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Abstract 
Users' underlying cognitive states govern their 

behaviors online. An extreme cognitive burden during 
live system use would negatively influence important 
user behaviors such as using the system and 
purchasing a product. Thus, inferring the user's 
cognitive state has practical significance for the 
commercialized systems. We use Dual-Process Theory 
to explain how the mouse cursor movements can 
effectively measure cognitive load. In an experimental 
study with five hundred and thirty-four subjects, we 
induced cognitive burden then monitored mouse 
cursor movements when the participants answered 
questions in an online survey. We found that 
participants' mouse cursor movements slow down 
when engaged in cognitively demanding tasks. We 
further derived new measures to infer the state of 
heightened cognitive load with an overall accuracy of 
70.22%. The results enable researchers to measure 
users' cognitive load with more granularity and 
present a new, theoretically sound method to assess 
the user's cognitive state. 

1. Introduction  

Understanding the key behaviors of online users 
is becoming increasingly important as it allows an 
organization to make a personalized recommendation 
to each user [1,2], predict future sales [3], and attract 
and retain customers [4]. Yet, the analysis and the 
usage of the online data still pose a challenge as user 
behaviors are influenced by underlying cognitive 
processes, which is difficult to infer without setting up 
a theoretical boundary. Specifically, online user 
behaviors involve numerous decision-making 
processes that pertain to a specific goal. Users may 
navigate and search the web to retrieve information, 
make selections and decisions based on the retrieved 
information (e.g., online shopping), share new 
information, form new social ties, communicate with 

others, or even alter their offline behavior based on 
information retrieved online [5].  

As Internet Technology and e-commerce 
continues to develop more rapidly, Information 
Systems (IS) researchers searched for ways to 
effectively assess the users’ attitudes and behaviors. 
The most significant example in the IS discipline is the 
Technology Acceptance Model (TAM) [6]. TAM 
states that users’ perceive that the ease of use of a 
system is mainly dependent on the interactive 
relationships between the user’s abilities (i.e., 
knowledge and working memory) and the system-
specific factors (e.g., the usability of the user interface, 
visual layout of the page, and interaction design) [7]. 
These factors influence the user’s cognitive load while 
using the system and influence important user 
behaviors.  

Though the TAM model well explains user 
behavior in the context of intention to use the system, 
identifying what drives specific online user behaviors 
(i.e., using the system vs. churn) remains a challenge. 
Specifically, measuring the level of cognitive load and 
deriving models is exhaustive since different online 
tasks (i.e., some complex tasks) exhibit distinctly 
different usage behaviors. Further, the existing 
methods of assessing and evaluating user’s cognitive 
states heavily rely on the design and tool factors (e.g., 
surveys that only pertain to a specific context, timed 
responses, mock experiments).  

To address this challenge, researchers are using 
Human-Computer Interaction (HCI) devices to 
measure and infer the underlying cognitive processes 
of online users. HCI studies have shown that various 
physiological reactions to the stimulus could be 
captured and analyzed using noninvasive, ubiquitous 
devices such as computer mice [8,9,10,11], face 
recognition sensors [12], and sound detection sensors 
[13]. Prior research in this area had examined various 
online users’ behaviors, including habituation [14], 
concealing information [11] and, fraud [8,15].  
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This paper focuses on theoretically explaining 
how the underlying cognitive processes manifest as 
the difference in mouse movement speeds. Prior 
literature had also examined such a relationship, but 
the guiding theories across these studies vary 
significantly. For instance, Byrd (2018) had examined 
the impact of countermeasures in HCI-Based 
Deception Detection methods using computer mice 
and Signal Detection Theory [16]. Jenkins (2019) 
paired Response Activation Model [11] with mouse-
cursor movements to identify movement 
characteristics of individuals that are concealing 
information. Lastly, Hibbeln (2017) drew from 
Attention Control Theory [10,17] to explain how 
negative emotions influence mouse cursor 
movements. Our research builds and extends this work 
by providing a new, theoretical explanation of how 
responses to stimuli manifest in mouse usage metrics 
at a primitive level. In doing so, we provide new 
methods and measures applicable in various situations. 

First, we draw from Dual-Process Theory (DPT) 
to explain how our new methods can effectively 
capture the fluctuations in users’ cognitive load 
exhibited in their device usage behaviors. DPT asserts 
that humans leverage two distinct cognitive processes 
for any given task: (1) intuitive and (2) deliberative. In 
terms of system usage, an intuitive system is utilized 
by default. When confronted with a more difficult 
task, a user then activates a deliberative system to 
complete the task. Second, we merge DPT with 
research demonstrating how changes in cognitive load 
influence device usage patterns. Thus, we provide a 
theoretical explanation of how the user’s cognitive 
process, guided by DPT, influences device usage 
patterns to answer our research question: Can the 
user’s device usage behaviors be utilized to measure 
cognitive load? In doing so, we introduce a new way 
to derive HCI metrics from the user’s response 
behaviors. Third, we evaluate our new measures’ 
ability to differentiate between cognitively demanding 
tasks (i.e., System 2 related tasks) vs. simple tasks 
(i.e., System 1 related tasks) with multiple predictive 
models. This allows us to answer our second research 
question: Given the behavioral metrics of a user, can 
we identify whether the tasks were cognitively 
demanding (i.e., likely to activate System 2) for the 
user? 

We contribute to the literature in various ways. 
First, we present a theoretical explanation of why the 
response to a stimulus would manifest as a 
psychophysiological response. Specifically, we 
demonstrate that DPT explains the relationship 
between cognitive loads and physiological responses. 
Second, we provide a practical measure that can be 
used for capturing and measuring a broad range of 

online behaviors. We demonstrate that difference in 
users’ response behaviors, when engaged with tasks 
with varying levels of complexity, provides powerful 
signals of the underlying cognitive processes. Lastly, 
we empirically validate our measures with predictive 
models to demonstrate the effectiveness of the newly 
derived measure.  

2. Background 

2.1. Cognitive Load in Information Systems 
Research 

The influence of cognitive load on important user 
behaviors has been a popular topic in behavioral data 
analytics. Specifically, in prior Information Systems 
(IS) research, the relationships between users’ 
cognitive load and behavior have been studied under 
the context of perceived ease of use [6,7], user 
satisfaction [18,19], and reuse intentions [20]. This 
prior research typically leverages experimental 
designs and analytical methods to examine hypotheses 
and impose underlying assumptions. For instance, in a 
simple experimental design, subjects are randomly 
assigned into one of two conditions with varying 
levels of mental workload. Then, the subjects are 
presented with sets of questions designed to measure a 
specific construct (e.g., user satisfaction).  

Emerging HCI research combines behavioral 
science and design science approaches to derive new 
cognitive load measures. Like traditional behavioral 
studies, HCI studies leverage stimuli that alter the 
level of cognitive load of participants (e.g., screening 
process). The change in participants’ cognitive load is 
accompanied by physiological responses that are 
being captured using a variety of devices and 
approaches including, conversational agents [12], eye-
tracking technology [2], facial and voice recognition 
systems [21], mobile devices [22,23], and computer 
mouse movements [8,10,15,21,24].  
We leverage the computer mouse as a tool to measure 
user’s internal cognitive processes. Numerous studies 
have demonstrated that hand movements were 
predictive of cognitive processing and heightened 
cognitive load [10,24,21,25,26]. 

Specifically, when cognitive load is heightened, 
users take additional time to complete tasks while 
interacting with a device, such as moving a mouse or 
typing in a response on a keyboard. We argue that such 
behaviors will manifest as significant changes in 
mouse movement speeds. We build and extend the 
prior literature by examining the mouse movements in 
the context of DPT. 
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2.2. Dual-Process Theory (DPT) 

DPT is a widely accepted model that explains 
human reasoning at a primitive level 
[27,28,29,30,31,32,33]. Precisely, it posits that human 
thinking consists of two distinct types: System 1 (also 
referred to as intuitive and heuristic) and System 2 
(deliberative and analytic). Though there are many 
different extensions of DPT, a dominant framework in 
the psychology field is the Default Interventionist (DI) 
Dual-Process model. The DI model extends DPT by 
laying a serial view on the interaction between System 
1 and System 2 [29,33]. The model states that when 
humans are given a reasoning problem, they will rely 
on System 1 by default, with System 2 being activated 
when evaluating or correcting System 1 output as 
needed [29,30].  

 
2.2.1. System 1 – Intuitive System. System 1 
comprises a set of sub-systems that operate with 
autonomy [28,33]. The behavioral output from System 
1 is instinctive, immediate, effortless, and fast. When 
given a reasoning task, the user first utilizes System 1 
by default to produce an output. For instance, when 
presented with a survey question asking the 
respondent’s age, a respondent would read the 
question and decide on an answer without requiring 
extensive cognitive resources. In this case, a user will 
first mentally prepare a response then select a response 
target without re-evaluating the answers by activating 
System 2. Hence, the underlying cognitive process that 
falls under System 1 would be exhibited as fast, 
immediate, and autonomous behaviors.  
 
2.2.2. System 2 – Analytic System. System 2 allows 
us to engage in many of the behaviors bounded by the 
rules of reasoning and evidence [34,35]. For instance, 
when humans are involved in mathematical 
computations, they encode reality into abstract 
symbols and numbers then follow a specific process to 
produce an outcome. In this example, the abstract 
symbols and processes (i.e., guided by mathematical 
theories) would be equivalent to rules of reasoning and 
evidence. When faced with such tasks that demand 
high cognitive resources, System 2 will activate to 
evaluate System 1 responses. When System 2 is active, 
a person will exhibit response behaviors that are 
conscious, analytical, effortful, relatively slow, and 
deliberate [28, 33]. 

2.3 Dual-Process Theory and Mouse Cursor 
Movements 

We next describe how hand movements can be 
predictive of underlying cognitive processes within 

the context of DPT. Specifically, to explain how 
System 1 and System 2 responses manifest in different 
types of HCI device usage. First, the DI model 
explains how competing systems (e.g., intuitive and 
analytic systems) influence an individual’s cognitive 
load during the task execution [30,33]. Studies 
examining the DI model typically leverage the 
Cognitive Reflection Test (CRT) to empirically 
demonstrate that System 2 processing is slower than 
System 1 processing [36,37]. Specifically, a recent 
study that leveraged CRT and a mouse tracking 
methodology and a bat-and-ball problem, where the 
participants were given a question stating: “a bat and 
a ball together costs £1.10. A bat costs £1 more than a 
ball. How much does a ball cost?” On the same screen, 
participants were given four options placed on each 
corner of the computer screen. There were four options 
that a user could choose, including an intuitively 
appealing response (e.g., 0.10) and a choice that 
requires deliberative reasoning (e.g., 0.05). The results 
suggested that the participants who chose the 
intuitively appealing response (i.e., favoring System 1) 
had higher mouse cursor speed than those who chose 
the correct options [37]. 

Thus, when the users are engaged in simple tasks 
online using a computer mouse, their response 
behaviors will be faster, direct, and immediate as they 
are less likely to activate System 2 to evaluate System 
1 output. The user’s response behaviors will be slower 
for complex tasks with higher cognitive demands as 
tasks may require System 2 to assess the System 1 
output. We argue that DPT aligns with Prior HCI 
research that provided preliminary support that 
cognitive and motor systems are closely intertwined 
[8,14,15]. In summary, we propose that:  

H1. Users will exhibit slower mouse cursor speed 
when executing higher complexity tasks.  

Though prior literature suggests System 2 related 
thinking is significantly slower than System 1 related 
thinking, Individual differences in cognitive 
processing capacity can influence response behaviors. 
Specifically, the processing capacity of individuals is 
systematically different [38,41] due to reasons such as 
aging, lack of experience, surrounding environments 
[40,41,42].  Thus, when the users are faced with 
similar tasks, the magnitude of changes in users’ 
mouse cursor speed will vary depending on the 
individual’s cognitive processing capacity. For 
example, Hibbeln (2018) randomly manipulated 
negative emotions in three experimental studies to 
decrease attentional control (i.e., cognitive capacity) to 
demonstrate that negative emotions influence the 
mouse cursor distance and speed.  

We argue that even when considering individual 
differences in cognitive processing capacity, the 
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behavioral gap between System 1 and System 2 still 
provides valuable signals for the user’s internal 
cognitive processes. Specifically, when the users’ 
cognitive processing capacity is negatively impacted, 
they are still likely to be completing simpler tasks 
faster (i.e., we still expect the overall movement 
patterns associated with System 2 tasks to be faster and 
shorter). Thus, we propose: 

H2.  Users will still exhibit slower mouse cursor 
speed when executing higher complexity tasks 
regardless of differences in cognitive processing 
capacity. 

3. Measures 

3.1. Mouse Movement Metrics 

We collected mouse-movement data when users 
answered the demographics questions and the main 
survey questions related to personality traits and work 
experience. The embedded JavaScript captures the x-
coordinates and y-coordinates of the mouse movement 
at millisecond precision. The captured mouse 
coordinates are then used to map both actual 
trajectories to calculate the cursor distance per 
question.  

 
The distance between two points 𝑃𝑃𝑡𝑡 (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡) and 

𝑃𝑃𝑡𝑡−1(𝑥𝑥𝑡𝑡−1,𝑦𝑦𝑡𝑡−1) is given by, 
𝑑𝑑(𝑃𝑃𝑡𝑡 ,𝑃𝑃𝑡𝑡−1) =  �(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1)2 + (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)2 
where t denotes timestamp in milliseconds. 

Similarly, the average velocity between data points is 
derived by, 

�̅�𝑣 =  
∆𝑑𝑑
∆𝑡𝑡

 
where ∆𝑑𝑑 denotes the change in distance and ∆𝑡𝑡 

denotes the change in time. To assure that we only 
capture the mouse movements, we have controlled and 
excluded mobile devices for this study.  

3.2. Feature Level Normalization 

To derive new metrics and examine Hypothesis 1, 
we performed feature scaling and normalization on the 
variables of interest [43]. We compare each velocity 
value to other velocity values throughout the entire 
survey. In doing so, we derive a Feature-Level-
Normalized Score (FLNS) that reflects variability in 
response behaviors (i.e., velocity) across different 
tasks. Thus, feature level normalizations allow us to 
examine how the mouse cursor speed differs per task 
that varies in complexity. 

For computer mice, movement data is captured in 
pixel units at millisecond precision. Thus, when there 

is a sudden movement within a short amount of time, 
the feature value (e.g., velocity) can rapidly increase 
as well. In terms of velocity, when there is a minimal 
movement within a short amount of time, the recorded 
feature value will stay near 0. Since the difference in 
range of features can interfere with the performance of 
machine learning algorithms that uses gradient descent 
as an optimization technique (e.g., logistic regression), 
we performed min/max normalizations to normalize 
the mouse cursor velocity to the range [0,1]: 

𝑣𝑣� = max [0, min�1,
𝑣𝑣𝑖𝑖 − ⌊𝑣𝑣⌋
⌈𝑣𝑣⌉ − ⌊𝑣𝑣⌋

�] 

𝑣𝑣𝑖𝑖  is the ith raw velocity feature and ⌈𝑣𝑣⌉ and ⌊𝑣𝑣⌋ 
are lower and upper bounds values for normalization. 
The normalization bounds are calculated by: 

⌊𝑣𝑣⌋ =  𝜇𝜇𝑣𝑣 −  𝐻𝐻𝑓𝑓𝜎𝜎𝑣𝑣 
⌈𝑣𝑣⌉ =  𝜇𝜇𝑣𝑣 + 𝐻𝐻𝑓𝑓𝜎𝜎𝑣𝑣 

𝐻𝐻𝑓𝑓 is a free parameter that determines the value of 
standard deviation. In this study, the parameter was set 
to 1. The resulting feature scores are robust against 
outliers as the scores are retained within an interval 
[0,1].  

3.3. Subject Level Normalization 

We combine DPT with the existing subject level 
normalization method [39] to derive a Subject-Level 
Normalized Score (SLNS). The purpose of deriving an 
SLNS is to account for the differences in individual 
cognitive capabilities. We first define the questions (or 
tasks) pertaining to System 1 of DPT (e.g., answering 
a set of demographics questions). Then, use the 
derived FLNS (i.e., score for velocity) from System 1 
tasks to normalize the other FLNS. Using participants’ 
own response behaviors in innocuous demographics 
questions (i.e., System 1 related questions) has three 
key benefits: 

1. Using FLNS allows us to preserve 
information regarding task-specific 
variability. 

2. It allows us to capture the user-specific 
differences (i.e., across subject differences). 

3. The approach also captures the difference in 
response behaviors between System 1 tasks 
and other tasks. 

In summary, SLNS derived from subject-level 
normalizations captures the user-specific 
characteristics (e.g., user-specific behavior, cognitive 
capacity). The SLNS is given by: 

�̃�𝑠 = max [0, min�1,
𝑠𝑠𝑢𝑢,𝑖𝑖 − �𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1�

�𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1� − �𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1�
�] 

�𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1�  and �𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1�  pertain to upper bounds and 
lower bounds derived from System 1 related tasks. 
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Subscript u pertains to each user, while sys1 denotes 
that the boundaries are derived from System 1 tasks. 
We derive the boundaries by: 

�𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1� =  𝜇𝜇𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1 −  𝐻𝐻𝑠𝑠𝜎𝜎𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1 
�𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1� =  𝜇𝜇𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1 + 𝐻𝐻𝑠𝑠𝜎𝜎𝑠𝑠𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1 

For each user, 𝜇𝜇𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1 and 𝜎𝜎𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠1 denote the 
average and a standard deviation of a feature score 
across System 1 tasks.  

4. Methodology 

We derived and tested new metrics with an 
experimental study. The study included a set of 
questions and conditions that are designed to heighten 
cognitive load.  

4.1. Procedure and Manipulation 

4.1.1. Baseline Condition. In the first part of the 
survey, all participants were asked to complete a 
demographic questionnaire. The Big Five Inventory 
questionnaires consisting of 39 questions that measure 
the Big Five personality traits (e.g., conscientiousness, 
extraversion, neuroticism, agreeableness, openness to 
experience) were subsequently presented along with 
an attention check question [44]. 
 

4.1.2. Manipulation (System 2) Condition. We 
manipulate the activation level of System 2 with two 
approaches. First, we primed the participants by letting 
them think that their answers to the second part of the 
study were important. Participants were given an 
option to voluntarily participate in the second part of 
the survey for additional payout (e.g., a total of $1.00). 
The instruction for the second part stated, “the second 
part of this survey is an application for a follow-on 
study that will pay $10 for 10 minutes of work. We 
will only select a few people to do this follow-on 
study. If we select you, you can refuse to participate; 
there is no obligation to do it. We will pay you an extra 
$0.50 to complete the application, regardless of 
whether we select you or whether you agree to do the 
follow-on study if selected.” We further stated that 
“the follow-on study will have you use Excel to do 
some data analysis, so we are looking for people who 
have experience with Excel. Experience with Excel’s 
math and statistical functions is a plus but is not 
required.”  

Second, we included a question that asks for the 
subject’s experience related to a Non-existent Excel 
tool (i.e., we named this extension, StatView). The 
follow-up survey consisted of multiple subparts 

 
1 Brown-Forsythe test is a statistical test to compare the group 

related to the user’s background and experience. The 
participants were asked to answer the questions related 
to their work hours and occupation (e.g., Are you 
currently employed in a full-time job?). When 
participants answered questions regarding their 
computer skills, we asked all participants to rate their 
skills on a non-existent Excel Plugin (i.e., StatView). 
The range for all the experience-related questions was 
from 0 (e.g., beginner) to 10 (e.g., expert). 

4.2. Participants 

534 subjects were recruited from Amazon 
Mechanical Turk. Participants’ age was diverse. 
About 56% of the participants belonged to a younger 
crowd between 18-34 years old, with 42% reported 
being 35 years or older. Of the recruited participants, 
41% were female. Of those participants, three hundred 
and sixty-two subjects completed the second part of 
the survey. Attention check question was given to all 
participants before proceeding to the second part. 

As we are mainly interested in how people 
answer cognitively demanding questions, we retained 
all the samples regardless of whether a person 
completed part 2 of the survey or not. This resulted in 
the final sample size of five hundred and thirty 
participants with raw mouse movement data of 2.7 
million observations.  

5. Results 

We first evaluate the formal hypothesis H1 and 
then conduct a series of predictive analyses to examine 
H2. To examine H1, we compare the FLNS across the 
demographic’s questions and cognitively demanding 
questions (e.g., attention check question and fake 
software question).  For H2, we examine the overall 
trends of SLNS and examine its relationship to FLNS. 
All analyses were conducted using the R statistical 
software package [45]. 

5.1. Hypothesis 1 

Hypothesis 1 stated that Users involved in higher 
complexity tasks (i.e., questions) would exhibit slower 
mouse cursor speed. To examine the differences in 
mouse cursor velocity across all questions, we 
examine the FLNS. Before comparing if the FLNS 
vary across the questions, we first tested the 
homogeneity of variance assumption using Brown-
Forsyth type Levene’s test. The Brown-Forsythe type 
Levene’s test 1  was significant on the FLNS, 

variances to ensure the homogeneity of variance assumption is not 
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indicating that the classic parametric F-test for 
ANOVA can lead to severely biased results [46]. 
Thus, the score means were further examined using 
Welch’s ANOVA [47,48]. Welch’s ANOVA is 
designed to test the group means when multiple groups 
are compared, and the homogeneity of variance 
assumption is violated [49]. Welch’s ANOVA result 
for the FLNS is reported in Table 1. 

 
Table 1. FLNS and SLNS Welch's ANOVA 

results 
Measure F Num DF Den DF  

FLNS  44.739 6.0 1228.2 *** 
SLNS 55.408 6.0 1461.9 *** 
Key: * = p < 0.05; ** = p < 0.01; *** = p < 0.001 

 
Table 2. Exemplary Results for Pairwise 

Comparisons 
Group 1 Group 2 Estimate P val 

adj. 
 

ATTN 
CHECK 

FAKE 
SOFT 

-0.01 0.995  

LANGU-
AGE 

FAKE 
SOFT 

-0.11 5.01   
E-10 

*** 

Key: * = p < 0.05; ** = p < 0.01; *** = p < 0.001 
         The result of Welch’s ANOVA suggests that the 
average FLNS for at least one of the examined 
questions is statistically different. Thus, further 
evaluations are needed. 
 FLNS Pairwise Comparisons – Games Howell Post-
hoc Test. For further evaluations, a series of pairwise 
Games-Howell Post-hoc Tests2 [50] was performed to 
compare all possible pairs of means. As the Games-
Howell test does not assume equal variances and 
sample sizes, the test is suitable in situations where the 
homogeneity of variance assumption is violated.  

First, the difference in means between the 
cognitively demanding questions (e.g., Attention 
check and StatView question) was found to be 
minimal (p = 0.99). Second, the mean FLNS for the 
cognitively demanding questions was lower than the 
other demographics question. The overall results 
suggested that the mean differences between the 
System 1 questions and System 2 questions were 
directionally correct and were significant. Further, the 
Games-Howell Test comparing the differences in 
means between the two cognitively demanding 
questions failed to attain significance (see Table 2). 
Thus, we conclude that Hypothesis 1 was supported. 
We did not include the results in this paper as a total 

 
violated.  

2 Games and Howell Post-hoc Tests compare all combinations 

of 21 pairs of averages were compared (i.e., it takes up 
an entire page). The results and the plot of the averages 
are available upon request.  

5.2. Hypothesis 2 

Hypothesis 2 stated that the users will still exhibit 
slower mouse cursor speed when executing higher 
complexity tasks regardless of differences in cognitive 
processing capacity. Though it is difficult to perfectly 
measure an individual’s cognitive processing capacity 
as various factors influence it, SLNS accommodate 
user-specific characteristics (i.e., including the 
differences in cognitive capacity).  

As the Brown-Forsythe type Levene’s test was 
significant on the SLNS, the scores were further 
examined using Welch’s ANOVA [47]. The ANOVA 
result of the SLNS is shown in Table 1. 

The result of Welch’s ANOVA suggests that the 
difference between SLNS means some of the 
questions are statistically significant.  
 
SLNS Pairwise Comparisons – Games Howell Post-
hoc Test. To further examine Hypothesis 2, a series of 
pairwise Games-Howell Post-hoc Tests were 
performed to examine pairs of SLNS means. Even 
when considering user-specific information, the 
overall results were consistent with those from 
analyzing FLNS: (1) mean differences between the 
System 1 questions and System 2 questions were 
directionally correct and were significant. (2) The 
Games-Howell Test comparing the differences in 
means between the two cognitively demanding 
questions failed to attain significance (e.g., Attention 
check and Fake Software Question). Thus, we 
conclude that Hypothesis 2 was supported. Similar to 
the FLNS pairwise comparison, a total of 21 pairs of 
averages were compared. The results and the plot of 
the averages are also available upon request. 

5.3. Predictive Models (10-fold cross-
validation) 

We chose to validate the performance of our 
score measures by using a subset of aggregated data 
(i.e., at a question level). There are several reasons 
why we do this. First, as the scores vary across several 
demographics’ questions, the inclusion of all the 
questions would, in fact, negatively impact the 
performance of the predictive model. Second, as the 
models we are constructing are simple models with 

of group differences when homogeneity of variance 
assumption is violated. 
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only two score features, including all variables would 
cause class imbalance problems (i.e., 5 to 2 ratio). We 
chose the language question of all the demographics 
questions as it had the highest average for both FLNS 
and SLNS. A total of 970 data points were used in the 
models, with 586 being cognitively demanding 
questions (i.e., attention check question and StatView 
question) and 384 data points belonging to language 
questions. Thus, the base rate for the accuracy of all 
models is 60.41%. 

We formulated a typical binary classification 
problem by creating a dependent variable with labels 
“Language” and “Demanding”,  

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑠𝑠𝚤𝚤� + 𝛽𝛽2𝑣𝑣𝚤𝚤� + 𝜖𝜖   
where 𝑠𝑠𝚤𝚤� and 𝑣𝑣𝚤𝚤�  are SLNS and FLNS, respectively.  

 The Logistic regression model, a simple but 
widely used model, was selected as the baseline model 
for this study. Other popular classification models, 
such as Support Vector Machine (SVM), Random 
Forest (Bagging), and XGBoost (Boosting), were also 
used for comparison. All models using original 
samples have been trained with 10-fold cross-
validation. Average AUC, accuracy, sensitivity, and 
specificity across the folds are reported in Table 3 and 
Table 4. 
 

Table 3. 10-fold cross-validation results 
(Logistic Regression and SVM) 

 Logistic 
Regression 

SVM 

AUC (SD) 0.7705 (0.035) 0.7696 (0.068) 
Accuracy (SD) 70.01% 

(6.00%) 
70.22% 
(3.57%) 

Sensitivity 0.8090 0.8173 
Specificity 0.5341 0.5132 

 
All the models examined surpassed the base rate 

of 60.41% accuracy, with Random Forest being the 
lowest (67.62%). SVM was the top-performing model, 
with an AUC of 0.7696, an accuracy of 70.22%, and 
the lowest standard deviation for accuracy (3.57%). 
We further examined the relationship between our 
newly derived measures. By constructing a plot of the 
variables, we were able to identify two distinct 
patterns that align with our hypotheses (See Figure 1). 
For cognitively demanding questions, both FLNS and 
SLNS were relatively lower than the language 
questions. Precisely, the patterns signal that the users 
exhibit slower mouse movements when engaged with 
more cognitively demanding tasks. Further, even 
when controlling for user-specific factors (i.e., 
including SLNS), we observe an evident pattern that 
suggests that users' mouse cursor movements are 
slower for cognitively demanding tasks.  

Table 4.10-fold cross-validation results 
(Random Forest and XGBoost) 

 Random Forest 
(mtry = 2) 

XGBoost 

AUC (SD) 0.7170 (0.042) 0.7580 
(0.046) 

Accuracy (SD) 67.62% (4.43%) 69.84% 
(3.5%) 

Sensitivity 0.7200 0.7724 
Specificity 0.5653 0.5854 

 

 

 
Figure 1. Plot of FLNS and SLNS 

6. Discussion 

We introduced a new measure to assess the 
underlying cognitive processing of an individual 
during task execution. The results show that users have 
slower mouse cursor speed when executing higher 
complexity tasks (H1), and such a trend is still evident 
even when considering user-specific differences (H2). 
The findings have implications for several research 
disciplines that examine the relationship between 
users’ cognitive processing and their online behaviors.  

6.1. Implications for Research 

We contribute to the literature by theoretically 
explaining and empirically validating how the 
heightened cognitive load slows the mouse cursor 
speed. Specifically, we apply DPT to examine the 
relationship between the user’s device usage patterns 
and the underlying cognitive processes in a broader 
context. We extend DPT by explaining how the 
activation of System 2 (i.e., deliberate, effortful, and 
slow) will result in slower mouse movement patterns.  

Second, we present a new method to account for 
individual differences in cognitive capacity. DPT 
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helps to identify types of questions that are less 
dependent on System 2. We account for individual-
specific factors using the user’s response behaviors 
from these questions to normalize FLNS. In doing so, 
we provide a new measure indicative of the user’s 
underlying cognitive processes (i.e., cognitive load).  

Our method can potentially be applied to a wide 
variety of research disciplines. Specifically, our 
measures are helpful for various studies that examine 
individuals’ underlying cognitive processes. For 
instance, our method can be applied to the IS studies 
that examine the relationships between cognitive load 
and key user behaviors (e.g., Perceived Ease of Use, 
User Satisfaction, Reuse Intention). Our method can 
also be leveraged for psychology studies that 
manipulate participants’ cognitive resources 
[27,51,52,53]. In summary, we provide new 
methodological tools, accompanied by theory, to 
investigate online user behaviors in various contexts.  

6.2. Implications for Practice 

There are several practical implications for using 
a mouse cursor to measure an individual's cognitive 
load. Specifically, the cognitive load is strongly 
related to predicting customer behaviors, including 
acceptance of advertising [54], customer attention and 
attraction [55], perceptions and recall of advertising 
content [56], and brand attitude [57]. Using the 
methodology described in the paper, practitioners can 
design a real-time system that assesses a user's 
cognitive state. Our methodology also helps 
practitioners to establish foundations for 
implementing theory-driven design strategies when 
designing their websites. In terms of usability, 
managers now have a tool to identify sections that 
impose cognitive burdens on the users and make 
changes. For instance, managers may assess website 
churning behavior by identifying pages and interaction 
points with lower velocity scores. Further, negative 
feedbacks can be assessed along with the mouse 
movement data to gain more insight into where the 
negative interactions occurred on the website.  

Velocity scores can also be analyzed to assess 
cognitive states that drive various online purchasing 
behaviors. When a user purchases on a website, the 
user’s navigational path and overall speed at the time 
of purchase can be analyzed to identify a user's 
cognitive state (e.g., System 1 vs. System 2).  The 
cognitive state can then be assessed to make further 
inferences (e.g., whether a purchase made was 
impulsive or not). On the contrary, practitioners can 
also use velocity scores to analyze whether the 
customer has a negative experience on the website. For 
instance, if the website is too difficult to navigate, it 

may impose a cognitive burden on the users (i.e., users 
are likely to activate System 2 to figure out how to 
search and purchase the item). Specifically, velocity 
scores could potentially be used to detect which pages 
seem to be imposing a cognitive burden on the users. 

The velocity scores could help advertisers to test 
the performance of their ads. Advertisers spend a  
considerable amount of effort to capture user attention 
and memory [58]. However, real-time assessment of 
the effectiveness of online advertisements still poses a 
challenge. Practitioners can use mouse movement 
speed to perform real-time analysis of the users’ 
cognitive states when the users are engaged with an 
advertisement.  

6.3. Limitations 

Like all research, our work has limitations. First, 
our study only examined mouse cursor speeds in an 
online survey. As responding to an online survey 
consist of simple, goal-oriented tasks, we need to 
explore if our results would generalize in a broader 
context (e.g., web browsing, navigating within a 
system, online shopping). Second, users use multiple 
devices to connect to the internet. Thus, the underlying 
cognitive processes associated with System 1 and 
System 2 would manifest as different usage behaviors, 
requiring further explorations. Future research should 
examine whether our metrics can be applied to a 
broader range of tasks and devices.  Third, our 
measures can benefit from outlier analysis and the data 
cleaning process. As the normalized measures are 
directly derived from the raw mouse data captured in 
millisecond precision, the sudden movements (e.g., 
satisficing and speeding through the survey) can 
significantly inflate the overall means. Further data 
cleaning work can potentially improve classification 
results. Finally, the DI model is still an actively 
evolving model. For instance, the Hybrid Dual-
Process model, one of the latest developments in the 
psychology field, further develops the DI model and 
posits that a response generated under the influence of 
System 1 undergoes two different intuitive reasoning 
processes to produce (1) traditional heuristic intuitive 
response and (2) logical intuitive response [27,59]. As 
the DI model is still actively studied, future research 
should examine how and where DPT can enhance our 
understanding of a broad range of HCI contexts.  

7. Conclusion 

Capturing and assessing user’s cognitive states 
had been an essential yet challenging task in an online 
setting. We explained how the high cognitive load 
manifests as the slower mouse movement speeds by 
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leveraging DPT. Our findings suggest that the analysis 
of mouse cursor speeds may enable research that could 
not have been easily conducted using a traditional 
measuring approach. The proposed method can be 
easily applied by both practitioners and researchers in 
various contexts as computer mice is a ubiquitous HCI 
tool that users across the globe widely adopt. 

8. References  

[1] Knijnenburg, B.P., M.C. Willemsen, Z. Gantner, H. 
Soncu, and C. Newell, “Explaining the user experience of 
recommender systems”, User Modeling and User-Adapted 
Interaction 22(4–5), 2012, pp. 441–504. 
[2] Proudfoot, J.G., J.L. Jenkins, J.K. Burgoon, and J.F. 
Nunamaker, “More Than Meets the Eye: How Oculometric 
Behaviors Evolve Over the Course of Automated Deception 
Detection Interactions”, Journal of Management 
Information Systems 33(2), 2016, pp. 332–360. 
[3] Yuan, H., W. Xu, and M. Wang, “Can online user 
behavior improve the performance of sales prediction in E-
commerce?”, 2014 IEEE International Conference on 
Systems, Man, and Cybernetics (SMC), (2014), 2347–2352. 
[4] Chen, P.-Y. (Sharon), and L.M. Hitt, “Measuring 
Switching Costs and the Determinants of Customer 
Retention in Internet-Enabled Businesses: A Study of the 
Online Brokerage Industry”, Information Systems Research 
13(3), 2002, pp. 255–274. 
[5] Erete, S.L., “Engaging Around Neighborhood Issues: 
How Online Communication Affects Offline Behavior”, 
Proceedings of the 18th ACM Conference on Computer 
Supported Cooperative Work & Social Computing, ACM 
(2015), 1590–1601. 
[6] Davis, F.D., “Perceived Usefulness, Perceived Ease of 
Use, and User Acceptance of Information Technology”, MIS 
Quarterly 13(3), 1989, pp. 319. 
[7] Venkatesh, V., “Determinants of Perceived Ease of Use: 
Integrating Control, Intrinsic Motivation, and Emotion into 
the Technology Acceptance Model”, Information Systems 
Research 11(4), 2000, pp. 342–365. 
[8] Byrd, M., “An Empirical Exploration OF 
COUNTERMEASURES IN HCI-BASED DECEPTION 
RESEARCH”, 2018. 
[9] Grimes, M., J. Jenkins, and J. Valacich, “Exploring the 
Effect of Arousal and Valence on Mouse Interaction”, 2015, 
pp. 15. 
[10] Hibbeln, M., J.L. Jenkins, Brigham University, et al., 
“How Is Your User Feeling? Inferring Emotion Through 
Human-Computer interaction Devices”, MIS Quarterly 
41(1), 2017, pp. 1–21. 
[11] Jenkins., J.L., J.G. Proudfoot, Bentley University, et al., 
“Sleight of Hand: Identifying Concealed Information by 
Monitoring Mouse-Cursor Movements”, Journal of the 
Association for Information Systems 20, 2019, pp. 1–32. 
[12] Nunamaker, J.F., D.C. Derrick, A.C. Elkins, J.K. 
Burgoon, and M.W. Patton, “Embodied Conversational 
Agent-Based Kiosk for Automated Interviewing”, Journal 
of Management Information Systems 28(1), 2011, pp. 17–48. 
[13] Burgoon, J., W.J. Mayew, J.S. Giboney, et al., “Which 
Spoken Language Markers Identify Deception in High-

Stakes Settings? Evidence From Earnings Conference Calls”, 
Journal of Language and Social Psychology 35(2), 2016, pp. 
123–157. 
[14] Anderson, B.B., C.B. Kirwan, J.L. Jenkins, D. Eargle, 
S. Howard, and A. Vance, “How Polymorphic Warnings 
Reduce Habituation in the Brain: Insights from an fMRI 
Study”, Proceedings of the 33rd Annual ACM Conference 
on Human Factors in Computing Systems, ACM (2015), 
2883–2892. 
[15] Hibbeln, M., J. Jenkins, C. Schneider, J. Valacich, and 
M. Weinmann, “Investigating the Effect of Insurance Fraud 
on Mouse Usage in Human-Computer Interactions”, 2014, 
pp. 16. 
[16] McNicol, D., A primer of signal detection theory., 
Lawrence Erlbaum Associates Publishers, Mahwah,  NJ,  US, 
2005. 
[17] Eysenck, M.W., N. Derakshan, R. Santos, and M.G. 
Calvo, “Anxiety and cognitive performance: attentional 
control theory.”, Emotion 7(2), 2007, pp. 336. 
[18] Hu, P.J.-H., H. Hu, University of Nevada, Las Vegas, 
X. Fang, and University of Delaware, “Examining the 
Mediating Roles of Cognitive Load and Performance 
Outcomes in User Satisfaction with a Website: A Field 
Quasi-Experiment”, MIS Quarterly 41(3), 2017, pp. 975–
987. 
[19] Schmutz, P., S. Heinz, Y. Métrailler, and K. Opwis, 
“Cognitive Load in eCommerce Applications—
Measurement and Effects on User Satisfaction”, Advances 
in Human-Computer Interaction 2009, 2009, pp. 121494. 
[20] Mălăescu, I., and S.G. Sutton, “The effects of decision 
aid structural restrictiveness on cognitive load, perceived 
usefulness, and reuse intentions”, International Journal of 
Accounting Information Systems 17, 2015, pp. 16–36. 
[21] Freeman, J.B., and N. Ambady, “Hand movements 
reveal the time-course of shape and pigmentation processing 
in face categorization”, Psychonomic Bulletin & Review 
18(4), 2011, pp. 705–712. 
[22] Chu, H.-C., “Potential Negative Effects of Mobile 
Learning on Students’ Learning Achievement and Cognitive 
Load—A Format Assessment Perspective”, 2021, pp. 14. 
[23] Valacich, J.S., M.D. Byrd, M. Kumar, J.L. Jenkins, D. 
Kim, and P.A. Williams, “Using accelerometer and 
gyroscope data in common mobile devices to assess 
credibility”, 26th Americas Conference on Information 
Systems, AMCIS 2020, Association for Information Systems 
(2020). 
[24] Freeman, J.B., and N. Ambady, “MouseTracker: 
Software for studying real-time mental processing using a 
computer mouse-tracking method”, Behavior Research 
Methods 42(1), 2010, pp. 226–241. 
[25] Dale, R., and N.D. Duran, “The Cognitive Dynamics of 
Negated Sentence Verification”, Cognitive Science 35(5), 
2011, pp. 983–996. 
[26] McKinstry, C., R. Dale, and M.J. Spivey, “Action 
Dynamics Reveal Parallel Competition in Decision Making”, 
Psychological Science 19(1), 2008, pp. 22–24. 
[27] Bago, B., and W. De Neys, “Fast logic?: Examining the 
time course assumption of dual process theory”, Cognition 
158, 2017, pp. 90–109. 

Page 4777



[28] Evans, J.St.B.T., “In two minds: dual-process accounts 
of reasoning”, Trends in Cognitive Sciences 7(10), 2003, pp. 
454–459. 
[29] Evans, J.St.B.T., “Dual-Processing Accounts of 
Reasoning, Judgment, and Social Cognition”, Annual 
Review of Psychology 59(1), 2008, pp. 255–278. 
[30] Evans, J.St.B.T., and K.E. Stanovich, “Dual-Process 
Theories of Higher Cognition: Advancing the Debate”, 
Perspectives on Psychological Science 8(3), 2013, pp. 223–
241. 
[31] Smith, E.R., and J. DeCoster, “Dual-Process Models in 
Social and Cognitive Psychology: Conceptual Integration 
and Links to Underlying Memory Systems”, Personality and 
Social Psychology Review 4(2), 2000, pp. 108–131. 
[32] Sowden, P.T., A. Pringle, and L. Gabora, “The shifting 
sands of creative thinking: Connections to dual-process 
theory”, Thinking & Reasoning 21(1), 2015, pp. 40–60. 
[33] Kahneman, D., Thinking, fast and slow, Macmillan, 
2011. 
[34] Stanovich, K.E., Who is rational?:  Studies of individual 
differences in reasoning., Lawrence Erlbaum Associates 
Publishers, Mahwah,  NJ,  US, 1999. 
[35] Stanovich, K.E., and R.F. West, “Individual differences 
in reasoning: Implications for the rationality debate?”, 
Behavioral and brain sciences 23(5), 2000, pp. 645–665. 
[36] Frederick, S., “Cognitive Reflection and Decision 
Making”, Journal of Economic Perspectives 19(4), 2005, pp. 
25–42. 
[37] Travers, E., J.J. Rolison, and A. Feeney, “The time 
course of conflict on the Cognitive Reflection Test”, 
Cognition 150, 2016, pp. 109–118. 
[38] Barrett, L.F., M.M. Tugade, and R.W. Engle, 
“Individual Differences in Working Memory Capacity and 
Dual-Process Theories of the Mind.”, Psychological Bulletin 
130(4), 2004, pp. 553–573. 
[39] Scandura, J.M., “Deterministic Theorizing in Structural 
Learning: Three Levels of Empiricism”, Journal of 
Structural Learning, 1991, pp. 21–53. 
[40] Halford, G.S., Children’s understanding: The 
development of mental models., Lawrence Erlbaum 
Associates, Inc, Hillsdale,  NJ,  US, 1993 
[41] Murphy, G.L., and J.C. Wright, “Changes in conceptual 
structure with expertise: Differences between real-world 
experts and novices.”, Journal of Experimental Psychology: 
Learning, Memory, and Cognition 10(1), 1984, pp. 144–155. 
[42] Wickens, C.D., R. Braune, and A. Stokes, “Age 
differences in the speed and capacity of information 
processing: I. A dual-task approach.”, Psychology and Aging 
2(1), 1987, pp. 70–78. 
[43] Monaco, J.V., “Robust Keystroke Biometric Anomaly 
Detection”, arXiv:1606.09075 [cs], 2017. 
[44] Chmielewski, M.S., and T.A. Morgan, “Five-Factor 
Model of Personality”, In M.D. Gellman and J.R. Turner, 
eds., Encyclopedia of Behavioral Medicine. Springer New 
York, New York, NY, 2013, 803–804. 
[45] R Core Team, R: A Language and Environment for 
Statistical Computing, R Foundation for Statistical 
Computing, Vienna, Austria, 2021. 
[46] Delacre, M., C. Leys, Y.L. Mora, and D. Lakens, 
“Taking Parametric Assumptions Seriously: Arguments for 
the Use of Welch’s F-test instead of the Classical F-test in 

One-Way ANOVA”, International Review of Social 
Psychology 32(1), 2019, pp. 13. 
[47] Moder, K., “How to keep the Type I Error Rate in 
ANOVA if Variances are Heteroscedastic”, Austrian 
Journal of Statistics 36(3), 2007. 
[48] Moder, K., “Alternatives to F-Test in One Way 
ANOVA in case of heterogeneity of variances (a simulation 
study)”, 2010, pp. 11. 
[49] Liu, H., “Comparing Welch’s ANOVA, a Kruskal-
Wallis test and traditional ANOVA in case of Heterogeneity 
of Variance”, 2015. 
[50] Games, P.A., and J.F. Howell, “Pairwise Multiple 
Comparison Procedures with Unequal N’s and/or Variances: 
A Monte Carlo Study”, 1976, pp. 14. 
[51] Miyake, A., N. Friedman, D. Rettinger, P. Shah, and M. 
Hegarty, “How are visuospatial working memory, executive 
functioning, and spatial abilities related? A latent-variable 
analyses”, Journal of Experimental Psychology: General 
130, 2001, pp. 621–640. 
[52] Newman, I.R., M. Gibb, and V.A. Thompson, “Rule-
based reasoning is fast and belief-based reasoning can be 
slow: Challenging current explanations of belief-bias and 
base-rate neglect.”, Journal of Experimental Psychology: 
Learning, Memory, and Cognition 43(7), 2017, pp. 1154–
1170. 
[53] Pennycook, G., J.A. Fugelsang, and D.J. Koehler, “Are 
we good at detecting conflict during reasoning?”, Cognition 
124(1), 2012, pp. 101–106. 
[54] Wright, P.L., “The Cognitive Processes Mediating 
Acceptance of Advertising”, JOURNAL OF MARKETING 
RESEARCH, 1973, pp. 10. 
[55] Wojdynski, B.W., and H. Bang, “Distraction effects of 
contextual advertising on online news processing: An eye-
tracking study.”, Behaviour & Information Technology 
35(8), 2016, pp. 654–664. 
[56] Nasco, S.A., and G.C. Bruner, “Perceptions and Recall 
of Advertising Content Presented on Mobile Handled 
Devices”, Journal of Interactive Advertising 7(2), 2007, pp. 
51–62. 
[57] Pantoja, F., P. Rossi, and A. Borges, “How Product-Plot 
Integration and Cognitive Load Affect Brand Attitude: A 
Replication”, Journal of Advertising 45(1), 2016, pp. 113–
119. 
[58] Kong, S., Z. Huang, N. Scott, Z. Zhang, and Z. Shen, 
“Web advertisement effectiveness evaluation: Attention and 
memory”, Journal of Vacation Marketing 25(1), 2019, pp. 
130–146. 
[59] Bago, B., and W.D. Neys, “Advancing the specification 
of dual process models of higher cognition: a critical test of 
the hybrid model view”, Thinking & Reasoning 26(1), 2020, 
pp. 1–30. 
 

Page 4778


	1. Introduction
	2. Background
	2.1. Cognitive Load in Information Systems Research
	2.2. Dual-Process Theory (DPT)
	2.3 Dual-Process Theory and Mouse Cursor Movements

	3. Measures
	3.1. Mouse Movement Metrics
	3.2. Feature Level Normalization
	3.3. Subject Level Normalization

	4. Methodology
	4.1. Procedure and Manipulation
	4.2. Participants

	5. Results
	5.1. Hypothesis 1
	5.2. Hypothesis 2
	5.3. Predictive Models (10-fold cross-validation)

	6. Discussion
	6.1. Implications for Research
	6.2. Implications for Practice
	6.3. Limitations

	7. Conclusion
	8. References

