
Assessing Multi-Agent Reinforcement Learning Algorithms for Autonomous

Sensor Resource Management

Trevor J. Bihl, Aaron Jones

Air Force Research Laboratory, USA
{Trevor.Bihl.2, aaron.jones.41}@us.af.mil

Patrick Farr
Applied Research Solutions, USA

pfarr@appliedres.com

Kayla Straub, Brian Bontempo, Frank Jones
The Stratagem Group

{kayla.straub, frank.jones, brian.bontempo}@

stratagemgroup.com

Abstract

Unmanned aerial vehicles (UAVs) have
applications in search and rescue operations and such
operations could be more efficient by using
appropriate artificial intelligence (AI) to enable a UAV
agent to operate autonomously. Sensor resource
management (SRM), which leverages capabilities
across location intelligence, facilitates the efficient and
effective use of UAVs and their sensors to complete a
set of tasks. Furthermore, multiple UAVs, each with
different sensor configurations, must be considered
when maximizing mission effects. Instantiating
operational autonomy for such teams requires
considerable coordination. One AI approach relevant
to this task is multi-agent reinforcement learning
(MARL). However, MARL has seen limited prior use in
SRM. This work evaluates the trade-space of MARL
algorithms with respect to performing heterogeneous
sensor resource management (SRM) tasks, considers
the concept of evaluating MARL in a test and
evaluation framework and compares a suit of
algorithms with random and Bayesian hyperparameter
optimization methods.

1. Introduction

Location intelligence involves the complex

intersection of fields such as analytics, geographic

information science, routing/scheduling, remote

sensing, visualization, operations research, and

computer science to solve different problems [1]. One

particular problem that overlaps these areas is the

tasking and routing of sensor platform for search and

rescue (SAR). where big data sources, remote imagery,

and unmanned systems must find the target in a timely

manner. Inherently, SAR tasks involve the interaction

between and tasking of sensors and unmanned assets,

particularly unmanned aerial vehicles (UAVs). Such

applications require sensor resource management

(SRM) which involves data exploitation (e.g., remote

sensing object recognition), tasking, scheduling,

planning, routing, and optimization [2].

SAR with UAVs has the potential to revolutionize

the location intelligence field through edge processing

for the real-time use of multiple sources of data to

quickly find individuals in need [3]. However,

challenges exist in SRM which enables the efficient use

of data, coordinating operations when developing or

deploying appropriate search algorithms for a region of

interest that has minimal manual/human intervention.

While SAR actions can be considered for a single

UAV, to quickly search a large area multiple assets are

needed. Thus, multiple-agent SRM is needed. SRM

involves developing a decision approach to create an

effective policy for any given sensor operation.

Reinforcement learning (RL) enables an agent to gather

data through interaction with their environment with

rewards given based on choice outcomes. From their

collected experience, agents learn to maximize positive

rewards and avoid negative rewards. RL has been

applied to real world robotics controls [4], video games

[5], and even financial markets [6]. UAV and search

and rescue operations are conceptually similar to both

robotics controls and video game operations whereby

both learn from sparse and/or time-delayed rewards

with actions coming from a large or complex space.

Additionally, UAV and SAR operations often balance

exploration and exploitation of data gathered as well as

handle imperfect/incomplete information, similar to

many video games in which RL has been successfully

applied.

A key tradeoff of RL algorithms is exploration and

exploitation. Exploration describes the process of

trying new actions to learn more about the reward

function and potentially find better solutions, while

exploitation describes the process of using previously

gained knowledge gained by exploring to make the

current best choice given what is known about the

options [7]. While such a problem has direct parallels

to typical RL problems, RL has seldom been applied to

sensor resource management, e.g. [8].

Many search and rescue operations are instantiated

with multiple UAVs, and thus, are beyond simple RL.

In such cases, multi-agent RL (MARL), see [9], is

needed whereby the swarm/group of UAVs gains

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 5695
URI: https://hdl.handle.net/10125/80034
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

rewards as they operate in a collaborative manner.

UAVs can be outfitted with different sensors and

capabilities, for instance consider two UAVs operating

together: one UAV with a high resolution narrow field

of view camera and another with a low resolution and

wide field of view camera. Thus, of particular

importance to UAV search and rescue operations are

MARL approaches which can permit cooperation

between heterogeneous agents.

Prior work, c.f. [10] [11], proposed RL for SAR

applications. However, multiple heterogeneous agents

trained via MARL and/or a broad understanding of the

performance of the currently available MARL

algorithms were not considered. Prior MARL

comparisons are limited, c.f. [12] [13] [14] [15],

consider only a small number of MARL algorithms

[12] [14], focus on deep learning MARL algorithms

only [13], or focus on only a small set of not commonly

available algorithms [15]. Additionally, none of these

MARL comparisons considered SAR tasks.

This work primarily aims to answer the following

questions:

R1) Can MARL algorithms be applied to the general

SRM for SAR task?

R2) What MARL algorithms provide utility for SAR

and SRM tasks?

R3) Can an experimental framework be created to test

and evaluate MARL algorithms as they become

available?

The contributions of our paper are thus, as follows.

This work introduces the concept of MARL for

autonomous SRM with heterogeneous sensor agents

which enable SAR through UAVs for location analysis.

This work expands upon prior studies by comparing 9

MARL algorithms for SRM of heterogeneous agents,

encompassing all of the readily available model-free

MARL algorithms in code. The importance of the

study is that it demonstrates the utility of model-free

MARL algorithms for SRM in unknown environments.

To evaluate MARL algorithms, this work further

develops a repeatable experimental design framework

and ecosystem to compare these algorithms with

hyperparameter optimization (HPO) to provide

effective algorithm performance evaluation and

facilitating future comparisons as both new algorithms

and scenarios come available.

2. Background

Control of UAVs ranges from full manual

operations via remote control to a potential future of

fully autonomous operations [16]. Higher levels of

UAV autonomy provide a reduction in operator

demands and could enable an operator to control

multiple UAVs and/or enable UAVs to complete

missions with limited oversight. As UAVs increase in

application and use, autonomy is central to providing

rapid responses to emerging events in a complex

operational space, such as SAR. Critical to enabling

fully autonomous UAV operations are the location

intelligence capabilities that include planning, sensor

data exploitation, and sensor data fusion. Collectively,

the intersection of these areas is known as SRM.

2.1. Sensor Resource Management (SRM)

SRM encompasses sensor tasking which considers

the resources and capabilities of each sensor that is

available for a sensing task [17]. This includes sensor

scheduling, planning, task oversight and associated

sensor platforms [17] [18]. SRM is conceptualized in

Figure 1 whereby high-level tasks are determined by a

human operator. As discussed in [18], tasks from the

operator are processed by the sensor manager, which

then compares the tasks against the current system

state(s). The prioritized tasks are then scheduled with

appropriate sensor/platform plans. Sensor data is

processed by executing these plans/actions and the

processed sensor data is used to generate/update an

operating picture to both the system and the operator.

Figure 1. Sensor Resource Management

(SRM) in a nutshell, adapted from [18]

 A wide variety of approaches to SRM exist,

including operations research and decision theoretic

approaches [2] [17]. One way of considering the SRM

problem is the need to use a computational decision

approach to create an effective policy or decision for a

given sensor exploitation task [8]. When stated this

way, SRM sounds akin to a typical RL problem, but RL

has seen limited prior use in SRM [8] [17].

2.2 Reinforcement Learning

 The general goal, as conceptualized in Figure 2, of
RL is to learn a policy that maximizes a given reward,
Rt, based on an agent’s action, At, and its impact on the

Page 5696

measured environmental state, St for t time [19]. This is
accomplished by defining the reward function and then
allowing an agent to collect data against this reward
function by interacting with the environment; the agent
is trained to adjust its policy to maximize the reward
[20]. The reward is a function of the action, selected by
a policy, and the state.. The formulation of the problem
and the optimization methodologies applied to solve it
are where approaches to RL generally differ.

Figure 2. General Conceptualization of RL

2.3. Multi-Agent Reinforcement Learning

Multi-agent RL (MARL) extends RL to consider

multiple agents that each receive a reward [9]. Often

such agents are required to cooperate to accomplish a

task [9]. A common convention is to include

information about the other agents’ states in the state

information passed to any given agent participating in

the overall task. This significantly extends general RL

whereby MARL considers multiple agents and

maximization of the shared rewards within a shared

environment. The advantage of MARL is that a

decentralized team of agents can be created to

independently work towards collective goals. This is

conceptualized in Figure 3 where there are individual

states, rewards, and actions for each agent, but a shared

environment. However, training MARL agents

introduces obvious complexities when compared to

single-agent RL, i.e. partial observability and

environment nonstationarity [9].

Figure 3. General Conceptualization of Multi-

Agent RL (MARL) Problems

To simplify the solution space, MARL algorithms

often assume that the agents have similar in

capabilities. However, Real world UAV assets often

have different sensors and capabilities and thus MARL

for heterogeneous assets is of concern for real-world

SAR applications [9]. Thus, due to the sequentially

added complexity, not all RL algorithms can learn

MARL problems without modifications, and fewer still

can consider heterogeneous agents.

2.4. RL Algorithms

 Extending beyond these general concepts are the

algorithmic approaches to RL. As conceptualized in

Figure 4, RL methods are generally divided into two

high-level categories: model-based and model-free.

Model-free learning focuses solely on maximizing the

reward by learning to choose the optimal action for a

given observation of the environment; model-based RL

attempt to predict the output from the environment that

they act in, rather than directly training to maximize

reward from actions [20]. Due to these expectations

and a desire for general applications to any

environment, this work does not consider model-based

approaches and focuses on mode-free approaches.

While other taxonomies of RL exist, see [9], this

general taxonomy will facilitate the MARL relevant

algorithm space discussed herein.

 Model-free approaches can be divided into value-

based, policy-based, and hybrid (both value and policy)

methods. Under this taxonomy, many RL algorithms

exist, as seen in Figure 4 and undoubtedly more RL

algorithms exist than are seen in this figure. The

selection in Figure 4 is expansive, but not exhaustive;

we highlight the examples that are both more cited and

more accessible in software form.

 Within the taxonomy of Figure 4, not all RL

algorithms are equally capable when extended to multi-

agent considerations. Some RL algorithms, e.g. CMA-

ESX, cannot handle multiple agents. Then, of the

remaining RL algorithms that can handle multiple

agents, only some can handle heterogeneous agents;

these are indicated in Figure 4 with an asterisk.

2.5. MARL with Heterogeneous Agents

Considering the available algorithms which meet our

constraints, we are left with the following possible

algorithms for consideration:

1. Value-based: DQN, DDQN, C51/Rainbow

2. Policy-based: PPO, PG, CMA-ES

3. Hybrid: DDPG, TD3, SAC, A2C, A3C, IMPALA

4. Model-based: Dyna, PlaNet

Model-based methods were removed from

consideration because of their lack of availability or

inability to handle discrete action spaces. TD3 and

DDPG are designed to work in continuous action

spaces only, for some applications operating in a

Page 5697

continuous vs discrete space matters and these

algorithms were not included. CMA-ES is available in

common algorithm repositories, e.g. RLLib, but not for

multi-agent environments. Thus, we considered the

nine following algorithms in this study: PG, Rainbow,

A2C, A3C, SAC, DQN, APPO, and IMPALA.

2.5.1. Value-based Methods All value-based models

considered in the selection in Section 2.5 were variants

of Q-learning. Q-learning uses the reward function to

optimize predictions regarding the value of each state

action pair [20]. The agent then selects the action given

the state as the input to maximize reward. In the Deep

Q-learning Network, the Q-learning algorithm

employs an underlying neural network structure [21].

Many modifications to the base DQN model have

been proposed and both [22] and [23] review this

literature further. Of interest herein is Dueling DQN

(DDQN), which look at both the value of being in a

particular state and the advantage of a given action vs

a different action [24]. This allows the network to

contain a representation that assesses whether an

action given a particular state leads to greater reward,

or if the state itself is what leads to greater reward. The

two DDQN variants we will consider are Rainbow

DQN, which applies multiple RL variants jointly [25],

and Ape-X DQN, which uses an experience replay to

allows for scalable, distributed prioritization of

experience use in training [26].

2.5.2. Policy-based methods. In contrast to value-

based methods, policy-based methods view the policy

as a function with an environment episode as input,

and reward as output. Over the course of an episode,

the policy receives reward for certain actions in given

states, and policy-base algorithms use gradient ascent

on the entire policy to update the policy’s tunable

parameters [27]. A simple policy-based method,

Policy Gradient (PG), implements this approach. PG

methods of interest herein are Proximal Policy

Optimization (PPO) which optimizes the policy with

respect to its local surroundings, rather than the global

maximum [28], and Asynchronous PPO (APPO), with

an asynchronous architecture applied to PPO [29].

2.5.3. Value Policy Hybrid Models. Hybrid models

use both a value-based component and a policy-based

component. All hybrid models tested in this paper

were Actor-Critic models. Actor-Critic methods use a

value-based critic to analyze different states and

actions, while simultaneously having a policy-based

actor that finds a policy with the best reward based on

the critic’s estimate. This way, the value function

doesn’t get stuck, and the policy can have a

better/faster direction to optimize rewards [30].

Methods of interest are Advantage Actor-Critic

(A2C), which modifies the Q-learner by training it to

predict the advantage of a given action in a given state

[31], Asynchronous Advantage Actor-Critic (A3C),

which runs different versions of the actor parameters

Figure 4. General taxonomy of families of RL approaches, annotated (*) for algorithms with both

heterogeneous MARL capability and availability.

Page 5698

asynchronously in in identical environments [31], Soft

Actor-Critic (SAC), which focuses on maximizing the

entropy object, rather than reward directly [32], and

IMPALA, which introduces a training scheduler, V-

trace, to improve agent learning [29].

2.6. Hyperparameter Optimization (HPO)

As it becomes increasingly difficult to hand-craft

algorithms which yield reliable results, see the variety

of hyperparameters for the MARL algorithms in Table

1, hyperparameter optimization (HPO) is of interest

[33]. A general taxonomy of HPO is presented in [33],

which is largely separated into model-free and model-

based approaches. Model-free approaches range from

1) grid searches, 2) haphazard/expertise based, to 3)

random searches [33]. Due to its simplicity, the random

HPO method can provide a baseline comparison [34].

In contrast to model-free, model-based approaches

employ a wrapper with a greedy search approach

around the algorithm of interest [33].

Of particular interest in model-based HPO is

Bayesian Optimization (BO) which is one of the most

effective and efficient HPO methods [33]. One

variation is known as Sequential Model-based

Bayesian Optimization (SMBO) which uses data from

previously tested parameters whereby it estimates the

probability that a set of parameters will result in a high-

scoring model; parameters are selected based on an

acquisition function which evaluates expected

improvement over the prior best result [35].

Additionally, and of critical interest to RL, is how

long HPO trials are allowed to run. Thus, stopping a

trial that is poorly performing is beneficial and HPO

approaches that enable such assessments are of interest.

The successive halving algorithm (SHA) is one such

approach whereby parallelization is used to evaluate

multiple parameter combinations in parallel with

under-performing candidates terminated early in

processing [36]. Asynchronous SHA (ASHA) extends

SHA, which has been shown to have performance

advantages over SHA [37].

Of interest herein is Bayesian ASHA (BASHA),

which combines the advantages of both SMBO and

ASHA whereby the informed SMBO searches find

good settings and ASHA quickly terminates poor-

performing candidates; in operation BASHA functions

by iterating between SMBO and ASHA.

2.7. Quantifying Algorithm Performance

 RL algorithm performance is based on maximizing

the reward received, for instance, getting the highest

score in a game. However, RL has been known to result

in unsafe and useless actions which, nevertheless,

maximize rewards [38]; such approaches are akin to a

toddler following the rule “don’t get your clothes dirty”

by taking off said clothes and then getting themselves

dirty. Thus, beyond the primary stated reward,

ancillary metrics, such as raw performance values, are

also of interest in order to provide another assessment

of overall performance.

2.7.1. Observational Metrics. Fundamental to RL are

observed rewards that correspond to agent state. In

many applications, time is also an observed reward

component, i.e. completion time and total time used.

2.7.1. Reward Metrics. RL algorithm performance is

based on maximizing the reward received. In some

instances, i.e. games, this is predefined based on score

and thus RL involves maximizing this score. Rewards

for robotics or real-life scenarios can be tricky since

simulations may not have all the nuances of the real

world and similarly all possible outcomes might not be

predictable. When considering multiple agents, the

problem is compounded. Current work involves

understanding the action and reward spaces and

developing metrics that can include multiple

conditions.

3. Evaluation Ecosystem

 To facilitate the current and future evaluation of RL
and MARL algorithms for sensor resource
management, an evaluation ecosystem was developed.
This ecosystem consists of general agents, worlds to
explore, and a quickly integrateable interface to try new
algorithms as they become available, conceptualized in
Figure 5. The environment was built from the OpenAI
Gym base environment class [39].

3.1. Repeatable Ecosystem

 The general approach is further wrapped up into a

repeatable ecosystem to address R3. This ecosystem is

conceptualized in Figure 5. The ecosystem allows one

to select various tunable parameters in a study,

including 1) environmental/experimental settings, then

2) the algorithm and its associated libraries, and 3) the

hyperparameter optimization and research design

process. The ecosystem allows for an arbitrary scaling

of grid size, duration of the scenario, number and types

of agents in the scenario, and number of targets.

 A custom grid-world environment is built from the

OpenAI Gym base environment class. The time-step

corresponds to the duration of time that passes between

two actions that a given agent takes. In the current

instantiation, only discrete action spaces are considered

Page 5699

and it is a simplification that allows for quick

prototyping of possible scenarios.

 The custom environment logs information about

reward, agents, time spent training, hyperparameters

selected, etc. HPO can then monitor the environment

state for algorithms that may require information about

reward received for any given trial in order to select the

next hyperparameter(s) iteration. The process in Figure

5 can be used in various means: single runs can be

explored to test the feasibility of concepts, or an

experimental design can be wrapped around the

ecosystem.

3.2. Custom Environments and Agents

 A general UAV search and rescue operation can be

visualized in terms of a grid-based world. This mimics

the general representation provided by UAV sensor

feeds after processing and include both road segments

and targets/objects of interest. The two types of agents

of interest were developed for the ecosystem:

1) UAVLR—a low resolution screening agent

which searches a large area.

2) UAVHR—a high resolution agent which has a

smaller sensor collection area.

Table 1. Hyperparameters Associated with RL Algorithms of Interest
 ALGORITHM

HYPERPARAMETERS
DQN w/

Ape-X

RAINBOW

DQN
PPO IMPALA APPO PG

A2C,

 A3C
SAC DESCRIPTION

ANN Architecture X X X X X X X X
Number and size of layers in the

network

ANN Learning Rate X X X X X X X X Training step size

RL Discount factor, γ X X X X X X X X Weight assigned to future rewards

RL Gradient Clip X X X X X X X
Maximum global norm for each

gradient calculated

Value function and

Entropy Coefficients
 X X X X

Number and size of layers in the

network

Memory Buffer Size X X
Number of experiences to save and

sample from for learning

Epsilon Time-steps X X
Time-steps over which to anneal

epsilon for exploration

Learning Start Time-

step
X X

Number of steps to infer before

training

Prioritized replay X X
Boolean to use the prioritized

replay strategy [40]

Target Network

update frequency
X X

Number of steps between updates

to the target network

Clip Parameter X X
Parameter to set maximum clip of

the objective function

Use V-trace X X
Boolean to use V-trace algorithm

[29]

Figure 5. Developed ecosystem to train, evaluate, optimize, and assess RL agents

Page 5700

A general grid world road network is presented in

Figure 6 with the road network in white, the target as a

red square, and the agents represented by their fields of

view: orange for the low resolution agent and blue for

the high resolution agent.

Figure 6. Grid environment with examples of
sensor footprints of two types of scanning

UAVs.

 Observations in this world are composed of two

parts. The first part is the coordinate position of a UAV

on top of a map. The second part of the observations is

a binary flag that indicates if the target is in the agent’s

field of view. In the experimental framework, the target

can be instantiated randomly or in a specific location;

similarly, the agents can be specified to start at a

specific point, notionally the center of the map. Thus,

multiple replications could be explored for the same

grid world but with the target appearing at a random

point for each iteration.

4. Experimentation and Results

The experimentation’s general ecosystem follows

the ecosystem in Figure 5 where environments can be

setup quickly (1) with considerations made to ensure a

broad comparison of the MARL algorithms.

Computationally, in Python, Rllib [41] agents were

used for training, and HyperOpt was used for HPO.

4.1. Experimental Setup

To test R1 and R2, an experiment was constructed

that employed the selected MARL algorithms and

employed the two types of UAV agents. The challenge

is to properly balance reward for finding the target with

UAVLR, with reward for finding the target with UAVHR.

4.1.1. Reward Function. The reward function needs

to be designed with the general goal to test each MARL

algorithm’s ability to learn strategies for heterogenous

sensor agents. This was designed to balance the

advantages of both agents with a small, dense reward

for each timestep for UAVLR with the primary objective

for this team being for the UAVHR to locate and verify

the target, either randomly or after being cued by the

UAVLR. The reward given for completing that task is

greater but is only provided once. When the target is

found, i.e. the task is accomplished, the episode ends.

The overall reward is equal to the number of steps taken

to locate the target subtracted from the maximum

episode length. This is presented as:

𝑅𝑡 = (𝐿𝑒 − 𝑡) ∥ (𝑈𝐴𝑉𝐻𝑅) + 0.25 ∥ (𝑈𝐴𝑉𝐿𝑅) (1)

where Le is the maximum episode length, t is the current

timestep, and 𝑈𝐴𝑉𝐻𝑅 and 𝑈𝐴𝑉𝐿𝑅 are binary when the

respective agent has the target in view. For each

timestep the target goes undetected, this potential

reward value in (1) is decremented by one. The 𝑈𝐴𝑉𝐻𝑅

reward is implicitly 1.0 and the 𝑈𝐴𝑉𝐿𝑅 reward is set to

less than 1.0 for reasons mentioned above; through

hueristic-based tuning 0.25 was found to provide

reasonable resutls.

4.1.2. Grid World Scenario. The grid world

employed for this experiment was a 1609x1609 pixel

map. While both UAVs are searching the entire area, if

the UAVLR finds a target, the binary target flag is used

to communicate its presence to the UAVHR . The goal is

for the UAVLR to search the area efficiently, then stay at

the target’s location when found. The UAVHR should

learn to search efficiently, but then learn to approach

the UAVLR if the UAVLR spots the target. The episode

ends if UAVHR finds the target, and the agents receive a

final large reward based on how quickly UAVHR found

the target.

4.1.3. Experimental Considerations. The overall

experiment aimed for repeatability as laid out by [42].

The process in Figure 5 was employed throughout with

a common reward function (4.1.1) and common

scenario for all experiments (4.1.2). Each selected

MARL algorithm (2.5) performed for 100 different

trials (a trial being RL training with a given selection

of hyperparameter values) for both random and

BASHA. Each trial was then trained on the scenario for

200 environment runs (a run being the environment

started, the target randomly placed). Subsequent to 100

runs per algorithm, qualitative and quantitative analysis

leads to a threaded discussion and conclusion where

both note many significant insights of the research.

For this experimental study, the sensor footprint of

UAVLR was set to 320x160 pixels and the sensor

footprint of UAVHR was set to 80x80 pixels. Both

Page 5701

UAVs are permitted to move in one of 4 directions,

with a movement of 80 pixels per timestep in the

direction they choose. For the grid environment under

consideration, 1609x1609 pixels, this movement

corresponds to the map being a 20x20 grid. Thus, the

maximum episode length, Le, was set to 70 in (1),

which is slightly fewer timesteps than needed for the

UAVHR to individually search the whole space. The

system is further randomly initiated with the target

being randomly placed in each episode. Since the

target location is unknown, logically, the UAVLR

should search possible locations first with the UAVHR

searching towards a middle region of the map.

4.2. Hyperparameter Design Region
Considerations

 As noted in [33], while HPO removes the general

problem of finding effective algorithm settings, manual

intervention is needed to bound the search region.

Table 2 presents the general search regions considered

for all algorithms. HPO can find continuous valued

parameters anywhere within the specified intervals

whereas categorical parameters must be one of the

specified search values.

Table 2. General Hyperparameter Search
Region for MARL Algorithms

Parameter
Interval

Scale

Initial Search

Interval

ANN Learning Rate Logarithmic [10-7, 10-2]

ANN Architecture: Number of

Hidden Layers
Categorical [1, 2, 3]

ANN Architecture Layer Size

(selected per layer)
Categorical

[64, 128, 256,

512]

Discount Factor Linear [0.9, 0.9999]

Gradient Clip Linear [1, 100]

Value Function Coefficient Linear [0, 1]

Entropy Coefficient Logarithmic [0, 0.5]

Memory Buffer Size Categorical

[1x104,

2.5x104,

5x104, 1x105]

Epsilon Time-steps Categorical
[5x103, 1x104,

5x104]

Learning Start Time-step Linear [1, 5000]

Prioritized Replay Categorical [true, false]

Target Network Update

Frequency
Linear [1, 1000]

Use V-trace Categorical [true, false]

Clip Parameter Linear [0, 1]

 4.3. Results and Discussion

 The 9 algorithms were run with the two 2 HPO

methods (BASHA and Random). A box plot of their

performance on the observational metric of episode

length and the reward function are presented in Figures

7 and 8, respectively. Additionally, since box plots

present median values, Table 3 presents the mean

values along with standard error computations. In total,

100 runs were computed for all algorithms.

 For each algorithm, a BASHA hyperparameter

search yielded parameters that trained superior or

comparable models compared to random search.

However, significant performance differences exist

across algorithms. What is noticed is that PG, while

being a basic RL algorithm, performed relatively well

compared to several other algorithms. The tradeoff

between reward and episode length is seen in the

RAINBOW algorithm results where it consistently

learned to find the target, but never learned to find the

target quickly. A2C and A3C struggled to perform

well, while A3C is known to have training stability

issues, more work is needed to understand why it

almost never learned to locate the target. Interestingly,

while being less consistent than some algorithms,

IMPALA performed significantly better than A2C and

A3C which shows the effiicacy of the modifications it

includes over A3C to improve training stability.

Among the actor-critic algorithms, SAC appears to

have performed the most consistently. Interestingly,

APPO was able to have a few exceptional runs, but

most APPO runs timed out; whereas PPO had both the

highest mean and median values of the policy gradient

methods.

Table 3. Mean Episode Length and Mean
Reward with Standard Error: top 5 (and
identical/equivalent) in bold in both columns

Algorithm
Mean Episode Length

± Standard Error

Mean Reward ±

Standard Error

BASHA PG 66.97 ± 0.58 6.44 ± 1.04

Random PG 68.16 ± 0.50 4.26 ± 1.01

BASHA Rainbow 67.73 ± 0.10 8.51 ± 0.22

Random Rainbow 67.49 ± 0.10 8.08 ± 0.25

BASHA A2C 67.48 ± 0.57 5.05 ± 1.08

Random A2C 68.89 ± 0.39 2.86 ± 0.87

BASHA A3C 70 ± 0.0 0 ± 0

Random A3C 69.99 ± 0.01 0.06 ± 0.06

BASHA SAC 68.31 ± 0.18 6.49 ± 0.38

Random SAC 69.12 ± 0.13 2.72 ± 0.35

BASHA PPO 67.77 ± 0.45 7.28 ± 1.00

Random PPO 69.02 ± 0.23 3.27 ± 0.62

BASHA DQN

with Ape-X
60.60 ± 1.46 10.63 ± 1.59

Random DQN with

Ape-X
67.79 ± 0.75 2.55 ± 0.82

BASHA APPO 65.91 ± 0.68 5.41 ± 0.76

Random APPO 67.34 ± 0.64 3.52 ± 0.70

BASHA IMPALA 67.61 ± 0.59 4.49 ± 0.75

Random IMPALA 69.65 ± 0.21 1.28 ± 0.31

 Overall, DQN with Ape-X resulted in the best

possible agents, but only for a small number of runs.

This indicates that such an algorithm would require

extensive hyperparameter optimization in order to be

used effectively. Interestingly, methods that employed

asynchronous scheduling (APPO, IMPALA, Ape-X

Page 5702

DQN) appeared to more sensitive to hyperparameter

selection, i.e. random vs BASHA results showed a

large divergence, compared to synchronous scheduling

algorithms (RAINBOW, A2C, SAC, PPO).

Figure 7. Distribution of raw episode length
values from all reward values for models
trained during HPO, lower scores are better.

Figure 8. Distribution of rewards received by
each model, higher scores are better.

5. Conclusions

 The authors presented a systematic comparison of
reinforcement learning to a general location
intelligence routing task through sensor resource
management. Of particular interest were multi-agent
RL algorithms and agents which were heterogeneous
in sensing capabilities. This study further developed a
repeatable ecosystem for test and evaluation and a
consistent experimental approach to yield a
comparison of MARL methods which had algorithm
setting determination through hyperparameter
optimization. This application of MARL was both new
to SRM and in total, 9 MARL algorithms were
considered.

 In contrast to past work, e.g. [12], which occurred
on different applications, this work found that value-
based methods (Ape-X with DQN) provided the best
performance and policy-based methods provided the
second best; interestingly, Rainbow and SAC provided
similar performance to PG. Thus, this study facilitates
future developments, selection, and applications of
MARL with respect to SRM. This work further
illustrated the necessity for selecting appropriate
algorithms for MARL tasks as well as the key
importance of determining appropriate algorithm
settings, since some RL algorithms were unable to
provide consistent results. Overall, the Bayesian HPO
process employed improved agent reward over random
hyperparameter selection.
 The theme of future work, in general, will be
investigation of RL methods that reduce unsafe and
useless results, and which can generalize to ambiguous
environments. Additionally, while it is reasonable to
expect that the results could translate to continuous
action spaces, this needs to be explored. Additionally,
broader comparisons with other optimization methods
need to be investigated.

6. Acknowledgements

 The views expressed in this article are those of the
authors and do not reflect the official policy of the
United States Air Force, Department of Defense, or the
U.S. Government. This work was cleared for unlimited
release under case number AFRL-2021-3140.

7. Bibliography

[1] H. Smith, et al., "Locational analysis: highlights of

growth to maturity," Journal of the Operational Research

Society, 60(1), pp. S140-S148, 2009.

[2] R. Malhotra, et al., "Decentralized asset management for

collaborative sensing," SPIE Proceedings, 2017.

[3] S. Waharte and N. Trigoni, "Supporting search and

rescue operations with UAVs," International Conference on

Emerging Security Technologies, pp. 142-147, 2010.

[4] J. Kober, et al., "Reinforcement learning in robotics: A

survey," The International Journal of Robotics Research,

32(11), pp. 1238-1274, 2013.

[5] K. Shao, et al., "A survey of deep reinforcement learning

in video games.," arXiv preprint arXiv:1912.10944., 2019.

[6] N. Pröllochs, et al., "Detecting negation scopes for

financial news sentiment using reinforcement learning,"
Hawaii International Conference on System Sciences

(HICSS), pp. 1164-1173, 2016.

[7] E. Lindwurm, "Intuition: Exploration vs Exploitation,"

20 March 2021. [Online]. Available:
https://towardsdatascience.com/intuition-exploration-vs-

exploitation-c645a1d37c7a.

Page 5703

[8] R. Malhotra, et al., "Learning sensor-detection policies,"
National Aerospace and Electronics Conference

(NAECON), pp. 769-776, 1997.

[9] L. Busoniu, et al., "Multi-agent reinforcement learning:

A survey.," 9th International Conference on Control,

Automation, Robotics and Vision, pp. 1-6, 2006.

[10] C. Sampedro, et al., "A fully-autonomous aerial robot

for search and rescue applications in indoor environments

using learning-based techniques," Journal of Intelligent &

Robotic Systems, 95(2), pp. 601-627, 2019.

[11] C. Wu, et al., "UAV autonomous target search based on

deep reinforcement learning in complex disaster scene.,"

IEEE Access, 7, pp. 117227-117245, 2019.

[12] J. Gupta, et al., "Cooperative multi-agent control using

deep reinforcement learning," Int’l Conf. on Autonomous

Agents and Multiagent Systems, pp. 66-83, 2017.

[13] G. Papoudakis, et al., "Comparative evaluation of multi-
agent deep reinforcement learning algorithms.," arXiv

preprint arXiv:2006.07869., 2020.

[14] R. Grunitzki and A. Bazzan, "Comparing two

multiagent reinforcement learning approaches for the traffic
assignment problem," 2017 Brazilian Conference on

Intelligent Systems (BRACIS), pp. 139-144, 2017.

[15] R. Ranjan Kumar and P. Varakantham, "On Solving

Cooperative MARL Problems with a Few Good

Experiences.," arXiv e-prints, pp.arXiv-2001., 2020.

[16] NRC, Autonomous vehicles in support of naval

operations, National Academies Press, 2005.

[17] A. Hero and D. Cochran, "Sensor management: Past,
present, and future.," IEEE Sensors Journal, 11(12), pp.

3064-3075, 2011.

[18] S. Musick and R. Malhotra, "Chasing the elusive sensor

manager," Proceedings of National Aerospace and

Electronics Conference (NAECON'94), pp. 606-613, 1994.

[19] A. G. Barto, "Reinforcement Learning," in The

Handbook of Brain Theory and Neural Networks,

Cambridge, MA, The MIT Press, 2003, pp. 963-972.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning:

An introduction., MIT Press, 2018.

[21] V. Mnih, et al., "Playing Atari with deep reinforcement

learning," NIPS Deep Learning Workshop, 2013.

[22] A. Mosavi, et al., "Comprehensive review of deep

reinforcement learning methods and applications in

economics.," Mathematics, 8(10), p. 1640, 2020.

[23] T. Nguyen, et al., "Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and

applications.," IEEE transactions on cybernetics, 50(9), pp.

3826-3839, 2020.

[24] Z. Wang, et al., "Dueling network architectures for deep
reinforcement learning," International conference on

machine learning, pp. 1995-2003, 2016.

[25] M. Hessel, et al., "Rainbow: Combining improvements
in deep reinforcement learning," AAAI Conf. on Artificial

Intelligence. pp.3215-3222

[26] D. Horgan, et al., "Distributed prioritized experience

replay," Int’l Conf Learning Representations (ICLR), 2018.

[27] R. Sutton, et al., "Policy gradient methods for

reinforcement learning with function approximation,"

Neural Information Processing Systems (NIPS), pp. 1057-

1063, 1999.

[28] J. Schulman, et al., "Trust region policy optimization,"

Int’l conference on machine learning, pp. 1889-1897, 2015.

[29] L. Espeholt, et al., "Impala: Scalable distributed deep-rl

with importance weighted actor-learner architectures," Int’l

Conference on Machine Learning, pp. 1407-1416, 2018.

[30] V. Konda and J. Tsitsiklis, "Actor-critic algorithms,"

Adv. neural inform. processing sys., pp. 1008-1014, 2000.

[31] V. Mnih, et al., "Asynchronous methods for deep
reinforcement learning," International conference on

machine learning, pp. 1928-1937, 2016.

[32] T. Haarnoja, et al., "Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a
stochastic actor," International Conference on Machine

Learning (ICML), pp. 1861-1870, 2018.

[33] T. Bihl, et al., "Easy and Efficient Hyperparameter

Optimization to Address Some Artificial Intelligence
“ilities”," Hawaii International Conference on System

Sciences, pp. 943-952, 2020.

[34] J. Bergstra and Y. Bengio, "Random search for hyper-

parameter optimization," Journal of machine learning

research, 13(2), p. 281–305, 2012.

[35] B. Shahriari, et al., "Taking the human out of the loop:

A review of Bayesian optimization.," Proceedings of the

IEEE, 104(1), pp. 148-175, 2015.

[36] K. Jamieson and A. Talwalkar, "Non-stochastic best

arm identification and hyperparameter optimization,"

Artificial Intelligence and Statistics, pp. 240-248, 2016.

[37] L. Li, et al., "A system for massively parallel

hyperparameter tuning," arXiv:1810.05934, 2018.

[38] J. Garcıa and F. Fernández, "A comprehensive survey

on safe reinforcement learning," Journal of Machine

Learning Research, 16(1), pp. 1437-1480, 2015.

[39] G. Brockman, et al., "Openai gym," arXiv preprint

arXiv:1606.01540., 2016.

[40] T. Schaul, et al., "Prioritized experience replay," Int’l

Conf. on Learning Representations (ICLR), 2015.

[41] E. Liang, et al., "RLlib: Abstractions for distributed

reinforcement learning," Int’l conference on machine

learning, pp. 3053-3062, 2018.

[42] G. Zhang, "Avoiding pitfalls in neural network
research," IEEE Trans. on Systems, Man, and Cybernetics,

Part C, 37(1), pp. 3-16, 2006.

Page 5704

