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Abstract 
Pathway-based Health Information Systems 

(HIS) enable planning, execution and improvement of 
standardized care processes. Adaptive behavior and 
learning effects are taken to a new level by advances 
in Artificial Intelligence (AI). Yet, design support to 
unlock synergies from coupling pathway-based HIS 
with AI is lacking. This Umbrella Review identifies 
applied purposes of AI in healthcare, describes the 
relation to pathway-based HIS, and derives a PathwAI 
Framework as design support for future research and 
development activities. Previous findings already 
provide a large base of approaches to realize 
personalized care pathways and improve coordination 
and business operations. Furthermore, potentials for 
designing learning health systems at micro, meso, and 
macro levels are formulated, but there is still greater 
opportunity for future research and design. Pathway-
based HIS in this context can not only provide 
interpretable and interoperable data input, but can be 
conceptual as well as operational receivers of 
artificially generated knowledge. 

 
 

1. Introduction  

Artificial Intelligence (AI) promises a digital 
revolution in healthcare and opens up new potentials 
for transforming the entire care pathway [1]–[3]. 
Benefits and opportunities of using AI in healthcare 
particularly rely in decreasing costs and reduction of 
inefficiencies while improving the care quality with a 
more personalized, precise and preventive medicine  
[4], [5]. Instead of replacing human workforce, the 
partnership of humans and AI may also bring back 
humanity to medicine and health professionals can 
spend more time with their patients [6], [7]. For 
example, AI-driven applications can support 
radiologists by diagnosing diseases or even replace 
particular tasks [1], [8]. Recent achievements of AI-
based speech recognition allow to communicate with 

computers as we do with humans and accelerate 
documentation tasks of health professionals [3] or 
facilitate the interaction with virtual coaching systems 
that support patients in their daily life [2].  

While the mentioned examples focus on single 
interventions, AI may be also used to learn about entire 
care pathways. Especially against the background of 
chronic disease scenarios (e.g. cancer, diabetes or 
multiple sclerosis), that often involve a lifelong patient 
journey and long-term care, an investigation of the 
whole pathway is of particular interest [9]. Instead of 
focusing on single interventions, we experienced in 
several digital health research projects the benefits of 
process orientation to find the best holistic approach 
of digital support to those care scenarios. We therefore 
put care pathways in the center of our innovation 
activities to design pathway-based Health Information 
Systems (HIS), i.e., systems that support process-
centered care scenarios [10], [11]. Notably the 
emergence and availability of national Electronic 
Health Records (EHRs) that capture the whole patient 
history across institutions could further drive pathway-
based HIS [12]. Analyzing this multimodal data (e.g. 
diagnoses, conducted treatments, medical parameters 
or unstructured clinical notes) with advanced 
analytical techniques of AI could lift pathway-based 
HIS to a new level [11]. Thus, instead of relying on 
static process knowledge and manual adjustments 
based on explicit expert knowledge, coupling AI with 
pathway-based HIS promises more dynamic and new 
insights into existing care pathways.  

However, to the best of our knowledge, no study 
has reviewed the approaches and design options of 
how AI can enrich pathway-based HIS. Therefore, we 
want to investigate the following research questions: 
 
RQ1: How have pathway-based HIS been enriched by 
AI so far? 
 
RQ2: What needs a framework that might assist the 
design and implementation of AI application in 
relation to pathway-based HIS? 
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This paper is structured as follows. In the next 
section, we introduce the theoretical background on 
pathway-based HIS and AI in healthcare and motivate 
the general analysis concept of our work. Section 3 
describes the research methodology followed by our 
results in section 4 (RQ1) and 5 (RQ2). The paper 
closes with a discussion and an outlook on future 
research opportunities.  

2. Background 

2.1 Care pathways and associated systems 

A Care Pathway (CP) is a specific, standardized 
description of a clinical process for a defined 
combination of symptoms adapted to clinical 
conditions [13], [14]. It is a multidisciplinary tool to 
improve quality of care for a specific patient type and 
to achieve a higher degree of efficiency and a higher 
grounding in the evidence base [15]. Accordingly, CPs 
are used as communication tools between professional 
caregivers to manage and standardize care [16]. 
Different terms are used to emphasize specific 
peculiarities and scopes of CPs, such as intra-
organizational (clinical pathways), inter-institutional 
(integrated pathways) or patient-centered (patient 
pathways) orientations [15], [17], [18]. The common 
ground is to provide an integrating process view on the 
care-relevant items, including medical, organizational 
and administrative aspects, to support the planning, 
execution and improvement of medical care. 

Depending on the maturity of Information and 
Communication Technology (ICT), the previous 
usage of CPs seldomly went beyond the organizational 
level (e.g. checklists, local pdf-files, printed 
management manuals). But meanwhile, ICT 
landscapes are starting to change and to adapt process 
knowledge into HIS design. The resulting continuum 
of HIS’s process awareness goes from not aware to 
process-aligned HIS design (process-centered HIS) 
until real pathway-based HIS, where the CP is a 
configuring part of the running system. Thus, there are 
several HIS implementations for a workflow-oriented 
support of daily care processes [19]–[21], and systems 
that support process-centered care scenarios [10], [11].  

Considering the planning of medical care, HIS 
can support the design of CPs as well as their 
adaptation for a specific patient, i.e., mapping patient 
conditions to CP scopes to identify and customize the 
best matching CP for an individual case. During the 
following stage of CP execution, HIS can provide 
guidance along the CP-defined care process 
concerning communication and documentation but 
also support monitoring and adaptation of the specific 
care process to topical patient conditions. The 

collected data during CP execution can provide a 
profound knowledge base for process evaluation and 
improvement. Based on the data, HIS will be able to 
support a continuous evaluation and improvement, 
both, of specific patient-individual CP instances (ad-
hoc) and of the underlying CP itself. 

2.2 Rising AI in healthcare 

Driven by advances in computing power, machine 
learning and its subfield deep learning has been on the 
rise since the beginning of the 2000’s [22]. Machine 
Learning (ML) can be considered as automated 
analytical model building for conducting cognitive 
tasks and addresses the drawbacks of handcrafted rules 
[23]. Therefore, ML is nowadays in the center of AI 
research in healthcare [24]. A term related to ML is 
“data mining” and can be understood as the process of 
building ML models [25]. With respect to business 
processes, the field of process mining has emerged in 
the last decades and investigates ML approaches to 
gain knowledge by analyzing event logs [26].  

In general, ML techniques can be classified along 
the three types supervised learning, unsupervised 
learning and reinforcement learning [23]. Supervised 
learning refers to problems where a target variable 
should be predicted and a training dataset with input 
data (x) and output data (y) is available [23]. 
Supervised learning is suited to solve classification 
problems, i.e. prediction of a categorical variable (e.g. 
disease diagnosis based on a CT image as input), or 
regression problems, i.e., predicting a continuous 
variable (e.g. prediction of blood sugar level) [27]. 
Typical supervised learning techniques are linear and 
logistic regression, decision trees or Artificial Neural 
Networks (ANNs) [27]. The idea of deep learning 
builds on the latter technique (ANNs) and uses 
complex architectures with deeply stacked layers to 
increase learning capabilities [23]. In contrast, 
unsupervised learning aims to generate knowledge 
about data (patterns and correlations) without a target 
variable (y) being specified [27]. One typical 
unsupervised learning technique is clustering (e.g. 
dividing data from multiple patients into groups of 
similar patients) [27]. Unlike supervised and 
unsupervised learning, reinforcement learning doesn’t 
need a training data set beforehand [23]. Algorithms 
from the field of reinforcement learning (e.g. Q-
learning) solve sequential decision making problems 
to achieve a certain goal by building a model in a “trial 
and error” process or by expert demonstrations [28]. 
Hence, a software agent interacts with an environment 
by taking certain actions that change the 
environment’s state and receives rewards in response 
to the actions [27]. For healthcare, reinforcement 

Page 4119



learning enables personalized treatments such as 
optimizing therapy plans to the patient and the clinical 
goals [29], [30]. 

2.3 Conceptualization of investigation 

Considering the variety of mechanisms how AI is 
able to generate effects in healthcare, there are 
multiple possibilities to enrich pathway-based HIS 
with such techniques. We developed an analysis 
concept that describes general alternatives of AI 
integration in the context of pathway-based HIS (see 
Figure 1). It comprises the following elements:  

Pathway Template: Model of a care process; 
Represents standardized process knowledge; 
Differentiation by views on medical care, coordination 
of professional care delivery and business as well as 
administration; Different reference levels describe 
intra-organizational (micro), cross-institutional 
(meso), and national or international (macro) levels. 

Pathway Instance: Application of the pathway 
model for a patient; process execution on all views 
(care, professional coordination, business & 
administration); pathway systems as application 
systems to apply, execute and store pathway instances. 

Cohorts of pathway instances: Selected set of 
pathway instances; Cohort building by e.g. indication, 
symptom, treatment, demographics, time period, etc. 

Data sources: Multimodal set of structured and 
unstructured data; variety of HIS, application systems 
and devices including, e.g. EHR-systems, clinical 
information systems, health information data bases, 
med-tech devices, patient’s IT in home environment.  

AI: interpreted as black box of algorithms and 
techniques to generate knowledge from different data 
in an automated way for defined purposes. 

With the simplified understanding of AI as a black 
box, two aspects come into focus of the investigation. 
First, for which purposes is AI attempted. And second, 
what data is needed as input for these purposes. We 
assume that AI might be coupled with pathway-based 
HIS to fulfill one or more of these six top-level 
purposes (see Figure 1). These top-level purposes are 
analyzed more in detail by this study. Thus, we 
examine how AI supports ongoing care (P1-P3) as 
well as general learning effects at micro, meso or 
macro level (P4-P6). We further assume that AI could 
basically use four types of data input: multimodal set 
of structured and unstructured data (D.1), templates 
applied in healthcare practice (D.2), data of individual 
pathway instances (D.3) or data of multiple pathway 
instances selected based on a certain criterion, i.e., 
cohort of instances (D.4). This proposed distinction is 
primarily qualitative in nature and should not be 
understood as physically delineable data repositories. 
Rather, data structures of pathway-based HIS should 
be delineated from the set of other data sources. Such 
data structures represent temporally and causally 
related sequences of activities as well as conditions 
and reference applied pathway models, treatment 
plans, or care cases. 

3. Methodology 

The recent popularity of AI in healthcare 
promoted primary studies as well as reviews. In order 
to align the knowledge aggregated therein with our 
own objective, an umbrella review was conducted to 
analyze a large amount of literature in a targeted 
manner [31]–[33]. Its analytical results were combined 
with our analysis concept to derive the PathwAI 

Figure 1. Analysis concept of coupling AI and pathway systems  
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Framework that seeks to support the design of 
intelligent, pathway-based HIS. 

The literature selection was conducted in end of 
June 2021. Three databases have been selected for 
identification of relevant IS or medical literature: 
IEEE Xplore, AIS Library and PubMed. We therefore 
used the search strategy mentioned in Table 1. We 
decided to focus on a short and current time range to 
balance up-to-dateness of a review of reviews with its 
retrospectivity.  
 

Table 1. Search strategy of umbrella review 

Data field Terms 
Title "artificial intelligence" OR "AI" OR "ML" OR 

"learning" OR "mining" 
Title "health*” OR "medic*" OR "care" 
Abstract “review” 
Year 2018-2021 

 
Details of selection process are given in Figure 2. 

We only include articles that a) do not focus on a 
single AI technique; b) do not focus only one specific 
medical field, disease, symptom, treatment or 
intervention; c) state details of review strategy and 
d) discuss findings in relation to CPs and/or associated 
processes. Considering the continuum, from not aware 
to process-centered HIS until pathway-based HIS (see 
section 2.1), we rather remained open minded for 
different technological solutions than stuck to a strict 
inclusion criterion on dedicated types of systems. Both 
such a definition and its application would have been 
difficult to implement. Finally, seven articles matched 
the inclusion criteria for full text analysis (Table 2). 

 

 
Figure 2. Review details according to PRISMA [34] 

Table 2. Analyzed reviews sorted by year  

Authors Title Year 
Kueper et al. 
[35] 

Artificial Intelligence and Primary Care 
Research: A Scoping Review 

2020 

Triantafyllidis 
& Tsanas [36] 

Applications of Machine Learning in 
Real-Life Digital Health Interventions: 
Review of the Literature 

2019 

Shickel et al. 
[37] 
 

Deep EHR: A Survey of Recent 
Advances in Deep Learning Techniques 
for EHR Analysis  

2018 

Erdogan & 
Tarhan [38] 

Systematic Mapping of Process Mining 
Studies in Healthcare  

2018 

Batista &  
Solanas [39] 

Process Mining in Healthcare: A 
Systematic Review 

2018 

Xiao et al. [40] 
 

Opportunities and challenges in 
developing deep learning models using 
electronic health records data: a 
systematic review  

2018 

Islam et al. 
[41] 

A Systematic Review on Healthcare 
Analytics: Application and Theoretical 
Perspective of Data Mining  

2018 

4. Findings 

4.1 Purposes of AI mentioned in reviews and 
implementation approaches 

As summarized in Table 3, there are several AI 
techniques conceivable to address the defined 
purposes. Therefore, we want to focus on a subset of 
techniques that were particularly emphasized in the 
reviewed articles and concisely state how they could 
leverage pathway-based HIS. One promising AI 
technique for analyzing CPs represented as the 
longitudinal sequential patient history in EHRs are 
concept embeddings [37], [40]. Against the 
background that CPs can span several decades of 
lifetime, the idea behind medical concept embeddings 
is to generate aggregated representations of medical 
concepts in the pathway. These aggregations are low-
dimensional vectors capturing the latent relationships 
(e.g. preceding and succeeding diagnoses or 
treatments) [37]. Therefore, approaches originating 
from the field of Natural Language Processing (NLP) 
are used such as word2vec (capturing the context of 
words in a corpus) with adaptations for the medical 
domain (e.g. med2vec) [37], [42]. For instance, the 
skip-gram architecture of ANNs [40] can be used to 
predict the context for a certain input word or in case 
of CPs, predict adjacent diagnoses or treatments based 
on a certain medical concept. As an example, one 
could imagine that a predecessor of a CT scan of the 
abdomen could be abdominal pain, followed by a 
surgery to remove the appendix after imaging. 
However, common approaches based on word2vec 
generated concept embeddings fail to capture the 

Page 4121



actual timestamp relationships, i.e., it is not 
represented if event B happened one week or one year 
before event A (see Zhu et al. [43] for an advanced 
approach). While a medical concept embedding thus 
may provide new insights into a cohort of pathway 
instances, one can go one step further and derive also 
abstract patient representations. This can be achieved 
by aggregating the medical concept embeddings 
contained in the CP of the patient [44]. In a next step, 
similarity metrics can be calculated between pairwise 
patient representations and may facilitate scenarios 
such as analysis of comparative treatment 
effectiveness and personalized medicine [43]. 
Furthermore, clinical phenotyping can be considered 
as an application of concept embeddings by matching 
patient vectors to a defined phenotype vector [40]. In 
addition, one can use the abstract patient 
representations as input for predictive models (e.g. to 
predict risks or clinical outcomes). Several studies also 
reveal that this approach can increase the predictive 
performance compared to raw data input [37].  

Considering that pathway data is sequential in 
nature, Recurrent Neural Networks (RNNs), a special 
type of ANNs that are able to capture long-term 
dependencies, are particularly suitable for prediction 
problems [37], [40]. In general, for supporting 
diagnostics and therapy, one may distinguish with 
respect to prediction tasks between identification and 
classification of diseases, as well as sequential 
prediction of diagnoses and clinical events. With 
respect to the output, one may further distinguish 
between outputs without (e.g. general risk for a certain 
disease) and with temporal constraints (e.g. timespan 
to next hospital visit and diagnosis) [37]. Furthermore, 
identified purposes that also rely on prediction 
problems encompass referral support, forecasting of 
service demand, disease or infection control, patient 
management and efficiency improvement.  

In addition to these techniques which are 
particularly rooted in the field of deep learning, there 
is a vast body of literature on techniques from the 
process mining field. For example, clustering is often 
considered as a pre-processing step in the discovery of 
new processes, i.e., aggregating the event logs of a 
cohort of pathway instances to identify the underlying 
pathway template(s) [38], [39]. Frequently used 
clustering algorithms with respect to process mining 
are Trace Clustering, K-Means and Hierarchical 
clustering algorithms, whereas for process discovery, 
the Heuristic Miner and Fuzzy Miner algorithms 
dominate in the literature [38], [39].  Based on the 
discovered processes, templates may be derived that 
could serve to check on how a business process or CP 
instance align with the template (conformance 
checking) [39]. Furthermore, there are process mining 

techniques available to extend the pathway template 
based on the observed pathway instances (process 
enhancement) [39]. 

Last but not least, given that structured event logs 
with timestamps are often not available, as EHRs 
usually contain mixed data (structured and 
unstructured), advanced information extraction 
techniques may be applied to reconstruct and derive 
the CP. Especially for dealing with unstructured data 
(e.g. clinical notes), advanced NLP techniques are 
particularly useful for extracting single concepts, 
temporal events, relations or expand 
abbreviations [37], [40], [41].  

4.2 Allocation to top-level purposes 

Within the interpretation phase, we were able to 
make an argumentative allocation to the defined top-
level purposes of our analysis concept. Rarely was a 
one-to-one mapping identified (e.g. Disease 
identification and classification for P.1). More 
frequently, assignments to two to three top-level 
purposes were determined. The close connection 
between the process views (medical, coordination, 
business), a primarily abstract description of the 
purposes by the reviews, and the logical coexistence 
of added benefits are the main reasons for this. The 
latter can be illustrated by clinical phenotyping. On the 
one hand, knowledge about phenotypes is extracted as 
a model (P.4), and on the other hand, patients (pathway 
instances) can subsequently be assigned to learned 
phenotypes for individualization of care processes 
(P.1). The allocation made (see Table 3 and Figure 3) 
leaves room for further interpretation and should 
therefore be classified as a suggestion by the authors. 

4.3 Relation to pathway-based HIS 

In addition to conceptual links, systemic input and 
output relationships were also explored to describe the 
role of pathway-based HIS in interaction with AI. 
Even authors of analyzed reviews did not mention 
explicitly the relation between AI applications and 
pathway concept or realizing pathway-based HIS, 
their contributions indicate implicitly whether 
pathway-based HIS do “only” provide interpretable 
and interoperable data as input of AI techniques or 
pathway based HIS and AI occur in a synergetic loop, 
where outputs of AI affect pathway models or 
instances. These analysis results are embedded within 
the PathwAI Framework (see Figure 3) and also leaves 
room for further interpretation. Again, it should 
therefore be classified as a suggestion by the authors 
and used as aid for architectural design activities. 
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Table 3. Findings of umbrella review - purposes of AI application in relation to pathway-based HIS 

Purpose of AI 
application Description Purpose 

group Ref 

Diagnostic and 
therapeutic decision 
support 

AI provided information to inform diagnosis and treatment decisions. Diagnostic 
applications typically seek for onset or probability that a patient has a particular 
condition or recommend diagnosis categories. Diagnostic decision support is used to 
describe and/or predict various conditions or events. Therapeutic decision support 
includes any management or care provided (or absence of unnecessary actions) to a 
patient with specific health condition(s) or symptom(s). Therapeutic applications 
result typically from diagnostic decision support. They are often used to predict or 
define a personalized treatment, e.g. medication or treatment plans, for improvements 
in quality outcomes or efficiency. 

P.1, P.2, P.3 [35], [36], 
[40], [41] 

 
Disease 
identification and 
classification 

AI used to screen and detect whether specific diseases can be confirmed. Different 
types of Classifications are applicable: disease specific (categorical or multi-label) or 
disease non-specific (normal, preictal or seizure subject). 

P.1 [40], [41] 

 Medical concept 
embedding 

AI used to derive abstract representation of clinical concepts based on analysis of real 
cohorts. It aggregates medical concepts that occur frequently together. Concept 
embedding is often an intermediate, descriptive step for building a predictive model 
of previous and next steps from a certain position in the pathway for better 
performance.  

P.1, P.4 [37], [40] 

 Clinical 
phenotyping 

AI used to discover phenotypes via feature representation and investigates association 
of pathway instance to different phenotypes. First, phenotypes are extracted as new 
knowledge out of cohorts of instances, e.g. by prevalence of a condition or patterns of 
patient profiles. Second, single instances are matched with discovered phenotypes. 
Third, treatments might be personalized, e.g. by pathway instance adaptions. Clinical 
phenotyping is considered as a type of concept embedding. 

P.1, P.4 [35]–[37], 
[40] 

 
Sequential 
prediction in 
diagnostics  

AI predicts future diagnoses based on past longitudinal event sequences (patient’s 
history), e.g. onset of new disease condition, risk of in-hospital mortality, discharge 
diagnoses. Differentiation of static (categorical or numeric) or temporal (time stamp 
or range included in prediction) 

P.1 [37], [40] 

 
Sequential 
prediction of 
clinical events 

AI predicts future clinical events based on past longitudinal event sequences 
(patient’s history), e.g. unplanned hospital admission/ readmission, length of stay. 
Differentiation of static (categorical or numeric) or temporal (time stamp or range 
included in prediction) 

P.2, P.3 [36], [37], 
[40] 

Process clustering AI identifies groups of similar business processes or care pathways based on analysis 
of a cohort of instances. P.1, P.2, P.3 [38], [39] 

Process discovery and 
proof of conformance 

AI used to derive retrospectively or ad hoc business process or care pathway instance 
based on analysis of a single or a cohort of instances. Often follows a check on how a 
business process or care pathway instance align with the underlying template. 

P.1, P.2, P.3 [38], [39] 

Referral support AI provided information to support decisions about referring patients to specialist 
services or AI assisted with technical aspects of the referral process. P.2 [35] 

Health care utilization 
analyses 

AI provided information about interactions with or processes within health care 
systems, for example frequency or quantity of patient visits. P.2, P.3 [35] 

Forecasting of service 
demand AI used to predict demand of healthcare services on macro level P.2, P.3 [41] 

Disease or infection 
control AI used to monitor and predict dynamic of diseases or infections on macro level P.2, P.3 [41] 

Efficiency improvement AI used to predict service demand on micro level and improve resource utilization 
and allocation (decision support) P.2, P.3 [41] 

Patient management AI used to adapt scheduling and forecasting based on patient conditions and behavior 
(decision support) P.2, P.3 [41] 

Performance 
quantification AI used to quantify performance of medical service delivery P.3 [41] 

Information extraction AI used to extract knowledge from structured or unstructured data P.4, P.5, P.6 [35], [41] 

 Process 
enhancement AI used to extent pathway templates with information from event logs. P.4, P.5, P.6 [38], [39] 

 
Derivation of 
healthcare 
programs 

AI used to improve design of national healthcare programs (macro level) P.4, P.5, P.6 [41] 
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5. PathwAI Framework 

The PathwAI Framework (see Figure 3) sorts the 
identified purposes of AI applications to enhance top-
level impacts on individual CPs (P.1), its coordination 
(P.2) and related business as well as administration 
processes (P.3). Impacts on these intertwined process 
views effect ongoing individual care delivery and may 
result consequently in improved care delivery of 
population. Besides this distinction, the proposed 
framework further indicates purposes by its context of 
learning: learnings about pathway models (P.4), 
learnings about care coordination (P.5) and learnings 
about business processes and administration of 
healthcare (P.6). Here, AI is applied to extract 
knowledge that should be used to develop new 
pathway models (templates) on micro (e.g. 
institutional procedures), meso (e.g. integrated 

pathway of care networks) and macro level (e.g. 
national guidelines). 

Either new AI applications tend to one or more of 
the purposes mentioned, all techniques require a sound 
data input that ensure interpretability and 
interoperability. Pathway-based HIS could therefore 
play a critical role, take the potentials to a new level 
and master the challenge of data accessibility and 
quality. Such systems are able to ensure 
comprehensive and structured data sets of individual 
pathway instances (D.3) that are linked to selected 
templates (D.2) and in consequence of cohorts of 
specific interest (D.4). Paired with the increasing 
amount of accessible and valid health information 
from various data sources like EHR, smart devices of 
patients as well as specialized medical databases 
(D.1), the coupling of AI and pathway-based HIS 
promises impactful and strong support for 
individualized care and learning health systems. 

Figure 3. PathwAI Framework - pathway-oriented application of AI in healthcare 
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6. Discussion 

6.1 Limitations 

As a qualitative research paper, the presented 
contributions are subject to some limitations. While 
the selection and analysis of the literature was 
conducted independently by two researchers, 
limitations of objectivity remain due to the authors 
interpretations. Additionally, umbrella reviews seek to 
interpret prior interpretations done by the authors of 
selected reviews which are also limited in its 
objectivity. This “inheritance of subjectivity” might be 
counteracted by the inclusion criterion of required 
review strategies. Looking at the parameters of the 
selection process and the list of analyzed 
contributions, two further limiting aspects can be 
identified: Comprehensiveness and timeliness.  

 
6.1.1 Comprehensiveness. In the final proof of 
eligibility, 18 of 31 articles were excluded due to 
missing or insufficient description of review details. It 
is not always clear whether this is reasoned due to a 
lack of a systematic procedure or an unsatisfactory 
presentation. Either way, we decided to look back on 
excluded papers of this last selection step. Thus, we 
checked three additional articles with the most 
intensified resonance [1], [45], [46] (count of citations 
assessed via Google Scholar).  
 
6.1.2 Timeliness. The high number of primary studies 
reflects the topic’s current relevance. However, the 
speed of technological progress contrasts the fact that 
five out of eight articles were published in 2018. Thus, 
the critique occurs that recent progress could not be 
sufficiently taken into account. Also, reviews, 
especially umbrella reviews, hold a retrospective 
analysis position and generate only limited insights for 
the present and future. Analogous to the previous 
critique, we additionally checked three articles 
published in 2021 to strengthen the awareness of 
current research [47]–[49].  

6.2 Consideration of additional reviews 

6.2.1 Reviews of high relevance. The requirement of 
a presented systematic review process excluded three 
articles which enjoy increased attention in the 
scientific discourse. Since IS research should benefit 
from review methods of other disciplines [50], these 
articles were selected to identify additions to previous 
findings. All in all, the additional reviews align with 
our assumptions stated in section 2.3 and generally 
confirm our framework. But they highlight those top-

level purposes, that were not discussed prominently 
within the analyzed reviews (P.4, P.5, P.6).  

In their review paper in Nature Medicine journal, 
He et al. show further alternatives, including: 
treatment alignment with guidelines (P.1), efficiency 
increase of hospital management (P.5, P.6), 
epidemiological registries for population management 
(P.5, P.6), outcome assessment on quality (P.5, P.6) 
and the development of disease prevention guidelines 
(P.5, P.6) [1].  

Ching et al. describe AI applications in 
diagnostics, biological studies and therapeutics, 
especially in medications [45]. They point out, that AI 
is also applied for longitudinal analysis for high value 
knowledge extraction in different contexts (P.4, P.5, 
P.6). They differentiate the potential to improve 
choices of interventions (P.1) and methods for the 
development of new interventions (P.4). Thereby, the 
prediction of actions to change the outcome in a 
certain way are even more challenging than prediction 
of outcomes under specified conditions. 

Miotto et al. summarize in their review, how AI is 
able to use EHR data for prediction and classification 
tasks based on a patient’s history [46]. Comparing the 
findings of this umbrella review, their results primarily 
confirm purposes of AI applications that enhance 
quality of diagnostic or therapeutic interventions.  

 
6.2.2 Recently published reviews. Also, recent 
publications confirm the PathwAI Framework. The 
review of Enticott et al. focusses rather on data driven 
scenarios in Learning Health Systems than on applied 
AI techniques, which principally correspond to top-
level purposes on knowledge extraction (P.4, P.5, P.6) 
[48]. The authors highlight benefits in evidence-based 
care (P.4), clinical organization or system-level 
performance (P.5, P.6) and concretize it, e.g. 
compliance with clinical guidelines and a coexistence 
of standardization and specialization of care.  

Koteluk et al. and Bharadwaj et al. confirm 
benefits in diagnostic and therapeutic processes 
especially in terms of personalization, organization 
and velocity of action [47], [49].  

6.3 Future research 

The results of our review reveal that process-
related applications of AI are well established so far 
and under ongoing research for realizing personalized 
and efficient CPs including their organization, 
coordination and management. Further, the results 
indicate that synergies can be unlocked by design and 
implementation of intelligent, pathway-based HIS. 
Hence, a design method or design principles to support 
those activities shall be investigated in subsequent 
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work. However, the results also show that research on 
applications for gaining general knowledge about 
pathway templates are still in its infants but deep 
learning approaches could make a significant 
contribution here in the future. Likewise, the 
application of AI techniques to learn especially on 
meso and macro layer has so far been little described 
in the literature and could be addressed in future 
research. With regard to achieving the notion of 
personalized medicine, AI-empowered clinical 
phenotyping will be a significant driver. Especially 
with advanced and ubiquitous digital health 
applications on the patients’ side such as “virtual 
coaches”, new data can be obtained that could enable 
new insights on CPs outside the clinical environment. 
Additionally, future research should elaborate how 
reinforcement learning could leverage pathway-
supporting HIS. Reinforcement learning could provide 
a powerful framework for fully autonomous and 
adaptive CPs (similar to autonomous driving) but 
patient safety considerations should always come first 
[51]. Finally, future studies should demonstrate the 
usefulness of the proposed framework as guidance for 
designing and implementing AI applications with 
relation to pathway-based HIS.  

6. Conclusion  

This umbrella review offers a high-level overview 
on how HIS can be improved by ensuring synergies of 
pathway-based HIS and the application of AI within 
such HIS landscapes. A systematized analysis of 
purposes and interdependencies led to the proposed 
PathwAI Framework. It aims to guide research and 
development teams in designing data-driven, learning 
HIS. It offers a structured view on the bandwidth of 
possible improvements in healthcare and, thus, 
guidance for interdisciplinary innovation teams of 
clinicians, technologists and health systems managers. 
This study finally provides evidence on AI 
applications that have already been investigated, 
developed and applied in relation to CPs. Future 
research shall further focus on the symbiosis of AI 
within pathway-based HIS to ensure adaptive, multi-
level learning and high-performance HIS.  
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