
The feedback dynamics of brain-computer interfaces in a distributed
processing environment

Ayatelrahman Elsayed
New Mexico State University

aynasser@nmsu.edu

Chuck Creusere
New Mexico State University

ccreuser@nmsu.edu

Abstract

This paper describes a distributed paradigm
for human brain-computer interfaces that can
incorporate machine learning-directly stimulus
feedback to the subject. Specifically, we use OpenBCI
hardware and software to capture real-time EEG
(Electroencephalography) waveforms from a subject on
a host “client” computer and stream them to another
“server” computer which could perform complex
analyses on the waveforms prior to sending commands
back to the OpenBCI interface directing alterations to
the stimulus. In addition to describing the conceptual
system framework, we present here the test results
quantifying the closed-loop system latencies under
various conditions. Quantifying latency in any feedback
control loop (in this case, one that actually contains the
human subject’s brain) is vital since excess latency can
destabilize a system.

1. Introduction

Creating hybrid systems that combine the strengths
of the human mind with those of digital computers
has long been a goal of the research community,
with the fundamental limitation being the construction
of efficient brain-computer interfaces (BCIs). To
date, however, much of the focus on BCIs has
been uni-directional: from the human to the machine
[1], [2]. Recently, a few researchers have started
investigating scenarios in which the perceptual feedback
loop is “closed”—i.e., systems in which a perceptual
stimulus is altered based on the real-time brain response
[3]. Thus far, the scope of such “Brain-in-the-Loop”
systems has been very narrow, with such systems
as exist now being designed for specific, one-off
experiments. Our goal here is to introduce the
idea of a generic client-server-based, distributed
Brain-in-the-Loop (BitL) paradigm and to study the
vital issue of round-trip latency in such a system under
various conditions.

In this paper, after first providing background
information about the EEG-based brain analysis in
Section 2, we introduce our prototype distributed BitL
architecture in Section 3. In Section 4, we discuss
our approach for evaluating the round-trip latency of
the prototype system while the results are presented
and interpreted in Section 5. Finally, we discuss our
conclusions in Section 6.

2. Background

2.1. Human Brain

The brain is the most complex organ in the human
body. The brain is what we are; all emotions,
movements, thoughts, memories, and speech are created
by electrical signals passing through trillions of differing
shaped, sized, and functioned neurons. Over the
centuries, numerous scientists have dedicated their
time and effort to answer the fundamental question of
how the brain works. The earliest brain documented
reference dates to the 17th century BC with the Egyptian
medical text called “The Edwin Smith Surgical Papyrus”
[4]. Later in the 19th century, the first brain-imaging
technique was discovered by Angelo Mosso called
“human circulation balance” [5]. The basic idea was
similar to that of functional magnetic resonance imaging
(fMRI), widely in use today, in that it measured the
redistribution of blood during emotional and intellectual
activity. Thanks to modern brain imaging techniques,
we now have a vast knowledge about the brain,
including how the neurons connect throughout synapses.

2.2. Brain Data Acquisition

When large populations of neurons inside the
brain fire synchronously, they generate signals having
both an electrical and a magnetic nature. This
phenomenon inspired scientists to create EEG, which
measures the voltage differences across the scalp
via electrodes. These flowing electrical currents
induce magnetic fields, which can be captured by
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Magnetoencephalography (MEG). Another existing
brain imaging tool is functional magnetic resonance
imaging (fMRI), which measures the amount of blood
flowing to different portions of the brain and uses that
as a proxy for the amount of neural activity present. A
significant challenge in using EEG as a brain imaging
tool, however, is the large variation in skull and scalp
electrical conductivity from person to person which
results in inconsistent results [6]. This inconsistency
is a significant motivator of our desire to incorporate
neurofeedback into the system since such feedback
allows the system to adapt the stimulus for each subject
over a wide range until a hypothesized response is
elicited.

2.3. Neurofeedback

Neurofeedback (NF) is a type of biofeedback that
uses real-time monitoring of brain activity to alter a
stimulus being applied to the subject. The most common
brain-sensing tool for NF applications is EEG due to
its low cost and easy application. When used in a
neurofeedback application, electrodes placed on the
scalp measure the localized electrical brain activity and
feed this information into an algorithm that alters the
stimulus—a perceived audio or video signal or possibly
even an electrical signal applied directly to the scalp.
NF has been used, for example, as a peak-performance
training tool to enhance cognition for healthy subjects
[7]. In a 2014 study, theta-upregulation neurofeedback
at EEG electrode Pz was shown to improve memory
consolidation [8]. In another study from 2019, human
performance in a demanding sensory-motor task was
improved via online neurofeedback that focused on the
regulation of arousal [9]. NF has also been widely
used as a therapeutic tool to control the symptoms
of patients by observing their deviating brain activity
[10] or by boosting motor imagery practice for stroke
recovery patients [11]. Particularly relevant in the
current context is a method of neurofeedback known
as Brain State-Dependent Brain Stimulation (BSDBS)
which uses EEG along with real-time signal analysis to
adjust brain stimulation in a specified manner [12].

2.4. Utility of Closed Loop BSDBS

Open-loop BSDBS monitors and analyzes the
current brain state but directs the neural feedback
without consideration of the current brain state [13]. For
example, specific EEG amplitude or phase oscillations
might be used to activate a Transcranial Magnetic
Stimulation (TMS) device in a preprogrammed manner,
attempting to estimating the state-specific corticospinal
excitability [14]. Conversely, in a closed-loop BSDBS

system, the current brain state is used to alter the
stimuli to drive the brain into a desired state. Thus, a
closed-loop BSDBS system aims to self-regulate brain
activity using neurofeedback to guide the application
of brain stimulation. For example, a biomedical
engineering team at Columbia University in 2019 used
electroencephalography-based neurofeedback to shift
an individual’s arousal so that their task performance
increases significantly [9]. This work demonstrates a
closed-loop brain-computer interface for dynamically
tuning arousal to affect online task performance,
following the Yerkes and Dodson law. The prototype
BitL system described below would, amongst other
things, facilitate the implementation of closed-loop
BSDBS systems in a distributed manner, allowing more
sophisticated machine learning algorithms to be used to
more optimally determine how brain stimulation should
be adjusted.

2.5. Anatomy of a Closed-Loop
Neurofeedback System

All closed-loop neurofeedback systems have five
fundamental components:

• Acquisition of the brain signals: A brain sensing
technique must be used: EEG, MEG, or fMRI.
Each technology has pros and cons regarding its
use in a neurofeedback system (e.g., temporal
versus spatial resolution).

• Online data pre-processing: The detection and
removal of artifacts (e.g., eye movements); D.C.
drift compensation.

• Feature extraction: Features are extracted that
more compactly represent information useful for
analysis and input to machine learning algorithms.
Potential features of interest include band power
(i.e., delta, theta, alpha, beta, and gamma), Fourier
spectrum [15], and wavelet coefficients [16].

• Generation of the feedback signal: The
extracted feature is mapped to a sensory stimulus
by a machine learning algorithm. Some of
the more sophisticated techniques use complex
deep learning approaches. For example, support
vector machines and convolution neural networks
have been used for real-time classification in
EEG-based emotion recognition systems [17]
[18].

• Online adaptation: Suppose that the machine
learning algorithm that generates the feedback
stimulus can alter its behavior based on the
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inputs that it is receiving (i.e., the features).
In that case, we can say that this learning
algorithm is online adaptive. While numerous
online adaptive machine learning algorithms have
been developed, those based on the concept of
‘reinforcement learning’ have been applied to
EEG waveforms in the past with good results [19]
[20].

3. Description of Prototype System

3.1. System Overview

The front end of the proposed system consists of
a host computer (i.e., the client) running the OpenBCI
GUI that is wirelessly communicating via Bluetooth LE
to a Ganglion board which is, itself, physically attached
to four electrodes and one ground wire. The GUI accepts
the real-time EEG waveforms from the Ganglion board
and computes various derivative products, including
band powers and short-time Fourier spectra. Software
that we have added to the OpenBCI GUI (as a
Widget) can stream any of this information (raw EEG,
band power, spectrum, etc.) using Lab Streaming
Layer (LSL) TCP/IP-based communication protocol to
another device. As configured in the current prototype
system, we chose to stream the five band power readings
from each of the four electrodes. At the prototype
system’s back end, a server running Matlab receives
and processes the transmitted real-time data stream (in
our prototype, the band powers for each electrode) from
the client. Matlab then sends a corresponding feedback
signal back to the front-end client, telling it how to alter
the stimulus presented to the subject (see Figure 1).

Figure 1: Closed-loop system diagram.

3.2. Hardware Architecture

We evaluated our distributed BitL prototype concept
using various devices and operating systems to verify its
cross-platform capabilities. Specifically, we considered
two Linux-based laptops as client and server, two

Windows laptops, and a Windows client laptop with a
CentOS 8-based Linux server. It worked successfully on
them all. In the interest of brevity, however, we will only
present here the results for two of the configurations:
two Windows-based laptops as illustrated in Figure 2
and a Windows-based laptop communicating with a
Linux server as shown in Figure 3. Figure 2 shows
the laptop to laptop hardware configuration where the
two laptops are connected with LAN cables to a private
network provided by a Belkin AC 1200 DB Gigabit
router. OpenBCI four-channel headband is connected to
the ganglion board, communicating with the front-end
client laptop using Bluetooth. A Windows 10 HP laptop
with an Intel core i5-1035G1 CPU running at 1.00GHz
and having 8 GB RAM serves as the front-end device.
The second connected laptop (the back-end device) is a
Windows 10 Dell laptop with an Intel Core i7-7500U
CPU running at 2.70GHz and having 8 GB RAM.

Figure 2: Hardware setup between the two laptops.

Figure 3 shows the client laptop and Linux server
connecting over a public Ethernet service. Here, the
back end computer used is a Centos 8-based Polywell
server with an Intel Core i7-5820K CPU running at
3.30GHz and having 64 GB RAM. The Ethernet router
is part of the public NMSU network.

Figure 3: Hardware setup between the laptop and the
server.

OpenBCI Board: The OpenBCI Ganglion is a low-cost
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but high-quality bio-sensing device. It has four channels
which it samples at a rate of 200 Hz, and is compatible
with EMG, EEG, and Electrocardiography (ECG)
electrodes. The Ganglion relies on a standard Bluetooth
4.n (BLE) connection; therefore, it is compatible with
any BLE device. For a computer to communicate with
the Ganglion board, however, a ganglion dongle must
be used which would normally limit the sampling rate
to 100 Hz. Fortunately, the use of a delta compression
protocol by the OpenBCI software interface brings the
rate back up to 200 Hz. In addition to the four scalp
electrodes, the Ganglion board also connects to two ear
clips which provide the ground reference. To facilitate
communication between the Ganglion board and the
OpenBCI GUI, the OpenBCI ‘Electron Hub’ is used.
This hub is a TCP/IP server listening on port 109996
at the clients’ loopback address (127.0.01).

3.3. Software Architecture

3.3.1. Overview The two computers, one at the
back-end and one at the front-end, communicate
together using Lab streaming layer (LSL). The software
system relies on five stack layers as illustrated in Figure
4 [21]. OpenBCI GUI acts as the front-end application
at the application layer, while Matlab represents the
back-end. Both applications request and send data to
one another in addition to performing other processing
tasks. The next lower layer is the transport layer which
creates the TCP or UDP header, and below it is the
Network layer where the source and destination IP
addresses are added to generate a packet. This packet
is then sent to the Data Link layer, where the MAC
address information is added to create a frame which
is finally sent to the Physical layer which transmits the
actual message bits.

Figure 4: Software stack setup.

3.3.2. OpenBCI GUI OpenBCI GUI is a powerful
open-source tool for visualizing, streaming, or even
recording bio-signal data (EEG in our case) from an
OpenBCI hardware device. In particular, it can stream
real-time data to compatible third-party software (e.g.,
Matlab, python, Neuromore, OpenViBE, BrainBay, and
BioEra). It can be used as a standalone application
or as a sketch in the Java “Processing” integrated
development environment (IDE). The Processing IDE
is a powerful open-source tool for visualization
and software prototyping used by research labs of
well-known companies like Google and Intel for
prototyping new interfaces and services. OpenBCI
GUI supports ‘widgets,’ which allow new capabilities
to be easily added to it. OpenBCI GUI already has
many widgets that are part of the standard distribution,
including the time series, band power, FFT, and
networking widgets. This latter widget supports data
streaming to other Apps or devices using one of four
possible protocols: Serial, UDP, Open Sound Control
(OSC), or Lab Streaming Layer (LSL). We chose
here to use LSL over the other available network
protocols. The serial protocol requires a dedicated
hardwired connection. It was thus not a viable choice
for future cloud-based implementations while OSC was
not a candidate because it does not support real-time
communication. As to the tradeoff between LSL and
UDP, we chose LSL because it supports both TCP and
UDP protocols and is thus more flexible than just using
UDP by itself.

3.3.3. Lab Streaming Layer The Lab Streaming
Layer is an open-source network protocol for
synchronized data streaming, supporting sampling
rates from 44100 HZ for audio to 24 frames/second
for video. The streaming Layer API, the liblsl library,
provides two data representations for the client to
stream the data where a “sample” within the OpenBCI
architecture contains the measured voltages of all
channels at a given time instant. A “chunk” represents
multiple samples and is used to improved throughput.
Every successful connection starts with the “Outlet”,
the stream source, advertising itself on the network.
The streaming Outlet can use IPv4, IPv6, or both IP
stacks in parallel, and it also uses UDP for broadcasting
on port 16571, creating multiple sockets. Each socket
listens on a different multicast address in the preferred
range.

In parallel, the Outlet creates a TCP server socket
in the port range of 16572-16604 to handle data
transmission requests. The transmission requests can
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be for data streaming when the inlet pulls samples or
for meta-data, where the inlet retrieves the meta-data
describing a stream. On the receiver side, a stream
resolver is created to resolve the transmitted stream. For
synchronization, a built-in clock provides time stamping
for the transmitted stream, achieving sub-millisecond
accuracy. The built-in clock is based on Network Time
Protocol (NTP).

3.4. Simultaneous Communication

3.4.1. Modifying the Network Widget Since the
OpenBCI GUI networking widget does not support
incoming data streams, we first needed to modify it to
create our prototype BitL system. Multiple changes
in multiple source files are required to accomplish this
task. The modifications that we made are summarized
as follows:

In W Networking.pde file

• Adding LSL stream inlet and stream Info as LSL
objects.

• Creating a receiving function called
“ReceiveData(),” where an LSL stream inlet
is opened, and inlet samples are pulled. This
function receives any data in the inlet identified
by the stream name.

• A “Receive” option is added to the widget’s
dropdown menu.

To add “Receive” to the dropdown menu, the
following changes are required.

In SoftwareSettings.pde file

• “Receive” is added in the nwDataTypesArray
array of strings.

• ‘Private final String kJSONKeyReceive =
“Receive”’ is added to the file.

To alter the stimulus in another widget, a global
variable must be created In DataProcessings.pde file,
and that variable name must be used in both the network
widget and the widget altering the stimuli: e.g.,

• A global Integer variable is created with a default
value of zero (Delta).

• Received Data variable is assigned in
ReceiveData() function with the value of
feedback signal from Matlab corresponding to
maximum power band.

• Casting received “float” number from Matlab
to “integer” variable which is then assigned to
Received Data Variable.

3.4.2. Back-End Compute Server We wrote a
Matlab script for simultaneously sending and receiving
real-time data that uses the lab streaming layer library
functions on the server end. A sending stream is created
with two channels, a sampling rate of 100Hz, and a
source id of ‘sdfwerr32432’. For receiving, we designed
a resolver to receive the OpenBCI GUI sending stream,
identified by the name of ‘obci eeg2’. The received data
stream is pulled in by Matlab in chunks, increasing the
throughput.

A problem arises, however, that can cause the
sending and receiving processes in the OpenBCI GUI
not to operate simultaneously. The size of the data
matrix received by the Matlab from the OpenBCI GUI
varies from 4x0 up to 4x32 (4 elements with either 0
or 32 bits each). If no data is received (i.e., matrix of
size 4x0), Matlab will not transmit any data back to the
OpenBCI GUI, and this will cause the OpenBCI GUI to
freeze as it is stuck trying to pull in the expected Matlab
frame. When this occurs, no data will be transmitted
by the GUI. Since Matlab is also waiting for data (from
the OpenBCI GUI), it also gets locked up, and thus
the entire system becomes paralyzed. To overcome this
problem, we have forced Matlab to push a dummy data
“111,111” to its Outlet when it receives a matrix of size
4x0 from the GUI.

4. Experimental Setup: Closed-Loop
Delay Calculations

The time difference between the OpenBCI GUI
client sending a message to the back-end Matlab server
and it receiving back a reply is a critical parameter for
any feedback ‘control’ system as it affects the stability
of such systems. The timing diagram illustrated in
Figure 5 demonstrates the process of calculating the
round-trip loop delay (LD), which is the difference in
time between the GUI’s receipt of the reply (tRG) and
its prior transmission of the original message (tTG).
To calculate this, several steps are required. First, the
OpenBCI GUI client sends a flag of “-1” for each of the
five sending frames. At the back-end, the Matlab server
sends back one of three different frames, depending
on what it received from the client: 1) if it received
nothing, it sends a frame of [111,111]; 2) if it received
the -1 flag frames, it sends a flagged frame of [-1,-1];
otherwise, it sends a [888,999] frame. OpenBCI GUI
records the time it transmitted its flag frame, tTG, and
the time it received the reply from the Matlab server,
tRG. The GUI then stores these times in a text file along
with the EEG band power and frame rate information.
A mandatory pause in the Matlab program running on

Page 3987



Figure 5: Closed-loop system timing diagram, where
LD is the round-trip loop delay.

the server must be inserted after each transmission to
prevent system failure. How the length of this pause
affects the system’s performance is quantified in the
results section below. A python script extracts the flag
transmission and reception times from the stored file and
calculates the statistics presented below.

5. Results

5.1. Impact of Server Processing Delays on the
Round-Trip Delay

We stated in the previous section that we needed
to insert a ‘pause’ into our Matlab server program
for the closed-loop system to function correctly. We
will discuss the reasons for this requirement in the
next section after reviewing the results here. It is
important to note that the inserted ‘pause’ is equivalent
to the processing delay that a complex machine learning
program might incur as it analyzes the incoming EEG
stream and formulates the optimal reply to the OpenBCI
GUI client. Thus, the potential utility of these results
goes well beyond the simplistic framework used here to
calculate them.

For visualizing the loop delay in relation to the
induced Matlab delay, we use the boxplot tool.
A boxplot is one of the best statistical tools for
visualization since it summarizes five vital statistics (i.e.,
maximum, minimum, median, Q1, Q2 ) in one plot, as
shown in Figure 6 [22].

Considering first the hardware setup for Dell-Hp
private router configuration of Figure 2, Figure 7a
shows box-plots for 20 , 30 and 31 milliseconds of
Matlab-induced delay. As shown, the loop delay is
very high, ranging from 99 up to 6717 milliseconds.
The main common theme for these three cases is that
the number of sent flags differs dramatically from the
number received. The difference between the number
of received flags and sent flags decreases as the pause
increases, reaching a difference of 11 flags in the case
of a pause of 31 ms. This difference in flags sent
versus flags received vanishes when the Matlab pause

Figure 6: Box-plot illustration.

is between 32 and 200 ms. Figure 7b shows a boxplot of
the round-trip loop delay with Matlab pauses of between
32 and 50 ms, and we see that, as expected, the median
of the loop delay increases as the pause length increases.
Figure 7c shows the boxplot of the loop delays for
Matlab pauses of 100 and 200 ms, and we see that the
median of loop delay is almost equal to the pause lengths
in both cases. Obviously, in the case of longer Matlab
pause lengths, the length of this pause dominates the
round-trip loop delay. Studying these figures, we note
that for Matlab pauses of greater than 32 ms, the increase
in the median loop delay as the pause length increases is
fairly linear. It is recommended in any statistical study,
however, to display results both with and without the
outliers. With this in mind, Table 1 shows the mean,
the standard deviation (SD), and the 95% confidence
intervals (CI) of the loop delay, both with and without
outliers. In both cases, the round-trip loop delays are
highly linear over most of the range of Matlab pauses,
but the results with outliers removed generally have
narrower confidence intervals.

These results also show that for the outlier-free case,
the difference between the mean loop delays (MLD)
and Matlab pause times (MP) is consistently around two
milliseconds with a maximum of 2.6 ms and a minimum
of 1.1 ms, as shown in Table 1. This difference is
explained by the execution time of the Matlab code,
which is around 2.56 ms. Thus, the vast majority of
the round-trip loop delay is caused by the Matlab code:
either intentionally introduced or due to its processing
latency. We note, however, that this inherent processing
latency is not a fundamental system limitation because
it is an order of magnitude smaller than the minimum
32 ms delay that we were required to introduce for the
system to operate correctly.

With respect to the Linux-HP/NMSU-network
configuration of Figure 3, Figure 8a illustrates the
boxplot of round-trip delay corresponding to Matlab
pauses of 20, 30, 31, 32, 33 and 35 ms. We note that the
average round-trip delays are considerably increased, as
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Table 1: Loop delay results’ statistics for Dell-HP router setup in Figure 2.

Matlab pause
Loop delay with outliers Loop delay without outliers

Outliers%Mean SD CI Mean SD CI
20 ms 3905.0 1981.3 [-13896.4, 21706.4] 3905.0 1981.3 [-13896.4, 21706.4] 0.0 %
30 ms 1710.5 2108.3 [840.2, 2580.7] 1710.5 2108.3 [ 840.2, 2580.7] 0.0 %
31 ms 1845.6 412.6 [1717.0, 1974.2] 1845.6 412.6 [1717.0, 1974.2] 0.0 %
32 ms 42.5 43.8 [ 30.1, 54.8] 34.6 0.9 [34.4, 34.9] 9.8 %
33 ms 38.1 13.2 [ 33.2, 43.1] 34.9 1.3 [34.3, 35.4] 6.7 %
35 ms 40.3 11.7 [ 36.2, 44.4] 37.6 1.7 [37.0, 38.2] 5.9 %
40 ms 43.2 10.3 [39.9, 46.6] 41.1 1.1 [40.8, 41.5] 7.9 %
43 ms 45.6 4.0 [44.4, 46.8] 45.3 1.5 [44.8, 45.8] 4.4 %
45 ms 48.1 3.5 [47.0, 49.3] 47.5 1.4 [47.0, 47.9] 4.5 %
47 ms 50.9 9.1 [47.7, 54.0] 49.3 1.3 [48.8, 49.8] 2.9 %
50 ms 55.4 12.1 [48.7, 62.1] 52.5 0.8 [52.0, 52.9] 13.3 %

100 ms 101.8 2.7 [100.7, 102.8] 102.2 1.2 [101.7, 102.7] 14.3 %
200 ms 202.1 2.0 [200.3, 203.9] 201.5 1.0 [200.4, 202.6] 3.4 %

Table 2: Loop delay results’ statistics of Server-HP NMSU-network setup in Figure 3.

Matlab pause
Loop delay with outliers Loop delay without outliers

Outliers%Mean SD CI Mean SD CI
20 ms NaN NaN NaN NaN NaN NaN NaN
30 ms 10874.5 6952.9 [-189.1, 21938.1] 10874.5 6952.9 [ -189.1, 21938.1] 0.0 %
31 ms 4117.0 2511.6 [-18449.2, 26683.2] 4117.0 2511.6 [ -18449.2, 26683.2] 0.0 %
32 ms 7617.0 4181.9 [4625.4, 10608.6] 7617.0 4181.9 [ 4625.4, 10608.6] 0.0 %
33 ms 2899.6 631.4 [2659.5, 3139.8] 2786.6 171.2 [ 2720.2, 2853.0] 3.4 %
35 ms 9193.7 12074.5 [5762.2, 12625.2] 4848.3 188.4 [4789.6, 4907.0] 16.0 %
40 ms 356.5 286.4 [ 266.1, 446.9] 356.5 286.4 [ 266.1, 446.9] 0.0 %
43 ms 359.6 370.3 [ 244.2, 475.0] 359.6 370.3 [244.2, 475.0] 0.0 %
45 ms 263.3 384.3 [ 175.5, 351.1] 135.3 201.1 [ 85.8, 184.7] 13.2 %
47 ms 143.3 248.2 [95.9, 190.6] 47.4 0.9 [47.2, 47.5] 22.2 %
50 ms 642.1 617.3 [449.7, 834.4] 642.1 617.3 [ 449.7, 834.4] 0.0 %

100 ms 259.9 337.8 [148.9, 370.9] 100.4 1.1 [ 100.0, 100.8] 23.7 %
200 ms 309.5 279.2 [217.8, 401.3 ] 200.1 1.1 [ 199.7, 200.5] 21.1 %

is also the statistical spread for these delays. That is to be
expected given that this is a high-traffic public network.
We also note that the reliability of the communications is
adversely affected as the number of return flags received
by OpenBCI GUI is far fewer than the number it sent.
In this scenario, we find that a Matlab pause of 20
ms does not provide sufficient time for even one of
the 128 flags sent from Matlab to be received by the
front-end GUI program. Increasing the Matlab pause
to 40, 43, 45, 47, and 50 ms still does not provide
sufficient time for the network to transmit all of the
sent flags to the GUI, causing the boxplots of the loop
delay to be very spread out and have large averages as
shown in Figure 8a. Unsurprisingly, the results are not
consistent: they change quite a bit each time we run
the system which is expected as the network congestion

varies continuously. Boxplots for the cases with larger
delays of 100 and 200 ms, as shown in Figure 8c, do
illustrate the consistent linear relationship between the
loop delay and the Matlab pause that we previously
noted for the private network configuration. This can
be explained by the fact that a Matlab pause of 100
ms or longer is long enough for the network to deliver
the Matlab flag acknowledging that it received the ‘GUI
sent’ flag before it then sends yet another flag. Table
2 provides the mean, the standard deviation (SD), and
the 95% confidence interval (CI) of the loop delay along
with the percentage of outliers for each test case.

The table shows that the network lag affects all
of these results, leading to dramatic increases in
the round-trip loop delays. The results are highly
inconsistent, however, although outlier removal does
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(a) Box-plot for very small delay.

(b) Box-plot for medium delay.

(c) Box-plot for large delay

Figure 7: Box-plot for loop delay of Dell-Hp router
setup in figure 2.

help in certain cases. Consistent with the box plots, it
is not until the Matlab-induced delay exceeds 100 ms
that the standard deviation consistently achieves small
values. Even that requires outlier removal due to the
large network delay fluctuations. The case where the
Matlab delay is 46 ms appears to be the one exception

(a) Box-plot for very small pause.

(b) Box-plot for medium pause.

(c) Box-plot for large pause.

Figure 8: Box-plot for loop delay of server-Hp
NMSU-network setup in figure 3.

to the rule. Still, it is unclear that we can reliably achieve
good performance with this short delay under a broader
range of possible network conditions.

Interestingly, the differences between the mean loop
delay and the Matlab pause for the 100 ms and 200
ms cases are 0.4 ms and 0.1 ms, respectively. These
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are both significantly lower than the 1.1 ms minimum
difference of Dell-HP private router setup. We believe
this difference can be explained by the superior response
time of the Polywell server relative to that of the Dell
laptop. This belief is born out by observing that the
Matlab-based back-end server software executes in 0.3
ms on the Polywell server compared with 2.56 ms on the
Dell laptop server.

5.2. Interpretation of the Results

One question that we are particularly interested in
answering is “why does the system need at least a pause
of 32 milliseconds to be stable and work appropriately?”
To answer this question, an unmodified OpenBCI GUI
instantiation that only sends data was configured to log
its sending times in a text file. A python script then
analyzed this file to calculate the difference between
pairs of consecutive transmitted data blocks (the sending
delay) as well as the usual statistics related to this
difference. As illustrated in Table 3, the mean of sending
delay is 33.5 ms with outliers removed (39.7 ms with
them included). Taking a more detailed look at the
statistics, we estimated the probability mass function
(PMF) of sending delay as shown in Figure 9. We
see from this plot that sending delays of 33 ms and
34 ms have the highest probabilities (0.22 each) and,
in fact, that the probability that the sending delay is
greater than 34 ms is very low: less than 0.08. Thus, the
sending delay between successive frames streamed from
the OpenBCI GUI client to the Matlab server is greater
than 34 ms less than 8% of the time. It is certainly not a
coincidence that the length of the required Matlab pause
(i.e., at least 32 ms) falls into this same time range.
It would appear that if the Matlab server responses to
the most recently transmitted OpenBCI GUI data frame
(containing only flag bits in this experiment) is received
by the OpenBCI GUI client before it sends its next
data frame, reception errors occur, and the stability
of the feedback loop is negatively impacted. While
our experiments indicate that a 32 ms delay appears
to be sufficient, the PMF of the sending delays shown
in Figure 9 would lead one to believe that a more
conservative delay of 34 ms–or even 35 ms–might be
safer.

Table 3: Sending delay’s statistics with and without the
outliers.

Sending delay Mean SD CI
With Outliers 39.7 13.1 [37.9,41.5]
Without Outliers 33.5 1.0 [33.3,33.6]

Figure 9: Probability mass function of the sending delay.

6. Conclusion

In this paper, we created and analyzed a distributed
framework interfacing the human brain to a networked
system of computers using OpenBCI, a low-cost and
open-source EEG acquisition platform. The proposed
closed-loop system places the participant’s brain inside
a feedback loop that extends from a client computer
hosting the EEG acquisition system through the internet
to a remote server which analyzes the real-time EEG
stream and feeds control commands back to the client
computer. These control commands can be used
by the software on the client computer to alter a
stimulus or other parameters of a trial. We have also
analyzed the prototype system that we developed to
better understand the limitations and constraints of the
proposed framework.

In particular, we have found that that the back-end
server must wait at least 32-34 ms before it sends its
reply message to the front-end OpenBCI GUI client in
order for the system to maintain its closed-loop stability.
One interesting implication of this requirement is that
it means that any machine learning algorithm analyzing
the real-time EEG data stream has at least 32 ms to
do its processing and generate its feedback message
without impacting the closed-loop system performance
in any way. We have also observed a linear relationship
between the loop delay and obligatory Matlab pause
with a time offset varying from 0.1 ms to 2.6
ms, depending on the back-end device specifications.
We envision that the proposed closed-loop, adaptive
brain interface could help neuroscientists conduct
their trials more quickly while at the same time
also helping clinicians diagnose brain disorders more
accurately. Furthermore, it also reduces the cost
of performing research trials and diagnostic testing
because it relies on a low cost, open source platform. In
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short, the proposed distributed computing platform for
implementing Brain-in-the-Loop neural analysis could
open up a myriad of new EEG-based applications,
creating a paradigm shift in the way in which the human
brain and the digital computer communicate with one
another.
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