layers 
Categorical [1, 2, 3] 

ANN Architecture Layer Size 

(selected per layer) 
Categorical 

[64, 128, 256, 

512] 

Discount Factor Linear [0.9, 0.9999] 

Gradient Clip Linear [1, 100] 

Value Function Coefficient Linear [0, 1] 

Entropy Coefficient Logarithmic [0, 0.5] 

Memory Buffer Size Categorical 

[1x104, 

2.5x104, 

5x104, 1x105] 

Epsilon Time-steps Categorical 
[5x103, 1x104, 

5x104] 

Learning Start Time-step Linear [1, 5000] 

Prioritized Replay Categorical [true, false] 

Target Network Update 

Frequency 
Linear [1, 1000] 

Use V-trace Categorical [true, false] 

Clip Parameter Linear [0, 1] 

 

 4.3. Results and Discussion 
 

 The 9 algorithms were run with the two 2 HPO 

methods (BASHA and Random). A box plot of their 

performance on the observational metric of episode 

length and the reward function are presented in Figures 

7 and 8, respectively. Additionally, since box plots 

present median values, Table 3 presents the mean 

values along with standard error computations. In total, 

100 runs were computed for all algorithms.  

 For each algorithm, a BASHA hyperparameter 

search yielded parameters that trained superior or 

comparable models compared to random search. 

However, significant performance differences exist 

across algorithms. What is noticed is that PG, while 

being a basic RL algorithm, performed relatively well 

compared to several other algorithms. The tradeoff 

between reward and episode length is seen in the 

RAINBOW algorithm results where it consistently 

learned to find the target, but never learned to find the 

target quickly. A2C and A3C struggled to perform 

well, while A3C is known to have training stability 

issues, more work is needed to understand why it 

almost never learned to locate the target. Interestingly, 

while being less consistent than some algorithms, 

IMPALA performed significantly better than A2C and 

A3C which shows the effiicacy of the modifications it 

includes over A3C to improve training stability. 

Among the actor-critic algorithms, SAC appears to 

have performed the most consistently.  Interestingly, 

APPO was able to have a few exceptional runs, but 

most APPO runs timed out; whereas PPO had both the 

highest mean and median values of the policy gradient 

methods.    

 

Table 3. Mean Episode Length and Mean 
Reward with Standard Error: top 5 (and 
identical/equivalent) in bold in both columns 

Algorithm 
Mean Episode Length 

± Standard Error 

Mean Reward ± 

Standard Error 

BASHA PG 66.97 ± 0.58  6.44 ± 1.04 

Random PG 68.16 ± 0.50 4.26 ± 1.01 

BASHA Rainbow 67.73 ± 0.10 8.51 ± 0.22 

Random Rainbow 67.49 ± 0.10 8.08 ± 0.25 

BASHA A2C 67.48 ± 0.57 5.05 ± 1.08 

Random A2C 68.89 ± 0.39 2.86 ± 0.87 

BASHA A3C 70 ± 0.0 0 ± 0 

Random A3C 69.99 ± 0.01 0.06 ± 0.06 

BASHA SAC 68.31 ± 0.18 6.49 ± 0.38 

Random SAC 69.12 ± 0.13 2.72 ± 0.35 

BASHA PPO 67.77 ± 0.45 7.28 ± 1.00 

Random PPO 69.02 ± 0.23 3.27 ± 0.62 

BASHA DQN 

with Ape-X 
60.60 ± 1.46 10.63 ± 1.59 

Random DQN with 

Ape-X 
67.79 ± 0.75 2.55 ± 0.82 

BASHA APPO 65.91 ± 0.68 5.41 ± 0.76 

Random APPO 67.34 ± 0.64 3.52 ± 0.70 

BASHA IMPALA 67.61 ± 0.59 4.49 ± 0.75 

Random IMPALA 69.65 ± 0.21 1.28 ± 0.31 

 

 Overall, DQN with Ape-X resulted in the best 

possible agents, but only for a small number of runs. 

This indicates that such an algorithm would require 

extensive hyperparameter optimization in order to be 

used effectively. Interestingly, methods that employed 

asynchronous scheduling (APPO, IMPALA, Ape-X 
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DQN) appeared to more sensitive to hyperparameter 

selection, i.e. random vs BASHA results showed a 

large divergence, compared to synchronous scheduling 

algorithms (RAINBOW, A2C, SAC, PPO).       

 

 
Figure 7. Distribution of raw episode length 
values from all reward values for models 
trained during HPO, lower scores are better.   

 
Figure 8. Distribution of rewards received by 
each model, higher scores are better.  

 

5. Conclusions 
 
 The authors presented a systematic comparison of 
reinforcement learning to a general location 
intelligence routing task through sensor resource 
management. Of particular interest were multi-agent 
RL algorithms and agents which were heterogeneous 
in sensing capabilities. This study further developed a 
repeatable ecosystem for test and evaluation and a 
consistent experimental approach to yield a 
comparison of MARL methods which had algorithm 
setting determination through hyperparameter 
optimization. This application of MARL was both new 
to SRM and in total, 9 MARL algorithms were 
considered.   

 In contrast to past work, e.g. [12], which occurred 
on different applications, this work found that value-
based methods (Ape-X with DQN) provided the best 
performance and policy-based methods provided the 
second best; interestingly, Rainbow and SAC provided 
similar performance to PG. Thus, this study facilitates 
future developments, selection, and applications of 
MARL with respect to SRM.  This work further 
illustrated the necessity for selecting appropriate 
algorithms for MARL tasks as well as the key 
importance of determining appropriate algorithm 
settings, since some RL algorithms were unable to 
provide consistent results. Overall, the Bayesian HPO 
process employed improved agent reward over random 
hyperparameter selection.   
 The theme of future work, in general, will be 
investigation of RL methods that reduce unsafe and 
useless results, and which can generalize to ambiguous 
environments.  Additionally, while it is reasonable to 
expect that the results could translate to continuous 
action spaces, this needs to be explored. Additionally, 
broader comparisons with other optimization methods 
need to be investigated.   
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