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Abstract 
With advances in machine learning (ML) and big 

data analytics, data-driven predictive models play an 
essential role in supporting a wide range of simple and 
complex decision-making processes. However, 
historical data embedded with unfairness may 
unintentionally reinforce discrimination towards 
minority groups when using data-driven decision-
support technologies. In this paper, we quantify 
unfairness and analyze its impact in the context of data-
driven engineering design using the Adult Income 
dataset. First, we introduce a fairness-aware design 
concept. Subsequently, we introduce standard 
definitions and statistical measures of fairness to the 
engineering design research. Then, we use the outcomes 
from two supervised ML models, Logistic Regression 
and CatBoost classifiers, to conduct the Disparate 
Impact and fair-test analyses to quantify any unfairness 
present in the data and decision outcomes. Based on the 
results, we highlight the importance of considering 
fairness in product design and marketing, and the 
consequences, if there is a loss of fairness. 

1. Introduction  

Decision-making based on big data is becoming 
increasingly popular within organizations with the 
growth of digitalization and remarkable advances in 
machine learning (ML) and artificial intelligence (AI). 
Online retail, car and home rental agencies, and airline 
industries, use algorithms to pool target audiences, 
determine customer perceptions, pricing strategies, and 
competing offers [1]. As the use of algorithms becomes 
prevalent, possible risks may develop and could give 
rise to discrimination. One typical example is the 
recommender system that studies user behavior and 
generates recommendations for users to support 
decision-making [2]. It can easily inherit bias in these 
datasets since most industries have been off-limits to 
protected classes (e.g., Women, Non-Caucasians, 
Senior individuals) [3]. Biased data can condition 
decision-making models to make unfair predictions 
without any deliberate intent of the developer or 

designer. Therefore, a design project’s constraints 
nowadays move from strictly technical and economical 
to social, environmental, and ethical dimensions, mainly 
to incorporate the fairness consideration in design 
decision-making. 

In the engineering design field, the investigation of 
fairness-aware algorithms is little observed. The lack of 
acknowledgment of discrimination perpetuated across 
design can reduce the access of unprivileged individuals 
to everyday tools and technology, widening the gap 
between unprivileged and privileged groups [4]. This 
could negatively impact a business, especially with the 
advent of social media and information being shared at 
lightning speed. For example, in Figure 1, we show 
human biases embedded in various stages of the 
standard engineering design process in developing and 
improving functional products and processes. In a data-
driven decision support system, these biased human 
judgments and data could be translated into a product’s 
design life cycle and various marketing strategies such 
as online targeted advertising. Potential harms can arise 
if ads are manipulative and stereotyping by targeting 
specific people and groups [5]. This can provoke 
unexpected customer behaviors in social media and can 
lead to many unintended consequences for businesses 
[6]. Hence, it is necessary to take fairness into account 
when products are designed and marketed.  

To address the challenges of discrimination in these 
existing structures and dynamics of the societies due to 
their demographics, we study the fairness definitions 
and different statistical metrics quantifying unfairness. 
Barocas & Selbst [7] points out the relevance of the 
statistical data measures to the decision at hand to study 
fairness in data-driven approaches. This method can 
help investigate causes of discrimination in the datasets 
even when the goal is to ensure the greatest possible 
accuracy for its purposes. It can facilitate in exposing 
the exact magnitude of inequality in data. Using the 
metrics, we evaluate the outcomes from data-driven 
decision-support technologies and gain insights into the 
dataset analyzed. In this study, developing a fairness and 
social awareness platform in engineering design is 
twofold. First, an organization must put solid values, 
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principles, and protocols to design and implement 
ethically and safely. Second, to facilitate a culture of 
responsible design innovation, various departments can 
work collaboratively to make fair design decisions and 
develop products, services, and technologies for the 
public [8]. A complex system such as engineering 
design can benefit from a fair and ethical strategy to 
better answer the following research questions: Is the 
dataset used insufficiently representative of the 
population? What are the top attributes that correlate 
with the decision of the ML models? How are design 
decisions impacted by drawing inferences from 
possibilities of biased and discriminatory outcomes? 
Lastly, how does the application of fairness statistical 
metrics aid with design guidance?  

The remainder of the paper is structured as follows: 
Section 2 provides the relevant design concepts and 
problems that can be addressed by fairness 
consideration in design decision-making. Section 3 
introduces standard statistical measures of fairness and 
the methodology to the engineering design research 
community. The proposed research approach is 
presented in Section 4, and the case study based on the 
Adult Income dataset is presented in Section 5. Section 
6 discusses the results from the ML models and their 
impact on engineering design decisions. Finally, Section 
7 concludes the paper with the limitations of the current 
research and future research opportunities in design for 
market systems with fairness. 

2. Integrate Fairness in Engineering Design 

2.1. Application of the Fairness Concept 

Fairness is a subjective perception of situations, 
actions, or outcomes as being fair or unfair. Fairness is 
achieved when the ML model outcomes behave 
similarly for two or more classes of a group (e.g., male 

and female groups, majority and minority groups) [9]. 
Incorporating the concept of fairness can strongly 
influence the possibility of generating innovations or 
design expansion in engineering design practices [10]. 
Furthermore, it can improve the design in the progress 
of acquiring scientific-technological knowledge and the 
conditions of non-technical socio-economic factors. 
From a socio-economic perspective, it could provide 
individual customers with more exposure to products 
and services in their geographical context. Therefore, a 
fairness-aware design should be put in place to cope 
with the ethical dimension in the engineering design 
community. 

2.2. Relevant Design Concepts for Fairness 

In this section, we discuss several design concepts 
relevant to fairness-aware design applications. 
 
2.2.1. Inclusive Design. Coleman states, “Inclusive 
design is not a new type of design but an intentional 
project that sets out to include significant sectors of 
society that are all too frequently ignored or 
overlooked.” This concept incorporates diversity in 
design to address the needs of the broadest possible 
audience but does not intend to create a new genre of 
design that jeopardizes individual sectors of a society 
[11]. 
2.2.2. Design for Market Segments. Diverse customers 
will have different expectations. The market is 
segmented to divide a broad customer base into sub-
groups of existing and prospective customers. By 
dividing the markets into smaller segments, we target 
customers that share characteristics such as everyday 
needs, shared interests, similar lifestyles, or even similar 
demographic profiles. It allows companies and 
organizations to develop products, services, and 
promotional campaigns targeting specific segments 

 
Figure 1. Biases in engineering design decision-making process 
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[12]. Please note that fairness-aware design can be 
assured in each market segment. 
2.2.3. Customized Design. A customized design gives 
users more control over their interactions with the 
system, such as customers can specify their individual 
needs and preferences, designs, and layout that appeal 
to them [13]. 
2.2.4. Personalized Design. Personalization is about 
building meaningful one-to-one relationships by 
understanding and meeting the needs of each customer, 
aiming at providing the customer with tailored products, 
services, information, or information related to products 
or services [14]. 
2.2.5. Fairness-aware Design. In this paper, we 
introduce the fairness-aware design concept. It is an 
extension of inclusive design in which a user’s sensitive 
attributes do not play a significant role in design 
decisions. Constraints are applicable based on the 
product or service market segment; however, designs 
discard any discriminatory factors. 
Based on the defining features for these design concepts, 
we present a few design scenarios and categorize them 
under single or multiple design concepts. It is worth 
noting that these design concepts are not mutually 
exclusive and may overlap in one particular design 
scenario. 
 
Scenario 1: Develop a video game that fits both male 
and female players. 
 Design case: Inclusive design and design for market 

segments. The market is segmented to understand 
the needs of male and female players in the market 
to cater to an inclusive design. 

Scenario 2: Design a recliner chair in movie theatres 
for people with and without disabilities. 
 Design case: Inclusive design, design for market 

segments, and customized design. This design falls 
into three design categories. From this scenario, it 
is understood there is a need for two variations of 
the recliner chair. Each variation is customized to 
best fit the market segment, i.e., disabled versus 
non-disabled individuals who enjoy going to movie 
theatres. 

Scenario 3: Recommendation on advertisements 
(movies, games, online retail) based on customer data 
and predictive technology. 
 Design case: Personalized design and design for 

market segments as information is tailored to a 
user’s specific needs and preferences based on their 
online search patterns (personalized) and users with 
similar online behaviors (segmented). 

Scenario 4: Design a luxury car for all high-income 
group regardless of customer demographic 
 Design case: Fairness-aware design, design for 

market segments, and customized design. The 

intent is to target all eligible customers who can 
afford the price of the car, thereby maximizing the 
value of the luxury car. In this case, the luxury car 
is designed and marketed for members of the high-
income group, regardless of their age, gender, race, 
or marital status. This market segment can also 
suggest individuals are able to customize their 
luxury cars. 
The ethics dimension of fairness has emerged 

mainly due to the range of individual and societal harms 
that the misuse, abuse, poor design, or unintended 
negative consequences of engineering design systems 
may cause. To orient the reader to the concepts under 
discussion and the importance of building a robust 
culture of a fairness platform, we represent two of the 
most consequential forms that the potential unfairness 
may take in the following subsection.  

2.3. Addressing Design Problems with Fairness 
Consideration 

Problem 1: Bias in Machine Learning Decision 
Support Systems. As mentioned earlier, predictive 
models learned from historical data are widely used to 
help organizations make decisions. However, such 
decisions may mistreat individuals based on their 
respective attributes, increasingly raising concern about 
fairness and discrimination. For example, if a company 
decides to use historical data to extend its reach to new 
and potential customers, predictions made about them 
may be embedded with biases and discrimination 
against specific sectors of a society. When businesses 
tend to depend on such biased data, it causes 
unprivileged sectors of that society to be excluded from 
the market as target audiences. When studying the 
market, we study user’s preferences and interactions 
with other users to improve and refine the products and 
services or develop new generations of products. 
However, depending on biased information, the system 
unintentionally continues to cater only to privileged 
society members, without knowing how the 
unprivileged groups might be affected. Application of 
fairness evaluation methods can help understand the 
attributes that affect eligible individuals by ML 
predictions and its further impact on engineering design 
decisions.  

Problem 2: Bias in Marketing Strategies. 
Organizations study the market segments and their 
social network to analyze various users’ product co-
consideration and develop marketing strategies and 
advertising campaigns to target the correct audience. 
However, suppose the information used has a bias. In 
that case, a business may generate promotional 
campaigns that may contain discriminative content or 
exclude a sector of the population deserving a product 
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or service. For example, multiple cases have noticed 
Facebook ads being used to exclude certain races, 
languages, and religious affiliations from 
advertisements for housing, credit, and insurance; and 
disproportionately target men over women for highly 
paid jobs. In light of these situations, studying the 
fairness of a marketing strategy will allow us to 
understand how negative information or content of an 
advertising campaign diffuses on social media platforms 
and the impact on the demand and profit of an 
organization. 

3. Technical Background 

Several statistical measures have been proposed in 
the ML literature [15-16] to define fairness such that if 
there exists a disparate distribution of a sensitive 
attribute, statistical fairness analyses are likely to depict 
that distribution and quantify the bias. This section 
explores the statistical metrics and various fairness 
definitions studied by fair ML scholars. 

3.1. Statistical measures of fairness 

Fair machine learning is a subset of machine 
learning and AI ethics that has gained attention in 
response to the rapid integration of machine learning 
into social realms [17]. An increasing number of 
decisions made by engineers regarding product design 
and its attributes are with the support of ML [18].  ML 
will facilitate interpreting big data analytics into 
visualization models, finding patterns, gaining insights 
in data, and using them to make predictions and expand 
their opportunities [19]. Integrating fairness-aware ML 
models in the design process will aid in identifying 
factors that are likely to compromise the enterprise and 
the customers. It builds trust, widens reach, and 
demonstrates to customers that their concerns matter.  
A fair machine learning process is chosen to support 
design decision-making because the mathematical 
framework considers sensitive attributes for which non-
discrimination can be established. We explicitly include 
gender and ethnicity attributes since such sensitive 
membership influences various stereotypes in 
engineering fields. The study is conducted in a binary 
classification setting, and throughout the paper, the 
terms protected or sensitive attributes are used 
indistinctly. The following notations will be used in the 
rest of the paper to understand the statistical measure of 
fairness: 
 𝑋:  All qualified features that characterize an 

individual. It is represented in binary, numerically, 
or categorically in a dataset (e.g., location, age, 
demographics characteristics, loan repayment 
rates) 

 𝐴: Binary (0 or 1) sensitive or protected attributes 
of an individual. (e.g., race, gender, socio-
economic status) 

 𝑌: Target variable in the dataset that provides the 
actual classification result. 

 𝑆  is the score that is predicted by the selected 
classifier is represented by 𝑆 = 𝑠(𝑥, 𝑎)  ∈  [0,1]. 

 𝐶 = 𝑐(𝑋, 𝐴)  ∈  {0,1}: Binary predictor (e.g., being 
shown the ad or not), which makes decisions based 
on a score S. For instance, if S is above a certain 
threshold (e.g., 𝑠 ≥ 0.5 ) then predicted outcome 
𝑐 = 1 is classified positive by a machine learning 
classifier and generally, it the preferred decision. 

3.2. Evaluation of fairness in the U.S. legislation 

There are two forms of discrimination generated in 
legal domains (1) disparate treatment and (2) disparate 
impact (𝐷𝐼). Disparate treatment is direct discrimination 
and an intentional act on individuals due to their 
sensitive attributes, such as age, gender, and race. 𝐷𝐼 is 
indirect discrimination that is unintentional by an 
enterprise’s action yet disproportionately impacts 
individuals of a protected class due to bias in historical 
data [20-21]. Such as event is caused by redundant 
encoding that provides knowledge regarding a protected 
or sensitive membership based on features present in 
datasets that correlate with these memberships. For 
example, the purchase of video games and action 
movies online may be highly correlated with gender, 
and specific zip codes may have different racial 
demographics that an ML algorithm has learned from a 
classifier. While such algorithms are unlikely to 
generate disparate treatment, data-driven algorithms 
trained with such biased datasets are likely to grasp 
these biased patterns unrecognized by humans and 
cause disparate impact [22].  

A 𝐷𝐼 index value is used in regulated domains to 
evaluate whether a decision-making system is free of 
disparate treatment and disparate impact. In fair 
machine learning literature, it is mathematically 
represented by Equation (1) [19, 21] to measure 
unfairness that exists in datasets and is used to quantify 
a group fairness [23]. 

𝐷𝐼 =  
𝑃(𝑌 = 1|𝐴 = 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑖𝑔𝑒𝑑)

𝑃(𝑌 = 1|𝐴 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 )
             (1) 

3.3. Definitions of Fairness 

Based on the notions and statistical metrics of the 
confusion matrix, the fairness functions can be 
formulated. These definitions are centered on the 
predicted probability, predicted outcome, actual 
outcome (target variable), and correlation. There are 
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various definitions of fairness proposed in algorithmic 
fairness literature, most of which are derived from the 
following five metrics: 
1) Group Fairness 

This notion studies the impact of discrimination on 
a group of individuals and therefore uses ML classifiers 
to mitigate unfairness in models. This definition is 
satisfied when a supervised ML classifier predicts the 
same probability outcome for individuals in both the 
privileged (e.g., males = m) and unprivileged (e.., 
female = f) categories. This probability will suggest that 
both parties are receiving equal predicted positive (𝐶 =
1) outcomes; hence the model is fair. This category 
branches three fairness definitions. 
a. Demographic Parity 

This states that the binary predictor 𝐶  is 
independent of 𝐴 and the proportion of each segment of 
a protected class (e.g., gender) should receive the 
positive (or negative) classifications at equal rates. In 
this case, the probability measure [2] is formalized as, 

𝑃(𝐶 = 1|𝐴 = 𝑚) = 𝑃(𝐶 = 1|𝐴 = 𝑓)       (2) 
 

b. Equalized Odds 
This fairness notion is independent of A but is 

conditional on actual outcome Y such that the 
probability for positive prediction is equal for both 
parties regardless of Y outcome. Therefore, both groups 
have equal recalls and are satisfied by the classifier [24]. 

𝑃(𝑐 = 1|𝑌 = 1, 𝐴 = 𝑚)
= 𝑃(𝑐 = 1|𝑌 = 1, 𝐴 = 𝑓)               (3𝑖) 
𝑃(𝑐 = 1|𝑌 = 0, 𝐴 = 𝑚)
= 𝑃(𝑐 = 1|𝑌 = 0, 𝐴 = 𝑓)               (3𝑖𝑖) 

 
c. Predictive Rate Parity 

This is based on both the predicted and actual 
outcomes. Here the probability of the positive predicted 
outcome for both males and females to be also the actual 
outcome. This probability states that to be fair, the 
correct positive predictions are the same for both parties 
in equal fractions. This is also true for the negative 
predicted outcome from a mathematical standpoint [25]. 

𝑃(𝑌 = 1|𝑐 = 1, 𝐴 = 𝑚)
= 𝑃(𝑌 = 1|𝑐 = 1, 𝐴 = 𝑓)               (4𝑖) 
𝑃(𝑌 = 0|𝑐 = 1, 𝐴 = 𝑚)
= 𝑃(𝑌 = 0|𝑐 = 1, 𝐴 = 𝑓)               (4𝑖𝑖) 

 
2) Unawareness 

Fairness through unawareness is simply when no 
sensitive attributes, 𝐴, are used to train the classifier, so 
the predicted and actual outcomes are not influenced by 
𝐴. Here, the predicted outcome of individuals with the 
task-specific features, 𝑋 , is the same as shown in 
Equation (5). The probability is [26] 

𝐶 = 𝑐(𝑋 ) = 𝑐 𝑋                           (5) 

3) Individual Fairness 

As the famous quote Dwork formalizes, ML 
models should treat similar individuals similarly. A 
distance metric defines the similarity for the fairness to 
hold. In our study on the fairness-aware design, this 
notion is used to study customer-related attributes based 
on the individual level (local level) information 
obtained from group analysis [15].  

4. Research Approach Overview 

In this study, we begin with tackling Problem 1 (see 
Section 2.3) as a case study. We apply the fairness 
evaluation methods familiarized in Section 3 and 
quantify any bias present in the decisions made by ML 
models in the context of engineering design. 

The first step of the study is to conduct a thorough 
pre-processing of raw data. Data-preprocessing is a 
critical step before fitting into a statistical model or 
training a classifier on the dataset. We remove all 
missing information from the data to minimize 
discrepancies. In the dataset, each row corresponds to an 
individual’s attribute. Attributes that do not have a clear 
meaning regarding the analysis or the individual are 
removed from the data. Data with large differences were 
merged to eliminate redundancies. Categorical 
attributes were trimmed to remove space from a cell.  
After the data pre-processing, the data is prepared for 
supervised machine learning models. Dataset is split 
into 80% training data, 10% verification data, and 10% 
testing data following the standard ten-fold cross-
validation procedure. The k-fold cross-validation 
randomly splits the dataset into k equal-sized data sets. 
It uses k-1 sets as a training dataset while using the 
remaining one dataset as a test dataset. The model 
repeats the task until each dataset is used for testing. We 
use two supervised ML models: Logistic Regression 
(L.R.) and CatBoost (C.B.), to predict binary outcomes 
for the test data.  Generally, a binary classification 
outcome involves two class labels: the normal/majority 
state (labeled 1) and the abnormal/minority state 
(labeled 0). Binary classification helps us isolate vast 
quantities of data into discrete values such as 0/1, 
True/False, or a pre-defined output label class. For 
example, predicting the admission of a potential 
university applicant using ML predictive models, 
“accepted” is the normal state, and “not accepted” is the 
abnormal state. 

In the first step, we analyze the correlation of 
attributes concerning the target variable and compare 
the prediction accuracies to understand the performance 
of each classifier. Next, we test for disparate impact 
calculated using the predicted probability and the binary 
outcomes in the second step. Classifiers L.R. and C.B. 
are then trained on two sets of data (1) dataset with 
sensitive attributes (2) dataset with sensitive attributes 
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removed. In the third step, we use predicted 
probability,  𝑠 , to test fairness based on the attributes 
with the most severe disparate impact. In both analyses, 
we use conditional probability, Equations (1), (6), and 
(7) to verify that the fairness is satisfied or worsened for 
groups 𝐴 = 1 and 𝐴 = 0. Based on the results, the final 
step consists of studying the impact of ML predictions 
on engineering design decisions to guide the design 
towards fairness. 

5. Case Study 

This case study investigates the effects of 
individual characteristics, standard attributes (e.g., 
education level, occupation, country), and sensitive 
attributes, such as gender, race, age, on the prediction of 
the target variable, income status. The dataset is the 
open-source Adult Income data accessible through the 
University of California Irvine (UCI) Machine Learning 
repository. Extraction of this dataset was conducted by 
Barry Becker from the 1994 Census database [27].  

The dataset consists of 48842 individual records 
with six continuous attributes (age, final weight, 
education level, capital gain, capital loss, and hours per 
week) and eight categorical attributes (work class, 
education, marital status, occupation, relationship 
status, race, sex, country). Income attribute is the target 
variable, i.e., a binary variable indicating whether an 
individual’s annual income is greater than $50,000 a 
year or not, i.e., 𝑌 =  1 if the income is higher than 
$50,000 and 𝑌 =  0 if the income is less than or equal 
to $50,000. Learning about customer requirements and 
the disposable income they can spend is crucial in 
developing a new product. The outcomes from this step 
strongly influence the rest of the development effort and 
the ultimate success of the product. 

After data pre-processing, the dataset consists of 
30162 applicants. Education and Education Level are 
merged in the analysis as it represents the same task-
specific attribute which trimmed down the dataset to 
nine attributes. All attributes are changed to either 
binary or continuous variables. Figure 2 provides a 

graphical representation of the distribution of the 
important attributes and shows the count of occurrences 
of each attribute with respect to the actual income 
classification.  

Based on the preliminary exploratory data analysis, 
we observe an unbalanced repartition of low and high 
incomes concerning two variables: Gender (male or 
female) and Ethnic origin (White, Black, and Other). It 
is observed that the sample contains only 15% female 
and 9% non-Caucasians (Black and other combined) 
who earn an income higher than $50,00 compare to male 
and White individuals, respectively. Therefore, we 
categorize these attributes as sensitive attributes. In the 
next section, we first identify the correlation between 
each of the attributes and decisions made by the ML 
models. Second, we use two fairness evaluation 
methods: disparate impact and fair-test analysis, to 
evaluate the data-driven decision and quantify any 
potential biases in the dataset. Lastly, we discuss the 
impact of the potential biases and discriminatory 
outcomes on design decisions.  

6. Results and Discussion 

6.1. Machine Learning Algorithm 

In this study, two ML classifiers were used to train 
the Adult income dataset and make predictions for the 
test data. 

Logistic Regression (L.R.) Classifier: In the L.R. 
model, the response has two possible outcomes (𝐶 =  0 
or 𝐶 = 1). A heat map grid shown in Figure 3 is used to 
visualize the correlation matrix of the attributes before 
modeling the dataset. A higher positive value suggests a 
strong correlation between features and target outcome 
as well as a higher chance of target outcome to receive 
𝐶 = 1 ( $50,000 and above). The correlation 
coefficients are generated using the Pearson method. 
This method is used to determine if a significant linear 
relationship (positive, negative, or zero) exists when 

 
Figure 2. Sensitive attributes of the Adult 
Income dataset after data pre-processing 
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two quantitative variables (e.g., the target variable vs. 
the sensitive attributes) are being tested in this study. In 
this matrix, the sensitive attributes (age and gender) 
strongly correlate with the target outcome, with a value 
of 0.24 and 0.22, while ethnicity has a weaker 
correlation with a value of 0.068. However, based on 
Figure 2, it is evident that there is an unbalanced division 
between the income prediction for the ethnicity and 
gender attributes. Therefore, based on the correlation of 
sensitive features with the target variable and the 
distribution of income, we have grouped male (m) and 
White (w) as privileged groups (𝐴 = 1) and grouped 
protected membership, such as women (w), black and 
other minorities as an unprivileged group (𝐴 = 0).  

CatBoost Classifier: This classifier is based on 
gradient boosting on decision trees. It generates SHAP 
values, representing the importance of the dependent 
variables, and measures the impact of attributes with 
respect to the target variable [28]. This classifier is 
trained on the Adult Income dataset, and the SHAP 
summary is plotted in Figure 4. This figure is interpreted 
at an aggregated level since the summary looks at the 
entire dataset.  

Each point in this plot corresponds to one 
observation from the dataset. The x-axis is the SHAP 
value that quantifies the probability of success for that 
attribute i.e., a high positive SHAP value indicates that 
this feature will drive the prediction of an individual 
towards 𝐶 = 1 (the income is more than $50,000), and 
a negative SHAP value indicates the feature will drive a 
prediction towards low income, 𝐶 = 0 (i.e., the income 
is less than and equal to $50,000). The attributes are 
ranked based on the order of importance. That means the 
attributes having the strongest correlation with the target 
variable and most influential to the prediction will be 
ranked at the top of the SHAP model. The y-axis 
represents the attribute name. The color gradient 
specifies the numerical or categorical value of an 
attribute [28].  

6.2. Fairness Measures with Disparate Impact 

In order for a decision-making system to be fair, the 
disparate impact index should be close to 1. A lower 
index value indicates that the discrimination is stronger 
over the unprivileged group. In this study, we first 
calculate the DI index based on the actual outcome using 
Equation (1), which serves as the reference point, 𝐷𝐼 . 
The index value for gender is 0.36, and ethnicity is 0.59, 
as shown in Table 1. The classifiers L.R. and C.B. are 
then trained on two sets of data: (1) Adult income data 
with sensitive attributes and (2) Adult income data 
without two sensitive attributes (gender and ethnicity 
removed). In this approach, we calculate the 𝐷𝐼 index 
values based on the predicted outcome 𝐶  using 
Equation (6) [29]. This breaks down this study into four 
categories:  
 𝑖 = 1: Dataset trained without sensitive attributes 

using L.R. classifier 
 𝑖 = 2: Dataset trained without sensitive attributes 

using C.B. classifier 
 𝑖 = 3 : Dataset trained with sensitive attributes 

using L.R. classifier 
 𝑖 = 4: Dataset trained with sensitive attributes 

using C.B. classifier 
This approach is taken to see if there will be an 

increase in 𝐷𝐼  and 𝐷𝐼 values for dataset without the 
sensitive attributes in comparison to 𝐷𝐼  and 𝐷𝐼 . Since 
it is assumed that there are no sensitive attributes, there 
is no discrimination among groups 𝐴 = 1  (gender is 
male and ethnicity is white) and 𝐴 = 0  (gender is 
female, and ethnicity is black and other combined). The 
results are shown in Table 2. 

𝐷𝐼 =  
𝑃(𝐶 = 1|𝐴 = 0)

𝑃(𝐶 = 1|𝐴 = 1 )
                   (6) 

The 𝐷𝐼  calculation was compared to the 
predictions made by the respective classifiers 𝐷𝐼 . Based 
on the results observed in Table 2, it is identified that the 
disparate impact for gender and ethnicity for 𝐷𝐼  
worsened with the removal of sensitive attributes using 
L.R. However, for 𝐷𝐼 , the C.B. was not impacted by 
the removal of sensitives attributes. Standard 
regulations promote the removal of sensitive attributes 
when dealing with the fairness of machine learning 
algorithms. However, in this analysis, the removal 
seems irrelevant as removing the sensitive attributes 
solely is not sufficient to make a model fair. As for 𝐷𝐼  
and 𝐷𝐼 , both the classification algorithms C.B. and 
L.R. performed similarly with the gender attribute 
having more bias than ethnicity. We observe that data-
driven decision-support systems have replicated, 

 
Figure 4. SHAP values of the CatBoost 

classifier 

Table 1. Disparate impact using actual 
outcomes (the reference scores) 

 With Sensitive Attributes 
Gender 0.36 

Ethnicity 0.59 
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reinforced, and amplified the patterns of inequality and 
discrimination in the new set of data, i.e., test data. 
Likewise, because many of the features, metrics, and 
logical structures of the models enable the designers to 
choose data mining, these technologies can potentially 
replicate their designers’ preconceptions and biases. 
Therefore, concluding such predictions can create real 
possibilities of discriminatory outcomes because the 
data fed into the systems is flawed from the start [8].  

6.3. Test Fairness of Calibration Scores 

This analysis quantifies fairness using calibration 
scores based on predicted probability values and the 
actual outcome. The calibration score is calculated using 
Equation (7) [16]. In the previous sections, we see that 
the gender attribute on average has a severe 𝐷𝐼 
compared to the ethnicity attribute and has the strongest 
correlation to the target variable. Hence, we focus on the 
gender attribute to determine if the calibration score 
explains an individual with an actual positive outcome 
𝑌 = 1, but to have a predicted outcome of 𝐶 = 0. A 
calibration score is test-fair (well-calibrated) when both 
males and females have the same probability. The 
predicted probability of each individual in the test 
dataset is calculated and shown in Figure 5. The 
threshold for the calibration score is set to 0.5. This is 
seen as the red dashed line on both the graph in Figures 
5(a) and 5(b). Beyond this threshold score, the predicted 
probability is likely to return a positive binary prediction 
of 𝐶 = 1 for individuals in test data. This means that an 
individual who received a score greater than 0.5 will 
have the prediction of 𝐶 = 1 as their actual outcome 
𝑌 = 1. Calibration scores for both privileged and non-
privileged members should be equal to satisfy this 
fairness metric given by Equation (7).  

𝑃(𝑌 = 1|𝑆 = 𝑠, 𝐴 = 𝑚) = 𝑃(𝑌 = 1|𝑆 = 𝑠, 𝐴 = 𝑓)        (7) 
In Figure 5, the candidates on test data were 

randomly selected by the classifiers. From the first 
observation in Figures 5(a) and 5(b), it indicates the 
C.B. classifier satisfies the Equation (7) for higher 
values of predicted score 𝑠 (greater than 0.5) than L.R. 
However, for both classifiers, the predicted scores 𝑠 in 
the lower range between 0 to 0.5, Equation (7) is not 
satisfied. This is because both males and females are 
likely to have an unfavored prediction (i.e., 𝐶 = 0) even 
if the actual outcome is 𝑌 = 1. For example, a male with 

an actual income greater than $50K is predicted to have 
a lower income by the classifiers. Second, for a 
probability score greater than 0.5, L.R. does not perform 
well and doesn’t satisfy the notion for the sensitive 
attribute, female, even for the high probability scores. 
This is observed in Figure 5(a) when there is a sudden 
drop in the conditional probability (y-axis) for sensitive 
attribute 𝐴 = 𝑓 and the prediction score 𝑠 values of 0.6 
and 0.8 (high predicted probability). In this case, a 
female candidate with the same 𝑠 scores did not receive 
the same treatment as a male applicant even when their 
actual outcome is 𝑌 = 1. 

6.4. Impact of ML Predictions on Design 
Decisions 

Fairness statistical analysis indicates that eligible 
candidates (𝑌 = 1) who received a prediction of 𝐶 = 0 
cannot afford a product or a service a business offers. 
The decision recommended by the ML model will 
automatically reject them as the target audience, and 
customers that participate in the design process (e.g., 
focus groups) are often members of the privileged 
group. Therefore, using the ML decision support system 
unintentionally leaves a trail of bias throughout the 
entire design decision-making. With design 
methodologies for market systems being popular, this 
may result in designing a product that only caters to a 
specific sector of the eligible society. For example, 

Table 2. Disparate impact using 
predicted outcomes 

Category 
𝒊 

𝒊 = 𝟏 𝒊 = 𝟐 𝒊 = 𝟑 𝒊 = 𝟒 

Gender 0.25 0.34 0.23 0.26 
Ethnicity 0.19 0.56 0.47 0.43 

 

 
(a) 

 
(b) 

Figure 5. Fair-test analysis using predicted 
probability scores 
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suppose we exclude non-Caucasian female participation 
and point of view from developing a video game design 
since the prediction received is Y=0. In that case, they 
either (a) create a female role as background characters 
and not a leading player or (b) design a game and 
marketing strategies exclusive to male players. In this 
scenario, the organization is inappropriate hurting. It has 
a disparate impact on non-Caucasian female individuals 
when they are eligible members in the unprivileged 
group, i.e., they earn more than $50,000. Since machine 
learning algorithms are to minimize the loss function, 
the algorithms will naturally favor groups contributing 
more to the training process (i.e., the majority groups) 
and less favorable to minority groups. Such biases could 
degrade population retention in minority groups and 
exacerbate representation disparity. Without 
incorporating the ethical dimension of fairness in the 
decision process, the minority groups are likely to 
diminish, and the vendor will lose the market on these 
groups [30]. 

Fairness evaluation methods can ensure bias is 
quantified in the datasets and capture as many eligible 
and potential individuals as possible with the highest 
accuracy possible. Incorporating customer preferences 
and opinions from privileged and unprivileged groups 
as input into the product design processes can result in 
more effective and fair design decision-making. The 
fairness-aware design approach will maximize the 
product’s value in terms of social, humanistic, and 
economic values. A positive diffusion social network 
will propagate and drive more business among 
customers, converting into market demand. This also 
opens avenues in collecting more data from various 
sectors of the population and, in the future, has minimal 
chances of getting rejected as the target audience. It will 
generate business opportunities to create a diverse social 
network and develop fairness-aware marketing 
strategies. 
 
6.4.1. Trade-offs. It is important to note, however, with 
fairness applications in design and data, a trade-off may 
exist between (1) impact on product demand and 
fairness (design) and (2) accuracy and fairness (data). 
This is, as we practice a higher degree of fairness, we 
may compromise on accuracy, demand, and design 
challenges. While there are studies conducted in 
literature for the trade-off between fairness and accuracy 
that allows for higher fairness without significantly 
compromising the accuracy or other concepts of utility 
[31], research explorations are limited or less 
investigated concerning trade-offs between product 
demand and fairness. 

7. Conclusion and future directions 

In this paper, we lay out design scenarios to 
understand the relevant design concepts of fairness. We 
then introduce the standard definitions and statistical 
measures of fairness from ML literature and conduct an 
exploratory study on the Adult Income dataset.  The 
metrics disparate impact and fairness testing were 
analyzed to quantify any bias in the data between two 
classes of each sensitive attribute: privileged (majority) 
and unprivileged (minority) groups. Fairness is 
achieved when the ML model outcomes behave 
similarly for both groups, and sensitive attributes do not 
significantly affect the prediction. We first observe that 
the C.B. classifier model performs better than the L.R. 
classifier for each fairness evaluation method 
implemented from our analysis. Second, after the 
Disparate Impact analysis, we observed that gender 
attributes had a severe disparate impact value than 
ethnicity attributes in both training and testing data. This 
may cause discrimination as the Gender attribute can 
drive the ML prediction of an individual with 𝑌 = 1 to 
𝐶 = 0. 

This research, in its current stage, is subject to a few 
limitations. First, although we can quantify fairness in 
datasets, direct application of the knowledge from 
computer science literature to design decision-making 
may be challenging due to the unique characteristics in 
the design and development process based on product 
characteristics. Second, if actual customer data was used 
to find potential customers, it may be challenging to 
quantify unfairness based on statistical measures that 
use actual outcomes. This would require a rigorous 
optimization of training data until an accuracy close to 
100% is reached before analyzing new data. 

The future scope of this work is twofold. First, we 
want to evaluate the design for market systems by 
tackling Problem 2: bias in marketing strategies. Our 
goal is to study the diffusion dynamics on a network of 
user-generated content of a product’s advertising 
campaign on various social media platforms and its 
influence on market demand. Second, we will explore 
various data pre-processing approaches such as 
sampling or re-weighting the data to counterbalance 
discriminatory effects [32] and changing the individual 
data records [33] to help mitigate discriminatory bias in 
our problem in our future work. 
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