
Physics Informed Reinforcement Learning for Power Grid Control using
Augmented Random Search

Kaveri Mahapatra, Xiaoyuan Fan, Xinya Li, Yunzhi Huang, Qiuhua Huang
Energy and Environment Directorate

Pacific Northwest National Laboratory
xiaoyuan.fan@pnnl.gov

Abstract

Wide adoption of deep reinforcement learning
in energy system domain needs to overcome several
challenges, including scalability, learning from limited
samples, and high-dimensional continuous state
and action spaces. In this paper, we integrated
physics-based information from the generator operation
state formula, also known as Swing Equation, into
the reinforcement learning agent’s neural network
loss function, and applied an augmented random
search agent to optimize the generator control under
dynamic contingency. Simulation results demonstrated
the reliability performance improvements in training
speed, reward convergence, and future potentials in its
transferability and scalability.

1. Introduction

Physics-informed machine learning (PIML) are
getting increasing attentions from scientists and
engineers, to alleviate the challenges in scientific
discovery, such as high-cost data acquisition,
uncertainty quantification, and robust control. Recent
progress in physics informed neural network (PINN)
and physics aware neural network (PANN) models
has demonstrated that they could be universal function
approximators, and are capable of encoding any
underlying physical laws that govern a given dataset.
PINN can be trained to solve supervised learning
tasks while respecting the governing physical laws
of system described by general nonlinear partial
differential equations. In a nutshell, PINN-based
problem formulations takes advantage from both data
and physics of the system. It also utilizes the same
formulation for both forward and inverse problems.
Therefore, PINN can not only overcome the curse
of dimensionality problem, but also be used in any
scientific field for discovering dynamical system much
faster than traditional methods.

In energy domain, dedicated research efforts

involving PIML have been done, primarily for
monitoring and predicting the behaviors of power
system during steady state or transient conditions. [1]
introduces a PINN-based framework, in which the rotor
angle and frequency can be accurately predicted with 87
times speed up. In addition, [2] applies PINN with PMU
measurements to monitor the system inertia in real-time,
its performance has been verified through comparisons
with Unscented Kalman Filter (UKF). [3, 4] discuss
challenges and opportunities when adopting PINN for
transient stability analysis and predicting states of a
larger system, while [5] discusses PINN modeling
in applications to state estimation (SE) under limited
observability. Furthermore, [6] presents application of
PINN with worst-case guarantees for the DC optimal
power flow problem, and [7] applies PINN to estimate
the power system dynamic behavior in presence of a
converter based generation and voltage disturbances.

In addition, PANN has been utilized in the problem
of distribution system state estimation [8], which
resulted in the reduction of total number of coefficients
needed to parameterize the mapping between the
measurements and system state. Last but not least, based
on the emerging Graph Neural Networks (GNN), [9]
proposes a hybrid scheme to embed physics modeling of
power systems into GNN, which provides a reliable and
explainable parameter and state estimation framework,
and [10] presents a physics-informed graph learning
algorithm to estimate network parameters of 3-phase
power distribution systems. It should be noted that
most of these works demonstrated open loop operation
from small to large power system, but none of them
has utilized PINN in closed loop power system control
scenario.

1.1. Opportunities and Challenges in
Reinforcement Learning for Control

The ever growing penetration of renewable energy
resources calls upon improvement of grid control and
emergency responses. Recent methods on application
of reinforcement learning (RL) in power system was

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 3498
URI: https://hdl.handle.net/10125/79762
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



demonstrated in L2RPN competition [11], in which
many winning teams utilize power system agnostic
approaches. When combined with deep neural
network (DNN), deep reinforcement learning (DRL) has
shown super-human performance without any human
knowledge in areas that were intractable before [12].
In robotics [13], autonomous driving [14], power
grid emergency responses [15], DRL agents and bots
achieved promising results,

More specifically, in a partially observable
environments such as power system networks, with
control tasks occurring over a long-time horizon in
highly dimensional states and action spaces, RL and
DRL with agents can achieve promising results [16].
DRL is used to learn the environmental states and value
of performing a set of control action at each state; once
trained, DRL could suggest control actions that lead to
optimal outcomes. In short, DRL is a set of learning
algorithms that produce fully autonomous agents
through interactions with their environments, and learn
optimal behaviors for design or control optimization.

1.2. Enhance RL with Derivative-free
Techniques

Existing RL frameworks for power system control
[15, 17] focus on Q-learning, which has several
challenges for larger system application, such as
scaling up the solutions, time-consuming training, and
hyper-parameter tuning. From the ML algorithm
perspective, these core challenges still remain: 1)
scalability, 2) learning from limited samples, and
3) high-dimensional continuous state and action
spaces. Recent developments in RL with model-free,
derivative-free algorithms and evolutionary search
strategies have led to techniques such as basic random
search (BRS) [18] and augmented random search (ARS)
[19, 20] algorithms, which are highly competitive
yet scalable alternatives to traditional gradient based
methods.

BRS aims to pick a paramaterized policy πθ, shock
(or perturb) the parameters θ by applying−νδ and +νδ,
(where ν < 1 is a constant noise and δ is a random
number generate from a normal distribution). Then
actions are applied based on π(θ+νδ) and π(θ−νδ), the
rewards r(θ+ νδ) and r(θ− νδ) are collected resulting
from those actions. With the rewards of the perturbed θ,
the average ∆ = 1/N

∑
[r (θ + νδ)− r (θ − νδ)]δ for

all the δ is computed, then the parameters θ are updated
using ∆ and a learning rate α with θj+1 = θj + α∆.

ARS differs from BRS by utilizing three axes
of enhancements, (1) division by standard deviation,
(2) normalization of states, (3) utilization of top

performing directions to influence the policy updates.
ARS utilizes policy parameter space explorations, and
the sampled roll-outs are performed for estimating
the gradient of the returns. To achieve desired
performance and eliminates the need of expensive
hyper-parameter tuning, ARS only utilizes a small
number of sensitive hyper-parameters. Application
of ARS has been demonstrated in grid emergency
control application [15], which has shown to have faster
convergence performance in achieving better solutions,
less sensitivity to hyper-parameters and random seeds.
ARS has also been demonstrated in voltage stability
control [21], which uses load shedding based continuous
control actions obtained with a feedforward neural
network (FNN) as well as Long Short Term Memory
(LSTM) based policy model.

Since ARS can be scaled up for larger systems,
we have considered ARS in this work. Different fault
scenarios in power system can be used as multiple
tasks to learn from during training. A large set of
power system dynamic simulations can be performed
with various perturbed policies under fault scenarios
during training. These simulations are generally
paralleled using parallel scheme for ARS (PARS)
version and actor-based computations to speed up
the training process. The key components in PARS
are the ARS learner, workers, and the environment
rollout actors, who exchange information during the
process of learning. PARS performs search and
exploitation to determine the optimal policies. However,
implementations of PARS require multiple CPU cores to
obtain the optimal results.

At the beginning of training, the ARS workers
receive the policy weights distributed by ARS learner
as well as statistical features of the observations from
the previous iteration. Different policy network weight
perturbations are then performed by workers. A set
of slave actors receive these statistical features and
perturbed policy weights from each worker. Single
rollout is then performed by each slave actor for
different tasks while inferring the perturbed policy.
Observations and reward obtained by each rollout are
sent back to the master worker, and statistical features
of observations as well as the perturbation weights from
each slave worker are sent back to the ARS learner,
which then updates the weight policy. The basic
algorithm to update these weight policies with ARS can
be found in [20].

Since ARS is a model-free approach, the learning
of all the control actions requires a large number of
fault scenarios, and thus requires more policy update
iterations during training. Therefore, the only way to
influence ARS decisions based on system dynamics

Page 3499



and to reduce the search space, is by introducing
physics-informed algorithm in the loss calculation while
updating the policy network parameters, which is the
main focus of our work.

1.3. Methodology and Contribution

In addition to the derivative-free nature and
scalability features of ARS, it is critical to leverage
PINN to exploit the underlying physical laws governing
power systems and further enhance the penetration of
DRL applications in energy domain. In this paper, we
propose a Physics Informed Reinforcement Learning
framework, which aims to integrate generator operation
state formula in the DRL agent’s neural network loss
function, as well as to apply an ARS agent to optimize
the generator control under dynamic contingency.

The objective of a power system control framework
is to ensure the generation and delivery of the electric
power reliably, while maintaining voltage and frequency
within allowable limits. The proposed method focuses
on the control of individual generator in a decentralized
manner; it can potentially be extended to a set of
generators, which plays a crucial role in achieving
the control objective in modern control centers by
controlling the power output of generators. More
specifically, training a RL agent for single generator
node has the following benefits:

• minimize the observation state and action space
and thus speed up the training process;

• integrate the physics-based generator model and
be applied directly at RL agent’s loss function;

• the trained RL agent has potential to be transfered
to another generator with little or none further
training thus improving both transferability and
scalability.

To evaluate the performance of the proposed method,
comparison with non-physics-informed RL agents in
terms of its effectiveness, response time may be
performed. A contribution summary of the paper is
given as follows:

• A physics informed Neural Network model
(PINN) in reinforcement learning-based control
(RLC) framework has been developed;

• Application of the proposed RL framework for
power system oscillation damping has been
demonstrated;

• Conducted comprehensive performance
evaluation of the proposed RL framework on

system, demonstrated the benefits of introducing
PINN, and assessed potential influence of random
seed.

The paper is organized into six sections. Section
2 briefly discusses about power system dynamic
equations and contingency modeling. Section 3 presents
the proposed workflow for applying PINN in RLC
framework. Section 4 provides details regarding PINN
implementation in ARS algorithm. Section 5 presents
discussion on the simulation results and performance
evaluation. Section 6 concludes the paper.

2. Power System Simulation Environment
for Synthesized Two-bus System

In general, the model of power systems can be
expressed in the form of nonlinear differential and
algebraic equations as follows.

ẋ = f (x,u, z)
0 = g (x,u, z)

(1)

where, x ∈ RNx , u ∈ RNu and z ∈ RNz are the
dynamic state variables, input variables, and algebraic
variables, respectively. For example, in the single
machine infinite bus (SMIB) model, x represents the
rotor angle of the generator δ1; z represents the bus
voltage magnitudes [v1, v2] and phase angle δ2; and u
represent the mechanical power input Pm of generator.
The dynamics of the SMIB can be expressed as follows
[1, 22] :

f(t, Pm) : M∆̈δ +D∆̇δ + pe − Pm = 0 (2)

where, M represents inertia constant, pe =
v1v2
X12

sin (∆δ), X12 is transmission line impedance.
Assuming δ2 = 0 for infinite bus, δ1 − δ2 = ∆δ, the
damping coefficient D = 0 is considered.

To further simulate and explore the controllability
of generator oscillations under severe bus faults, a
synthesized two-bus model is created based on SMIB
system, so that the voltage behavior at non-generator
bus could be simulated correspondingly. Under steady
state, machine is delivering power pe = Pm to the
non-generator bus and the rotor angle of the machine
is maintained at ∆δ = 0. Under a bus fault at
non-generator bus, its bus voltage drops to 0 p.u. before
clearing, then it is assumed to return to 1 p.u. for
simulation simplicity; when Pm is assumed as constant
without any action, it leads to undamped oscillations in
the system when the fault was not cleared within critical
clearing time (Tc).

Therefore, when the fault clearing time ≥ Tc,
Pm needs to be controlled in order to minimize the

Page 3500



Figure 1. A flow diagram for the proposed method.

oscillation of the rotor angle due to fault such that the
states could be brought back to the pre-fault operating
condition values. The following sections introduce
different RL algorithms presented for this problem, as
well as the proposed workflow for controlling of the
generator mechanical power input for stabilizing rotor
angle after disturbance using the proposed method.

3. Reinforcement Learning-based Control

A typical RLC framework consists of four
components: physical model, environment, policy
model (i.e., PINN), and RL algorithm as shown in
Fig. 1. Physical model implies simulation model
representing the power system behavior. Markov
decision processes (MDPs) are generally used to
model a fully or partially observable environment, key
elements in a MDP are as follows: 1) state space S,
2) action space A, 3) environment transition function
P : S×A→ S, 4) reward R : S×A→ R, 5) discount
factor γ ∈ [0, 1].

Moreover, the RL agent observes the state ot ∈ S
at each time step, calculates reward rt ∈ R from the
environment and then selects an action at ∈ A based
on its action policy to update the environment. The
objective is to learn selecting the optimal action given
a set of observations to maximize the rewards over time.
An agent learns a control policy through interacting
with the environment via trial-and-errors, executes the
policy and adds randomness to the actions. If the
result (based on the reward rt) is better than expected,

policy is updated via some optimization techniques
(e.g., stochastic gradient descent, SGD) to do more of
the same in the future; otherwise, do less.

In our study, a FNN is utilized as a policy model
[23]. The policy model maps a set of observation
states to space of control actions, and mimics the
potential system response and following control actions.
A fault event will trigger voltage drop on load bus
and thus oscillation occurs on dynamic states. The
generator bus’s rotor angle and speed are considered
as the observation states (S), while continuous action
(A) is performed by adjusting the mechanical power.
Practically, changing mechanical power input in a large
amount requires adjusting the governor’s parameters.
Without loss of generality, the Pm input to a system
can be adjusted between its minimum and maximum
value [Pminm , Pmaxm ] without changing other settings.
The continuous change in mechanical power (Pminm ≤
Pm ≤ Pmaxm ) will be determined from the policy model.

Reward encourages the event of bringing the
observation states back to equilibrium by modifying
the policy network. Reward R consists of two terms:
the first one is a function of damping ratio of system
state, the second one represents the similarity of the
network to the pre-disturbance system status. Typically
for large dimensions of observation and action space,
RL is applied for the policy model training, which learns
to find a policy to maximize the expected reward when
following this policy in the given environment.

Page 3501



4. Introducing PINN in RL-based Power
System Control

In order to influence the ARS decisions by
introducing physical system dynamics into learning, in
this work a physics informed RLC framework has been
formulated and shown on the right hand side of Fig.
1. It consists of three components: 1) a traditional
RLC framework; 2) A PINN based policy network;
3) A physics based system model for inclusion of
system dynamical equations into PINN training. This
section discusses how PINN is introduced into the ARS
algorithm.

4.1. PINN in ARS algorithm

To study physics-informed RL agent performance in
terms of scalability and sampling efficiency, we propose
to apply one ARS agent on single generator node in
the test system. The generator’s rotor angle and speed
will remain as the observation states, which are the RL
agent’s neural network inputs.

In this work, the goal is to utilize PINN for policy
network training. As shown in Fig. 1, the output of
PINN and the associated physics-based information of
generator operational states are provided as input to
the RL agent’s neural network loss function during its
training. PINN-based ARS has been implemented
as a modification of traditional ARS with surrogate
gradients, and the modified algorithm is described in
Algorithm 1.

The main difference between PINN and
conventional neural network is the training process
of the shared parameters, especially regarding the loss
minimization with initial/boundary data on δ(t;x) and
collocation points for f(t, x) in an episode. Comparing
to [1], the neural network predicting f(t, x) has the
same parameters for predicting δ(t;x), but now with
different activation functions.

Certain disturbance events in the test system may
trigger oscillations, which may require necessary
control action for damping. Continuous actions P cm
should be applied to bring back the system to stability,
where reward encourages the system states δ and ω
return to equilibrium,

Pm = P cm (Pmax − Pmin) , P cm ∈ [0, 1] (3)

the proposed PINN-based ARS agent uses an additional
penalty term MSEf in the loss function, which
represents the physic laws of Swing Equation,

loss = MSEu +MSEf , MSEf = f(t, Pm) (4)

Episodic loss considers the mean squared error at
a finite set of collocation points. Considering physical

laws during model training allows to bound the space of
admissible solutions to the neural network parameters,
which translates to a lower requirement in both the
amount of training data and neural network size. Those
potential advantages of PINN are eliminating the need of
large number of training set as well as utilizing a simple
network structure.

Algorithm 1: Modified ARS with PINN
Result: Policy actor network, policy

fnet(πθ, s, t), s is state vector at time t
, n is the number of directions
Initialization: initial parameters θ(0) , loss
function fP (θ), learning rate η, and hyper
parameters α, β, σ2, P ;
for t = 1 to T do

Calculate the surrogate gradients∇f
(
θ(t)
)

;
Update low-dimensional guiding subspace
U with surrogate gradient;

Define search covariance
Σ = α

n I + 1−α
k UUT ;

for i = 1 to P do
Sample perturbation εi ∼ N

(
0, σ2

∑)
;

Compute antithetic pair of losses
f(θ − εi) and f(θ + εi), where,
f = r(π(θ+ εi)) is the episodic reward
using policy model π whose weights θ
have selected perturbations εi

end
Compute guided evolutionary search
gradient estimate
g = β

2σ2P

∑
i=1:P

f (θ + εi)− f (θ − εi)−

lossfPINN
, where lossfPINN

=
fP (π (θ + εi))− fP (π (θ − εi));

Update parameters using gradient descent
θ ← θ − ηg;

end

Loss is calculated at each instance of t in an episode
of fault scenario as follows:

losst : fnet(πθ, si, t) : M∆δ̈+pe−(Pmax − Pmin) pcm(πθ)
(5)

loss calculated over an episode lengthNe of a simulation
duration (0 ≤ its ≤ Nets) is given as

losse : fP =
∑

i=1:Ne

fnet (π, si, t) (6)

where pcm is the controller output from policy network
given the system states si as input, for any given instant
t = its. Similarly, reward is calculated as a function of

Page 3502



two terms for an episode length Ne is as follows:

rt = rsimilarity + 0.1ζδ (7)

rsimilarity = µsi,i:its≤t − s0 (8)

where rsimilarity indicates the similarity of the current
system states si to the pre-fault values s0, s0 indicates
the pre-fault observation state at instant t = 0; µsi
represents the mean of observation states si until instant
t, ζδ is the damping ratio of δ calculated by considering
samples until instant t during an episode.

5. Simulation and Results

A synthesized two-bus system with one generator
has been used as a test system. At the non-generator
bus, self clearing bus faults with different duration have
been used in the training cases. For each scenario,
fault was applied at 0.5s, Fig. 2 shows the bus voltage
drop to 0, and then was cleared after 6 cycles. Time
domain simulations were run for 10s with a time step
of 0.1s. Fault events with different fault duration trigger
voltage drop on load bus, as a result, equilibrium gets
broken, and oscillation continues without any action.
Both δ, ω are considered as observation states for RLC
framework. A typical fault scenario without any control
action is presented in Fig. 3-6, which shows undamped
oscillations for both δ and ω, as well as Pe due to no
responsive action in mechanical power Pm. Damping
ratio of δ is then calculated for each fault simulation.
Larger damping ratio indicates returning the system to
equilibrium faster. Damping ratio can be improved by
continuously changing the mechanical power input in
Eq. (3) to the system, Pm is considered as a control
action in this test system where P cm is the control
decision coming from RLC framework.

Figure 2. Synthesized load bus voltage considering

bus fault in 10 second simulation.

We have tested two RLC implementations; (1) with
traditional ARS (noPINN); (2) with PINN in ARS. This

Figure 3. The simulated rotor angle with sustained

oscillation when no control action was applied.

Figure 4. The simulated rotor speed with sustained

oscillation when no control action was applied.

Figure 5. The simulated mechanical power when no

control action was applied.

Figure 6. The simulated electrical power with

sustained oscillation when no control action was

applied.

Page 3503



section presents corresponding discussions on results
from those two implementations. To evaluate the
performance of these two methods during training,
reward is calculated for each fault scenario as a function
of the damping ratio of δ and a function of similarity
to the pre-fault system operating condition. Average
reward has been used for calculating rewards from
all fault scenario episodes considered during training.
Convergence of the RLC model is obtained when the
average reward is positive and not improving over the
following iterations.

Similarly, in testing stage, different fault scenarios
which has not been used in the training were presented
to the system, then the ability of the RLC framework to
navigate the system back to normal state for each testing
scenario. Detailed comparison between traditional ARS
and PINN-based ARS application to power system
control problem are presented below.

5.1. Traditional ARS

Traditional ARS algorithm has been tested with FNN
architecture for policy model. The network size was
set to [2,2]. For FNN only architectures, the last 10
recent observation states were stacked and used as input
to ARS, and thus the dimension of the input was 20.
From the state observations, damping ratio and the
difference between pre-fault and temporal status were
calculated and given as input to the ARS agent. Action
dimension was considered to be 1 for Pm. A total
of 24 perturbations were considered for ARS agents
along with 24 cores for training. Total 8 top performing
perturbations were used for gradient estimate. SGD step
size was set to be 1. A neural network model decay ratio
of 0.995 was considered. The results after testing the
trained ARS model is presented in Fig. 7 - 10. Note that
the yellow vertical line indicates the trigger time of ARS
agent for control actions.

More specifically, Fig. 7 shows the damped
oscillation of rotor angle due to the ARS agent, while
Fig. 8 shows a well damped rotor speed. Moreover, it
is observed that the continuously controlled mechanical
power Pm in Fig. 9 was adjusted by ARS based policy
model such that stability is achieved only after it has
deviated from its pre-fault value. Similarly, the electrical
power was also deviated from the pre-fault values as
shown in Fig. 10. Due to this deviation, final system
state δ is settling at a different value than its pre-fault
value. This shows that although traditional ARS damps
the oscillation, the trained model was not sufficient to
bring the system back to pre-fault operating condition.

Figure 7. The simulated rotor angle with damped

oscillation when traditional ARS was applied.

Figure 8. The simulated rotor speed with damped

oscillation when traditional ARS was applied.

Figure 9. The simulated mechanical power when

traditional ARS was applied.

Figure 10. The simulated electrical power with

damped oscillation when traditional ARS was applied.

Page 3504



5.2. With PINN in ARS

PINN-based ARS utilizes Swing Equation to
influence the loss function, the results are presented in
Fig. 11-14. Fig. 11 and 12 represents the oscillation
in the observation states after the fault has been
cleared. Both δ and ω are returning to the pre-fault
operating condition due to the control action from PINN
based ARS policy. Similarly, the mechanical power
and electrical power outputs are also returning to the
pre-fault values thus the controller brings back the
pre-fault operating condition after the disturbance.

5.3. Performance Evaluation

The performance of both traditional ARS and
PINN-based ARS were compared regarding the reward
at the ending iteration, as well as the training cost
to achieve those results. Fig. 15 shows the average
reward obtained at the end of each iteration with
PINN-based ARS stays higher after the 60-th iteration
than traditional ARS method. The statistics of different
simulations have also been presented in Table 1, which
presents maximum rewards obtained at the end of 300
iterations, the number of iterations to reach stable
reward and total training time of 300 iterations. As
can be seen from the table, comparing PINN-based
ARS to traditional ARS, maximum reward obtained is
higher, the number of iterations to reach stable reward
is 2.7 times faster, and the total time to complete all
300 iterations is lesser. This shows effectiveness of
the PINN-based ARS in achieving desired result more
efficiently.

Table 1. Performance comparison between noPINN

and PINN implementations
Iteration No. 300 ite.

Max when stable time cost
Reward reward > 0 (minute)

RL, noPINN 0.59 187 33.4
RL, w/ PINN 2.95 69 28.9

5.4. Influence of Seed

To properly capture the influence of random seed and
further validate the benefits of the proposed PINN-based
ARS, three groups of experiments with random seeds
were run for 100 training iterations, and average rewards
were collected and are shown in Fig. 16 for both the
PINN-based ARS and traditional ARS. It can be seen
that the average reward over those three groups is still
higher for PINN-based ARS than the traditional ARS

Figure 11. The simulated rotor angle with damped

oscillation when PINN ARS was applied.

Figure 12. The simulated rotor speed with damped

oscillation when PINN ARS was applied.

Figure 13. The simulated mechanical power when

PINN ARS was applied.

Figure 14. The simulated electrical power with

damped oscillation when PINN ARS was applied.

Page 3505



Figure 15. Rewards comparison between traditional ARS (noPINN) and PINN ARS.

Figure 16. Influence of Seed when comparing the average reward of traditional ARS (noPINN) and PINN ARS

with three random seeds.

method; therefore, it demonstrates the effectiveness
of PINN-based ARS when applied in power system
control.

6. Conclusion

By taking advantages of grid model physical priors
and that of a model-free, derivative-free algorithm,
we proposed and implemented a physics informed
reinforced learning framework with ARS agent, which
demonstrated superior performance comparing to
traditional noPINN method. A synthesized two-bus
system has been adopted for the simulation and
validation of post-fault generator damping control. It
shows 2.7 times faster in convergence speed, and the
results are consistent in training sessions started with
different random seeds. Potential application of the
proposed PINN-based ARS can be further explored for
larger power systems, and to achieve faster convergence
without increasing the size of the policy network;
more importantly, it can navigate the system back to

pre-disturbance equilibrium once the fault was cleared.
For next step, the proposed methodology may be

extended and evaluated in larger network model, such
as IEEE 39-bus network [15]. On the other hand, more
complex environments with different levels of difficulty
can be evaluated, such as including additional physics
equations for the controllers of generators and varying
loads.

7. Acknowledgement

This work was funded by the Physics Informed
Machine Learning (PIML) investment at the
Pacific Northwest National Laboratory (PNNL),
more information can be found at the webpage
https://www.pnnl.gov/projects/physic
s-informed-machine-learning-energy
-and-environment . The authors would also like
to acknowledge PNNL colleagues George G. Muntean
and Vikas Chandan for their support, comments in this
project.

Page 3506



References

[1] G. S. Misyris, A. Venzke, and S. Chatzivasileiadis,
“Physics-informed neural networks for power systems,”
in 2020 IEEE Power Energy Society General Meeting
(PESGM), pp. 1–5, 2020.

[2] J. Stiasny, G. S. Misyris, and S. Chatzivasileiadis,
“Physics-informed neural networks for non-linear
system identification applied to power system
dynamics,” 2020.

[3] J. Stiasny, G. S. Misyris, and S. Chatzivasileiadis,
“Transient stability analysis with physics-informed
neural networks,” arXiv preprint arXiv:2106.13638,
2021.

[4] J. Stiasny, S. Chevalier, and S. Chatzivasileiadis,
“Learning without data: Physics-informed neural
networks for fast time-domain simulation,” arXiv
preprint arXiv:2106.15987, 2021.

[5] J. Ostrometzky, K. Berestizshevsky, A. Bernstein, and
G. Zussman, “Physics-informed deep neural network
method for limited observability state estimation,” arXiv
preprint arXiv:1910.06401, 2019.

[6] R. Nellikkath and S. Chatzivasileiadis,
“Physics-informed neural networks for minimising
worst-case violations in dc optimal power flow,” arXiv
preprint arXiv:2107.00465, 2021.

[7] G. S. Misyris, J. Stiasny, and S. Chatzivasileiadis,
“Capturing power system dynamics by physics-informed
neural networks and optimization,” arXiv preprint
arXiv:2103.17004, 2021.

[8] A. S. Zamzam and N. D. Sidiropoulos, “Physics-aware
neural networks for distribution system state estimation,”
IEEE Transactions on Power Systems, vol. 35, no. 6,
pp. 4347–4356, 2020.

[9] L. Pagnier and M. Chertkov, “Physics-informed
graphical neural network for parameter & state
estimations in power systems,” arXiv preprint
arXiv:2102.06349, 2021.

[10] W. Wang and N. Yu, “Estimate three-phase distribution
line parameters with physics-informed graphical
learning method,” 2021.

[11] A. Marot, B. Donnot, G. Dulac-Arnold, A. Kelly,
A. O’Sullivan, J. Viebahn, M. Awad, I. Guyon,
P. Panciatici, and C. Romero, “Learning to run a power
network challenge: a retrospective analysis,” arXiv
preprint arXiv:2103.03104, 2021.

[12] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,”
Nature, no. 550, pp. 354–359, 2017.

[13] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog,
E. Jang, D. Quillen, E. Holly, M. Kalakrishnan,
V. Vanhoucke, and S. Levine, “Qt-opt: Scalable
deep reinforcement learning for vision-based robotic
manipulation,” 2018.

[14] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep
reinforcement learning framework for autonomous
driving,” Electronic Imaging, vol. 2017, p. 70–76, Jan
2017.

[15] Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and
Z. Huang, “Adaptive power system emergency control
using deep reinforcement learning,” IEEE Transactions
on Smart Grid, vol. 11, no. 2, pp. 1171–1182, 2020.

[16] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and
A. A. Bharath, “Deep reinforcement learning: A brief
survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[17] M. Glavic, R. Fonteneau, and D. Ernst, “Reinforcement
learning for electric power system decision and
control: Past considerations and perspectives,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 6918–6927,
2017. 20th IFAC World Congress.

[18] A. D. Flaxman, A. T. Kalai, and H. B. McMahan,
“Online convex optimization in the bandit setting:
gradient descent without a gradient,” arXiv preprint
cs/0408007, 2004.

[19] H. Mania, A. Guy, and B. Recht, “Simple random
search provides a competitive approach to reinforcement
learning,” arXiv preprint arXiv:1803.07055, 2018.

[20] H. Mania, A. Guy, and B. Recht, “Simple random search
of static linear policies is competitive for reinforcement
learning,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pp. 1805–1814, 2018.

[21] R. Huang, Y. Chen, T. Yin, X. Li, A. Li, J. Tan, W. Yu,
Y. Liu, and Q. Huang, “Accelerated deep reinforcement
learning based load shedding for emergency voltage
control,” arXiv preprint arXiv:2006.12667, 2020.

[22] P. Kundur, “Power system stability,” Power system
stability and control, pp. 7–1, 2007.

[23] J. Schmidhuber and S. Hochreiter, “Long short-term
memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780,
1997.

Page 3507


