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Abstract

Computational fluid dynamics (CFD) modeling of
blood flow is significant for obtaining patient-specific
hemodynamics information for functional assessment
of the cardiovascular system. In this work, we
present a framework for fully automatic CFD simulation
through the aorta. The proposed framework consists
of four main stages: (1) automatic segmentation of the
aorta, (2) model generation, (3) mesh creation, and
(4) blood flow simulation. In the segmentation part,
we utilized a 3D MultiResUnet network for automatic
segmentation of organs at risk from the CodaLab
SegThor Challenge. After that, we extract ascending
and descending aorta and further proceed with model
and mesh generation. Finally, we simulate the pressure
along the surface of the aorta, the displacement, and
the velocity. The entire framework' was implemented in
Python with open-sourced dependencies (Pytorch, VTK,
SimVascular, SimplelITK), can be executed from the
command line, and does not require user intervention,
significantly reducing aorta simulation time.

1. Introduction

The cardiovascular system, composed of the heart
and vessels (aorta, arteries, and veins), distributes
oxygen and essential nutrients through the blood to
all organs in the human body. Different structures of
the cardiovascular system can be affected by various
pathologies called cardiovascular diseases, which are
the third leading cause of death in the world [1].
In arteriosclerosis, the wall of the vessels sometimes
develops abnormalities, called lesions. They often cause
vessel narrowing due to the buildup of atheromatous
plaque and, in severe cases, can result in coronary
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artery disease, peripheral artery disease, or stroke [2, 3,
4]. Early arteriosclerotic lesions develop in branching
regions of vessels where blood flow is significantly
disrupted due to vessels’ complex geometry and blood
flow pulsatile nature [5]. A better understanding
of arteriosclerotic development is enabled through
image-based modeling, and numerical simulations of
aortic blood flow [6].

A typical workflow starts with the manual or
semi-automatic  segmentation of cardiovascular
structures from images obtained by computed
tomography (CT) or magnetic resonance (MRI). After
that, model generation and meshing are performed to
create simulation-ready models. The final step, blood
flow simulation, relies on applying computational fluid
dynamics (CFD) [7] to previously obtained computer
models and enables computation of patient-specific
blood flow information, capturing hemodynamic
features which are not measurable in vivo. These steps
are generally performed using separate software tools
and often require significant human effort, which is
a time-consuming process subjected to unpredictable
and unreproducible errors. Therefore, designing and
developing automatic methods for generating blood
simulations are necessary to unify and simplify this
complex task.

In this work, we present an automated framework
for generating aorta CFD simulations from CT volumes.
Our framework proposes a 3D MultiResUnet method
to perform automatic segmentation of the aorta from
CT images. We further automate surface processing to
generate volumetric computational models and meshes
that are suitable for CFD simulations. Finally, we
simulate the pressure along the surface of the aorta,
the displacement, and the velocity. The remainder
of the paper has the following structure. Section 2
briefly describes the most important prior researches and
concepts. In Section 3, we give a detailed description
of the proposed framework and used methods. Section

Page 3642



4 includes experiments and obtained results for both
segmentation and simulation results. Finally, in Section
5, we provide a discussion and give a conclusion.

2. Related Research

In these subsections, we review some related works.
First, we review the prior methods in the segmentation
tasks of thoracic organs at risk since we use the same
dataset for aorta extraction in the first part of our
framework. After that, we present previous approaches
for aorta simulation.

2.1. Prior Segmentation Methods

Recent developments in deep learning and the broad
attainability of high-performing graphical processing
units (GPUs) alleviated automated segmentation of
different organs and parts of the human body using
convolutional neural networks (CNNs). The commonly
used approaches include various modifications and
improvements of U-Net architecture [8] and its 3D
counterpart, 3D U-Net [9]. For example, Chen et al.
[10] use original 2D U-Net network, while He et al. [11]
use 2D U-Net architecture with residual blocks. Vesal et
al. [12] use the dilated residual network, which expands
the receptive field in the lowest level of the network.
This enables efficient use of both global and local
information without increasing network complexity. A
similar method was employed by Gali et al. [13] as well.
Wang et al. [14] propose a 3D Enhanced Multi-scale
Network (EMSN) that refines final prediction through
a progressive auto-context procedure. They apply 3D
dilated convolution, which enlarges the receptive field
of the convolution kernel without loss of resolution.
Zhang et al. [15] present a novel multitask framework
that uses two segmentation networks. First, a coarse
segmentation network with residual blocks localizes
the regions of interest (ROI). After that, multi-level
ROIs are cropped from the encoder part to form
input to a decoder that provides fine, detail-preserving
segmentation results. Kondratenko et al. [16] use
2D T-Net architecture and strong postprocessing that
includes use of the non-intersecting packages division
of each image. Feng et al. [17] use a simplified
Dense V-Net. Similarly, Han et al. [18] proposed
a multi-resolution VB-Net framework that reduces the
computation cost while maintaining high segmentation
accuracy. Moreover, a two-stage cascaded network
presented by Kim et al. [19], uses the first network
to select slices and the second network to provide final
segmentations.

However, prior works in this area have focused
only on improving the segmentation accuracy of organ

structures. To our knowledge, none have considered
the automatic construction of models suitable for CFD
simulations. Thus, a need remains to develop an
automated method to generate patient-specific CFD
models and blood flow simulations directly from image
data.

2.2. Prior Aorta Simulation Methods

Recently, numerous researches introduce numerical
simulation methods to investigate blood flow structure,
and its interaction with blood fluid [20]. These methods
include the level set method [21], the fictitious domain
method [22, 23], the immersed boundary method [24],
the Fully Eulerian formulation [25] and the Arbitrary
Lagrangian-Eulerian (ALE) [26, 27].

A plethora of methods for the simulation of blood
pressure gradient of aortic coarctation models at
rest and under exercise conditions were presented
during the first and second Medical Image Computing
and Computer-Assisted Intervention (MICCAI)
CFD Challenge [28, 29]. Wang et al. [30] present
haemodynamic metrics found in aortic dissection
and quantitative indexes for optimal treatment
planning.  Moreover, Garje et al. [31] observed
numerical changes in vessels’ blood flow and their
growth due to an accumulation of cholesterol in
coronary artery disease (CAD). Methods for observing
geometry and blood flow through an abdominal
aortic aneurism allow timely prediction of aneurism
ruptures and are described by Canchi [32]. Gonzales
et al. [33] analyze the fluid dynamics that cause
the wall stress distribution in abdominal aortic
aneurysms, using accurate 3D geometry and a realistic,
nonlinear, elastic biomechanical model. Lee et al.[34]
introduce non-linear kernel support vector regression
for prediction of AAA growth that requires only
flow-mediated dilatation and AAA diameter as inputs.
Selmi et al. [35] investigate blood flow in the upper
aorta using Navier-Stokes equations and neo-Hookean
hyperelastic model for describing vessels’ wall
behavior. Moreover, Caballero et al. [36] provides a
comprehensive description of methods for anatomic and
physiologic model creation and explains assumptions
of assigning boundary conditions for simulations in
the thoracic aorta. Fuchs et al. [37] focuses on the
sensitivity of simulation results due to in- and outflow
boundary conditions (BCs). Jia et al. [38] observes
implications of using two different outlet boundary
conditions in blood flow modelling based on using
pressure or flow rate outlet boundary conditions.
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Figure 1. An illustration of a proposed four-stage framework for the simulation of blood flow in the thoracic aorta
includes: (1) segmentation of 3D images, (2) model generation, (3) mesh generation, and (4) solving incompressible
Navier-Stokes equations to simulate the blood flow in the aorta.

3. Method

The proposed automated framework consists of four
major steps to generate CFD-compatible models for
aorta flow simulations: (1) automatic segmentation, (2)
model generation, (3) mesh creation, and (4) blood
flow simulation. The whole workflow of our proposed
framework is illustrated in Figure 1.

3.1. Automated Segmentation

Following the architecture of an original 3D U-Net,
the 3D MultiResUnet structure has encoder and decoder
paths. In the encoder path, there are three MultiRes
blocks. Each MultiRes block has 3 x 3 x 3 convolution
layer with a 1 x 1 x 1 residual connection, which is
followed by strided convolution that increase feature
size by 2, and downsizes the image dimension by
2. A residual connection is added to gather more
spatial information. ~ Additionally, each MultiRes
block contains the ReLU activation function and the
Group Normalization (GN). Similarly, the decoder
path contains MultiRes blocks, followed by strided
convolution that decreases the feature size by 2 and
upsizes the image dimension by 2. Instead of commonly
used skip connection for connecting encoder and
decoder, ResPaths [39] are used. The strength of
ResPath [39] is in a chain of 3 x 3 x 3 filters with

1 x 1 x 1 residual connection that passes the feature
maps from the encoder to the decoder, simultaneously
concatenating them. The structure of an overall network,
MultiRes blocks, and ResPath is shown in Figure 2.

3.1.1. Training Details and Optimization

We normalize each input 3D image based on the
standard and mean deviation of their intensity values.
To provide fine ROI for network input, we crop input
images to a fixed size of 176 x 224 x 144. For data
augmentation, we apply random axis mirror flip with a
probability of 0.5, random scale, and intensity shift on
the input image channel. We use L2 norm regularization
with a weight of 1075, and employ the spatial dropout
with a rate of 0.2 after the initial encoder convolution.
We use Adam optimizer with an initial learning rate of
ag = 1074, and gradually decrease it according to the
following expression:

0.9
a:a0*<1—j%> D

where T, is a number of epochs and c is an epoch
counter. We employ a smoothed negative dice score loss
function, which can be expressed as:
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An illustration of the architecture of 3D MultiResUNet, MultiRes block, and ResPath. MultiRes block

consist of four 3 x 3 x 3 convolution layers and a 1 x 1 x 1 convolutional residual connection. ResPath has two 3 x 3 x 3
convolutional layers each with one 1 X 1 x 1 residual connection. The output layer uses the sigmoid activation function
to obtain the final segmentation results for the trachea, esophagus, heart, and aorta.
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where p; is probability of predicted regions, g; is the
ground truth.

We use 80%-20% training and validation split, i.e.,
32 volumetric images are used for training, and the 8
are used for validation purposes. A detailed description
of the used dataset is given in Section 4.1. Final
segmentation accuracy testing was done on an online
CodalLab SegThor Challenge submission page on 20
patient subjects [40]. The total training time took
approximately 12 hours on two NVIDIA Titan V GPUs
simultaneously. The network is trained for 200 epochs
since further training did not decrease validation loss as
shown in Figure 3.

Dloss = -

2

3.2. Model generation and meshing

We extract ascending and descending aorta regions
from previously obtained segmentations and use

OpenCASCADE modeling kernel from SimVascular
[41] to generate aorta models. After that, a marching
cube algorithm was applied to generate a watertight
surface mesh of the aorta. The obtained aorta was
then triangulated using a constrained 2D Delaunay
algorithm. First, the trimmed model is re-meshed with
a maximum mesh edge size of 1.4 mm. Second, a
volume mesh is generated with an edge size of 1.8
mm and a boundary layer meshing near walls. With
this procedure, we construct unstructured meshes of
volumetric input segmentation. As such, they can
be used as the computational domain to simulate the
velocity and pressure of blood flow. An illustration of
ascending and descending aorta with defined inlet and
outlet boundaries and an example of obtained model and
meshes is shown in Figure 4.

3.3. Image-Based aorta CFD Simulations
We apply the Arbitrary Lagrangian-Eulerian (ALE)

formulation of the incompressible Navier-Stokes
equations to simulate the blood flow. The continuity
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Figure 3. Training and validation accuracies and losses
for 3D MultiResUnet network architecture. The network
is trained for 200 epochs since further training did not
decrease validation loss.
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Figure 4. An example of obtained results of our proposed
framework for: (a) aorta segmentation, (b) generated
aorta model, and (c) created aorta mesh.

and momentum of Navier—Stokes equations written in
the strong form can be expressed as follows:

v =0 3)

3

Vi + v = =P +Yijj + fi “)

where v; is the ¢ — th component of velocity, p is the
pressure that is assumed to be constant and is calculated
with dividing by the density p, f; is the prescribed body
force (divided by p), and 27 is the viscous stress tensor
given with:

pij = v(vij +vj4) ®)
where v = % is the kinematic viscosity. An
arbitrary domain Navier-Stokes equations are solved

using two methods: pressure-stabilizing Petrov Galerkin
(PSPG) [42], and streamline-upwind Petrov-Galerkin

(SUPG) [43]. Specifically, this formulation is defined on
the finite-dimensional weight function spaces and trial
solution.

Let ® € R? denote finate-dimensional domain with
boundaries defined as & = ®D U ®N and weight
function spaces MY, T} and OF. Neumann boundary
conditions are applied on ® N, while Dirichlet boundary
conditions are applied on ®D. By discretizing ® with
linear elements ®., Eq. 3 and Eq. 4 can be written as:

Ba(ts, 0304, p) = / [ti(0; +vjvi j — fi)
3]

+ti5(=pdij + i) — 00 P (6)

+/ [tz (p&'n - ’an) + qun]q)N
DN

forall t € T} and o € O. The above equations
were solved with the open-source svFSI solver from the
SimVascular.

At the inlet boundary conditions, a time-varying
flow rate was imposed, while at the outlet boundary
conditions, a pressure wave was set. This information
was adapted from [44]). The boundary conditions are
defined in Figure 5. The blood was assumed to be
Newtonian. The blood was assumed to be Newtonian.

Blood was assumed to have a viscosity v = 4.0 -
107?Pas and a density p = 1.06-%;. Moreover, the

vessel walls were assumed to be rigid for simplicity, and
the no-slip condition was considered.
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Figure 5. Graph showing inlet and outlet boundary

conditions. Here, Q is a flow rate, and P is a preassure
wave.

4. Dataset and Results

In this subsection, we describe the used dataset
and provide obtained results for the segmentation and
simulation parts of the proposed framework.
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4.1. The SegTHOR Dataset

In this work, we use a dataset provided by CodaLab
SegTHOR Challenge [40]. The dataset is divided into
train and test sets that include 40 CT and 20 CT
volumetric images, respectively. This represents 7390
slices for training data and 3694 slices for test data. The
number of slices differs between patients, and image
sizes are between 512 x 512 x (150 — 284) voxels.
The in-plane resolution varies between 0.90mm and
1.37mm per pixel, while the most common resolution
is 0.98 x 0.98 x 2.5. Each CT image in the train
set has corresponding ground truth produced manually
by an experienced radiotherapist. Ground truths of
the test set are hidden, and evaluation is available
through an online evaluation platform that calculates the
Dice scores and the Hausdorff distance for each organ
structure[40]. An example of input dataset image slices
with corresponding ground truth is shown in Figure 6.

An example of an input image from the

Figure 6.
SegThor dataset. Top row: an axial slice of an original
image with ground truth overlay (left) and a sagittal slice
of an original image with ground truth overlay (right).
Bottom row: a coronal slice of an original image with
ground truth overlay (left) and 3D visualization (right).

4.2. Segmentation and Simulation Results

Segmentation accuracy was tested on the 40 patient
CT scans from the Codalab SegThor dataset with
online evaluation framework [40] which computes Dice
score (DSC) and Hausdorff distance (HD) between
segmentation results and the (hidden) ground truth. The
DSC metric measures the degree of overlap between the
ground truth and predicted segmentation and is defined

as follows:

2IGNP

On the other hand, HD represents the maximum of the
minimum voxel-wise distances between the ground truth
and predicted object boundaries and can be written as:

HD(G,P) = max{min{\/g2 —p2}} (8)

geG | peP

where g is the ground truth, and p is the predicted mask.

Table 1 gives a comparison of the Dice score and
Hausdorff distance of the esophagus, trachea, heart,
and aorta produced by our automated segmentation
framework with the results of other participants in
the SegThor challenge. To provide further details on
segmentation accuracy, the box plots in Figures 7 and
Figure 8 give the distributions of the segmentation
accuracy measures for all four structures.

We achieve an average Dice score of 69.84%,
94.55%, 94.97%, and 95.83% for esophagus, heart,
trachea, and aorta, respectively. Our segmentation
method performs exceptionally well for segmenting
the trachea and aorta. In this paper, it is essential
to achieve the highest possible accuracy for aortic
segmentation since we need it in the following steps
to generate models and simulations. Therefore, the
obtained dice score of 95.83% and low HD of 0.3021
support our design choice of using 3D MultiResUnet
network architecture for aortic segmentation. Moreover,
heart results are comparable to the other challenge
algorithms. However, the use of a very deep network
with a large number of feature maps appears not suitable
for the segmentation of the esophagus.

While testing the accuracy of the segmentation
process is important, it only assesses the accuracy of
pixel classification. This does not directly guarantee
that segmentations will lead to valid geometries from
which effective meshes could be obtained. To ensure our
geometry reconstruction and mesh generation process’s
robustness, we visually inspect all 20 obtained CT
segmentations from the SegTHOR test set. After
that, we check whether there were any errors in
geometry construction or volumetric meshing and
visually inspected the models for apparent artifacts. For
all obtained segmentation results from 20 CT patient
scans, our framework generated the reconstructed aorta
geometry and produced a valid volumetric mesh.

Figure 9 shows pressure, displacement, and velocity
streamlines in the ascending and descending aorta.
The lowest pressure is in an ascending aorta, and it
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Table 1. Comparison of dice scores and Hausdorff distances of state-of-the-art methods and our proposed method for
esophagus, heart, trachea and aorta segmentation.

DSC HD
Authors Method Esophagus  Heart Trachea  Aorta Esophagus  Heart Trachea  Aorta
Chen et al. [10] 2D U-Net 0.8166 0.9329  0.8910 0.9232 | 0.4914 0.2417 0.2746 0.3081
Heetal. [11] 2D Residual U-Net | 0.8594 0.9500  0.9201 0.9484 | 0.2743 0.1383  0.1824 0.1129
Gali et al. [13] Dilated U-Net 0.4648 0.8597  0.6295 0.8526 | 2.8665 0.8993  3.9841 1.4577
Wang et al. [14] EMSN 0.8386 0.9310  0.9067 0.9352 | 0.3637 0.2874  0.2670 0.2517
Zhang et al. [15] Loc + seg 0.7732 0.9384  0.8939 0.9232 | 1.6774 0.2089  0.2741 0.3081
Kondratenko et al. [16] | 2D T-Net 0.80 0.93 0.89 0.92 0.62 0.30 0.81 0.27
Feng et al. [17] Dense V-Net 0.7734 0.9414  0.8927 0.9233 | 0.6400 0.1821 03077 0.2357
Kim et al. [19] Cascaded Network | 0.7518 0.9328  0.8885 0.8919 | 0.9267 0.2184 0.6164 1.1300
Proposed 3D MultiResUnet 0.6984 0.9455  0.9497 0.9583 | 0.9435 0.2217  0.3357 0.3021
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Figure 7. Box plots of dice scores for esophagus, Figure 8. Box plots of Hausdorff distance for esophagus,

heart, trachea and aorta of segmentation results from
the SegThor test data sets.

slowly increases in the aortic arch, specifically on the
upper aortic arch. Conversely, the maximum pressure
distribution is seen in descending aorta. Similarly, the
velocity is lower in the ascending aorta while the peak
velocity blood flow is obtained in descending aorta,
i.e., at the outlet. The obtained results are in the
expected range for ascending and descending aorta, thus
guarantee the correctness of the proposed approach.

5. Conclusion

In this work, we have presented a framework for
fully automatic CFD simulation through the aorta
from patient-specific CT images. The framework
combines novel deep-learning-based automatic
segmentation algorithms and geometry processing
algorithms to create simulation-ready CFD-suitable
models from CT image data and explore blood flow
simulations.  Specifically, it contains four major
stages: (1) automatic segmentation of the aorta,
(2) model generation, (3) mesh creation, and (4)

heart, trachea and aorta of segmentation results from the
SegThor test data sets.

blood flow simulation. In the segmentation part, we
utilized a 3D MultiResUnet network for automatic
segmentation of organs at risk from the CodalLab
SegThor Challenge. Segmentation results are highly
comparable to the current state-of-the-art, yielding DSC
for esophagus, heart, trachea, and aorta of 69.84%,
94.55%, 94.97%, and 95.83%, respectively. After
successful segmentation, ascending and descending
aorta are extracted and processed to obtain aortic
models and meshes. To support CFD simulation of
aorta hemodynamics using an ALE formulation, the
framework can automatically identify boundary faces
of mitral and aortic opening. We simulate the pressure
along the surface of the aorta, displacement, and
velocity. Our framework offers orders of magnitude
savings in time and human efforts in developing
image-based CFD simulations of aortic flow compared
with prior manual or semi-automatic methods.
The entire framework was implemented in Python
with open-sourced dependencies (Pytorch, VTK,
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SimVascular, SimpleITK), can be executed from the
command line, and does not require user intervention,
significantly reducing aorta CFD simulation time.
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