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Abstract 
Health insurance claim fraud is a serious issue for 

the healthcare industry as it drives up costs and 
inefficiency. Therefore, claim fraud must be effectively 
detected to provide economical and high-quality 
healthcare. In practice, however, fraud detection is 
mainly performed by domain experts resulting in 
significant cost and resource consumption. This paper 
presents a novel Convolutional Neural Network-based 
fraud detection approach that was developed, 
implemented, and evaluated on Medicare Part B 
records. The model aids manual fraud detection by 
classifying potential types of fraud, which can then be 
specifically analyzed. Our model is the first of its kind 
for Medicare data, yields an AUC of 0.7 for selected 
fraud types and provides an applicable method for 
medical claim fraud detection. 

1. Introduction  

Healthcare has become a major expenditure for 
social and financial systems in recent years, while 
annually increasing global spending in health is 
expected to reach $18.28 trillion by 2040 [1, 2]. Due 
to its complexity, analogous processes, and value of 
monetary transactions, healthcare emerged as an 
attractive fraud target [3, 4, 5]. Consequently, the 
healthcare domain faces an increasing number of fraud 
incidents every year [6]. In this context, fraud is 
defined as the misuse of a system by obtaining 
financial advantage or causing loss by implicit or 
explicit deception [7, 8]. The Federal Bureau of 
Investigation (FBI) estimated that 3–10% of all 
billings are fraudulent [9]. In parallel, limited 
healthcare resources are challenged by an increasing 
population, a rising number of elderly people, and a 
generally expanding health insurance coverage [1, 10]. 

Faced with these challenges, any fraudulent use of 
the healthcare system manifests as a huge bulk driving 
up costs for insurers, premiums for policyholders, 

expenses for providers, and consequently weaken the 
backbone of the healthcare system [4]. Thus, it is of 
public interest to effectively and efficiently detect 
fraudulent claims to provide economical and quality 
healthcare. 

Focusing on this goal, the American Center for 
Medicare and Medicaid Service (CMS) [11] publicly 
releases datasets containing information about the 
types of Medicare services, requested charges, and 
payments issued by providers across the country [12]. 
By doing so, CMS provides a valuable contribution 
shedding light on Medicare fraud, waste, and abuse 
[12] and empowers the development of innovative 
Machine Learning (ML)-based fraud detection 
approaches that require significant amounts of data for 
effective training. 

However, in the healthcare domain, detecting 
fraud is mainly done by domain experts who can only 
review a subset of total claims and only detect a few 
suspicious claims [5]. Consequently, healthcare fraud 
detection is time- and resource-consuming in practice 
since it depends on the knowledge and decision-
making of these experts [5]. This raises the need for 
more efficient fraud detection approaches. 

A potential solution to this problem could be a 
ML-based fraud detection model that pre-classifies 
claims and aids experts’ decision-making. While the 
latest studies agree that human involvement is still 
required when it comes to the final classification of 
fraudulent claims, the implementation of automated 
fraud detection has the potential to reduce the number 
of observations to be reviewed [13, 14]. Moreover, the 
output of a fraud detection model can provide 
additional information on a potentially fraudulent 
claim supporting the analysis an expert performs on 
each claim. 

Recent research mainly focused on the detection 
of fraud in general. The objective was to classify 
whether a claim is potentially fraudulent and requires 
further investigation. Therefore, several unsupervised 
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and supervised ML models have been implemented 
and evaluated. With regard to this, the latest research 
suggests that neural networks provide superior 
performance to this specific problem domain. While 
Johnson and Khoshgoftaar [15], Bauder et al. [1], and 
Bauder and Khoshgoftaar [16] analyzed Dense Neural 
Networks, research on other Neural Network 
architectures, especially Convolutional Neural 
Networks (CNN), for fraud detection within the 
Medicare claim domain is limited. However, CNNs 
are already successfully applied in other research 
domains like intrusion detection (e.g., Wu et al. [17]) 
and financial fraud detection (e.g., Fu et al. [18] and 
Zhang et al. [19]). Here, their potential of especially 
dealing with high dimensional data and efficiently 
detecting patterns in this data has been indicated. Since 
healthcare incorporates many stakeholders, the 
resulting data are also diverse and extensive and 
challenge current fraud detection approaches. 

Against this background, our paper aims to 
design, implement, and evaluate an innovative CNN-
based fraud detection approach that supports claim 
auditing experts to analyze medical claim data for 
fraud. Consequently, our approach allows them to 
perform efficient prescription claim fraud detection 
and contributes to improved economic and high-
quality healthcare. To do so, we use publicly available 
Medicare Part B Data from 2018 in combination with 
the List of Excluded Individuals/Entities published by 
the Office of the Inspector General to create labeled 
training data.  

Our research contributes to the discussion of 
innovative fraud detection approaches in the 
healthcare domain in at least three ways. First, we 
provide a methodology to enrich and transform the 
data to suit CNN-specific requirements and confirm 
and extend previous research by developing a novel 
CNN-based model for fraud detection on medical 
claim data. By showcasing this instantiation, we 
provide a blueprint for further studies that follow this 
path. Second, for the first time, a ML model to classify 
different types of healthcare fraud is evaluated on 
Medicare data and is able to archive reliable results 
with an AUC of 0.7 for selected fraud types. Third, we 
provide evidence about the potentials of CNN-based 
models in this context. These first insights are the 
foundation for comparing different ML techniques and 
their specific performance in the medical prescription 
domain. 

The paper is structured as follows. We first 
provide an overview of previous research works 
dealing with Medicare fraud detection. Subsequently, 
we present the data and methods used and report our 
results. Finally, we discuss our results in light of 
practical and literature-based implications. 

2. Literature Review 

Initialized by CMS releasing the first “Medicare 
Provider Utilization and Payment Data: Physician and 
Other Supplier” (PUF) in 2014, a number of research 
works relating to Medicare anomaly and fraud 
detection have been published. We have selected this 
open-source data set to develop and evaluate a novel 
CNN-based fraud detection approach since it is well 
recognized in the research community and previous 
work has left an opportunity for improvement. 

In [20], Ko et al. used the 2012 CMS data to 
analyze the dependency between service utilization 
and paid reimbursements. The authors found that the 
number of patient visits is strongly correlated with the 
Medicare payments and that utilization variability of 
services performed per visit offers a possible 9% 
savings within the field of Urology. Feldman and 
Chawla examined the impact of physicians’ medical 
school education on their practicing decisions in [12] 
using the 2012 Medicare Part B data. They enriched 
the Medicare data with provider-level medical school 
data and significant school procedures that were 
further used to evaluate school similarities and present 
a geographical analysis of procedure charges and 
payment distributions. Branting et al. [21] performed 
fraud risk estimation based on a graph analytics 
approach. The authors deployed two types of 
algorithms: one for behavioral similarity calculation 
and one for estimation of fraud risk propagation 
through geospatial colocation. PUF data of 2012, 
2013, and 2014 was labeled using the List of Excluded 
Individuals/Entities and the National Plan and 
Provider Enumeration System (NPPES) [22]. 
However, the obtained AUC score of 0.96 by tenfold 
cross-validation is recognized as misleading by related 
research [15].  

Following research activities were mainly 
focused on fraud and anomaly detection driven by 
supervised and unsupervised approaches. Bauder and 
Khoshgoftaar [23] designed a probabilistic 
programming approach for anomaly detection on a 
small subset of the 2012–2014 Medicare Part B data 
limited to dermatology and optometry claims from 
Florida office clinics. The authors validated the 
Bayesian inference approach using claims data from a 
known fraudulent provider. Another study by Bauder 
and Khoshgoftaar [24] aims to identify potential fraud 
by analyzing actual payment amount deviations from 
the expected payment amounts. Five different 
regression models were used on Medicare Part B data 
of 2012 and 2013 from Florida. The authors reported 
superior performance for their multivariate adaptive 
regression splines model. In [3], Bauder et al. applied 
a Naïve Bayes classifier to predict provider specialty 
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types building on the idea that providers practicing 
outside their specialty may be fraudulent and are 
worthy of further investigation. Based on a Florida-
only subset of 2013 Medicare Part B claims data the 
classification of 7 of 82 provider types scored very 
high (F1-score > 0.90), and 18 types resulted in an F1-
score between 0.5 and 0.90. A similar approach was 
developed by Herland et al. [25] using 2014 Medicare 
Part B data enriched by real-world fraud labels derived 
from the LEIE data set. The implemented Naïve Bayes 
model obtained an overall accuracy 0.67. Rather than 
focusing on a specific ML model, Bauder and 
Khoshgoftaar [26] use 2012–2015 Medicare Part B 
data sets mapped with fraud labels from the LEIE 
dataset to compare multiple learners. The authors 
report a superior performance of C4.5 decision tree 
and logistic regression learners against the support 
vector machine with average AUC scores of 0.883 and 
0.882, respectively. Moreover, they showed that a 
random undersampling (RUS) with a ratio of 80:20 
yields better results than alternative sampling 
strategies. In [15], 2012-2016 Medicare Part B 
combined with fraud labels from the LEIE dataset is 
used to implement and evaluate six deep learning 
methods for addressing class imbalance. They show 
that Neural Networks combined with a hybrid random 
under-oversampling (RUS-ROS) outperform baseline 
models with an average AUC score of 0.8509. 

The related works listed here provide evidence 
that the LEIE dataset can be reliably used for deriving 
a ground truth of fraud labels. Furthermore, previous 
research mainly focuses on detecting fraud and 
anomalies in general but does not consider different 
fraud types. Thereby, the possible potentials of 
innovative CNN approaches have not yet been taken 
into account. Consequently, we aim at closing this 
research gap and extend these related works by 
providing a CNN-based fraud detection model that 
classifies different types of fraud to support the 
manual auditing of health insurance claims. 

3. Data and Methodology 

3.1 Datasets 

Our study is grounded on two open-source 
datasets. First, we use a sample of the latest Medicare 
Part B PUF data of 2018 to draw our predictive 
variables. The PUF data summarizes each provider’s 
annual charges of drugs, services, and procedures 
provided to Medicare’s Fee-For-Service beneficiaries. 
Accordingly, records within the dataset contain 
several provider- (e.g., National Provider Identifier 
(NPI), first and last name, gender, credentials, and 
address) and claim-related attributes. Claim-related 

attributes provide summarized information about a 
provider’s Medicare-related operations within a year. 
This includes the claimed subject, the average charge 
amount submitted to Medicare, the average amount 
paid by Medicare, and the place of service treatment. 
Thereby, claim subjects are indicated by a Healthcare 
Common Procedure Coding System (HCPCS) [27] 
code. Previous research has provided evidence that 
fraudulent providers can be distinguished from others 
based on their distinctive billing patterns. Thus, we 
believe that PUF data will be useful within our 
research context as well. 

The second dataset is the publicly available “List 
of Excluded Individuals/Entities” (LEIE) published by 
the Office of the Inspector General (OIG) [28]. Since 
we investigate supervised ML learners, predictive 
variables have to be enriched by labels of the 
respective target class (fraudulent or not). These labels 
can be obtained from LEIE as it includes healthcare 
providers excluded from Medicare eligibility. The list 
is updated monthly but unfortunately does not include 
all fraudulent providers since some fraudulent actions 
are relinquished without any public acknowledgment 
(e.g., overcharging) [21]. The recognized fraud is 
documented as one record per provider, including 
provider’s metadata (e.g., name, address) and 
healthcare fraud-related attributes (e.g., exclusion 
type, provider’s reinstation date). In addition, the 
LEIE dataset is only available in its latest version 
(April 2021), with updated logs of the last twelve 
months. This is a good problem, since the relevant 
exclusion times are five to ten years (see Table 1). 
Thus, all relevant exclusions should be included. 

 Despite the limitations of these datasets, we 
purposefully decided to ground our research on open-
access data to provide a testable and adaptable fraud 
detection approach that can be built on by future 
research. 

3.2 Data Labeling 

Based on the described datasets and with 
reference to [15], the general assumption behind our 
labeling strategy is that a fraudulent provider’s claim 
activities, before their date of exclusion from 
Medicare, are decisive for their exclusion soon after. 
Consequently, we map the listed providers in the LEIE 
to the PUF data. 

To do so, we followed a four-step process. First, 
we follow the work by Bauder and Khoshgoftaar [24] 
and filter the LEIE on exclusion types most indicative 
of healthcare fraud. The resulting subset of exclusion 
types is listed in Table 1. 
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Table 1: Healthcare fraud-related exclusion 
types [28] 

Social Security 
Act 

Description Minimum 
exclusion 
period 

Defined 
Fraud 
Class 

1128(a)(1) 
Conviction of 
program-related 
crimes 

5 years 1 

1128(a)(2) 

Conviction 
relating to 
patient abuse or 
neglect 

5 years 2 

1128(a)(3) 

Felony 
conviction 
relating to health 
care fraud 

5 years 3 

1128(b)(4) 

License 
revocation, 
suspension, or 
surrender 

State-
dependent 4 

1128(b)(7) 

Fraud, 
kickbacks, and 
other prohibited 
activities 

None 5 

1128(c)(3)(G)(i) 

Conviction of 
second 
mandatory 
exclusion 
offenses 

10 years 6 

1128(c)(3)(g)(ii) 

Conviction of 
third mandatory 
exclusion 
offenses 

Permanent 
exclusion 7 

 
 Second, excluded providers are filtered based on 

their date of exclusion. Following our previously 
mentioned labeling assumption, the provider’s claim 
records data submitted before the exclusion date have 
to be labeled as fraudulent. In practice, we preserve 
only providers excluded later than the end of 2018 
since we use cumulated PUF data of 2018 that does 
not provide a dedicated attribute for the date of claim 
submission. By doing so, we differ in the definition of 
exclusion (fraud) applied by [25] and [15] since they 
round the exclusion-related dates. This does not seem 
to be practical in our case since despite them, dealing 
with PUF data of multiple years, we only use the latest 
PUF data of 2018. Second, providers are matched by 
their NPI provided in each dataset as a common 
attribute. Unfortunately, the LEIE data suffers from a 
significant amount of missing NPI values leading to 
the need for another matching method. Third, we 
followed the approach by Branting et al. [21] and 
applied name matching using the first name and last 
name attributes of the remaining LEIE and PUF data. 
Moreover, we extended name matching by zip code 
mapping to further mitigate false-positive labeling. As 
a result, each record in our PUF data is now assigned 
whether and what type of fraud has been detected. 

3.3 Data Preprocessing 

PUF data provided by CMS is published as a text 
file in comma-separated format. In order to transform 
this data into a useful representation for our ML 
model, the data has to be processed with a focus on 
several topics. 

When the data is initially loaded, it contains 26 
attributes per record, and records of claims for drugs 
and services/procedures are mixed. Thus, with regard 
to [15], we filter the data for service claims at first 
since they differ in characteristics. So, dealing with 
drug claims is left for future research. Then, we 
perform feature reduction to reduce features and thus 
mitigate negative effects related to the curse of 
dimensionality [29]. As mentioned previously, PUF 
data contains provider- and claim-related attributes. In 
the process of feature reduction, we removed most 
provider-related features (e.g., name and address) to 
boost generalization. In addition, we perform feature 
engineering and provide several computed features 
based on claim-related data. This aims to improve 
model fitting because more informative features 
improve the effectiveness of the model to identify 
relationships and correlations in the training data [30]. 
In detail, we computed the numeric differences 
between Average Submitted Charge Amount and 
Average Medicare Allowed Amount and Average 
Medicare Payment Amount each. As a result, the 
following features were used as input for further 
preprocessing (see Table 2). 
 

Table 2: Description (see [22]) of used 
features for provider grouping 

Feature Description Type 

National Provider 
Identifier 

The provider NPI is the 
numeric identifier 
registered in NPPES 

Categorical 

Provider Type 
Derived from the provider 
specialty code reported on 
the claim 

Categorical 

State Code of the 
Provider 

The state where the 
provider is located Categorical 

Country Code of 
the Provider 

The country where the 
provider is located Categorical 

Number of 
Services 

Number of services 
provided Numeric 

Number of 
Medicare 
Beneficiaries 

Number of distinct 
Medicare beneficiaries 
receiving the service 

Numeric 

Number of 
Distinct Medicare 
Beneficiary/Per 
Day Services 

Number of distinct 
Medicare beneficiary/per 
day services 

Numeric 

HCPCS Code 

HCPCS code used to 
identify the specific 
medical service furnished 
by the provider 

Categorical 
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Average 
Submitted Charge 
Amount 

Average of the charges 
that the provider 
submitted for the service 

Numeric 

Average Medicare 
Allowed Amount 

Average of the Medicare 
allowed amount for the 
service 

Numeric 

Average Medicare 
Payment Amount 

Average amount that 
Medicare paid Numeric 

Average Medicare 
Standardized 
Amount 

Standard deviation of the 
Medicare allowed 
amounts 

Numeric 

Payment_diff 

Difference between 
Average Submitted Charge 
Amount and Average 
Medicare Payment Amount 

Numeric 

Allowed_diff 

Difference between 
Average Submitted Charge 
Amount and Average 
Medicare Allowed Amount 

Numeric 

 
We apply feature encoding to transform existing 

categorical features into a suitable format. In general, 
feature encoding describes the process of transforming 
the representation of feature values. This procedure is 
required since some ML algorithms cannot handle 
categorical data well [31]. Thus, this data has to be 
transformed to a more suitable format. To do so, we 
use the one-hot encoding method that is widely 
utilized in related research (e.g., Bauder et al. [1]). 
One-hot encoding describes a technique used to 
represent each categorical feature by a sparse vector 
representing the categories and their binary value, 
indicating whether the category is the value of the 
original feature or not [1]. A disadvantage coming 
along with one-hot encoding is that it drastically 
increases dimensionality and tends to fail to capture 
relevant relationships between similar providers [15]. 

Since feature values within our dataset differ in 
their scale as they increase without bound, they affect 
models that are smooth functions of the input [32]. 
Consequently, data normalization is a critical step that 
speeds up training and influences model performance 
by limiting the scale [33]. In this case, we decided to 
use Min-Max Scaling [34] because it is well-known 
and provided good results in multiple research works 
(e.g., Johnson and Khoshgoftaar [15]). 

As mentioned before, PUF data is organized as 
records per HCPCS code and provider. In order to 
follow our primary goal of detecting fraud through 
claims activity per provider, we have to rearrange our 
data. With reference to the work by Johnson and 
Khoshgoftaar [15], we re-group the records by NPI so 
that the resulting groups contain a unique provider’s 
annual claims data, with one row for every HCPCS 
code. In contrast to them, we not only implement 
provider-related and summary attributes but follow the 
one-hot encoding logic and create a sparse vector 
representing distinct service types (HCPCS codes) and 
their respective number of services. Thus, information 

loss should be minimized, and valuable patterns 
should be preserved. This approach is applied to state 
and country codes respectively. Lastly, additional 
summary attributes for the remaining numeric 
attributes are added. By doing so, each group is 
aggregated, converting the multiple rows into a single 
record. As a result, this vector contains 5,924 features. 

 
Figure 1: Data Transformation Steps 

On the one hand, this number of features pushes 
baseline ML approaches to their limits. On the other 
hand, it provides potentials for applying innovative 
ML techniques to this research problem. As described 
in section 2, there is no prior research dealing with 
either the application of CNNs in the context of 
Medicare fraud detection or using CNNs for 
corresponding decision support. Therefore, the data is 
transformed in an image-like (multi-dimensional 
array) format, suiting requirements of CNN input, 
subsequently. We use a 78x78 pixel representation 
providing a potential capacity for 6,084 values. Since 
the vector of transformed PUF data does not occupy 
the space completely, the remaining pixels are filled 
with zeros. An exemplary segment of the image 
representation is presented in Figure 1. 
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Figure 2: Image-like claim data 

representation 

A relevant problem of most fraud detection tasks 
is class imbalance. ML algorithms may face 
degradation of classification performance caused by 
the class imbalance, minority class decomposition into 
sub-parts, and overlapping classes [35]. Considering a 
classification task, as most anomaly detection is, and a 
majority class (normal ones) partition of 99.5% 
(minority partition 0.5% respectively), an algorithm 
can trivially gain 99.5% accuracy by simply learning 
the rule f(x)=normal (always classify as normal; [36]). 
This makes the learning of a classifier quite 
challenging [37]. As a solution to this problem, 
relevant literature recommends the application of class 
balancing techniques. Here, two main methods are 
adopted: under-sampling and over-sampling. Since it 
is still unclear which sampling method performs best 
and what sampling ratio should be used, the choice is 
domain-specific [38].  

In this study, we have to deal with a strong class 
imbalance since only 109 of 1,060,834 records are 
labeled as fraudulent (≈0.01%). To do so, we apply 
hybrid random over- and undersampling. First, 
minority classes are oversampled until they reach a 5% 
proportion of the original dataset each. Then the 
majority class is undersampled until the class balance 
is obtained. More advanced and deeper analysis of the 
impact and performance of different sampling 
strategies on this multi-class classification problem is 
declared as future research. 

3.4 The CNN Model 

In general, detection performance is closely 
related to selected features and classifiers, but 
traditional classification algorithms cannot perform 
well on massive data [17]. As mentioned before, data 
preprocessing led to a total number of 5,924 features, 
raising the need for a specialized classification 
algorithm. 

A CNN is a classical deep learning algorithm and 
has been applied in many fields, particularly in visual 
recognition. It can be composed of several layers, 
including convolution, pooling, flatten, and fully 
connected layers (see Figure Figure 3). Compared to 
other deep learning algorithms, the greatest advantage 
of CNNs is their implementation of convolutional 
kernels, which reduce the number of parameters and 
calculation amount of training [17]. Moreover, CNNs 
are valued for their ability to reduce over-fitting and 
reveal hidden fraud patterns [17]. 

Based on that, we assess a CNN as a suitable ML 
model for classifying our high dimensional data. The 
CNN model comprises of the following structure: 

• Three pairs of convolutional and max-
pooling layers 

• One flatten layer 
• One dense layer 
• One dense output layer 

Stratified random sampling without replacement is 
used to create the 20% test set. Consequently, the 
model is trained on 80% of the data. To further 
increase model performance, relevant 
hyperparameters are tuned.  

 
Figure 3: Exemplary CNN Architecture 

4. Analysis and Evaluation 

We analyze the performance of our fraud 
detection approach by applying the developed model 
to 1,849 preprocessed and unseen records. Therefore, 
the Area Under the Receiver Operator Curve (AUC), 
Precision, and Recall are used as evaluation metrics 
since they are well known and applied in multiple 
related publications (e.g., Kalid et al. [39] and Bauder 
et al. [1]). In addition, this enables a comparative 
assessment against previously developed and 
upcoming approaches.  

Exemplary Segment of a Record 
in Image-Like Representation   

Activated
Pixels

C1

… C2
C3

Exemplary Architecture of a CNN

Input Convolution Pooling Convolution Pooling Fully
Connected
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Originally, the mentioned metrics were developed 
for binary classification and are defined for the 
positive class [40], which is the minority class (fraud) 
in this case. In particular, Recall is defined as the 
fraction of positive cases classified as positive, while 
Precision is defined as the fraction of positive 
classified cases that are truly positive [41]. Based on 
this, AUC considers Recall and Precision, thus being 
more balanced than Accuracy [16]. It is defined as the 
area under the Receiver Operator Curve (ROC), 
representing the capability of a classifier in 
differentiating classes [39]. The ROC is created by 
plotting Recall against Precision. As a result, the 
closer the AUC value is to 1 (perfect classification), 
the better the classification performs [39]. In addition, 
the closer the AUC value is to 0.5, the more similar is 
the classification to random guessing. Values below 
0.5 indicate that the classifier performance is worse 
than random guessing. 

Since this study faces a multi-class classification 
problem, we need to adapt the evaluation method to 
this. Thus, we implemented a one-vs.-all logic (one 
class vs. all other classes) to transform our approach 
into a binary decision problem. By doing so, the model 
output, in the form of a sparse vector containing binary 
values of whether the specific class was predicted or 
not, is separated into two groups. The first group 
represents one specific class and the other group all 
other classes. These values are then used as input for 
AUC, Precision and Recall. Receptive results are 
shown in Figure 4. 

 
Figure 4: One-vs.-all AUC results per target 

class 

It turned out that the model performance varies 
between target classes. While class 1 (exclusion type 
‘1128a1’) reaches an AUC value of 0.7, class 3 
('1128b4') is limited to 0.43. We assume that the 
difference in performance is correlated with the 
number of distinctive records for training. For class 1, 

there are more than six times as many records as for 
class 3 in our Medicare dataset. For class 4, there are 
more than five times as many records, respectively. 
Consequently, our approach should be validated on a 
broader dataset to provide each target class with a 
sufficient number of distinct training records. 

In summary, the presented anomaly detection and 
classification approach provides evidence for the 
general practicability of our applied methodology 
including data labeling, data preprocessing and the 
CNN model. Moreover, it is the first study 
investigating the classification of different fraud types 
within Medicare data. 

5. Discussion and Implications  

This study proposes an innovative CNN-based 
classification model and a methodology for 
corresponding data combination and preprocessing to 
improve the detection of medical claim fraud. We 
designed a dedicated data transformation procedure 
based on previous research to enrich and transform 
publicly available PUF data into an image-like 
representation. The developed approach obtained 
comprehensible results for selected target classes 
(exclusion types). As a result, our work offers several 
implications and contributions to literature and the 
practice audience. 

5.1 Implications to Literature 

First, we transfer methodologies from related 
application domains and complement the status quo of 
fraud detection methods in the medical claim domain 
by an approach based on a CNN model and 
corresponding data preprocessing. Thereby, we 
designed a data labeling and preprocessing procedure 
to combine publicly available PUF data with LEIE 
data and subsequently use it as input for supervised 
ML models, in particular CNNs. Moreover, we 
challenged known problems such as high 
dimensionality data and extended the existing 
knowledge base by implementing and evaluating a 
CNN for fraud detection on Medicare claim data. This 
model addresses the detected research gap by aiming 
to classify different types of fraud rather than 
performing a simple binary classification (fraud or no 
fraud). Lastly, our novel approach provides a blueprint 
on how to challenge high dimensional fraud detection 
problems in the context of medical claim data and 
opens several leverage points for future research. 

Page 3735



5.2 Implications for Practice 

Regarding practice utility, we provide 
stakeholders of the healthcare domain, particularly 
health insurers, with an applicable method to analyze 
whether and what type of potential fraud a provider 
has committed. This is especially relevant to 
improving manual claim auditing efficiency since 
auditors review lots of claims to detect few fraudulent 
cases. Our approach can be used to build claim-bins, 
each coupled with a specific action that has to be 
performed for this particular fraud type. Thus, pre-
filtering can enable auditors to act more efficiently by 
indicating which further claim assessment can be 
based on. Furthermore, investigators and managers 
can use the classification data about fraud types and 
assess the cost of further information gathering and 
investigation to realize a suspected case. Following 
this, limited resources can be used more efficiently and 
effectively, and the overall throughput can be 
increased. As a result, each detected fraud case 
contributes to economic and high-quality healthcare. 
Finally, we assume that the further spread of e-
prescribing will increase the quantity and quality of 
available data and result in a future increase in 
performance potential. 

6. Conclusion  

In this paper, we have investigated the potential of 
CNNs in the context of medical claim fraud detection. 
Medicare Part B PUF data and LEIE were combined 
to create labeled data with a strong class imbalance. 
Based on this, we designed dedicated preprocessing 
that transforms this data into a suitable input format 
for CNN-based fraud detection and classification 
model. The model is the first of its kind for classifying 
fraud types on Medicare claim data and proved 
practice utility by obtaining an AUC value of 0.7 for 
selected fraud types. Therefore, we were able to 
extend the literature by a novel fraud detection 
approach and provide confirmation and an extension 
of previously developed data preprocessing and fraud 
detection strategies. Based on that, it can be concluded 
for practice that our model has the potential to improve 
medical prescription fraud detection and serve 
economic and high-quality healthcare. 

Furthermore, this study has several limitations 
and unveils leverage points for future research. Our 
research is limited only to the data of one American 
health insurer. Thus, national laws and regulations 
could affect our results. This should be considered 
when interpreting or transferring our results to 
different healthcare programs. However, we believe 
that most of our results may be easily transferrable to 

similar application domains with no or minor 
adaptations. Thus, our approach should be tested in 
other application environments and other healthcare 
programs. In this paper, the composed set of data 
features proved useful, though it is not excluded that 
additional significant fraud indicators were 
overlooked. Moreover, we only considered PUF data 
of 2018. In order to obtain more training data related 
to each fraud type and thus improve classification 
performance, PUF data of additional years should be 
integrated. Lastly, the described CNN model provides 
several configuration options so that the possibility 
remains that there is a better configuration. Therefore, 
based on our initial work, future research should 
investigate model configuration and class balancing in 
more detail.  
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