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Abstract

Power system dynamic stability can be evaluated
through the analysis of transient oscillations that occur
following significant system events. One of the earliest
methods for this type of study is Prony analysis,
which estimates the system’s electromechanical modes.
While previous studies have highlighted advantages
of performing Prony analysis on data in the forward
and backward directions, the proposed method does so
simultaneously. As a result, signal poles corresponding
to electromechanical modes can be distinguished from
spurious poles more reliably. The method also produces
a single mode estimate, where independent application
in the forward and backward directions would produce
two estimates for each mode. The method is validated
using simulated and measured power system data.

1. Introduction

For safe and reliable operation of a power grid,
the system’s small signal-stability must be maintained.
Small-signal stability refers to the system’s ability to
maintain synchronism after a disturbance [1]. The
August 10, 1996 breakup of the Western Electricity
Coordinating Council (WECC) system, which resulted
in the loss of 30,390 MW of load impacting 7.49 million
customers, serves as an example of the catastrophic
effects of instability [2].

The severe mismatches between modeled and
observed system behavior during the event [2] also
highlighted the need for regular system testing and
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model validation. In the WECC system, the 1400
MW Chief Joseph dynamic braking resistor is used
to excite the system’s dynamics during tests [3].
Unplanned system events such as line and generator
trips can provide similar excitation. The resulting
“ringdown” oscillations can be analyzed for comparison
with model-based results and to better understand how
system conditions impact stability [4].

Specifically, analysis of ringdown oscillations leads
to estimates of the system’s dominant inter-area
electromechanical modes [1]. The modes dictate the
exchange of electrical and mechanical energy between
groups of generators in disparate parts of the system.
The modes are characterized in part by frequency
and damping ratio terms, which are directly related
to the frequencies and damping ratios of oscillations
observed in measurements of frequency and power.
Thus, these oscillations can be analyzed to estimate
the electromechanical modes. As long as the damping
ratios of all modes are positive, the system is stable.
If any of the modal damping ratios become negative,
oscillations of power will grow until protective devices
operate. This type of line tripping contributed to
the cascading event on August 10, 1996 [2]. Thus,
knowledge of a system’s electromechanical modes is
helpful in maintaining stable operation.

The measurements used in such analyses typically
come from phasor measurement units (PMUs). They
provide GPS-synchronized measurements of voltage
phasors, current phasors, and frequency at relatively
high reporting rates, typically 30 or 60 frames per
second. Time-synchronization allows measurements
from across the system to be analyzed together
and the high reporting rates allow the oscillations
of interest to be captured effectively. In contrast,
SCADA measurements are typically not well-suited
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for analyzing oscillations because they are reported
asynchronously and relatively infrequently.

With the advent of PMU networks, several
algorithms for the analysis of ringdown data were
developed [5, 6, 7, 8]. The focus of this paper
is on an extension of the earliest such algorithm,
Prony analysis [9]. Prony analysis is a method of
fitting a sum of damped sinusoids to measured data.
Several adjustments to the basic algorithm to improve
performance at low signal-to-noise ratio (SNR) levels
were suggested in a series of papers that are summarized
in [10].

One of the challenges of Prony analysis addressed
in [10] is distinguishing between the true signal poles,
which in the power system application correspond to
electromechanical modes, and extraneous poles that are
introduced by overfitting the model to account for noise.
This problem is also addressed in [11, 12, 13], but the
solution in [10] is most relevant to the present work. The
authors of [10] propose analyzing the ringdown in the
backward direction so that signal poles appear unstable
while extraneous poles remain in the stable region. A
closely related approach was recently proposed in [14],
which formulates the backward application of Prony
in a different though mathematically identical manner
and suggests applying Prony in the forward direction as
well. The backward Prony approach suggested in [10]
was derived for the noiseless case in [15] but holds for
moderate amounts of noise. The topic of this paper is
an additional modification to Prony analysis that builds
upon this earlier work.

The primary contributions of this paper are: 1)
the formulation of a constrained nonlinear optimization
problem to simultaneously analyze a ringdown in
the forward and backward directions and 2) a novel
method of distinguishing between signal and extraneous
pole estimates. A flowchart describing the overall
methodology is provided in Fig. 1. Prony analysis is
first performed in the forward and backward directions
separately, resulting in two sets of pole estimates.

Next, a method of distinguishing between signal
and extraneous pole estimates is applied. The method,
which is described in Section 4, considers pole estimates
from both the forward and backward applications of
Prony, enabling better vetting of signal pole estimates
than the methods in [10] and [14], which select signal
poles from only one implementation. As a result,
each of the system’s dominant electromechanical modes
is associated with two pole estimates: one from
the forward application and one from the backward
application. To arrive at a single final estimate
for each mode, a constrained nonlinear optimization
problem is formulated to simultaneously analyze the

Figure 1. Flowchart describing the overall proposed

methodology.

ringdown in the forward and backward directions.
This approach is described in Section 3 and provides
a modest improvement to estimation accuracy over
separate applications of Prony.

Before proposing the simultaneous approach, an
overview of the modern Prony algorithm is provided
in Section 2. The new algorithms are proposed in
Sections 3 and 4, followed by discussion of results from
simulated and real-world data in Section 5. Section 6
lists conclusions and expectations for future work.

2. Overview of Prony Analysis

Following [9], consider a linear, time-invariant
dynamic system brought to initial state x(t0) = x0 by
an input. When the input is removed, the system will
respond according to the differential equation

ẋ = Ax. (1)

Here the initiating input, e.g., insertion of the Chief
Joseph dynamic brake, is assumed large enough that
smaller inputs and disturbances may be ignored.
The eigenvalues λi, right eigenvectors pi, and left
eigenvectors qi of the n × n state matrix A
describe the system’s dynamics. Of particular interest
here are the eigenvalues associated with inter-area
electromechanical modes. The associated right
eigenvectors define each mode’s shape [1]. The solution
to (1) can be expressed as [9]

x(t) =

n∑
i=1

piq
T
i x0e

λit (2)

where t denotes time and the transpose operator is
denoted with the superscript T .
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Figure 2. Example of a simulated ringdown after

preprocessing.

Now suppose that the M outputs of the system are
of the form

y(t) = Cx(t), (3)

where C is an M × n matrix [1]. Inserting (2), the
outputs can be expressed as

y(t) =

n∑
i=1

Bie
λit, (4)

where Bi = Cpiq
T
i x0 is an M × 1 vector containing

the output residues for signal pole λi. Outputs can be
expressed individually as

ym(t) =

n∑
i=1

Bmie
λit, (5)

where Bmi denotes the mth entry of Bi. When sampled
at interval T as the output is measured, (5) becomes

ym(kT ) = ym[k] =

n∑
i=1

Bmiz
k
i , k = 0, . . . , N − 1

(6)
where zi = eλiT are discrete-time poles. An example
of such a signal when all poles are stable is provided in
Fig. 2.

The objective of Prony analysis is to fit a measured
ringdown ŷ[k] to the model given by (6) by selecting the
Bmi and zi. This can be done with the steps that follow.
See [16] for a full treatment of the single-channel
approach and [17] for a description of the multi-channel
version implemented here.

Begin by forming the equation


yf1
yf2
...
yfM


︸ ︷︷ ︸

yf

=


Y f1
Y f2

...
Y fM


︸ ︷︷ ︸

Yf


a1
a2
...
aL


︸ ︷︷ ︸

θf

(7)

where

yfm =


ŷm[L]

ŷm[L+ 1]
...

ŷm[N − 1]

 (8)

Y fm =


ŷm[L− 1] . . . ŷm[0]
ŷm[L] . . . ŷm[1]

...
...

ŷm[N − 2] . . . ŷm[N − L− 1]

 (9)

and L is the model order. Because only the dominant
modes are of interest a reduced order model is
constructed, i.e., L � n. To suppress the effects of
noise, L is normally selected to be larger than nλ, the
number of dominant poles in the signal [11]. The well
known solution to (7) for the least squares cost function

J(θf ) = (yf − Yfθf )T (yf − Yfθf ) (10)

is given by

θ̂f = (Y Tf Yf )−1Y Tf yf = Y †f yf (11)

where † denotes the pseudoinverse. In practice,
it is advantageous to calculate the pseudoinverse
using singular value decomposition (SVD) to alleviate
ill-conditioning [10]. MATLAB’s pinv(·) function
calculates the pseudoinverse in this manner by default.

Using the estimate given by (11) the zi can be
estimated as the roots of the characteristic equation

zL − (â1z
L−1 + â2z

L−2 + · · ·+ âLz
0) = 0. (12)

The complex roots of this equation appear in conjugate
pairs. They are stable if their magnitudes are less
than one and unstable if their magnitudes are greater
than one (see [18] or other texts on the fundamentals
of systems). For moderate SNR levels, nλ pole
estimates will correspond to signal poles, leaving L −
nλ extraneous pole estimates. Extraneous poles, used
to account for noise, tend to have magnitudes less
than one for moderate noise cases [15]. See Fig. 3,
which indicates the results of standard (forward) Prony
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Figure 3. Example signal and extraneous

discrete-time pole locations from forward and

backward application of Prony. The example was

generated using simulation data from a model with

known modes.

analysis in black: two signal poles and one extraneous
pole, all within the unit circle. Distinguishing between
signal and extraneous poles is addressed in Section 4.
The continuous-time mode estimates corresponding to
the roots of (12) are given by

λ̂i = ln(ẑi)/T (13)

with associated frequency and damping ratio given by
[1]

f̂i =
imag(λ̂i)

2π
(14)

and
ζ̂i = −cos(6 λ̂i). (15)

With the poles estimated, a reduced-order version of (6)
is used to estimate the output residues. Expanding (6)
for the L pole estimates leads to


ŷm[0]
ŷm[1]

...
ŷm[N − 1]


︸ ︷︷ ︸

ỹm

=


ẑ01 ẑ02 . . . ẑ0L
ẑ11 ẑ12 . . . ẑ1L
...

...
. . .

...
ẑN−11 ẑN−12 . . . ẑN−1L


︸ ︷︷ ︸

Z


Bm1

Bm2

...
BmL


︸ ︷︷ ︸

Bm

(16)
with solution

B̂m = Z†ỹm. (17)

With all parameters estimated, the modeled signal
can be constructed by inserting parameter values into
(6). Because modes are represented by a complex

Figure 4. Example signal from Fig. 2 flipped for

analysis with a backward application of Prony.

conjugate pair of poles, the contribution of mode i to
signal m can be constructed as

ymi[k] = 2×Real{B̂miẑki }. (18)

A metric that is often used to rank the contributions of
individual poles is the pseudo energy given by [13]

Ei =

M∑
m=1

[
N−1∑
k=0

y2mi[k]

]
. (19)

3. Simultaneous Forward-Backward
Prony Estimation

The proposed method begins with the backward
Prony approach of [10]. Flipping the signal so that
sample N − 1 comes first (see Fig. 4) leads to the
rearrangement of (7)-(9) as


yb1
yb2
...
ybM


︸ ︷︷ ︸

yb

=


Y b1
Y b2
...
Y bM


︸ ︷︷ ︸

Yb


b1
b2
...
bL


︸ ︷︷ ︸

θb

(20)

where

ybm =


ŷm[N − L− 1]
ŷm[N − L− 2]

...
ŷm[0]

 (21)
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and

Y bm =


ŷm[N − L] . . . ŷm[N − 1]

ŷm[N − L− 1] . . . ŷm[N − 2]
...

...
ŷm[1] . . . ŷm[L]

 . (22)

The least squares cost function and solution follow as,
respectively,

J(θb) = (yb − Ybθb)T (yb − Ybθb) (23)

and
θ̂b = Y †b yb. (24)

Denote the roots of the characteristic equation

uL − (b̂1u
L−1 + b̂2u

L−2 + · · ·+ b̂Lu
0) = 0 (25)

as ûi. As with the forward application of Prony to
signals with moderate noise, nλ of these pole estimates
will correspond to dominant electromechanical modes.
Frequency, damping, shape, and pseudo-energy can be
calculated with obvious analogs to (13)-(19). Because
the signal is being analyzed in the backward direction,
the signal poles corresponding to stable modes will
appear unstable with magnitudes greater than one.
Because extraneous poles account for noise, they
continue to appear within the unit circle [15]. See Fig. 3,
which indicates the results of backward Prony analysis
in green: two signal poles outside the unit circle and one
extraneous pole within the unit circle.

Now consider the pole estimates

v̂i =
1

û∗i
, (26)

which have been reflected across the unit circle. Here
∗ denotes the complex conjugate. As displayed in Fig.
3, reflected signal poles fall within the unit circle near
pole estimates from the forward application of Prony.
The reflected extraneous signal poles fall outside of the
unit circle, making it possible to establish an initial
distinction between signal and extraneous poles. Further
discussion and a method for associating reflected signal
pole estimates with pole estimates from the forward
application of Prony are provided in Section 4.

Using the algorithm to be described in Section 4,
assume a subset of the forward and reflected pole
estimates have been categorized into nλ pairs of signal
poles such that

ẑ′j ≈ v̂′j , j = 1, 2, . . . , nλ. (27)

Here the ′ denotes that the pole estimate has been
classified as a signal pole. With two estimates for each

system mode, there is a difficulty in determining which
frequency and damping ratio values to report. Analyzing
signals separately led to a similar challenge that was
addressed with a multi-channel algorithm in [17]. The
objective of the proposed method is to reduce these pairs
of estimates to single values.

To do so, consider the constrained nonlinear
optimization problem

min
θf ,θb

[J(θf ) + J(θb)] (28)

such that
ẑ′′j = v̂′′j , j = 1, . . . , nλ (29)∣∣∣f̂ ′′j − f̂ ′j∣∣∣ < ∆f, j = 1, . . . , nλ (30)∣∣∣ζ̂ ′′j − ζ̂ ′j∣∣∣ < ∆ζ, j = 1, . . . , nλ (31)

ẑ‡‡j − ẑ
‡
j = 0, j = nλ + 1, . . . , L (32)

v̂‡‡j − v̂
‡
j = 0, j = nλ + 1, . . . , L (33)

The cost function minimized in (28) combines the cost
functions from the forward and backward applications
of Prony given by (10) and (23), respectively.
Essentially, a set of mode estimates is sought that
provide a good fit to the measurements when analyzed
in both the forward and backward directions.

In (29) - (31), ′′ denotes signal pole estimates
produced by solving the optimization problem.
Constraint (29) ensures that the signal pole estimates
obtained by rooting θf and θb are identical, leading
to one signal pole estimate for each pair in (27). For
results in this paper, initial values for the optimization
algorithm were selected as

ẑ′′j =
(ẑ′j + v̂′j)

2
, j = 1, 2, . . . , nλ. (34)

Constraints (30) and (31) ensure that pole estimates
remain associated with the same electromechanical
mode by preventing frequency and damping ratio
estimates from changing dramatically.

Constraints (32) and (33) dictate that final
extraneous pole estimates, denoted with ‡‡, remain
unchanged from their initial values, which are denoted
with ‡. Thus, the extraneous pole estimates are not
allowed to influence the selection of signal pole
estimates.

MATLAB’s fmincon function was used to solve the
constrained optimization problem to generate the results
presented in this paper. This function allows various
optimization algorithms to be used, but results were
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Figure 5. Flowchart describing the iterative process

used to solve the optimization problem.

consistent for the several algorithms that were tested.
For final results, the default interior-point algorithm was
utilized.

A generic flowchart describing the iterative process
is presented in Fig. 5. At each iteration, the extraneous
pole estimates, which are held constant, and signal pole
estimates, which are updated at each iteration, are used
to form the characteristic equations in (12) and (25).
The MATLAB function poly is then used to find the ai
and bi coefficients of the characteristic equations. The
cost functions (10) and (23) can then be calculated and
combined. If the optimization algorithm determines that
the minimum has been achieved, iteration ceases and the
final signal pole estimates are returned.

4. Associating Signal Poles

In the previous section, it was assumed that a subset
of the forward and reflected pole estimates had been
categorized into pairs of signal pole estimates. Each pair
was then used to initialize the optimization algorithm.
A novel method of performing this categorization is
proposed in this section to automate the process.

To begin, consider the following list of assumptions
about forward and reflected pole estimates established
in [10, 15]:

a) Stable signal poles are located within the unit
circle

b) Unstable signal poles are located outside of the
unit circle

c) For forward pole estimates, all extraneous poles
are located within the unit circle

d) For reflected pole estimates, all extraneous poles
are located outside of the unit circle

These assumptions hold in the noiseless case [15]
and tend to hold for moderate amounts of noise [10].
To mitigate the risk of these assumptions failing, the
algorithm proposed here also requires forward and
reflected signal pole estimates to be closely spaced, as
in Fig. 3. The initial signal poles in (34) are calculated
based on these associated poles.

Based on the listed assumptions, unstable signal
poles are readily identified with a forward application
of Prony as those outside the unit circle because all
other pole estimates are located inside the unit circle.
Similarly, stable signal poles are readily identified
with a backward application of Prony as those within
the unit circle because all other pole estimates are
located outside of the unit circle. Thus, the association
algorithm is divided into two phases. In the first phase,
stable signal poles are identified based primarily on the
reflected pole estimates. This phase proceeds as follows:

1. Collect all pole estimates within the unit circle

2. Sort reflected pole estimates according to
pseudo-energy, beginning with the most energetic

3. Find the forward pole estimate closest to the
currently considered reflected pole estimate

4. Check if the poles are within a frequency and
damping ratio tolerance of each other

• If so, associate the poles with each other as
signal poles and remove the forward pole
estimate from further consideration as a pair

• If not, classify the reflected pole estimate as
an extraneous pole

5. Repeat steps 3-4 for remaining reflected pole
estimates

Each step can be carried out objectively, allowing the
process to be automated to obtain the results presented
in this paper.

The second phase of the algorithm identifies unstable
signal poles based primarily on the results of the forward
application of Prony. The steps of the first phase repeat
for pole estimates outside the unit circle, replacing
reflected with forward and vice versa. Practically, most
analyzed signals will not contain unstable poles, so
phase two is often unnecessary. Note, though, that the
forward application of Prony is still used to identify
stable signal poles in phase one and in the simultaneous
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solution described in Section 3. In previously published
methods, e.g., [10, 15, 14], the forward pole estimates
are discarded when the system is stable.

Extraneous poles that violate assumptions a or b
will tend to have low pseudo-energy [13] and will
thus be considered last, by which point nearby signal
poles will already be associated with each other. In
this way, the algorithm provides robustness against
falsely identifying an extraneous pole as a signal
pole. Additional criteria can also be used to remove
estimates from consideration, e.g., setting a threshold
for minimum pseudo-energy. For the results reported
in this paper, only mode estimates with frequencies
less than 1 Hz were considered because this is
the approximate range of inter-area electromechanical
modes. Other types of oscillation modes may be present
in the analyzed signal at higher frequencies, but they are
considered as ”noise” modes for this application. The
frequency and damping ratio tolerances referenced in
step 4 above were set to 0.05 Hz and 10%, respectively.
Based on extensive testing, the algorithm was found to
be relatively insensitive to these parameters.

5. Method Validation

To demonstrate the utility of the algorithms proposed
in Sections 3 and 4, they were tested with simulated and
measured data. Simulation results are useful because
the true mode values are known from the model, so
statistical performance can be evaluated. Successful
analysis of measured data demonstrates that the methods
have practical value in real-world applications.

All data was processed in a similar manner. First,
linear combinations of voltage angle data were formed
to suppress common signal components and emphasize
electromechanical oscillations between areas. Next,
a first-order derivative filter was applied to obtain
estimates of frequency deviation about the nominal
system frequency. The initial sampling rates of
the simulated and measured data were 30 and 60
samples per second, respectively. To obtain data that
more narrowly covered the frequency range of the
inter-area dynamics of the systems, the data was passed
through a Parks-McClellan finite impulse response
(FIR) anti-aliasing filter and downsampled to five
samples per second. The filter orders were 72 for data at
30 samples per second and 145 for data at 60 samples
per second. A first-order high-pass infinite impulse
response (IIR) Butterworth filter was then applied to
remove low-frequency trends. Similar preprocessing
approaches are described in [19, 20].

Figure 6. Measured ringdown used to demonstrate

the algorithms. The portion included in the analysis is

bold.

5.1. Results from Measured Data

The methods were evaluated by applying them to
ringdowns following unplanned generator trips. To
demonstrate the algorithm’s operation, one such event
will be discussed in detail. The event occurred in
the WECC system in April 2018. Further details
are withheld to maintain confidentiality. A plot of
the analyzed data is provided in Fig. 6. Twenty
minutes of ambient data following the ringdown was
also analyzed with the Yule-Walker algorithm [21, 22].
Agreement between ambient and ringdown methods,
which operate very differently, provides validation for
the analysis when applied to adjacent datasets, where
the electromechanical modes are expected to be very
similar.

Results are presented in Table 1. The forward
application of Prony resulted in a spurious estimate at
0.2606 Hz, while the backward application resulted in
spurious estimates at 0.2672 Hz and 0.8174 Hz. If only
one application were considered, it could be difficult
to tell whether these estimates are valid. In this case,
the algorithm described in Section 4 removed them
from consideration when the simultaneous algorithm
was employed. As a result, only true inter-area modes
are reflected in the estimates from the simultaneous
Prony algorithm. Both of these mode frequencies are
commonly observed in the WECC system. The results
are further validated by the Yule-Walker estimate for the
mode near 0.41 Hz. The 0.79 Hz mode was too weak to
be observed in ambient data.
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Table 1. Mode Estimates from Measured Data.

Forward Backward Simultaneous Yule-Walker

f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%)

0.4350 9.4452 0.4112 12.6540 0.4138 12.3475 0.4082 12.6050

0.7859 19.9598 0.7932 15.3760 0.7941 15.1572

0.2606 -0.3737 0.2672 25.9220

0.8174 -16.7164

5.2. Results from Simulated Data

Simulated data was generated using the
MinniWECC model, a complete description of
which is presented in [23] and the references therein.
The MinniWECC is a simplified model of the WECC
system obtained by equivalencing generation for
many areas into single generators and including only
transmission lines with significant length and a rating of
at least 230 kV. In all, the model has 34 generators, 115
lines and high-voltage transformers, 54 generator and
load transformers, 19 load buses, and 2 DC lines. For
data generation, the nonlinear model is linearized about
an operating point and represented in state-space form.

The model also includes a representation of the 1400
MW dynamic braking resistor used in real-world system
tests [3]. To generate data, the brake was inserted
for 0.5 seconds to reflect real-world testing procedures.
The resulting ringdown oscillations were analyzed
to estimate the system’s dominant electromechanical
modes, which are listed in Table 2 for the two simulation
cases examined in this section. The cases differ in
the damping ratios of modes 1 and 2. For each
case, 500 trials were generated, each with a unique
realization of the load noise driving the system and
the measurement noise added to the model’s output.
Calculating the root mean squared error (RMSE) of the
estimates over these trials provides an indication of each
algorithm’s statistical performance. This approach is
known as a Monte Carlo simulation [24]. Examples of
the three analyzed signals from simulation case 2 after
preprocessing are presented in Fig. 7. A model order of
30 was selected by evaluating performance for a variety
of model orders. Similar results can be obtained for
model orders in the neighborhood of 30.

Results from the Monte Carlo trials are presented
in Figs. 8 and 9 and Tables 3 and 4. Unsurprisingly,
performance degrades for modes 1 and 2 in simulation
case 2 due to the increased damping ratios of the modes.
Tables 3 and 4 reflect characteristic behavior of the
proposed method, namely, that its estimates tend to
lie between the forward and backward estimates, close

Table 2. Frequency and damping ratio of the

dominant electromechanical modes in the simulation

cases.
Simulation Case 1 Simulation Case 2

Mode f (Hz) ζ (%) f (Hz) ζ (%)

1 0.22 7.0 0.22 10.0
2 0.37 5.0 0.37 12.0
3 0.62 6.2 0.62 6.2
4 0.73 6.6 0.73 6.6

Figure 7. Example ringdowns from simulation case

2. The portions of the ringdowns included in the

analyses are indicated with bold lines.
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Table 3. RMSE of frequency and damping ratio estimates from simulation case 1.

Frequency RMSE (mHz) Damping RMSE (%)

Mode Forward Backward Simultaneous Forward Backward Simultaneous

1 4.3 3.3 3.6 1.9 1.7 1.6

2 0.9 0.8 0.7 0.2 0.2 0.2

3 6.2 8.8 7.4 0.9 1.0 0.9

4 4.6 3.6 3.1 1.1 1.8 1.5

Figure 8. Mode estimation results for simulation

case 1. Each estimate is indicated with a black x, and

true values are indicated with a red dot.

Figure 9. Mode estimation results for simulation

case 2. Each estimate is indicated with a black x, and

true values are indicated with a red dot.

to the better of the two. Rather than a significant
improvement in accuracy, the proposed methods are
advantageous because they reliably identify which pole
estimates correspond to electromechanical modes and
produce a single estimate for each one.

The compromise between the forward and backward
applications of Prony is also apparent in the cost
function values of Table 5. When Prony is applied in
the forward and backward directions separately, their
combined cost function is slightly lower than when
they are applied simultaneously. The simultaneous
application requires that the mode estimates be identical
in the forward and backward direction. This additional
constraint causes the slight increase in the cost function.

The simulation results also demonstrated that the
proposed method can be used practically. The
optimization algorithm never failed to converge across
the 1000 trials. On average, the optimization ran in
24 milliseconds on a desktop computer. The required
runs of Prony analysis in the forward and backward
directions required a combined average of under 2
milliseconds. Though the optimization requires more
computational burden than the classic Prony algorithm,
24 milliseconds is not a significant burden, especially
considering that Prony analysis is typically used in the
offline environment.

6. Conclusion

In this paper, a novel method for analyzing
PMU measurements containing ringdown oscillations is
proposed. Estimates of electromechanical modes, which
determine the power system’s small signal stability,
are obtained by fitting a model to the measurements
in the forward and backward direction simultaneously.
This approach allows estimates corresponding to
electromechanical modes to be distinguished from
extraneous poles reliably. Where analyzing the signal
in the forward and backward directions independently
would produce two estimates for each mode, the
simultaneous solution produces a single estimate. The
proposed solution was shown to offer comparable
estimate accuracy to the conventional Prony methods
using simulation studies. It’s practical utility was also
verified using actual system measurements.
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