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Abstract 
As of 2021, more than 100,000 drugs are 

approved in Germany, 35,000 of which are non-

prescriptive over-the-counter drugs. While proven 

information from medical studies is given in patient 

information leaflets, patients are often lost when trying 

to determine which drugs are compatible with their 

needs or which alternatives are suitable. We show that 

representing patient information leaflets as dense 

vectors allows us to extract more valuable medical 

information than is explicitly stated in the leaflets. 

Without any explicit insertion of medical knowledge, 

our embeddings capture concepts of generics, even 

with respect to the dosage form. Furthermore, the 

embeddings allow patients to identify drug clusters 

based on their treatment area and offer suitable 

alternatives based on analogical reasoning. The 

carved-out information may not only help patients to 

explore alternative drugs but also serve pharmacists 

and patients as a new way to search for drugs tailored 

to dietary, allergic, or medical needs.  

1. Introduction  

Although technology has revolutionized many 

aspects of daily life, the field of medical service is still 

largely in the hands of medical and healthcare 

professionals. Even for minor issues, patients request 

advice from medical professionals, increasing waiting 

times for patients and workloads for healthcare 

professionals. Among these minor issues are legitimate 

requests for alternative drugs, either because of drug 

intolerance, the intention to find a cheaper alternative, 

or problems with the dosage form. The sheer volume 

of available drugs makes it difficult for patients to keep 

track of which drugs are available for their specific 

condition. As an example, Germany has a total of more 

than 100,000 approved drugs, 35,000 of which are non-

prescriptive, i.e., sold over the counter [1]. 

By law, drugs are supplied with patient 

information leaflets. While these leaflets contain 

valuable medical information for the end consumer, 

such as detailed information about the dosage, side 

effects, and interactions with other drugs, they usually 

do not provide information about alternatives. In 

addition to scarce information about alternatives in 

leaflets, studies have also shown that only half of the 

patients read the leaflets because reading them 

increases their anxiety level [2]. Searching for 

alternatives on the internet may result in single hits but 

does not provide a comprehensive overview. 

Recent research has shown that dense vector 

representations of text or words can capture semantic 

meaning and relationships of words and documents 

within a corpus [3–5]. Approaches such as word2Vec 

[4, 5] and paragraph2vec [3], also known as doc2vec, 

have been used to transform text into numerical 

representations to gain knowledge about semantic 

structures of text without depending on any external 

knowledge [6]. With the resulting vector 

representations, we can calculate the cosine similarities 

based on the dot products of two vectors. 

Texts represented in vectors in an algebraic space 

enable us to retrieve documents similar to a given 

document, in our case, retrieving drugs similar to a 

drug a patient already takes. Given that these retrieved 

drugs treat the same medical condition, the patient can 

choose the drug that best fits his or her preferences. 

Additionally, arithmetic operations on these vectors 

can help to query alternatives in a more target-oriented 

way, e.g., by excluding an ingredient from a drug that 

the patient does not tolerate—in terms of vector 

arithmetics, subtracting the ingredient vector from the 

drug vector, and obtaining a vector that is close to 

drugs that do not contain the undesirable ingredient.  

Given the possibilities of semantic embeddings, 

we ask the following question: How can medical 

knowledge such as alternative drugs (in terms of active 

ingredients and dosage forms) be extracted from 

patient information leaflets?  

2. Theoretical Background 

One approach to natural language processing 

(NLP) that has gained enormous traction in the past 

several years is capturing the context of words and 

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 3719
URI: https://hdl.handle.net/10125/79789
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



representing them in a distributed way as vectors (also 

called word embeddings)—that is, each word is 

represented by a series of coordinates that position it in 

a high-dimensional space. Different approaches to 

generating these vectors include word2vec [4, 5], 

Glove [7], FastText [8], ELMo [9], and Sentence-

BERT [10]. The word2vec model by [4] has been 

shown to generate high-quality embeddings in different 

scenarios [11–13]. 

The word2vec model causes words that appear in a 

similar context to have similar vectors with respect to 

cosine similarity. This results in semantically close 

words also being close in the vector space, e.g., the 

vector “Paris” is closer to “France” than it is to the 

word “car.” The embeddings not only capture semantic 

distance but were also shown to mirror the semantic 

relationships of words in a text corpus. This allows 

semantic computations to be performed on the results 

[11, 13, 14]. One famous example is to solve analogy 

questions such as “King relates to Man as Woman 

relates to...?” by a simple vector calculation, i.e., the 

vector of the word “King” minus the vector of the 

word “Man” plus the vector of the word “Woman” 

results in a word vector that is close to the vector of the 

word “Queen” in terms of distance [11].  

Word2vec is proposed for learning word 

embeddings through two neural network architectures: 

Continuous Bag of Words (CBOW) and the Skip-gram 

model [4]. Both are neural network architectures that 

efficiently learn vector representations from very large 

datasets and preserve the semantics of the processed 

text. Both algorithms use a flat, fully connected neural 

network with a single hidden layer to generate vector 

representations of each word in a corpus. The actual 

task of the neural network is to maximize the average 

log-likelihood of each context word for a given target 

(mean) word, where the prediction of the likelihood is 

computed using a hierarchical softmax function [3]. 

The Skip-gram model uses the mean word as input to 

the neural network and attempts to predict the context 

words. The CBOW model works in the opposite way, 

using the context words as input to predict the mean 

word. The context is derived from a sliding window 

over the document and contains a fixed number of 

words before and after the mean word [4].  

Le and Mikolov extended the word2vec model to 

the paragraph2vec model, also known as doc2vec, by 

adding a paragraph (document) vector that is shared 

across all contexts generated from the same 

documents, but not across all documents [3]. This 

allows vectors to be generated for sentences and 

paragraphs. Analogously to word2vec, there are two 

different methods for learning distributed 

representations of documents: the Distributed Bag of 

Words version of the Paragraph Vector (PV-DBOW) 

and the Distributed Memory version of the Paragraph 

Vector (PV-DM). The PV-DBOW model is very 

similar to the Skip-gram model of word2vec. The only 

difference is that instead of the middle word, a unique 

document vector is fed into the neural network [3]. The 

PV-DM is a modification of the CBOW model. In this 

model, the unique paragraph vector is added to the 

context words in the input layer. Thus, the unique 

paragraph vector contributes to the task of predicting 

the mean word [3]. In this model, the paragraph and 

word vectors are then trained in parallel. 

Recent context-aware embeddings such as ELMo 

and Sentence-BERT have had breakthrough 

performances in classification and sentence pair tasks 

[9, 10]. Instead of having a fixed vector for a word, the 

vector of the word changes based on the sentence it is 

used in. While this improves classification 

performance, it does lose the ability to do vector 

arithmetics with single words; therefore we did not use 

context-aware embeddings for our approach. 

Traditional approaches exist to represent medical 

knowledge (e.g., through databases using SNOMED 

CT [15] or ATC [16]). These enable professionals to 

query drugs in a structured way. However, in 

comparison to our proposed NLP approach they don’t 

include the context that these drugs are used in. 

3. Approach 

We structure our research following the Cross 

Industry Standard Process for Data Mining (CRISP-

DM) approach [17]. The CRISP-DM framework 

comprises six phases: Business Understanding, Data 

Understanding, Data Preparation, Modeling, 

Evaluation, and Deployment. In the following 

subsections, we describe our main actions during the 

first five phases of CRISP-DM. 

3.1. Business understanding 

Patients rarely have an overview of all the 

available medication. On the internet, search results 

for, e.g., “ibuprofen alternatives” bring up several 

million hits, and forums are full of questions for drug 

alternatives. Patients are often aware of some over-the-

counter drugs that they take to treat common 

conditions such as colds or headaches, but they might 

not know of alternatives that have the same medical 

profile and effect. Even if they have the knowledge of 

the existence of some alternatives, finding alternatives 

suitable to their dietary or allergy needs is not an easy 

task without expert knowledge. Offering a method that 

extracts similar drugs or alternative dosage forms 

offers patients a significant benefit. It opens the 

possibilities to efficiently avoid intolerance of specific 
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ingredients, find cheaper alternatives, or identify more 

appropriate dosage forms. 

3.2. Data understanding 

The data includes a total of 13,644 patient 

information leaflets for over-the-counter drugs that 

were approved in Germany and were provided by 

ABDATA [18]. These text documents are written in 

the German language. In general, the patient 

information leaflet of a drug is a text document 

containing essential characteristics of a medicinal 

product in a highly standardized structure, as they must 

comply with a predefined layout. Their main purpose is 

to ensure the correct use of the drug, as well as to 

inform users about the frequency and nature of side 

effects. Among other details, they include the name of 

the drug, the dosage form and amount, the medical 

application field, interactions with other medicines, 

side effects, and the full pharmaceutical composition. 

Drugs are often available in different dosage amounts. 

However, the dosage amount is not relevant to our 

research question; therefore we opted to merge all 

drugs with the same name and dosage form 

irrespective of the dosage amount. 

3.3. Data preparation 

A document in the corpus corresponds to a patient 

information leaflet document of a single drug. We 

applied the following preprocessing steps: 

summarizing drugs with different dosages and thus 

removing numerical values, lowercasing all words in 

the leaflets, and filtering German stop words (using the 

NLTK Python library).
1
 Then, we tokenized the leaflet 

and assigned a unique document tag as an identifier. 

The unique document tags are made up of the drug 

name and the dosage form so that drugs with the same 

name can be distinguished at an additional level in the 

evaluation process. These preprocessing steps resulted 

in a total of 6,488 leaflets out of a total of 13,644 raw 

documents with a total vocabulary size of 21,024 

words. We have focused on a set of common data 

preprocessing steps that are typical when dealing with 

text. The goal was to remove as much noise as possible 

while retaining as much medical knowledge in these 

documents as possible. 

3.4. Modeling approach 

In the modeling phase, the doc2vec model learns 

the document and word embeddings by transforming 

 
1 https://www.nltk.org 

the input text into numerical representations. For this, 

we used the Python library Gensim
2
. This library is a 

technical implementation of the conceptual models 

introduced by [3–5]. 

To train the model, a configuration of several 

parameters is required. The configuration of the so-

called hyperparameters and their optimization is a field 

of research that is the subject of comprehensive 

discussions and intense research [17, 18]. Nevertheless, 

most of the research in this field concentrates on text 

documents in the English language, and thus the scope 

of hyperparameters and their optimization for German 

texts are less extensively studied [21]. 

In our research, we do not intend to find the 

optimal combination of parameters, achieved by tuning 

the parameters with the help of a grid-search process. 

Nevertheless, the combination of hyperparameters is a 

prerequisite for calculating high-quality document and 

word embeddings, and thus our configuration is guided 

by the work of Brito et al., who tested hyperparameter 

configurations for doc2vec models on German texts 

[21]. 

Following the research mentioned above, the 

combination of the hyperparameters we used in our 

work is summarized in Table 1, which gives a brief 

description and the corresponding value of each. 

Table 1: Hyperparameters selected based on 
the research conducted by Brito et al. [21] 

Hyperparameter Meaning Value 

vector_size Dimension of the feature 

vectors. 

300 

min_count Ignore words with a total 

occurrence lower than 

this threshold. 

5 

sample Threshold for which 

higher-frequency words 

are randomly 

downsampled. 

1e-5 

negative Number of negative 

samples. 

5 

dm Specifies the training 

algorithm; 0 equals PV-

DBOW. 

0 

dbow_words If set to 1, trains word-

vectors (in Skip-gram 

fashion) simultaneously. 

1 

Window Determines the width of 

the sliding window. 

10 

We adapted two hyperparameters from Brito et al. 

[21] to better fit the model to our specific data source. 

First, we reduced the value min_count to 5 to keep 

 
2 https://radimrehurek.com/gensim 
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words that occur rarely in the corpus. Since the patient 

leaflets contain specific terms and the total size of the 

vocabulary is small, we did not want to risk important 

semantic insights getting lost. Second, we set the value 

dbow_words to keep the trained word embeddings. 

3.5. Evaluation approach 

According to Baroni et al., there are various 

absolute intrinsic evaluation categories, such as 

semantic relatedness, analogy, categorization, and 

selectional preference for evaluating an unsupervised 

embedding model [22]. We decided to evaluate our 

model in three facets (Figure 1), which reflect the first 

three evaluation categories mentioned by [22]. First, 

we refer to semantic relatedness (method A in Figure 

1). For semantic relatedness, Schnable et al. state that 

the cosine similarity of the embeddings for a pair of 

words should have a high correlation with the 

relatedness score rated by humans [23]. In this 

research, we follow this concept but modify it to the 

extent that the relatedness score of documents rather 

than words will be taken into account. Second, we refer 

to a mix of semantic relatedness and categorization, as 

we reduce dimensions by principal component analysis 

(PCA) to be able to visualize clusters (method B in 

Figure 1). Third, we refer to an analogy by performing 

vector arithmetics (method C in Figure 1). While 

method A usually refers to the application field of 

quantitative evaluation approaches, methods B and C 

represent qualitative approaches. 

 

 

Figure 1: Evaluation approach with three 
methods and two use cases 

Furthermore, we evaluated two different use cases 

that substantiate our research question 1) finding 

alternative drugs and 2) finding alternative dosage 

forms. The resulting evaluation approach consists of 

3x2 evaluation facets (Figure 1). In the following 

subsections, the evaluation methods are described in 

further detail. 

Evaluation method A. Evaluation A is a 

quantitative evaluation in which we evaluate the 

accuracy of alternative drugs or dosage forms. We 

describe the evaluation process for each use case 

separately. The process is depicted in Figure 2. 

 

 

Figure 2: Evaluation process for method A 
(accuracy via cosine similarities) 

Evaluation A for use case 1. Find alternative 

drugs. In the first use case, we evaluated the 

performance of the model with respect to identifying 

matching suitable alternative drugs based on their 

active ingredient. For this purpose, we defined a 

sample of 20 drugs selected based on frequently 

prescribed active ingredients in Germany in 2015 (see 

Table 2). For each active ingredient, we randomly 

selected a corresponding drug. Next, we submitted 

each of these sampled drugs to our model, which listed 

the most similar drugs as an output. We then calculated 

the accuracy of the selected drugs based on matching 

active ingredients to the submitted drug. This process 

was repeated ten times in total and an average accuracy 

was calculated based on the results of all active 

ingredients. A high accuracy would lead to the 

Page 3722



conclusion that the model can identify alternative 

drugs. 

Evaluation A for use case 2. Find alternative 

forms. In the use case, we measured the performance 

on a more detailed level by taking the dosage form of a 

drug into account in addition to its active ingredient. 

Therefore, we combined some dosage forms into main 

categories. For example, “film-coated tablets,” “coated 

tablets,” or “extended-release tablets” are grouped as 

“tablets.” Since not every active ingredient listed in 

Table 2 is available in different dosage forms, a subset 

of the list needed to be created. The ingredients that are 

part of this subset are checked in the column Dosage 

Form Evaluation below. 

Table 2: Top 20 active ingredients 

frequently prescribed in Germany [24] 

Active 

Ingredients 

Altern. Drugs 

Evaluation  

Dosage Form 

Evaluation 

Acetylsalicylsäure ✓  

Allopurinol ✓  

Azithromycin ✓ ✓ 

Bisoprolol ✓  

Diclofenac ✓ ✓ 

Doxycyclin ✓ ✓ 

Ibuprofen ✓ ✓ 

Levothyroxin ✓  

Metamizol ✓ ✓ 

Metformin ✓  

Metoprolol ✓  

Omeprazol ✓ ✓ 

Pantoprazol ✓  

Paracetamol ✓ ✓ 

Ramipril ✓  

Tilidin ✓ ✓ 

Torasemid ✓  

Tramadol ✓ ✓ 

Venlafaxin ✓ ✓ 

Xylometazolin ✓  

 

We faced the problem that the number of drugs 

sharing the same active ingredient and the same dosage 

form is not evenly distributed in our dataset. To get 

unbiased results, we set the number of the tested results 

equal to 20 or the total number of potential matches, 

whatever is lower.  

Evaluation method B. As a qualitative evaluation 

facet, we decided to plot the drug vectors in a two-

dimensional chart to see if clusters can be identified 

visually. To break the multidimensional vectors from 

the doc2vec neural net down to two dimensions, we 

used Principal Component Analysis (PCA),
3
 chose a 

random sample, and plotted the resulting two-

 
3 PCA was done using the scikit-learn python library https://scikit-

learn.org 

dimensional vectors. The idea of PCA is to reduce the 

dimensions of the vector space while preserving the 

similarities and dissimilarities as well as possible. Next 

to the quantitative evaluation of method A, method B 

supports the evaluation visually and qualitatively.  For 

use case 1, we plot the drugs only; for use case 2, we 

plot drugs and dosage form. 

Evaluation method C. In addition to evaluation 

with methods A and B, we wanted to evaluate whether 

our model allows for vector arithmetics to query 

alternatives in a more target-oriented way, either by 

excluding ingredients, e.g., because of intolerance (use 

case 1), or by exploring alternative dosage forms (use 

case 2). In terms of vector arithmetics, for use case 1 

we would query  

     dv(Drug1) – wv(Ingredient) ~= dv(Drug2) 

to receive a vector that is expected to be close to a drug 

that contains the same active ingredient but does not 

contain the undesired ingredient, with dv denoting a 

document vector and wv a word vector. Analogously, 

for use case 2, we would query  

dv(Drug1) – wv(Form1) + wv(Form2) ~=dv(Drug2) 

to receive a vector that is close to drug vectors with the 

same active ingredient but a different dosage form. For 

the result we query the drug vector closest to the vector 

of the arithmetic operation. 

While the idea of vector arithmetics is inspired by 

the famous wv(king) - wv(man) + wv(woman) ~= 

wv(queen) example [4], whether word vectors can be 

added to document vectors is still an open question. 

Technically, the arithmetic operation is feasible, as 

both word vectors and document vectors share the 

same dimensionality and structure. However, it is not 

clear if word vectors and document vectors can be 

mixed in a meaningful way, as a word vector 

represents the context of a word in the whole text 

corpus, whereas a document vector represents the 

context of a document, which is less easy to imagine.  

 In a way, the training procedure for word vectors 

and document vectors is similar, but the training input 

is different, so one could argue that there is a 

fundamental difference between word vectors and 

document vectors, but one could also argue for 

similarities. Lau and Baldwin [20] state that the 

qualitative difference between word vectors and 

document vectors remains unclear. They try to give an 

impression of the differences with an example 

document. Apart from that, the comparability of word 

vectors and document vectors has not been thoroughly 

discussed in the literature so far. Practitioners who 

have been experimenting with similarities across words 

and documents find that—at least on a Wikipedia 

corpus—the closest similar vectors for words are 

mostly other words, and for documents mostly other 
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documents.
4
 Furthermore, they state that it depends on 

the training method and data whether it is meaningful 

to compare word vectors and document vectors.  

In this paper, we assume that adding word vectors 

to document vectors is possible. This way, our way of 

vector arithmetics goes beyond the proposed vector 

calculus proposed by Mikolov et al. [4]. Therefore, if 

we are able to show that these vector arithmetics with 

word vectors and document vectors do make sense, we 

not only evaluate the usefulness of our model but also 

show—at least in the example of patient information 

leaflets—that vectors of different types can be mixed 

in calculus.   

4. Results  

In this section, we present the results of the 

evaluation for the two use cases and the three different 

evaluation methods outlined in the previous chapter. 

4.1. Use case 1: Find alternative drugs 

In the first use case, we aimed to identify 

alternative drugs with the same active ingredient, or, in 

a wider scope, with the same effect but different active 

ingredients. We present the results from evaluation 

methods A, B, and C below. 

Table 3: Results from evaluation A for 
alternative drugs 

Alternative Drugs Evaluation 

Iteration Accuracy 

1 0.98 

2 0.97 

3 0.97 

4 0.97 

5 0.97 

6 0.96 

7 0.97 

8 0.90 

9 0.97 

10 0.95 

Ø 0.96 

 

Results from evaluation A (accuracy of 

alternative drugs via cosine similarities). We conducted 

10 iterations of the alternative drugs evaluation 

approach described in Section 3.5 on 20 example drugs 

from the list of active ingredients shown in Table 2. 

The results for each iteration and the average are 

presented in Table 3. 

 
4 https://groups.google.com/forum/#!topic/gensim/Fujja7aOH6E 

From these results we can see that the accuracy of 

the model at selecting correct alternative drugs based 

on an active ingredient lies between 90% and 98%. 

Looking at the worst performing run, from the drugs 

selected by the model, nine out of ten drugs are valid 

alternatives to the supplied drug. 

Figure 3 presents the average accuracy grouped by 

active ingredients. Most of the ingredients achieve 

strong results over 95%, although the results vary 

across some ingredients. 

 

 

Figure 3: Average accuracy of each active 
ingredient for alternative drugs evaluation 

Results from evaluation B (visual plot of PCA 

dimension reduction). We selected a random sample of 

drugs, reduced the vectors by PCA, and scatter plotted 

the resulting two-dimensional vectors. The points are 

color-coded based on the active ingredient of the drugs. 

In the scatter plot, clear clusters are visible. First, one 

cluster groups together different painkillers based on 

active ingredients, such as Acetylsalicyl acid, 

Diclofenac, Ibuprofen, and Paracetamol but also 

mostly separates them into sub-clusters according to 

their ingredient. Second, there is a cluster of drugs 

against diabetes based on “Metformin” that is also 

clearly separated from other clusters like painkillers. 

Third, another cluster groups drugs treating thyroid 

hormone deficiency and is also characterized by a low 

inter-cluster similarity and a high intra-cluster 

similarity. Last, an interesting cluster in the bottom 
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right corner groups various oil-based supplements used 

for the treatment of colds.  

Therefore, we can both identify clusters of the 

same treatment area (red circles in Figure 4) and 

clusters of the same active ingredient (sub-clusters of 

the same color). 

 

 
 

Figure 4: Average accuracy of each active 
ingredient for alternative drugs evaluation 

Results from evaluation C (vector arithmetics for 

analogical reasoning). To evaluate whether vector 

arithmetics provide meaningful results, we present a 

handful of examples. We start by selecting a suitable 

starting drug from which we subtract typical allergenic 

ingredients such as lactose, fructose, and gelatin that is 

present in the drug. The evaluation is considered 

positive if the closest drug to the result of the 

arithmetic operation has the same medical effect as the 

original drug but does not include the undesired 

ingredient. In the following, we present some examples 

that perfectly allow vector arithmetics. 

• Example 1: Subtracting Lactose.  

dv(Metamizol HEXAL Film-coated tablets) –  

wv(Lactose) ~= dv(Novalgin for kids  

suppositories) 

While the original drug was provided in pills and 

contains lactose, the substitute drug contains the 

same active ingredient but is provided in the form 

of suppositories that do not contain lactose. 

Overall, we found that the subtraction of the word 

vector lactose works very well, resulting in 

possible alternatives without lactose. 

• Example 2: Subtracting benzylalcohol.  

dv(Ibuprofen AbZ Sirup) - wv(benzylalcohol) ~=  

dv(IBULYSINratiopharm coated tablet) 

The original drug contains the ingredient 

benzylalcohol. The substitute drug has the same 

active ingredient as the original but contains no 

benzylalcohol. 

• Example 3: Adding pine needle oil.  

dv(Exeu Capsule) + wv(pine needle oil) ~=  

dv(Transpulmin Cold Balsam for kids) 

Interestingly, not only subtraction but also 

addition provides meaningful results. The original 

drug and the substitute drug both have the same 

active ingredient except that the substitute has the 

added active ingredient of pine needle oil. 

However, we also found areas where vector 

operations do not seem to be successful. Subtracting 

fructose did not yield successful results in our 

evaluation. We also tried to subtract side effects from 

drugs but were not able to achieve positive results. 

4.2. Use case 2: Find alternative forms 

In the second use case, we aimed to identify 

alternative dosage forms for the same ingredient. In the 

following, we present the results from evaluation 

methods A, B, and C. 

Results from evaluation A (accuracy of 

alternative drugs via cosine similarities). We conducted 

the evaluation based on the ten active ingredients 

shown in Table 2. The evaluation details are described 

in Section 3.5. The results are presented in Table 4 and 

display the averages of the respective runs. 

Table 4: Results of method A for alternative 
dosage forms 

Alternative Drugs Evaluation 

Iteration Accuracy 

1 0.68 

2 0.79 

3 0.89 

4 0.75 

5 0.80 

6 0.73 

7 0.79 

8 0.84 

9 0.84 

10 0.79 

Ø 0.79 

  

Unsurprisingly, this evaluation leads to lower 

accuracy results than the evaluation of the first use 

case, since it must consider dosage form and active 

ingredient to be considered a correct selected drug. 

Nevertheless, the results range between 68% and 89% 

and are conservatively formulated; in the worst 

performing run, almost seven out of ten drugs are 

correctly identified. 
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Figure 5 below displays the average accuracy of 

the evaluation grouped by active ingredient. We see the 

same effects as in use case 1 but with overall lower 

accuracy values and higher variance among the 

different ingredients. 

 

 
Figure 5: Average accuracy of each active 

ingredient for dosage form evaluation 

Results from evaluation B (visual plot of PCA 

dimension reduction). We randomly selected drugs 

containing the active ingredient Ibuprofen and 

Paracetamol with different dosage forms. The resulting 

document vectors were reduced using the PCA method 

and plotted. The result is illustrated in Figure 6. The 

symbols are color-coded based on the active 

ingredient; different symbols represent different dosage 

forms. 

 

 

Figure 6: PCA plot of selected drugs 
containing Ibuprofen or Paracetamol 

The plot nicely illustrates that subclusters based on 

the dosage form exist. At the top, we see the Ibuprofen 

cluster, which is separated into two subclusters, one for 

the dosage form juice and one for tablets. At the 

bottom of the plot, the Paracetamol cluster is not as 

clearly separated into subclusters. While most of the 

Paracetamol tablets are grouped, one outlier is closer to 

the Paracetamol granulate subcluster. The Paracetamol 

drug with the dosage form powder is clearly separated 

from the other subclusters. 

Results from evaluation C (vector arithmetics for 

analogical reasoning). To show the viability of 

analogical reasoning for finding alternative dosage 

forms of drugs using vector arithmetics, we present a 

handful of examples. We start by selecting a suitable 

drug for which other drugs with the same active 

ingredient but different dosage forms exist. We then 

subtract the dosage form from the original drug and 

add the desired dosage form. The drug closest to this 

vector operation should ideally match the original drug 

in its active ingredient, but should not have the 

subtracted dosage form, which is present in the original 

drug, but the dosage form supplied by the addition. In 

the following, we present some examples that achieve 

the stated goal. 

• Example 1: From tablets to drops. 

dv(Metamizol HEXAL Tablets) - wv(tablets) + 

 wv(drops) ~=  dv(Metamizol HEXAL Drops) 

The original drug has the dosage form tablets, 

while the drug nearest to the resulting vector has 

the dosage form drops. Both the original drug and 

the resulting drug have the same active ingredient 

and are painkillers. 

• Example 2: From drops to juice. 

dv(Ambroxol acis Drops) - wv(drops) + wv(juice) 

 ~= dv(AmbroHEXAL S Cough Syrup Juice) 

The suggested drug resulting from this vector 

operation has the same active ingredient 

(Ambroxol hydrochlorid) as the original drug. It 

fits the added dosage form of juice instead of the 

original dosage form of drops. 

• Example 3: Just no tablets, please. 

dv(Paracetamol OPT Tablets) - wv(tablets) ~=  

dv(RubieMol Juice) 

Just subtracting without adding the desired dosage 

form also leads to suitable results. Rubimol Juice 

and Paracetamol OPT Tablets have both the 

active ingredient Paracetamol. As the names 

suggest, Paracetamol OPT Tablets has the dosage 

form tablets while Rubimol Juice is a juice. 

Interestingly, the second nearest drug to the 

resulting vector is Enelfa Dr Henk Suppositories, 

which also shares the same active ingredient but is 

a suppository. 

However, we also had some vector operations 

where the resulting drug had the appropriate alternative 

dosage forms but did not match in the same medical 

treatment effect as the supplied dosage form. 
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5. Discussion  

Results from evaluation A indicate that the trained 

model can provide alternative drugs with high accuracy 

of over 90%. Also, the combination of drugs and 

dosage form led to high accuracy values between 68% 

and 89%. High accuracy values, denoting a meaningful 

allocation of drugs in an algebraic space, could be 

confirmed in exemplary visual plots in evaluation B. 

Therefore, cosine similarities, i.e., dot products, work 

very well as vector operations on the dataset. Patient 

information leaflets turn out to be a suitable data 

source for document processing with unsupervised 

methods. 

In addition to dot products, we tested other vector 

operations in the form of vector arithmetics, combining 

word and document vectors. Interestingly, we found 

evidence that such vector arithmetics are feasible, both 

for subtracting ingredients and dosage forms. We were 

even able to add desired ingredients and dosage forms. 

This gives interesting insights into the compatibility of 

word vectors and document vectors, a topic that has 

been previously unexplored. 

Regarding the two use cases, we can formulate the 

following two contributions. 

Contribution 1. We were able to show that we 

could identify alternative drugs not only by A) cosine 

similarities and B) the visualization of a PCA reduced 

vector space, but, much more intriguing, also by C) 

vector operations with two different kinds of vectors, 

namely adding word vectors to document vectors. 

Contribution 2. Similar to contribution 1, we 

could show that we were able to identify alternative 

dosage forms not only by A) cosine similarities and B) 

the visualization of a PCA reduced vector space, but 

also by C) vector arithmetics with document and word 

vectors. 

However, vector arithmetics did not work on all 

attempts to include or exclude properties, like 

subtracting side effects, and also not for every 

ingredient. We were not able to find general patterns of 

operations that reliably work well. Whereas vector 

operations with dot products can be seen as a very 

solid way to find alternative drugs, the use of vector 

arithmetics is rather only suitable for exploration 

purposes. Still, the vector operations we described 

allow for completely new ways of navigating in the 

space of drugs, both for patients and pharmacists. 

6. Limitations  

One of the limitations is that by removing numeric 

characters and then merging different dosage amounts 

of the same drug, this information was removed from 

our data. On the positive side, this removes noise from 

our data, but on the negative side, gives our model 

fewer data for embedding, with the effect that our 

model cannot differentiate on the dosage amount. 

Another limitation is that extensive 

hyperparameter tuning was not done. Instead, the 

parameters found by Brito et al. [21] with minor 

adaptations were used. While these parameters 

represent a good starting point, we think performance 

can be improved by further optimizing the parameters 

for this specific task.  

Concerning the size of our training set, resulting 

from the preprocessing steps, the 13,644 patient 

information leaflets were condensed into 6,488 

documents. This is a small dataset compared to the 

usual data word embeddings are trained on (see [4, 5]). 

Bigger datasets can help make the embeddings more 

robust.  

Our evaluation of vector arithmetics could only be 

performed on examples, which is a further limitation of 

our work. Still, compared to the King-Man-Woman-

Queen example, we found some quite intriguing 

examples of valid vector operations.  

Certainly, the model we created does not 

exhaustively reflect all suitable alternative drugs. The 

evaluation of suitable alternative drugs is based on the 

comparison of the active ingredients of the drugs and 

no expert knowledge is available during the evaluation. 

There might be drugs that have different active 

ingredients but still can be considered alternatives by 

experts between drugs; we cannot assess these because 

of our lack of expert pharmaceutical knowledge.  

7. Conclusion and Outlook 

In this research paper, we successfully showed that 

document and word embeddings from patient 

information leaflets can be used to find suitable 

alternative drugs and dosage forms. The model can 

extract alternative drugs given a specified drug. The 

training was performed in an unsupervised way, i.e., 

without a labeled dataset or any insertion of explicit 

medical knowledge. The resulting model considers the 

dosage form of the drug when selecting possible 

alternatives and selects drugs with the same dosage 

form with a higher probability.  

Visualizing the document vectors as a two-

dimensional scatter plot revealed that the model 

clusters drugs with the same effects, for example, 

painkillers or diabetes medications, together. This is a 

strong indication that the model works on deeper 

semantic layers than a purely syntactic extraction can. 

We also evaluated analogical reasoning and were able 

to find drugs in a target-oriented way by excluding 

ingredients through vector arithmetics, demonstrating a 

completely new way to navigate in the drug realm.  
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Considering over the counter drugs, pharmacies 

and health insurance companies could offer a web 

service for their clients to explore other dosage forms 

and alternative ingredients, combined with advice to 

consult a pharmacist as vector arithmetics give 

indications, but no guarantee of suitable alternatives. 

Here, service providers would need to check regulatory 

requirements of their countries to avoid liability issues. 

The most intriguing area for further research, from 

a methodological perspective, is more investigation on 

the compatibility of word vectors and document 

vectors. More data sets are needed to verify our initial 

indication that word vectors can be added or subtracted 

from document vectors.  

With respect to future research in the medical 

field, there is still room to test further use cases that 

vector representations of drugs offer. Analogies 

especially have the potential to create new ways of 

querying drugs. Also, the data that the model is trained 

on can be extended, for example, user-generated 

content from medical forums.  
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