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Abstract 
This paper studies the effect of Power Spectrum 

Density (PSD) estimation techniques on the accuracy of 
Fast Frequency Domain Decomposition (FFDD). 
FFDD utilizes ambient synchrophasor measurements to 
estimate characteristics of dominant system modes by 
analyzing the PSD matrix from multiple synchrophasor 
measurements. In this paper, impact of three different 
methods for PSD estimation on the accuracy of FFDD 
modal estimates is investigated: Welch Periodogram 
(PWelch), MultiTaper Method (MTM) using Slepian 
Tapers, and MTM using Sine Tapers. Tests are done 
using synthetic and archived synchrophasor data. All 
three methods are shown to work well for oscillation 
detection of sustained oscillations using FFDD. 
However, for ambient modal analysis, it is shown that 
FFDD based on MTM with Slepian Tapers has the most 
reliable modal estimations. FFDD using both MTM 
with Sine Tapers and PWelch have bias issues in 
estimating well-damped system modes, requiring more 
research for them to be suitable for FFDD.  

1. Introduction  

Oscillation monitoring in the power grid has been a 
growing research area for many years. Poorly-damped 
oscillations, when left uncorrected, can cause damage to 
electromechanical machinery or can lead the system to 
wide-spread blackouts, such as the August 10, 1996 
event of the North American Western Interconnection 
(WECC) grid [1,2]. Therefore, accurate methods to 
monitor and control these oscillations in the power grid 
are important for maintaining power system stability 
and operational reliability.  

The characteristics of power systems low-
frequency oscillations can be estimated through model-
based linearization methods [3] or measurement-based 
methods [4,5]. However, accurate models of power 
systems are not always available, making measurement-
based methods more attractive. Furthermore, 
widespread implementation of synchrophasor devices 
across many power grids allow measurement-based 
methods to analyze system characteristics in real-time.  

There are numerous methods for measurement-
based modal analysis of power systems which can be 

mainly categorized as ringdown and ambient types (e.g. 
[7-10,11-15]). Ringdown analysis techniques are post-
disturbance methods that use the oscillatory response of 
the system after an event (such as line tripping or 
generator outage) to estimate the excited modes [6]. 
Some of the prominent ringdown analysis methods are 
Prony [5,7], Matrix Pencil [8], Hankel Total Least 
Squares (HTLS) [5], and Eigen-system Realization 
Algorithm (ERA) [9,10]. While these methods can be 
very accurate due to the relatively large magnitude of 
the oscillations, they require system responses 
following disturbances and therefore, are not suitable 
for providing continuous system mode estimations.  

On the other hand, ambient analysis methods rely 
on the response of the system operating in quasi-steady-
state conditions when the main excitation of the system 
is small random variations in loads being formulated as 
white noise [6]. In contrast with ringdown data, the 
ambient data is always available and therefore is much 
better suited for real-time measurement-based 
oscillation monitoring. Ambient modal analysis 
methods can be categorized into time- and frequency-
domain algorithms. Time-domain methods proposed by 
researchers include robust RLS first introduced in [11], 
Modified Extended Yule-Walker (MEYW) in [12], and 
Stochastic Subspace Identification (SSI) in [13].  

Frequency Domain Decomposition (FDD) is a 
popular frequency domain ambient modal analysis 
method that was extended to power system ambient 
oscillation monitoring in [14]. The main idea behind 
FDD method is to apply Singular Value Decomposition 
(SVD) to the power spectrum matrix estimated from 
ambient measurements. Furthermore, [15] proposed the 
Fast Frequency Domain Decomposition (FFDD) 
algorithm which does not require the SVD calculation, 
making the method faster for real-time application. One 
of the key steps in both FDD and FFDD is the estimation 
of the power spectrum from measurements. Due to the 
real-time application of these methods, analysis window 
length should be sufficiently short which generally 
increases the PSD estimation leakage. Therefore, power 
spectrum estimation methods that have minimal bias 
with good frequency resolution while not being 
computationally intensive are desirable to mitigate the 
leakage.  
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The FFDD algorithm proposed in [15] is based on 
the Slepian MultiTaper Method (Sl-MTM) for power 
spectrum estimation. However, other PSD estimation 
methods such as the Sine Taper based MultiTaper 
Method (Si-MTM) and PWelch have been proposed for 
different applications with varying advantages. The 
Sine Taper Method in [16] was shown to have bias 
improvements over the Slepian Taper method. 
Furthermore, PWelch is popular because of its 
simplicity of implementation and suppressed spectrum 
sidelobes [17,18]. Both Slepian and Sine Tapers are 
MultiTaper methods, utilizing the periodograms of 
weighted frequency windows (also called tapers) to 
estimate the Power Spectral Density (PSD) function of 
a dataset. However, the Slepian and Sine methods both 
differ in the weighting functions of the frequency tapers. 
PWelch utilizes Fast Fourier Transform (FFT) 
calculations from overlapping time windows to estimate 
the overall PSD of signals [17]. These methods will be 
discussed in more detail in Section 2. 

In this paper, we comprehensively study the 
performance of FFDD method in estimating system 
modes when Slepian Taper, Sine Taper, and PWelch 
methods are utilized for the PSD estimation step in this 
algorithm. In order to have the best performance of the 
FFDD in tracking modes, the parameters of PSD 
estimation techniques need to be properly tuned. To do 
so, a set of archived measurements from phasor 
measurement units (PMUs) during a recent forced 
oscillation event in the WECC grid is utilized. The 
performance of the FFDD with optimized PSD 
estimators is examined and compared with each other as 
well as with the time-domain SSI method using 
synthetic and real archived PMU data. Covariance-
based SSI [23,24] has an advantage that it can detect 
natural modes together with interacting forced 
oscillations simultaneously. However, SSI is 
computationally far more intensive [24] compared to 
FFDD and also has the problem that some of the modal 
estimates may be spurious. It is shown that the FFDD 
with all three PSD estimators has small bias for 
estimating the damping ratio of sustained or forced 
oscillations. However, the FFDD with Slepian Taper 
method has the least bias for estimating the damping 
ratio of well-damped modes in comparison with the 
FFDD with the two other PSD estimators.  

The rest of the paper is organized as follows: 
Section 2 discusses FDD along with FFDD. Then, it 
overviews the three PSD estimation methods: Slepian 
Tapers, Sine Tapers, and PWelch. Parameter tuning for 
each method is conducted in Section 3. The performance 
of the FFDD with all three PSD estimators along with 
SSI method is compared using synthetic and real PMU 
data in Section 4. Section 5 concludes the paper.  

2. FDD, FFDD and PSD Estimation 
Methods Theory 

2.1. FDD and FFDD Algorithms 

The power grid model, being a high-order nonlinear 
system, can be linearized around an operating 
equilibrium point. The resulting state-space equations 
can be represented as follows [3]:  

 
𝛥𝛥𝑥𝑥

.
= 𝐴𝐴𝛥𝛥𝑥𝑥 + 𝐵𝐵𝛥𝛥𝐵𝐵 
𝛥𝛥𝛥𝛥 = 𝐶𝐶𝛥𝛥𝑥𝑥 

 
where ∆x is the linearized dynamic state vector, ∆y is 
the linearized output vector, and ∆u is the linearized 
input vector. Given a stationary random process x(t), the 
autocorrelation function is defined as 𝛾𝛾𝑥𝑥𝑥𝑥(𝜏𝜏) =
𝐸𝐸[𝑥𝑥∗(𝑡𝑡)𝑥𝑥(𝑡𝑡 + 𝜏𝜏)] with the superscript * denoting the 
complex conjugate transpose. Taking the Fourier 
Transform of this autocorrelation function results in 
𝑆𝑆(𝑗𝑗𝑗𝑗), the PSD of 𝑥𝑥(𝑡𝑡) according to the Wiener-
Khintchine theorem [3, Page 285]. For a multi-input 
multi-output (MIMO) system, the output PSD matrix 
𝑆𝑆𝑦𝑦𝑦𝑦(𝑗𝑗𝑗𝑗) can be defined as 

 
𝑆𝑆𝑦𝑦𝑦𝑦(𝑗𝑗𝑗𝑗) = 𝐻𝐻(𝑗𝑗𝑗𝑗) · 𝑆𝑆𝑢𝑢𝑢𝑢(𝑗𝑗𝑗𝑗) · 𝐻𝐻∗(𝑗𝑗𝑗𝑗) 

 
where 𝐻𝐻(𝑗𝑗𝑗𝑗) is the 𝑛𝑛𝑦𝑦 × 𝑛𝑛𝑢𝑢 transfer function and 
𝑆𝑆𝑢𝑢𝑢𝑢(𝑗𝑗𝑗𝑗) is the 𝑛𝑛𝑢𝑢 × 𝑛𝑛𝑢𝑢 input PSD matrix. With the 
input being white noise, 𝑆𝑆𝑢𝑢𝑢𝑢(𝑗𝑗𝑗𝑗) will be a constant 
diagonal matrix. Furthermore, 𝑆𝑆𝑦𝑦𝑦𝑦(𝑗𝑗𝑗𝑗) is estimated 
directly from synchrophasors and PMU signals.  

Taking the SVD of the output PSD matrix near the 
frequency 𝑗𝑗𝑖𝑖 of a mode 𝜆𝜆𝑖𝑖 = −𝛼𝛼𝑖𝑖 + 𝑗𝑗𝑗𝑗𝑖𝑖 results in  

 
�̂�𝑆𝑦𝑦𝑦𝑦(𝑗𝑗𝑗𝑗𝑖𝑖) = 𝑊𝑊𝑖𝑖(𝑗𝑗𝑗𝑗𝑖𝑖) · 𝑆𝑆𝑖𝑖(𝑗𝑗𝑗𝑗𝑖𝑖) · 𝑊𝑊𝑖𝑖

∗(𝑗𝑗𝑗𝑗𝑖𝑖) 
 

with 𝑊𝑊𝑖𝑖(𝑗𝑗𝑗𝑗𝑖𝑖) being a matrix of singular vectors and 
𝑆𝑆𝑖𝑖(𝑗𝑗𝑗𝑗𝑖𝑖) being the corresponding singular values. In the 
case that there is one dominant mode near the frequency 
𝑗𝑗𝑖𝑖, the first singular value in 𝑆𝑆𝑖𝑖(𝑗𝑗𝑗𝑗𝑖𝑖) will be much 
larger in magnitude compared to the other singular 
values. In compiling all of these main singular values in 
terms of their frequency 𝑗𝑗𝑖𝑖, the Complex Mode 
Identification Function (CMIF) can be formulated [14]. 
By taking the Inverse FFT of CMIF near the peak 
frequency, ringdown analysis methods such as Prony 
Method and HTLS can be utilized to estimate the 
frequency and damping of the mode near the peak 
frequency 𝑗𝑗𝑖𝑖. 

A modified FDD algorithm titled Fast Frequency 
Domain Decomposition (FFDD) was proposed in [15] 
to circumvent the computationally burdensome SVD 
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(4) 

(5) 
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calculations. The main idea of FFDD is to approximate 
the largest singular value of 𝑆𝑆𝑖𝑖(𝑗𝑗𝑗𝑗𝑖𝑖) by the sum of the 
individual autocorrelation estimates. Whereas FDD 
needs multiple SVD calculations utilizing both auto- 
and crosscorrelation estimates to estimate �̂�𝑆𝑦𝑦𝑦𝑦(𝑗𝑗𝑗𝑗𝑖𝑖) that 
constitute the CMIFs, FFDD approximates CMIFs 
directly from the sum of autocorrelation estimates [15]. 
In this regard, FFDD is much less computationally 
burdensome than FDD and is better suited for real-time 
oscillation monitoring. With the CMIFs, FFDD follows 
the same procedure as FDD, taking the inverse FFT and 
conducting ringdown analysis to estimate the system 
modes [14,15]. 

A critical part of FFDD is estimating the PSD 
matrix through the FFTs of the input dataset. In taking 
the FFT of raw synchrophasor data, some information 
could be lost due to leakage from the finite analysis 
window. Because of this, the data is crucially multiplied 
by a filtering window before FFT is conducted for 
reducing the leakage. However, this can affect the 
performance of the FFDD estimation depending on the 
PSD estimation method used. This paper tests three 
different methods that filter the FFT for estimation of 
the power spectrum.  

2.2. PSD Estimation Methods 

As mentioned in the previous section, the PSD 
estimation is one of the key steps in the process of the 
modal estimation by FFDD method. The three methods 
compared in this paper are PWelch, Sl-MTM, and Si-
MTM. 

PWelch calculates the PSD of the data through 
splitting the dataset into K overlapping windows and 
averaging the individual window FFT estimates [17]. 
Through overlapping windows, leakage of the PSD 
estimation is decreased. Furthermore, windowing 
functions such as Hanning, Hamming, or Blackman can 
be utilized to filter the split windows and smooth the 
overall power density estimate, depending on the 
windowing function used [19]. 

However, if the overlapping windows are short in 
length, this can create a significant bias in the modal 
estimate. The advantage of PWelch is that it is a robust 
algorithm and easily implementable. Furthermore, the 
windowing function can be altered depending on the 
desired properties of side lobes. Therefore, PWelch is a 
simple method to reduce leakage and creates a smooth 
PSD estimate, although can suffer from bias issues.  

The MultiTaper Method (MTM) by Thomson is 
presented in [20]. Through utilizing multiple orthogonal 
frequency windows (called tapers or spectral estimators) 
to calculate weighted FFTs, MTM gets multiple 
independent spectrum estimates with the same input 
dataset. The set of tapers almost exclusively used in  

MTM are Slepian Tapers, also called Discrete Prolate 
Spheroidal Sequences (DPSS) [20]. Each taper n, 
denoted as 𝑣𝑣𝑛𝑛(𝑘𝑘)(𝑁𝑁,𝑊𝑊) with 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1, is the 
solution to a Toeplitz eigenvalue matrix,  

 

�
sin2πW(n − m)

π(n − m)

𝑁𝑁−1

𝑚𝑚=0

∙ 𝑣𝑣𝑛𝑛(𝑘𝑘)(𝑁𝑁,𝑊𝑊)

= 𝜆𝜆𝑘𝑘(𝑁𝑁,𝑊𝑊) · 𝑣𝑣𝑛𝑛(𝑘𝑘)(𝑁𝑁,𝑊𝑊) 
 

where 𝑊𝑊 is the bandwidth of the function, N is sequence 
length, and 𝜆𝜆𝑘𝑘(𝑁𝑁,𝑊𝑊) are the eigenvalues of DPSS. 
Because the tapers drop in magnitude further from the 
target frequency, DPSS tapers maximize their spectral 
concentration within the bandwidth [−𝑊𝑊,𝑊𝑊]. More 
information on DPSS tapers can be found in [25].  

With the solved DPSS values, the taper spectral 
estimates can be calculated through  
 

𝑆𝑆
^
𝑘𝑘(𝑗𝑗𝑗𝑗) =

1
𝑁𝑁
�� 𝑥𝑥(𝑛𝑛) · 𝑣𝑣𝑛𝑛

(𝑘𝑘)(𝑁𝑁,𝑊𝑊) · 𝑒𝑒−𝑗𝑗2πfn
𝑁𝑁−1

𝑛𝑛=0

�

2

 

 
with 𝑥𝑥(𝑛𝑛) being the input dataset from 0 to 𝑁𝑁 − 1. All 
of the spectral estimates can then be averaged together 
to estimate the PSD of the system. While Slepian or 
DPSS Tapers optimize the spectral density of the 
frequency windows, Sine Tapers are supposed to 
minimize the bias of the windowing [21]. With the local 
bias being proportional to the leading term of the PSD 
bias, the bias is reduced through tapers that minimize 
∫ |𝑉𝑉(𝑓𝑓)|2𝑓𝑓2𝑑𝑑𝑓𝑓1 2⁄
−1/2 . Sine Tapers are defined as  

 

𝑣𝑣𝑛𝑛(𝑘𝑘) = � 2
𝑁𝑁 + 1

sin �
πkn
𝑁𝑁 + 1

�  , 𝑘𝑘 = 1,2, . . . ,𝑁𝑁 

 
MTM is effective at analyzing multiple orthogonal 

datasets from a single input time sequence, making 
estimations quite accurate. Furthermore, Slepian Tapers 
optimize the spectral density of the frequency windows 
while Sine Tapers are expected to minimize the bias in 
the estimations. However, MTM performance is 
sensitive to variations in parameters such as time half 
bandwidth product (NW) and FFT length (N), making it 
less robust in varied applications.  

3. Tuning Using a Field Event 

On September 5, 2015, the western electricity 
coordination council (WECC) or the western grid had 
an oscillation event in which a forced oscillation near 
0.4 Hz suddenly appeared, lasting approximately 9 
minutes. This forced oscillation resonated with the well-
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known 0.4 Hz North-South interarea system mode 
resulting in widespread oscillations. In this section, 
archived synchrophasor data of this event is utilized to 
select reasonable settings for Si-MTM and PWelch. A 
commercial oscillation monitoring tool titled Damping 
Monitor Offline (DMO) [22] from Washington State 
University (WSU) already utilizes Slepian Tapers in the 
FFDD algorithm. As such, the performance of the 
Slepian taper based MTM used in FFDD of DMO will 
be compared to Si-MTM and PWelch based FFDD 
implementations. Different PSD estimates are then 
processed by DMO to estimate CMIF and the dominant 
system mode frequencies and damping ratios as in the 
FFDD algorithm [22].  

An ideal FFDD modal analysis engine should 
reliably track both well-damped system modes during 
normal ambient conditions and poorly-damped forced 
oscillations during stressed operating conditions. For 
this forced oscillation event, the actual damping ratio for 
the WECC 0.4 Hz mode is not exactly known being 
from a real system. In this context, we use the estimates 
of the well-known time-domain method, covariance 
based SSI [23, 24] which is also implemented in DMO 
[22].  

Figure 1 shows the frequency and SSI damping 
ratio estimates for the WECC forced oscillation event. 
The two vertical dashed lines indicate the beginning and 
end of the event, respectively. A crucial advantage of 
SSI is that the method can simultaneously track the 
presence of both the system mode and an interacting 
forced oscillation during such events [23]. The “SSI 
FO” plot shows the estimates of the forced oscillation 
while “SSI System Mode” shows the  estimates of the 
0.4 Hz system mode. As seen in the results, SSI is 
consistently estimating the system mode at around 10% 
damping ratio and the damping ratio of the forced 
oscillation estimates is nearly zero.  

Accordingly, we expect the damping ratio estimates 
of FFDD to be around 10% before and after the forced 
oscillation event. Unlike SSI, FFDD being a frequency 
domain method combines the effects of the forced 
oscillation and the 0.4 Hz system mode during the event 
when the forced oscillation is present. Since the energy 
of the system response from the forced oscillation is 
expected to dominate over the ambient modal response 
of the well-damped system mode, we expect FFDD to 
produce near zero damping ratio estimates when the 
forced oscillation is present in the system. The three 
PSD estimation methods will be tuned in this section to 
match these damping ratio estimations before (near 
10%), during (near 0%) and after (near 10%) the forced 
oscillation event.  

Figure 2 shows the tuning plots for MTM using 
Sine Tapers. Plot (a) compares the number of points 
used for the FFT calculation in the method (nfft). Plot 
(b) compares differing taper windows through the NW 
variable for the best nfft value. Finally, the analysis 
window is adjusted in plot (c) using the best previous 
settings. Dashed lines in the plots signify gaps in mode 
estimations where the method could not estimate the 0.4 
Hz mode because of spectral issues. 

It can be seen in plot (a) of Figure 2 that an nfft 
value of 4096 has a large bias during the event, 
estimating the damping ratio to be around 3%. 
Furthermore, the 16384 nfft damping estimations do not 
properly recover after the event. Therefore, an nfft 

Figure 1.  SSI damping ratio and frequency estimates 
for both the system mode and forced oscillation utilizing 

a WECC forced oscillation dataset. 
 

Figure 2.  Tuning plots for Sine Taper method utilizing 
WECC forced oscillation dataset. Plot (a) varies 

number of points in FFT calculation, plot (b) changes 
NW, and plot (c) compares different analysis window 

lengths. 
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length of 8192 is chosen as the recommended nfft 
setting. In plot (b) of Figure 2, NW had minimal 
variability in the damping estimations. Because of this, 
an NW value of 3 was chosen due to the more accurate 
pre-event damping ratio estimates. In plot (c) of Figure 
2, it can be seen that an analysis window length of 90 
seconds had good estimate trends while recovering post-
event to higher damping ratios quickly. The final 
recommended settings for FFDD with Sine Tapers are 
namely, 8192 for nfft, 3 for NW, and 90 seconds for the 
analysis window length. 

Figure 3 shows the tuning figures for the PWelch 
method. The same methodology as Sine Tapers was 
conducted, only with nfft, inner window length (IW), 
overlap percentage (OL), and analysis window length. 
From plot (a), an nfft length of 8192 had the highest pre- 
and post-event damping estimates while maintaining 
equivalent event bias, making it the suitable setting. For 
plot (b), an inner window length of 2048 was chosen due 
to the minimal bias during the event and the increased 
quantity of estimates. Overlap percentage had little 
effect on damping estimations. Therefore, an overlap 
percentage of 50% was chosen due to the slightly higher 
pre-event damping estimates. Plot (d) shows the 150-
second analysis window length having slightly better 
overall damping estimates. Therefore, the final settings 
chosen for PWelch are 8192 for nfft, 2048 for IW, 50% 
for OL, and 150 seconds for analysis window length. 

Although Slepian Taper method settings are 
defined internally for FFDD [22], Figure 4 shows the 
Slepian Taper method damping ratio estimations with 
varying analysis window lengths. While a 90-second 

analysis window length had 10% damping ratio 
estimations for the 0.4 Hz mode before the event, there 
was significant bias in the estimation of damping ratio 
when the forced oscillation appears in the system. Due 
to this, an analysis window length of 120 seconds was 
chosen for Slepian Taper method for the combination of 
good pre and post-event damping ratio estimations.  

It appears that there may have been other unknown 
forced oscillations with frequencies near 0.4 Hz present 
in the system for the time period starting around 48 
seconds in Figures 2, 3 and 4 which may be causing low 
damping ratio estimates among all the FFDD 
estimations. This requires further investigation. 

4. Synthetic and Field Case Studies  

In this section, results of FFDD using all three PSD 
estimation methods are analyzed first for a set of 
simulated sustained forced oscillation signals. Then, the 
methods are compared by analyzing archived WECC 
event data including the forced oscillation event of 
Section 3 and a WECC brake test. The tuned settings 
from Section 3 are used for each method in the case 
studies. Forced oscillations are sustained oscillations 
caused by external mechanisms [23] and can interact 
with system modes. However, presence or detection of 

Figure 3.  Tuning plots for PWelch method utilizing WECC 
forced oscillation dataset. Plot (a) varies number of points 

in FFT calculation, plot (b) changes number of points in 
inner window, plot (c) alternates window overlap 

percentage, and plot (d) compares different analysis 
window lengths. 

 

Figure 4.  Tuning plot for Slepian Taper method utilizing 
WECC forced oscillation dataset. 

 
 

Figure 5.  Synthetic sinusoidal forced oscillation frequency 
and damping ratio estimates for FFDD with Slepian Taper 

method. 
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forced oscillations by itself does not imply presence of 
poorly damped natural modes in the system. 

4.1. Synthetic Sustained Oscillation Case Study 

In this case study, a range of simulated sustained 
forced oscillation signals are utilized to compare the 
PSD estimation methods. The synthetic oscillation 
frequencies are varied between 0.2 Hz and 2 Hz, with a 
step size of 0.05 Hz. Furthermore, the sampling 
frequency of the input dataset is set at 30 Hz. The 
analysis window is also tested at 90, 120, 150, and 180 
seconds to evaluate the performance difference with a 
larger sample size. The main objective of testing with 
simulated sustained forced oscillations is to evaluate the 
bias of the damping ratio estimates, as a sustained forced 
oscillation without noise should have a damping ratio of 
0%. SSI algorithm frequency and damping ratio 
estimates are also shown as a benchmark for the PSD 
estimation methods. The SSI settings utilized for all case 
studies in this paper are 240-second analysis window, 
system order of 20, and 6-second inner window length.  

Figure 5 shows the frequency and damping ratio 
estimates for FFDD with the Slepian Taper method. It 
can be seen that the bias of the damping ratio 
estimations generally decreases with a larger oscillation 
frequency. Furthermore, it can be seen that estimation 
bias also generally decreases with a larger analysis 
window. Since there is more input data to make an 
estimation with, the mode estimations are more 
accurate. While the SSI damping ratio estimates were a 
consistent 0%, the Slepian Taper estimates had a 
maximum bias of 1% for the 0.2 Hz sinusoidal signal. 
Furthermore, Slepian Taper frequency estimates 
matched well with SSI frequency estimates. 

Figure 6 shows the frequency and damping ratio 
estimates for FFDD with the Sine Taper method. The 
settings for each analysis window length were the same 
optimized settings from Section 4 of this paper. As 
previously seen, the bias of the damping ratio 
estimations decreases with a larger oscillation 
frequency. Furthermore, it can be seen that estimation 
bias also decreases with a larger analysis window, 
similar to Slepian Taper method. The Sine Taper 
estimates had a maximum bias of 1.5% for the 0.2 Hz 
sinusoidal signal compared to the SSI damping ratio 
results. The frequency estimates varied from the actual 
frequency and SSI frequency by approximately 0.001 
Hz, showing that for a noiseless system the frequency 
estimates are very accurate. Overall, these forced 
oscillation results compare well with the Slepian Taper 
method and SSI, showing the viability of the Sine Taper 
method for this case study.  

Figure 7 shows the frequency and damping ratio 
estimates for FFDD with the PWelch algorithm. The 
settings for each analysis window length were the same 
optimized settings from Section 3 of this paper. As with 
the Slepian and Sine Tapers, it can be seen that the 
estimation bias decreases as the oscillation frequency 
increases. Furthermore, damping estimation is 
comparable to both MultiTaper methods and SSI with a 
maximum bias of 1.55% for the 0.2 Hz sinusoidal 
signal. However, unlike the other methods, damping 
ratio estimations do not change with different analysis 
window lengths. By changing the analysis window 
length there are simply more windows of the same 
estimate instead of additional data being used to 
estimate the mode at any single time. Finally, PWelch 
frequency estimates exactly match the actual and SSI 
frequency estimates. Like the other two methods, these 

Figure 6.  Synthetic sinusoidal forced oscillation 
frequency and damping ratio estimates for FFDD with 

Sine Taper method. 
 

Figure 7.  Synthetic sinusoidal forced oscillation 
frequency and damping ratio estimates for FFDD with 

PWelch method. 
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PWelch estimations show viability for this synthetic 
modal analysis case. 

4.2. WECC Forced Oscillation Case Study 

Figure 8 shows the 0.4 Hz estimations for all three 
FFDD methods within a 17-minute window for the 
WECC forced oscillation event. All methods are using 
the final tuned settings from the results of Section 3. 
Figure 8 also includes two estimates for the SSI 
algorithm for reference. The “SSI FO” curve follows the 
forced oscillation while “SSI System Mode” maintains 
estimates for the interarea mode. The vertical dashed 
lines signify the start and end of the forced oscillation 
event.  

It is seen that all three methods have similar 
response times of approximately 1.5 minutes after the 
event started. Furthermore, the damping ratio 
estimations during the event for all three FFDD methods 
are at about 0.5%, matching very well with the SSI FO 
results. Before the event occurs, all three FFDD 
damping ratio estimations are in the 6% to 10% range. 
Although that is lower than the estimated 11% for SSI, 
this may be from the presence of other unknown forced 
oscillations in the WECC data as noted earlier. The post-
event damping ratio estimates for both MTM methods 
are higher at 11 to 12%, very close to the SSI estimate. 
PWelch recovered to a damping ratio estimate of 9% to 
10%.  

Furthermore, as expected, the estimation energy for 
all three methods increases significantly during the 
event from capturing the effect of the system response 
to the 0.4 Hz forced oscillation. The SSI system mode 

energy does not increase for the event since it can 
distinguish between the forced oscillation and the 
system well-damped mode as two separate estimates.  

Figure 9 shows the CMIF shapes for all three 
methods before and during the forced oscillation event. 
Before the event under normal ambient conditions, all 
three FFDD methods CMIF shapes are showing 
multiple system modes, including one at 0.23 Hz. 
However, as the forced oscillation with the frequency of 
0.4 Hz appears in the system, the CMIF shapes clearly 

Figure 8.  0.4 Hz WECC estimates for the Sept. 15, 2015 forced oscillation event. 

Figure 9.  CMIF plots for FFDD methods before and 
during forced oscillation event. 
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highlight 0.4 Hz with all other modes decreasing in 
magnitude. 

Overall, all three methods have accurate damping 
ratio estimations and low bias during the event, showing 
viability for this case study. This is to be expected as the 
settings for all three methods settings were tuned for this 
dataset in Section 3. However, FFDD with Slepian 
Taper method had more mode estimates compared to the 
other two methods.  

4.3. WECC Brake Test Case Study 

In this case study, a Chief Joseph brake test dataset 
on the WECC power grid is analyzed.  The data is 
analyzed by the three different FFDD methods as well 
as SSI. Furthermore, the ringdown portions of the events 
are analyzed separately. Having the modal estimates of 
all these methods can lead us to a better and more 
accurate comparison.  

The brake test was enacted by temporarily 
connecting a 1,400 MW resistive load to the Chief 
Joseph power generator terminal, initiating an impulse 
type disturbance in the system. This is intended to damp 
power swings following faults near the generator plant. 
However, during the brake tests, the resistive brake load 
is inserted to effect a ringdown response for assessing 
system small-signal properties and to conduct power 
system model validation studies. This also allows 
ringdown modal analysis techniques such as Prony or 
HTLS to be applied for getting an accurate estimate of 
the dominant system modes that are excited by the brake 
test. As FFDD is an ambient analysis technique, the 
three methods with FFDD will be conducted both during 
and after the event for ensuring ambient system 
conditions. These estimations will be compared with 
multiple ringdown analysis methods of the brake test 
itself along with SSI estimations. 

Table 1 shows the average estimations of four 
ringdown methods during the brake test event for the 0.4 
Hz interarea WECC mode. The four methods are Prony 
method, Matrix Pencil, HTLS, and ERA. The frequency 
estimations for all ringdown methods are very consistent 
centering at 0.397 Hz. Furthermore, the damping ratio 
estimations are around 11.4%. While this is higher than 
the 10% damping ratio as seen in the previous test, it is 
to be expected that the damping ratio will slightly 
fluctuate for a well-damped mode. As such, these 

estimates are consistent with damping ratio estimates of 
the 0.4 Hz WECC interarea mode. 

Plots (a) and (c) in Figure 10 show an actual signal 
in black compared to the reconstruction of the HTLS 
ringdown method in red. Plots (b) and (d) in Figure 10 
show the FFT of both the actual signal in black and the 
HTLS reconstruction in red for the same signal. The 
HTLS model was determined through 118 input signals. 
Plots (a) and (b) are for the signal with the best fit in 
terms of the overall error while plots (c) and (d) are for 
the signal with the worst fit. Because the reconstructions 
closely fit the actual signals, it can be concluded that the 
ringdown estimations for this brake test are reasonable.  

Figure 11 shows the ambient damping ratio 
estimations between FFDD with Slepian Tapers, Sine 
Tapers, and PWelch along with SSI estimations up to 16 
minutes after the brake test. The same optimized settings 
for the WECC forced oscillation archived dataset are 
used for all methods. The vertical dashed line signifies 
the brake test. Variations in the damping ratio 
estimations are to be expected as they are based on 
stochastic ambient data modeled with random white 
noise inputs. However, it can be seen that both FFDD 
with Sine Tapers and PWelch have more variance in the 
damping ratio estimations compared with Slepian 
Tapers. Furthermore, both Sine Taper method and 
PWelch method have lower damping ratio estimations 
(larger bias) when compared to estimates of Slepian 
Taper method and SSI results. 

As expected, the energy for each method increases 
during the brake test due to tracking the disturbance 
from the brake test. Furthermore, frequency estimates 
are consistently near 0.4 Hz for every method. It can 

Table 1. Average damping ratio and frequency estimates 
for ringdown analysis of the WECC brake test. 

 

Figure 10.  HTLS signal reconstruction (a and c) and FFT 
(b and d) where reconstruction is in red and actual signal 

in black for the brake test. 
 

Frequency (Hz) Damping Ratio (%)
Prony 0.3938 11.485
Matrix Pencil 0.3889 11.6953
HTLS 0.3973 11.2134
ERA 0.3891 11.7022
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also be seen that immediately after the brake test the 
FFDD modal damping ratio estimates are very 
consistent. This is to be expected as the 0.4 Hz forced 
oscillation has high energy. 

Table 2 shows damping ratio and frequency 
statistics for all three FFDD methods along with SSI for 
the brake test. The table also includes mode 
observability which signifies the percentage of windows 
with 0.4 Hz mode estimates during the analyzed time for 
each method. The frequency estimates for all methods 
are very similar, matching well with ringdown results 
from Table 1. For the damping ratio, the PWelch has the 
lowest average which shows significant bias in damping 
ratio estimates for the well-damped mode. Sine Taper 
method also has large bias in the damping ratio 
estimates while having the largest standard deviation. 
This signifies that the damping ratio estimates of the 
Sine Taper method have the largest variability during 
the analysis timeframe. The Slepian Taper method is 
closest to the SSI and ringdown results 

It can further be seen that the Sine Taper method 
has several periods centered around 51 minutes without 
estimates. This is validated in Table 2 which shows that 
the Sine Taper method has significantly less mode 
observability than the other methods, indicating that this 
method is less reliable for this dataset. 

 
Figure 12 shows the ambient CMIF plots for all 

three FFDD methods. Similar to the WECC forced 
oscillation event, both PWelch and Slepian Taper 
method had the smoothest CMIF plots for 0.4 Hz. The 
Sine Taper CMIF plot has much greater noise and side 
lobes, explaining the low mode observability.  

FFDD with Slepian Taper method has the closest 
damping ratio estimations to SSI and ringdown results 
for the WECC brake test. Furthermore, the mode 
observability is high due to the CMIF plots with defined 
0.4 Hz peaks. FFDD with the PWelch method, while 
having similarly smooth CMIF plots, significantly 
underestimates the mode. FFDD with Sine Taper has 
marginal damping ratio estimation bias but has the 
lowest mode observability of the three methods.  

5. Conclusion  

In this paper, the suitability of different methods for 
PSD estimation such as PWelch, Sl-MTM, and Si-MTM 
for modal analysis using FFDD was investigated. It was 
determined that FFDD with Slepian Taper method 
performed well under synthetic sustained forced 
oscillations, having minimal bias in damping ratio 

Figure 12.  CMIF plots for FFDD methods under 
ambient conditions for the WECC brake test. 

 

Table 2. Average damping ratio and frequency 
estimates for ambient analysis of the WECC brake test. 

 

Figure 11.  0.4 Hz WECC estimates for the Chief Joseph brake test event. 

Method Avg Std Dev Avg Std Dev
Sine Taper 9.3802 2.6539 0.4022 0.0139 50.26%
Slepian Taper 10.7864 1.1637 0.3988 0.0144 80.83%
PWelch 8.1395 2.0716 0.3943 0.0146 76.68%
SSI 10.5909 0.9638 0.3957 0.0065 96.89%

Damping Ratio (%) Frequency (Hz) Mode 
Observability
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estimations. Furthermore, it showed consistency and 
accuracy in modal estimation for multiple real ambient 
datasets. Both Sine Taper method and PWelch, while 
they have certain advantages, require more research 
before they can be used for FFDD in oscillation 
monitoring.  

As shown in the test studies in the paper, SSI 
methods have advantages compared to FFDD and there 
is a need for research on speeding up the time-domain 
methods such as SSI to enable them for efficient online 
implementations. Also, the studies show that the 
frequency domain methods such as FFDD are sensitive 
to the choice of spectral estimation methods and their 
parameters. Future research is indicated on developing 
automatic and optimal methods for tuning of the modal 
estimation algorithm parameters that work well in 
online implementations. 
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