
A Framework for Incorporating Serious Games into Learning Object
Repositories through Experiential Learning

Abhishek Parakh
Cybersecurity

University of Nebraska at Omaha
aparakh@unomaha.edu

Mahadevan Subramaniam
Computer Science

University of Nebraska at Omaha
msubramaniam@unomaha.edu

Parvathi Chundi
Computer Science

University of Nebraska at Omaha
pchundi@unomaha.edu

Abstract

A learning environment Galore seamlessly
combining serious games with generative learning
objects based on an experiential learning model is
described. The learning object repository in Galore
allows domain experts to elucidate knowledge concepts
using parameterized learning objects in diverse formats
such as text, visuals, interactive widgets, as well as
embedded gamelets to provide a learning experience
customized to student learning preferences. Reflective
observation and abstract conceptualization zones are
explicitly modeled to support the exploratory phases
of the experiential learning model. The metadata
associated with the knowledge components in the
environment are used to develop algorithms that
automatically retrieve and synthesize lesson plans
for students to achieve a specified set of learning
objectives. We illustrate Galore through a case study for
secure quantum internet protocols using Python Jupyter
notebooks. A total of 28 notebooks and 16 gamelets
using Galore cover the foundations of secure quantum
internet protocols.

1. Introduction

Serious games and e-learning learning object
repositories (LORs) have achieved impressive successes
in enabling digital learning in diverse domains including
information systems, management, medicine, and other
STEM areas [1, 2, 3, 4, 5, 6]. By focusing
on engagement through reflexive player interactions,
serious games often manage to create a state of flow
among its players providing them with concrete and
active experimentation opportunities [6].

On the other hand, in LORs [2, 3, 7], the emphasis
is less on engagement but more on elucidating concepts
through a variety of learning objects represented using
videos, texts, interactive widgets, codingbats, along
with assessment instruments such as quizzes, tests and
exercises. Typically, the learning objects in LORs

can be customized to suit student learning preferences
[8, 9, 10] and potentially studied through deliberate
and intentional user interactions that enable students to
contemplate about concepts, synthesize and interweave
concept dependencies.

While incorporating deliberate and intentional user
interactions in a game-based setting without disrupting
a state of flow tends to be difficult, we can potentially
extend LORs by incorporating serious games to
combine the benefits of serious games with those of
the LORs. Such extended e-learning platforms can also
be a step towards integrating game-based learning into
classrooms which has great potential in providing an
engaging and comprehensive learning environment for
students.

In this paper, we present a novel learning
environment, (Galore), an extended e-learning platform
which seamlessly combines serious games with
e-learning LORs. The framework in Galore is based
on the foundational principles underlying Kolb’s
four-phase model for experiential learning [11].
Serious games encapsulated as learning objects, called
(gamelets), and a variety of regular e-learning objects
are used in Galore to realize the concrete and active
experimentation phases of Kolb’s learning model.
Reflective observation, and abstract conceptualization
phases of the model are built on top of these learning
objects to realize the comprehensive experiential
learning model in Galore. The knowledge concepts
in Galore are organized as a set of units each of
which is a collection of modules, micro-modules
and nano-modules based on how much time it
takes to complete these. Groups of gamelets and regular
e-learning objects form each module and micro-module.

All the components in Galore from the units
down to the learning objects are parameterized
entities similar to generative learning objects [12,
13, 14]. Parameters including anticipated student
learning outcomes, supported learning preferences,
pre-requisites, and other learning attributes such as
levels of hints and scaffolding, etc. can be instantiated

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 5253
URI: https://hdl.handle.net/10125/79978
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



using a range of permitted values to create a variety
of learning experiences for students. A customized
family of lesson plans is automatically synthesized
corresponding to each assignment of parameter values.
A student session in Galore typically starts by exploring
a lesson plan chosen from the available family of plans
and transitioning to other plans in the family based on
their performance and learning preferences. A student
learning experience with a family of lesson plans is
completed when all the learning outcomes specified in
the parameters are successfully satisfied. These can be
achieved by students using one or more sessions.

Lesson plans are presented to students as a collection
of Python Jupyter notebooks where each cell in each
notebook corresponds to an instantiated learning object.
In some cases, a collection of cells in the Jupyter
notebook maybe necessary to fully instantiate a learning
object. Cells in Jupyter notebooks are of two types -
code cells and markdown cells. Code cells are used
to embed Python code that, when run, results in an
output, interactive terminal for the user, animation,
interactive graphical elements, etc. in the cell following
the code cell. The markdown cells are essentially
webpapge elements and be used to embed other types
of learning objects such as text, visuals, animations,
videos, gamelets and so on.

Associated with each lesson plan are three graphs.
Two of these graphs depict the concept and learning
outcome dependencies among the learning objects.
The third graph is the student interaction graph in
which each node is a learning object, and the edges
represent the next learning object in the lesson plan
that the student may interact with after working with
a learning object. Student traversals of the interaction
graph are constrained by the concept and the learning
outcome dependencies as well as by the performance
of the student. Galore provides different views of
the interaction graph to support goal-oriented and
concept-oriented learning preferences. Galore will
automatically choose another member from the family
of lesson plans if the current selection does not result in
an optimal learning experience for a student.

In this paper, we illustrate the Galore framework
with a non-trivial application involving quantum
secure internet protocols [15]. Quantum internet
based on quantum key exchange protocols are an
emerging technology that empower secure exchange
of information against quantum powered adversaries.
Secure quantum internet protocols require students to
be proficient in several diverse and intricate concepts
related to quantum computing principles, secure key
exchange protocols, and routing approaches in computer
networking. Learning such a diverse set of topics

using traditional pedagogical methods is a challenge
especially given the scarcity of textbooks covering such
a wide array of emerging topics. In order to illustrate
the potential of Galore in effectively addressing these
challenges, we develop parameterized e-learning and
gamelet learning objects to model the fundamental
quantum computing principles including programming
and measurement of qubits, qubit entanglement and
qubit decoherence. A gamelet object is used to create a
play scenario where students can establish an entangled
pair of qubit states over two endpoints of a network
modeled as small N × N square grid. The e-learning
and gamelet objects are designed to support concrete
and active experimentation phases of the experiential
learning model. We also model reflective observation
and abstract conceptualization phases of the model as
dedicated zones and tightly integrate the four phases
to illustrate how the Galore framework can provide a
comprehensive and engaging experience for students to
learn about design and development of quantum internet
protocols.

To the best of our knowledge, Galore is the
first extended e-learning framework that combines
multi-modal, e-learning objects with gamelet learning
objects based on experiential learning for quantum
computing based security protocols and quantum
secure internet. Galore is a general-purpose learning
framework and can be adapted to create a customizable
learning environment embedding serious games and
multi-modal learning objects.

The rest of this paper is organized as follows.
After a brief review of the related works, we describe
the overall architecture of Galore in Section 2.
Algorithms for synthesizing customized well-formed
lesson plans, incorporating learner preferences, and
those for performance-based exploration in student
sessions are described in Section 3. Section 4 illustrates
our approach using a case study involving quantum
internet protocols. Section 5 presents conclusions and
future work.

1.1. Related Works

E-learning frameworks using LORs have been
extensively studied in the literature. Adaptive
web-based lesson plan generation has a long and
rich history in e-learning. Rule-based frameworks
have been extensively investigated by several earlier
works to automatically synthesize course books [10, 8]
for a given set of learning concepts, scenarios, and
pedagogical goals. Large learning object repositories
parameterized by concepts and learner preferences and
backgrounds have been developed by several works [2,

Page 5254



14, 3, 16] for computer science education. Informally,
a generative learning object denotes a family of related
learning object instances that can be automatically
generated on demand by instantiating the associated
parameters. While the learning object review instrument
[17] to evaluate these repositories includes adaptation
as one of its nine criteria, they provide limited support
([14] is an exception) for adaptivity as compared to the
rule-based frameworks.

There has been extensive research on games and
learning dates back several years [18, 19, 20, ?],
integrating games into formal education contexts such
as classrooms, online classes, projects and assignments.
There has been a recent resurgence in game-based
teaching involving serious games[21, 22, 23, 24]. In
[22], Ketamo et al argue that it is important to focus
on teachers in game-based learning and investigate
teacher models in addition to learner models that
are commonly used to analyze the effectiveness of
serious games. They consider several games such
as the AnimalClass, Eedu Elements, Media Detective,
and ALICE FireEvacuation supporting varied teacher
models including those supported by flipped classrooms,
learners as teachers and teachers as active rivals
in the game to show that the incorporating teacher
models into games leads to significant improvement in
learning. In [23], Thorkild, develop a framework that
establishes a correspondence between game scenarios
and the traditional curricular and pedagogical practices
and describe how the teachers can move between
game-based and curricular interactions to incorporate
games into traditional instruction. They define
instructor, evaluator, playmaker, and guide as the four
roles that the teachers may choose to move between
their different modes of interactions. In [24], de Freitas
et al investigate several empirical studies involving
educational games. They conclude that to realize
the full potential of game-based education, a tighter
and fine-grained integration of pedagogical approaches
employed in formal educational contexts with those
underlying games, facilitated by various instructional
roles is needed. Most of these approaches have
focused on how games can be used in classrooms
and/or the role of teachers in navigating the pedagogical
models underlying traditional instruction with those
underlying games. Surprisingly, scant attention has been
devoted towards developing a comprehensive learning
environment that integrates e-learning frameworks with
serious games. In this sense, the work described
in this paper is significantly different from all these
earlier works. Our learning environment, Galore,
combines e-learning platforms and serious games
through generative learning objects to provide a

customized learning experience while incorporating
components that explicitly realize the experiential
learning model. To the best of our knowledge Galore
is the first such environment that has been applied for
the instruction of secure quantum internet protocols.

2. Galore Architecture

The overall architecture of the Galore learning
environment is depicted in the Figure 1. The Galore
environment supports a three layered architecture
whose bottom most layer consists of a parameterized,
extended learning object repository consisting of regular
e-learning and gamelet learning objects along with
reflective observation and abstract conceptualization
zones. The access to this repository is controlled by
the mid-level layer consisting of retrieval, synthesis, and
instrumentation engines. The top-level layer contains a
Jupyter notebook-based UI along with user adaptivity
engine. The adaptivity engine continually observes
student interactions and performance and updates the
notebooks on-the-fly so that the student can make
progress towards the specified learning outcomes while
having an engaged learning experience.

Figure 1: Galore Learning Environment Architecture

Each learning experience in Galore starts with a
student logging into Galore and providing information
about their background knowledge, and learning
preferences. Based on a pre-assessment quiz, a set of
learning objectives are presented to the student to choose
from.

In the rest of this section, we describe extended
e-learning repository of Galore. The algorithms for
generating the family of lesson plans is described in the
next section.

Page 5255



2.1. E-learning Objects

Informally, e-learning objects are like sections
of a traditional textbook chapter that covers one or
more knowledge concepts in detail. Analogous to
a textbook, it is assumed that the students have the
necessary prerequisites to learn the concepts covered
in that particular learning object (section of the text)
and also the next set of learning objects (sections of
the text) that the student can attempt to learn after
successfully completing a particular object. However,
unlike a textbook section, each learning object is
parameterized by several attributes. The preference
parameter specifies the learning preferences supported
in Galore for learning the associated concepts. Based
on the preference parameter value, learning objects may
elucidate the associated knowledge concepts in different
ways to appeal to the learning preferences of the
students. The preference parameter values supported by
Galore include - text, visuals (image), symbolic example,
numeric example, widgets, simulation, code-IDE,
code-IDE-wtests, quiz, final-quiz. Setting the preference
parameter to one of these values results in an instantiated
learning object where the concepts are presented to
a student as specified by the parameter value. For
example, setting the preference parameter value to
text will produce an instantiated learning object where
the associated concepts are presented predominantly
through textual descriptions, whereas setting the value,
visuals, will present the concept using images to
facilitate learning by visual learners.

Additional parameters for instantiating e-learning
objects include prerequisites enforcement, completion,
and list of learning outcomes. The prerequisite
enforcement parameter values are represented by list
of pairs whose first element is a knowledge concept
and the second element defines the enforcement
level. The prerequisite enforcement parameter is a
categorical attribute whose values can be one of –
strict, conditional, or waivable. The default prerequisite
enforcement parameter value for a learning object is
deemed to be strict meaning that the student must be
proficient in the associated prerequisite concept needed
to attempt that learning object. If the enforcement
parameter value is conditional for a prerequisite concept
in a learning object then the learning object can be
attempted provided the student is proficient in all
other non-waivable prerequisites. Prerequisites whose
enforcement value is waivable, are optional.

The completion parameter values indicate the
various assessment rubrics that determine the successful
completion of a learning object. The parameter values
could be quiz, simulation, code-IDE, code-IDE-wtests,

reflective observation, abstract conceptualization zones
and/or final exam. The completion of a learning object
is assessed locally when the completion parameter value
is quiz and or simulation. In all other cases, additional
activities must be performed involving other learning
objects to assess the completion of the concerned
learning object. The assessments like a code-IDE,
or code-IDE-wtests specified for completing a learning
object are scheduled once the user is ready to be
assessed for completion of that object. Assessments like
reflective observation and abstract conceptualization
and final exams are scheduled later in the student session
after the student has gone through all related learning
objects.

The list of learning outcomes specifies the
proficiency attained by student on successful completion
of the learning object. This is a non-configurable
parameter and all instantiated learning objects inherit
the same list of learning outcomes.

2.2. Gamelets

Each gamelet object is a miniature serious game
(like snippets) consisting of fully interactive, 3D game
scenario and incorporating all traditional features of
a serious game. They are media rich environments
supporting a variety of audio-visual elements such as
narrations, and videos that could be delivered passively
through the game elements in the scenarios or delivered
actively through diverse avatars and oracles within a
gamelet. Problems underlying the game scenarios are
generated, instrumented to analyze player success and
failure, and supported through various modes of hints,
scaffolding, and adaptation [25, 26, 27]. Each has a
clear game play objective (GPO) (which is different but
related to student learning objective) and the progress
of the player towards the GPO is measured through a
scoring mechanism. Player(s) must achieve the GPO
objective using the available resources whose utilization
is measured in terms of the player health. Gamelets are
distinct from e-learning objects. They are self-contained
game scenarios designed using game engines such as
Unity or Unreal (Galore gamelets are designed using
Unreal) that can be launched from a Jupyter notebook
cell. Gamelets conceptually differ from e-learning
objects through the use of GPOs1.

1Informally, gamification is a transformation that maps an SLO to
a GPO and the achievement of an GPO coupled with abstraction leads
to an SLO associated with any e-learning object. This mapping will
be further discussed an expanded version of this paper.

Page 5256



2.3. Reflection Zones

Reflection zones are designed using game elements
and each zone corresponds to exactly one gamelet.
They are designed using game elements to mimic
the associated gamelet in appearance, to stimulate
reflection, but the user interaction supported are
different from that in the gamelet. Student performance
and utilization of resources are not quantitatively
measured by scores, and health in these zones. In
a reflection zone, students can repeatedly replay and
observe their game play behavior in the associated
gamelet. Students can also simulate the game play
behavior in the associated gamelet by using a game-bot
and observe its interactions that improve performance.
The zone also supports student-initiated queries over
the simulated game scenarios along with answers for
a deeper comprehension and reflection of the concepts
underlying the scenario in the gamelet. The two user
interaction modes of replay and simulation are designed
to stimulate student reflection triggering queries whose
answers will aid in deeper conceptual understanding.
Student learning in reflection zones can be captured in
the student knowledge cache for future recall using a
variety of audio-visual notes.

2.4. Conceptualization Zones

Conceptualization zones enable students to
generalize and abstract the concepts learnt in the
gamelets through gaming and reflection by fostering
computational thinking. A conceptualization zone
is usually mapped to one or more gamelets and
the corresponding reflection zones. Abstraction
and conceptualization are essential to apply the
concepts learnt through gamelets and reflection zones
to situations varying in scale, structure, and other
attributes pertaining to the networks and quantum
states. Conceptualization zones provide students to
actively experiment with diverse applications involving
the concepts learnt in the corresponding gamelets and
reflection zones. A conceptualization zone can span
multiple cells built using game elements and coding, and
simulation visualization cells. The conceptualization
cells with game elements present applications to the
students as an interactive audio-visual game scenario
and these cells also assist student queries with hints
for solving the problem. The tasks in these zones
are deliberately designed to be solved by coding and
simulating code outputs using the coding and simulation
visualization e-learning objects respectively.

3. Instrumentation, Retrieval and
Synthesis

This section describes our procedure for generating
a family of lesson plans using the learning object
repositories for a given set of learning outcomes, student
preferences, and backgrounds.

3.1. Instrumenting Learning Objects

To use the learning objects in Galore, students
usually have to perform a keyword search to identify
modules of interest and go through them in some
chosen order. The Galore synthesis algorithm
automatically retrieves the relevant learning objects
from the repository and generates a family of lesson
plans that the student can follow to achieve the desired
learning outcomes. All the objects in the repository
are instrumented with metadata obtained from domain
experts describing the relations of each object to other
objects, concepts, and outcomes along with the digital
assets included in the object.

The metadata associated with each object
consists of local and global data members
in the object and those in the enclosing
modules, respectively. The local data members
include information such as the object-id,
object-concepts, object-outcomes, and
object-prerequisites, i.e., outcomes that
must be met in order to use this learning object for
study. The local data object-type, can be one
of – text, code, image, symbolic example, numeric
example, video, widgets, quiz, auto-graded-simulation,
auto-graded-quiz, code-IDE, code-IDE-wtests. Users
can write Python programs and test them using
a given test suite in objects of type code-IDE,
and code-IDE-wtests. The numeric example,
auto-graded-quiz, widget, code-IDE, code-IDE-wtests
objects allow users to interact by modifying the
contents whereas text, code, symbolic example, image,
quiz, and video cells allow more limited forms of
user interaction. The Boolean valued local data
object-interactive denotes whether an object
is interactive or not. An object has to be interactive to
be used to assess its learning outcome. The local data
object-alternates provides a list of alternate
objects that are semantically equivalent to the current
object but with object-types different than the current
object. Alternate objects are used to adapt to student
preferences and for suggesting next objects based on
student performance as described in the next section.

The global data members of an object include the
containing module-title, module-outcomes,

Page 5257



and module-prerequisites i.e., other modules
whose outcomes must be achieved in order to achieve
the outcomes of the current module.

3.2. Generating Lesson Plans

The main steps to generate a family of lesson plans
using learning objects are the following.

• Pre-process the Instrumentation: First, the
consistency of the instrumentation is verified
using properties such as: a) all global data in
all objects within one module are identical, b)
outcomes of all the objects of a module belong to
the outcomes of that module, c) type checking of
objects along with their alternates. Next, module
and outcome dependency graphs are built from
the object data. Lastly, these graphs are verified
using properties such as: a) absence of dangling
edges and cycles, b) module dependencies are
a projection of outcome dependencies and that
c) there exist one or more auto-graded final-quiz
cells in each module that interactively evaluate all
the outcomes of that module. The semantically
verified modules and the graphs are then used to
generate lesson plans. Note that the verification is
a one time activity that needs to be performed at
the creation and/or revision of the repository.

• Retrieve Learning Objects/Modules: Galore
can either retrieve modules or individual objects
from the repository. This choice is specified by
the retrieval mode2. Given a set of outcomes,
a retrieval mode, and a ranked list (of student
preference parameter values), a family of relevant
learning objects are identified. To build a
lesson plan, modules whose outcomes include a
given input outcome are identified. A reverse
topological sort of the dependency graph starting
with each of these modules (with ties among
the modules being broken arbitrarily) produces a
linear chain of modules which are then merged
while obeying module dependencies to create a
single chain of modules.

• Synthesizing Lesson Plans: The linear chain
of modules obtained from the previous step
are then organized into a hierarchy of nano-,
micro- modules, units, and courses based on the
estimated times to output a lesson plan whose
successful completion is guaranteed to satisfy
the input outcomes. In order to incorporate the

2Galore supports additional retrieval modes in terms of downward
completeness of prerequisites, assessment bundling and more.

student preferences in a lesson plan, for each
module in the linear chain, the module is retained
if its objects match the highest ranked input
student preferences; otherwise, we replace it by
a module with better matching, alternate objects,
if they exist. Certain modules and objects within
modules are pruned from a lesson plan based on
the background knowledge of the student.

We can use a similar procedure to generate a
lesson plan based on individual objects instead of
modules. In this case, the outcome dependency
graph is used instead of the module dependency
graph. This often, leads to more focused lesson
plans with lesser number of objects taking lesser
instruction time. Student background is used to
prune objects and modules in this case as well.

4. Quantum Internet Protocols

In this section, we describe a case study involving
secure quantum internet protocols using the Galore
environment. The e-learning and gamelet object
repositories describing fundamental quantum
computing and quantum cryptography principles
are described. Reflective observation and abstract
conceptualization zones are developed for quantum
key distribution over a square quantum internet grid.
Then, we illustrate how the algorithms described in the
previous section can be used to synthesize and explore
family of lesson plans.

4.1. E-learning Objects for Quantum Internet

The e-learning objects of Galore quantum
computing and cryptography are hosted on Clark,
a digital library of learning objects developed by the
authors through federal grants. The Clark library
consists of learning objects contributed from over fifty
universities across the United States on various topics
in cybersecurity. The Galore collection of e-learning
objects in Clark are available for free download.

The Galore e-learning objects are presented to
students in the form of Jupyter notebooks. Jupyter
notebooks have become the defacto standard for
quantum programming as they allow for an easy
integration of mathematics, code as well as visual
objects that can then interface to external APIs (such
as the IBM simulator or quantum computer) with
minimal effort. Python was the chosen language for
the development of these notebooks since Python is a
popular language for quantum programming and well
as the cybersecurity domain. While Jupyter notebooks
provide two types of cells - markdown and code,

Page 5258



(a) Static cells with definitions, examples and self-assessment
quizzes.

(b) Interactive cell with simulation of Bloch sphere.

Figure 2: Galore Learning Objects modeled as Jupyter
notebook cells

we further logically organize these cells into various
categories as mentioned in section 3.

Each Galore e-learning object maps to one or more
cells in a notebook and each notebook represents a
collection of learning objects. The learning outcomes
of a notebook are a union of those of its constituent
learning objects. Each notebook is mapped to a
final quiz that tests the concepts covered by the
learning objects in that notebook. In order to
facilitate goal-oriented exploration of lesson plans, it is
mandatory for each notebook in Galore to map to a final
quiz. Figure 2 depicts some of the Galore notebook
cells on Clark. Figure 2a depicts cells corresponding
to the instantiated e-learning objects with preference
parameter values text, example, and quiz respectively.
These instantiated objects are generated by setting the
user interaction parameter to the value static indicating
that these cells do not generate responses to user
interactions. On the other hand, figure (2b) corresponds
to the instantiated learning object obtained by setting
the preference parameter to the value widget and the
interaction parameter to the value interactive. It depicts
a Bloch sphere widget cell where users can modify
values for parameters theta, phi, azimuth, and
elevation using sliding scales to generate different
qubit states visualized in the sphere.

The figure 3 depicts an auto-graded-simulation cell
of the BB84 quantum key exchange protocol where
users can modify qubit values and orthonormal bases to
orient, measure qubits and enter the resulting secret key
answer to be checked for correctness.

In total, there are currently 28 notebooks that
cover concepts from linear algebra, quantum computing
and quantum cryptography for secure quantum internet
protocols organized into three overall units.

4.2. Gamelets

One of the first modules in Galore introduces
the concept of qubit (quantum analog for a classical
bit) programming through polarization of photons.
This module includes four gamelet objects with three
basic scenarios and one composite scenario where
each scenario comprises of three challenges. In
each challenge, the student must activate one type of
qubit receptor – SameAngle (photon orientation must
match that of the receptor for activation), Orthogonal
(orientation must be orthogonal to that of the receptor
for activation), and OppositeQuadrant (orientation
equals an angle that is in the opposite quadrant of that of
the receptor), by programming the qubit appropriately.
The qubits must be programmed using the matrix, ket,
or linear combination of the vector’s representations of

Page 5259



photons in the three basic exercises. A combination of
these representations must be consistent to activate the
receptors in the composite scenario. Figure 4 depicts
a gamelet object where a student has successfully
programmed a qubit at 255 degrees using the matrix
notation (seen on the workspace on the left of Figure
4) to activate an orthogonal receptor accepting photons
at 345 degrees. As customary in serious games, the
performance of the student and the qubits remaining are
measured using a numeric score and health respectively
as shown on the right hand top corner of Figure 4.

Figure 3: Interactive simulation of BB84 protocol.

4.3. Reflective Observation Zones

Suppose that a student must transfer 1-bit quantum
information over a given 4×4 fiber network (QN) using
the E91 QKD protocol [15]. Two gamelets are depicted
in figure 5 (A and C) in order to model the game
scenarios for this task. In the first gamelet in figure
5 (A), a student repeatedly selects pairs of adjacent
network nodes to share an entangled qubit pair in the
Bell state |ψ+〉 such that one of the pairs remains in
one of the nodes and the other is transmitted through
the fiber link (black edges in the figure). Initially, all
network edges are black. If two nodes connected by
an edge succeed in sharing an entangled pair, then the
corresponding edge turns red. Scoring in the gamelet is
proportional to the number of distinct paths that a player
establishes between Alice and Bob over the QN nodes.

After finding at least one red path (say,
A-1-6-10-14-B) from Alice to Bob, a student proceeds
to the reflection zone to observe a summarized gamified
replay of their performance as well as that executed
by a game-bot. These game simulations are aimed to
trigger the process of self-discovery of the fundamental

Figure 4: Gamelet for Qubit Programming

properties of QN (hints are used to aid discovery as
well). For instance, by contrasting the nodes selected
in two game simulations above, a student may discover
the dashed edges inhibit qubit sharing and that common
sub-paths can be used in the paths between Alice and
Bob, and this can maximize scores. Further, a student
may click and query specific QN edges to learn about
link attributes such as fiber attenuation, loss and noise
values of the links and hypothesize that their values
negatively influence sharing of a qubit and eventually

obtain the equation p = 10
−αL
10 , where p denotes the

probability of exchange and α is the fiber attenuation
coefficient and L us the loss value. The gamelet in
figure 5(A) and related reflection zone can be repeated
multiple times on a newly generated network each time.

Figure 5: Network Example

The second gamelet, in figure 5(C) depicts the
network where certain adjacent nodes have successfully
shared qubits. A student must select some of

Page 5260



these nodes, swap qubits in these nodes to form an
entanglement chain from Alice to Bob. The student
score depends on the number of chains built by the
student weighted inversely by the chain length. Student
health is monitored in the same way as done in the
first gamelet. The gamified reflection zone associated
with this gamelet assists the user to observe the play
simulations to discover the node and link properties
leading to successful entanglement chains. These zones
also support pre-programmed student queries to trigger
the process of self-discovery of global and local routing
heuristics for entanglement chaining from Alice to Bob.

4.4. Abstract Conceptualization Zones

The conceptualization zone of our running example
involves a student programmatically transmitting qubits
from Alice to Bob using a scaffolding model to generate
boiler plates using pre-defined quantum computing
Python libraries (such as QISKIT from IBM). Properties
of the network including their scale will be used to foster
generalization and abstraction. For instance, a student
may be asked to exchange qubits over large networks
as in figure 6 where manually choosing nodes to form
chains is impractical.

Figure 6: A 512 x 512 quantum grid with subnets

Qiskit provides several programming interfaces to
manipulate quantum bits, measure and observe the
results of manipulations. The qubit manipulations
are done with the help of quantum gates such as the
Hadamard gate, CNOT gate, Pauli gates, Toffoli and
Clifford gates, etc. If a student wants to generate
entangled qubits to simulate the implementation of the

E91 protocol, the student can make use of two qubits
starting in the ground state, then apply the Hadamard
gate to one of the qubits to put it into superposition.
Next task is to apply the CNOT gate to both the
qubits entangling the qubits. Transmission of qubits
can be simulated using classical-quantum programming
interface and calculating the final state of the qubit.
Once the final state of the qubit is computed, an
appropriate custom gate can be instantiated with the
IBM Qiskit framework to simulate the evolution of the
qubit from the sender to the receiver. When applied this
gate will result in the exact state that Bob would receive
after being affected by noise during transit.

Every such transmission of qubit between various
nodes in a network can be precisely controlled and
simulated. Different network devices such as trusted
nodes and repeaters differ mainly in storage capacity
and whether they make qubit measurements or not.
Repeaters have limited storage capacities whereas
trusted nodes will make measurements. A student
wanting to simulate trusted nodes within the Qiskit
framework will make use of various measurement gates
and classical registers to store the results. Repeaters,
with limited memory capacity, on the other hand can be
simulated using delay lines of high fidelity.

Qiskit allows for the implementation of quantum
error correction codes using entangled qubits that
Alice and Bob will need to use inorder to distill a
high-fidelity encryption key. Quantum noise models can
be simulated using several Kraus operators provided in
Qiskit. Students may apply the common depolarizing
error as well as amplitude damping error or choose
from several other error models such as Pauli errors,
thermal relaxation error and the phase damping error
to closely simulate the quantum channel. Furthermore,
Qiskit also provides mixed unitary matrices to simulate
the probabilistic transition of a pure state to a mixed
state.

Figure 7 shows code snippets that a student can
implement to instantiate quantum bits, channel errors
and transmission of qubits.
5. Conclusions and Future Work

Integrating serious games into instruction models
based on traditional pedagogical practices is a
challenging problem. This paper takes a step in
addressing this problem by proposing a novel learning
environment Galore that serious games into e-learning
frameworks based on generative learning objects.
Serious games encapsulated as generative learning
objects called gamelets are embedded into a repository
of parameterized e-learning objects and instantiated
to produce customized lesson plans. The lesson plans

Page 5261



(a) Code snippet showing the application of Pauli X and Z gates
corresponding to bit flip and phase flip errors during transmission.
Both errors are applied with probability p error.

(b) Code snippet showing the instantiation and application of
depolarizing error using noisy gate implementations on a single
qubit.

(c) Code snippet showing quantum teleportation application.

Figure 7: Code snippets showing instantiation of qubits,
error models and transmission of qubits.

are presented as interactive Python Jupyter notebooks
to students. Serious game-based reflective observation
and abstract conceptualization zones enable Galore to
combine serious games with learning objects based on
the experiential learning model, which has proved to
be an effective pedagogical approach across several
domains. The paper also described a case study
involving secure quantum internet protocols. A total
of 28 notebooks and 16 gamelets were developed as
part of the case study along with reflective observation
and abstract conceptualization zones for establishing
a quantum entanglement based key exchange over a
square grid-based quantum network.

To the best of our knowledge Galore is the first
learning environment that encapsulates serious games as
learning objects and embeds them in generative learning
object repositories and explicitly support game-based
reflective observation and abstract conceptualization
zones to provide a customized learning experience to
students for quantum internet protocols. We believe the
framework underlying Galore can be easily adapted to
other domains. We plan to work with engineering and
medical domain experts to develop learning modules
with serious games in these areas.

Acknowledgement

A. Parakh’s work on this article has been partially
supported by a grant from University of Nebraska at
Omaha under the U.S. Department of State-supported
initiative Partnership 2020: US-India Higher Education
Cooperation.

References

[1] S. Egenfeldt-Nielsen, J. H. Smith, and S. P.
Tosca, Understanding Video Games: The Essential
Introduction. New York, NY, 10001: Routledge,
2nd ed., 2012.

[2] “Cybersecurity library.” https://www.clark.
center/home.

[3] “MERLOT.” https://www.merlot.org/
merlot/.

[4] S. Arnab, T. Lim, M. B. Carvalho, F. Bellotti,
S. de Freitas, S. Louchart, N. Suttie, R. Berta,
and A. De Gloria, “Mapping learning and game
mechanics for serious games analysis,” British Journal
of Educational Technology, vol. 46, no. 2, pp. 391–411,
2015.

[5] A. Parakh, M. Subramaniam, and E. Ostler, “Quasim:
A virtual quantum cryptography educator,” in 2017
IEEE International Conference on Electro Information
Technology (EIT), pp. 600–605, May 2017.

[6] J. L. Plass, B. D. Homer, and C. K. Kinzer, “Foundations
of game-based learning,” Educational Psychologist,
vol. 50(4), pp. 258–283, 2015.

Page 5262



[7] “About Learning Objects.” https:
//www.wisc-online.com/
about-learning-objects.

[8] H. Al-Chalabi and A. HUSSEIN, “Ontologies and
personalization parameters in adaptive e-learning
systems: Review,” Journal of Applied Computer Science
Mathematics, vol. 14, pp. 14–19, 01 2020.

[9] G. Weber and P. Brusilovsky, “Elm-art: An
adaptive versatile system for web-based instruction,”
International Journal of Artificial Intelligence in
Education, vol. 12, 01 2001.

[10] E. Melis, E. Andres, J. Budenbender, A. Frischauf,
G. Goduadze, P. Libbrecht, M. Pollet, and C. Ullrich,
“ActiveMath: A Generic and Adaptive Web-Based
Learning Environment,” International Journal of
Artificial Intelligence in Education (IJAIED), vol. 12,
pp. 385–407, 2001.

[11] D. Kolb, “Experiential learning: Experience as the
source of learning and development (vol.1),” 1984.

[12] R. Burbaite, K. Bespalova, R. Damasevicius, and
V. Stuikys, “Context-aware generative learning objects
for teaching computer science,” International Journal of
Engineering Education, vol. 30, pp. 929–936, 01 2014.

[13] F. Costea, C. Chirila, and V. Creţu, “Designing
e-learning content using aglos,” 2019 23rd International
Conference on System Theory, Control and Computing
(ICSTCC), pp. 685–690, 2019.

[14] “Model-driven processes and tools to design robot-based
generative learning objects for computer science
education,” Science of Computer Programming, vol. 129,
pp. 48 – 71, 2016. Special issue on eLearning Software
Architectures.

[15] O. Amer, W. O. Krawec, and B. Wang, “Efficient routing
for quantum key distribution networks,” 2020 IEEE
International Conference on Quantum Computing and
Engineering (QCE), pp. 137–147, 2020.

[16] V. Rossano, M. Joy, T. Roselli, and E. Sutinen, “A
taxonomy for definitions and applications of los: A
meta-analysis of icalt papers,” Educational Technology
Society, vol. 8, pp. 148–160, 01 2005.

[17] J. Vargo, J. Nesbit, K. Belfer, and A. Archambault,
“Learning object evaluation: Computer-mediated
collaboration and inter-rater reliability,” International
Journal of Computers and Applications, vol. 25, no. 3,
pp. 198–205, 2003.

[18] M. Dondlinger, “Educational video game design: A
review of the literature,” Journal of Applied Education
Technology, vol. 4(1), pp. 21 – 31, 2007.

[19] E. Simpson and S. Stansberry, “A guide to integrating
cots games into your classroom, in handbook of research
on effective electronic gaming in education,” Games:
Purpose and Potential Education, pp. 163 – 184, 2008.

[20] R. Van Eck, “A guide to integrating cots games into
your classroom, in handbook of research on effective
electronic gaming in education,” Information Science.

[21] M. K.L., A. Orr, P. Frey, D. R.P., V. V., and A. McVay,
“A literature review of gaming in education,” Gaming in
Education, 2012.

[22] M. Dondlinger, “Flow,” Journal of Applied Education
Technology, vol. 4(1), pp. 21 – 31, 2013.

[23] H. Thorkild, “Game-based teaching: Practices, roles
and pedagogies,” New Pedagogical approaches in Game
Enhanced Learning: Curriculum Integration, pp. 81 –
101, 2013.

[24] S. de Freitas, M. Ott, M. Popescu, and I. Stanescu, “New
pedagogical approaches in game enhanced learning:
Curriculum integration,” 2012.

[25] V. Bommanapally, M. Subramaniam, P. Chundi, and
A. Parakh, “Navigation hints in serious games,” in
Immersive Learning Research Network, June 2018.

[26] D. Abeyrathna, S. Vadla, V. Bommanapally,
M. Subramaniam, P. Chundi, and A. Parakh, “Analyzing
and predicting player performance in a quantum
cryptography serious game,” in Games and Learning
Alliance (M. Gentile, M. Allegra, and H. Söbke, eds.),
(Cham), pp. 267–276, Springer International Publishing,
2019.

[27] A. Parakh, M. Subramaniam, P. Chundi, and E. Ostler,
“A novel approach for embedding and traversing
problems in serious games,” in Proceedings of the
21st Annual Conference on Information Technology
Education, SIGITE ’20, (New York, NY, USA),
p. 229–235, Association for Computing Machinery,
2020.

Page 5263


