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Abstract

In this article we present a model for the
interaction of distributed energy resources (DER) with
the electricity system, using reinforcement learning.
Our method relaxes the requirements for information
necessary to train and engage in Pareto improving
trading, and can directly incorporate the inherent
intermittency of variable renewable energy sources. The
distributed resources include consumers of electricity,
energy storage systems, and variable renewable energy.
We modify the algorithms to improve the scheduling of
the resources. In our empirical application, we use data
from Colombia subject to large variability due to El
Niño Southern Oscillation and illustrate the use of the
model under large variations in the data used to train
the model.

1. Introduction

Many countries, including Latin American ones such
as Colombia, have accelerated their efforts to increase
the amount and diversity of their electricity generation
capabilities. For instance, the generation portfolio of
Colombia primarily consists of hydro-electric power.
This energy source accounts for nearly 70% of the total
energy production of the country [1]. This lack of
diversity responds to the fact that Colombia is a country
rich in water resources; nonetheless, the dependence on
hydroelectric power plants can have dire consequences.
In particular, weather phenomena like El Niño Southern
Oscillation (ENSO) often create emergencies across
the country generating drastic droughts that require
production of energy with non-renewable energy
sources, such as coal or natural gas. To respond
to these issues in 2019 the Colombian government
announced the construction of Parque Solar Castilla, a
solar photovoltaic farm with an installed capacity of 21
megawatts(MW). Moreover, the government announced
two more projects, with a projected installed capacity of
80MW and 50MW.

The integration of intermittent and variable
renewable energy sources (VRES) poses challenges
in terms of the balance of supply and demand in
the electricity system. Currently, most systems have
limited responsiveness from the demand side. In
fact, the price-inelastic demand requires additional
balancing services, driven mostly by the supply side.
Moreover, several challenges arise when estimating
the effectiveness of a protect, such as the need to
understand the weather variables that directly affect
energy production.

The increased participation of VRES in the
generation portfolios has nurtured interest in
Energy Storage Systems (ESS). The research in
the development of technologies, models, and policies
for coupled ESS is an active area [see e.g., 2].

A fundamental operational problem to solve is the
feasible management of the resources to attain the
objectives desired, including the maximization of social
welfare or minimization of production costs, given the
uncertainties present. Additionally, the institutional
arrangements affect the feasibility and implementability
of the interaction schemes.

Our paper presents a model for the integration of
VRES with the electricity system, using a combination
of state-of-the-art methodologies. The DER include
consumers of electricity, ESS and VRES. We propose
the integration of VRES in the context of a price
taker virtual power plant (VPP) modeling the inherent
uncertainty and using a novel methodology for
optimal decision policy making. The novelty of the
manuscript is the combination and application of (i)
An implementable method for resource sharing that
generates optimal day ahead scheduling policies using
VRES as the main energy production source. In
addition, allowing and integration of profile generator
units, optimal scheduling units, among others on a
scheme where a prosumer interacts as peers in a
smart electrical grid (see e.g. Figure 1). (ii) A
flexible Deep Reinforcement Learning (DRL) model
applying Temporal Difference (TD) learning methods
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with experience replay for validating and committing
day ahead decisions on a real time market. (Algorithm
2) (iii) Integration of two hierarchical Markov decision
processes where day-ahead actions are evaluated by
the real-time deep reinforcement learning agent using
the constrained cross entropy approach (Algorithm
1). (iv) Better representation of the stochastic nature
of the problem VRES energy production uncertainty
(solar and wind) using state-of-the-art simulation
methods; in addition, we compare our results with
an naive deterministic agent showcasing how a more
deterministic approach can get heavily affected by
extreme scenarios. Finally, (v) Reduction on the
amount of system information needed to optimally
control distributed resources in comparison to robust
optimization approaches allowing more flexibility to
changing environments as well.

2. Methodology

The virtual power plant (VPP) day-ahead unit
commitment methodology can be summarized in two
main components: (i) a deep reinforcement learning
methodology using experience replay based on expected
State–action–reward–state–action (SARSA) paired with
a constrained cross entropy method to solve the optimal
control problem (Section 2.9), and (ii) a multivariate
copula autoregressive algorithm for simulating solar
irradiance, air temperature and wind speed (Section
2.13). The combination of these two modules for
solving the optimal control problem has two main
advantages. First, it relaxes the requirement of
previous knowledge of the system that is inherent
to methodologies such as robust control. These
requirements limit the available configurations of the
system and generate ad hoc solutions for specific
case studies or system designs. The robust controller
requires a vast a priori comprehension of the system
dynamics and this knowledge cannot be changed.
Conversely, the reinforcement learning controller uses
limited previous knowledge of the system but is more
flexible and capable to adapt to changing environments
of system configurations to find optimal control schemes
[3]. Second, we seek to incorporate synthetic data
in order to emulate the natural variability of VRES
in the optimal control problem. For this, we take
advantage of a methodology for simulation of time
series of natural variables (such as wind speed and solar
irradiance) that works based on a copula autoregressive
methodology. This allows a more accurate simulation
of the phenomena to reproduce the variability of the
process and reduce the uncertainty related to energy
production.
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Figure 1: Scheme for the integration of the proposed
virtual power plant (VPP) optimal control methodology
on a service-oriented multi agent scheme

2.1. Problem Formulation

We model a theoretical VPP system with a
hierarchical sequential Markov Decision Process
(MDP). This process has two main components that
represent the usual decision levels in current systems:
the day ahead (DA) decisions process (DA-MDP
agent) describes the actions required for the day-ahead
energy commitment to be evaluated. The real-time
(RT) decision process (RT-MDP agent) describes the
state of the VPP, its performance, and the hourly
basis decisions that seek to minimize the cost and
maximize the reliability of the system. DA decisions
are taken by the DA agent in order to maximize the
day ahead energy commitment of the VPP. However,
the reliability of the energy commitment of the DA
agent can only be assessed once the uncertainty has
been cleared in RT, and is dependent on the internal
system dynamics governed by the decisions of the RT
agent. This results in a complex dependence between
the RT and DA agents with system reliability and
cost-effectiveness. Although we are using two agents,
we are not in the spectrum of a multi-agent RL (MARL)
problem, because the agents are not sharing the same
environment, their actions and task are different from
each other and they are not interacting simultaneously
[4; 5; 6].

𝑠𝑑
𝐷𝐴 𝑠𝑑+1

𝐷𝐴

𝑠ℎ
𝑅𝑇 𝑠ℎ+12

𝑅𝑇 𝑠ℎ+24
𝑅𝑇⋯ ⋯

Figure 2: Day ahead (DA) and Real Time (RT)
hierarchical MDPs. The RT process evaluates the
decisions taken in the DA process.
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2.2. Real Time MDP

The RT-MDP is a tuple (SRT ;ART ;PRT ;RRT ) that
represents the real-time reliability and cost-minimizing
control process. The time index for this process is t,
denoting intra-day hourly time steps. In RT, the operator
of the VPP system may choose preventive actions at
each time step, trying to immunize the system against
system and weather variability (risk) by attempting to
avoid unreliable states. To model this decision process
in each interval, the agent observes the current state
sRTt ∈ SRT (i.e. the state of charge of the battery,
the realized energy commitment, local demand, and the
solar and wind energy production, etc. for this interval
) and chooses an action aRTt ∈ ART . Following the
agent’s action, the real-time reward rRTt (SRTt , aRT ),
representing the cost to guarantee the fulfillment of the
energy commitment and the system’s reliability, can be
calculated, and a transition to sRTt+1 occurs, governed by
the respective policy P (sRTt+1|sRT , aRT ).

2.3. Real time State-space

We define a RT state sRTt to be the tuple
(α,β,γ,δ,λ,ε,ζ,η,θ), where:

α Is the state of charge of the battery in the
current time step SOCt+1 = SOCt + Solart +
Windt + MarketPurchaset where Solar and Wind
is the amount of energy produced by each one
of the renewable sources respectively and Market
Purchase is the amount of energy acquired from
the market at time t in this day.

β Is the hour of the day in the current time step

γ Is the day of the month in the current time step

δ Is the month of the year in the current time step

λ Is a vector with 24 positions for simulated solar
irradiance and wind speed using the copula
autoregressive algorithm 2.13

ε Is the price of energy (e.g. $/MWh or $/kWh)
taken from the market for the current time step

We assume the VPP agent is a price taker in
the energy market. We use information for the
Colombian energy prices provided by XM, the
system operator that manages and operates the
electricity market in Colombia [7]

ζ Is the amount of energy commitment (e.g. MWh
or kWh) for the current time step (e.g., hour)

η Is the amount of energy produced with the
renewable energy sources for the current time step

θ Is the amount of energy purchased (e.g. MWh or
kWh) to the market for the current time step

2.4. Real time Action-Space

An action aRTt in RT attempts to achieve improved
reliability of the system by increasing the amount of
available energy in periods of time of high demand and
low renewable energy production. The action the RT
agent might take at each step is the amount of energy to
buy from the market. i.e., increasing the state of charge
(SOC) for the next hour to be able to better respond to
the energy commitment previously chosen by the DA
agent:

SRTt
aRT
t−−−→ SRTt+1 = (α, β, γ, δ, ε, ζ, η, θ + ∆θ)

The actions selected by the agent are sampled from
the interval [0%, 100%]. That is, the agent could buy
100% of the current battery capacity to use in the next
time steps.

2.5. Real time Transition Kernel

The RT transition kernel is conditioned on the last
RT state and action, and on the corresponding last DA
decision taken to determine the energy commitment in
that specific time t of the day:

SRTt+1 = f(SRTt , aRTt , aDAtd ).

The dependence between RT and DA states is expressed
using the following sets of equations. The RT demand
process is based on the DA energy commitment:

dRTt = dDAt + δt, (1a)

δt+1 = δt + εt. (1b)

where dRTt is the RT demand vector at time t, dDAt is
the DA energy commitment vector for time t of the day;
finally, εt is Gaussian noise and δt is the autoregressive
random bias parameter [8].

2.6. Real time Reward

We choose the RT reward to be the profit received by
the agent at time t of the day. This profit is calculated as
the difference between the amount of revenue by selling
stored and produced energy minus the cost related to
storing that energy, production costs, and cost related
to penalties for overproducing energy or for not having
enough energy to dispatch and respond to the energy
commitment of the DA agent. To calculate the profit of
the system in every time step we evaluate three possible
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cases. The first case is when the energy available in the
VPP is higher than the battery capacity of the system.
This over-production generates a penalty equal to the
amount of energy over the installed battery capacity that
is then added to the total cost of the agent step. The
second case is when the available energy is less than the
energy commitment of the DA agent. In this case, the
agent needs to pay a penalty for the amount of energy
that was not produced. Finally, if the amount of energy
available in the system is less than the capacity of the
system and more than the energy commitment, the agent
gains the amount of energy sold to the market. With
these cases, we calculate the profit at each time t of the
day for every step that the agents take.

2.7. Hierarchical MDP sequential Policy
Improvement algorithm

We use an algorithm for jointly learning the RT
cost-effective value function and simultaneously search
for an optimal DA policy. This follows a similar
approach to the one conducted in [9; 10; 11]. This is
a feedback loop, and the main idea of the algorithm is
that the policy improvement of the DA MDP is based
on the RT MDP value function. Meanwhile, the RT
MDP value function is being affected by the day ahead
decisions (energy commitment) of the DA MDP. We use
a deep reinforcement learning algorithm to assess the RT
reward on each step (system cost-effective profit) and
the cross entropy method [12; 13] adding constraints
to the selection of elite paths as presented by [14] for
improving the DA policy.

2.8. Day Ahead Policy Improvement and
Comparison

For the VPP design we assume that the operator
will use the installed energy production. Thus the DA
agent decision is similar to the work proposed by [9],
and consists of a parametric DA policy as π(sDA;ψ) =
arg maxaDA∈ADAΦ(sDA)

A comparison between different DA policies πi is
done by calculating the empirical expected value of the
RT value function,

Eνπi ≈ 1

|SRTpaths|
∑

s∈SRT
paths

νπi(s), (2)

using a set of representative RT initial states SRTpaths.
This set is composed of the full history of all RT states
visited during the current Hierarchical MDP sequential
policy improvement algorithm iteration. This procedure
allows the DA agent to compare different policies using

Algorithm 1: Hierarchical MDP sequential
policy improvement algorithm

Input: initial distribution P (0)
ψ for DA policy

parameters and a constraint function H, upper
bound d and convergence limit ε

Output: optimal DA policy π(ψ∗)
Initialize SRTpaths = ∅, k = 0
Convergence measure:

1

Ntop

Ntop∑
i=1

(ν̂i
(k) − ν̂i(k−1))2 < ε

while Convergence measure do
for i← 1 to N do

Get load from distribution ψi ∼ P (k)
ψ

Sample Npaths from DA policy
πi = π(ψi)

Approximate νπi ∀ Npaths
Approximate H(πi) using νπi

approximation ∀ Npaths
Save DRL trajectories to SRTpaths

set ν̂i(k) = 1
|SRT

paths|
∑
s∈SRT

paths
νπi ,∀i ∈ |N |

if H(πi) ≤ d then
sort πi|H(πi) ≤ d in descending order

with respect to ν̂i
else

end if
Update P (k)

ψ using the respective ψi from
the top percentile of πi

k+=1

many probable states that are being sampled from the

distribution P (k)
ψ .

DA policy improvement is achieved using the
constrained cross entropy method. In this method, initial

policies are sampled from a distribution P
(0)
ψ . After

sampling, in each iteration, k policy parameters are

drawn from P
(k)
ψ , and their top percentile, according to

the RT value following the constraint function H, is used

to update P (k+1)
ψ . The distribution P (k)

ψ is a Gaussian

mixture with means set to ψk+1, which is the energy
load that belongs to the top percentile of all the paths.
The convergence criterion we use in our instances is:

1

Ntop

Ntop∑
i=1

(ν̂i
(k) − ν̂i(k−1))2 < ε,
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where Ntop is the number of the top-percentile values.
By using the constrained cross entropy method, we
avoid using gradient-based optimization which may be
difficult to compute in our case due to the interaction
needed between the agents. Nonetheless, we are not
in the spectrum of a multi-agent RL (MARL) [see e.g.,
4; 5; 6]

2.9. Real Time Value Function Approximation

The RT agent environment is based on a virtual
power plant (VPP) environment. Since a precise
model of the system is not available and detailed
restrictions, information, or characteristics of the system
are scarce, it is preferred to estimate action values
q∗(s, a) (the values of state-action pairs) rather than
state values v∗(s). Accordingly, a primary goal for the
reinforcement learning method used is to estimate the
optimal action-value function q∗. The policy evaluation
problem for action values is to estimate qπ(s, a), the
expected return when starting in-state s, taking action
a, and thereafter following policy π [15].

v∗(s) = max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r+γv∗(s
′)|St = s,At = a], or,

(3)

q∗(s, a) = E[Rt+1+γmax
a′

q∗(St+1, a
′)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]. (4)

In the following sections we give a detailed
explanation of the methodology used for Approximating
νπi (Algorithm 2) using DRL with expected SARSA.
We begin by giving details on why we used Temporal
difference (TD) learning in the form of Expected
SARSA, after that we give the benefits of using
experience replay in this setup finishing with the action
selection procedures chosen and the Deep Expected
SARSA algorithm used.

2.10. Experience Replay

Reinforcement learning methods have the restriction
that the learning and updating procedure must follow a
sequential order. Every sample from the interaction of
the agent with the environment generates one update to
the value functions, thus making the learning process
inefficient. Moreover, the approximation of the value

function using a Neural Network can be affected since
the algorithm is learning from experience tuples in
sequential order that can generate correlation problems.

To avoid this problem we use experience replay for
generating a training data set from a buffer of sample
data from the environment. This technique is called
replay buffer or experience buffer [16]. The replay
buffer consists of experience tuples (S, A, R, S+). As
well as minimizing undesired correlations, experience
replay allows the agent to learn from individual tuples
multiple times, and recall rare occurrences using the
experience of the environment in a more efficient way.

2.11. Soft-max policy action selection

We select the soft-max algorithm for action
selection. The soft-max policy parametrization explores
according to the action-values. That is, an action with a
moderate value has a higher chance of getting selected
compared to an action with a lower value [17]. We
use this parametrization given that the estimation of
the approximate policy can approach a deterministic
policy, whereas with ε-greedy action selection over
action values there is always an ε probability of selecting
a random action. The VPP control problem has high
variability and uncertainty due to the dependence on
weather variables. Accordingly, the best approximate
policy for this particular problem may be stochastic.
According to the probability of selecting each action,
the soft-max policy dependent on the state s and action
a where τ is the temperature parameter which controls
how much the agent focuses on the highest valued
actions. The lower the temperature, the more the agent
selects the greedy action. When the temperature is high,
the agent selects among actions in a more random way.
The softmax policy exponentiates action values; this
characteristic could diverge and generate large action
value functions. As a consequence we implemented the
soft-max policy in a numerically stable way, subtracting
the maximum action-value from the action-values as
follows:

Pr(At = a|St = s)=̇
eQ(s,a)/τ−maxcQ(s,c)/τ∑
b∈A e

Q(s,b)/τ−maxcQ(s,c)/τ
.

(5)

2.12. Deep Expected SARSA learning

A virtual power plant environment (VPP) can
be regarded as an MDP. We use Expected SARSA
integrated into a DRL framework to solve the optimal
control problem. The current state-action value is
Q(s, a). We have an action-value function represented
as a neural network, Qt(s, a). We update our
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action-value function and get a new one that we can use
at the next time-step. We will get this Qt+1(s, a) using
multiple replay steps that each result in an intermediate
action-value function Qt+1(s, a)i where i indexes the
replay step being evaluated. For an in-depth analysis of
the solution of deep linear neural networks, the reader is
referred to [18].

In each replay step, we sample a batch of experiences
from the replay buffer and compute a mini-batch
Expected-SARSA update.

Here is the pseudo-code for performing the updates:

Algorithm 2: Deep Expected SARSA with
experience replay
Qt ← action-value network at t
Initialize Q1

t+1 ← Qt N ← Number of replay
steps

for i← 1 to N do
(s, a, r, s′, t)←
Sample tuple from experience replay buffer
if s ∈ S+ then

Qt : Qi+1
t+1(s, a)← Qit+1(s, a)+

α · [r + γ(
∑
b

π(b|s′)Qt(s′, b))]

else

Qt : Qi+1
t+1(s, a)← Qit+1(s, a)+

α·[r+γ(
∑
b

π(b|s′)Qt(s′, b))−Qit+1(s, a)]

Qt+1 ← QNt+1

2.13. Solar Irradiance and Wind speed
simulation

The second component of the methodology
proposed is the time series simulation of solar
irradiance, air temperature, and wind speed. These
variables are needed in order to estimate renewable
energy production at any hour of the year. The
purpose of including simulation of weather variables
in the state space of the RT agent is to provide the
agent with information regarding the joint distribution
function of solar irradiance and air temperature as
well as wind speed as explained in section 2.4. This
added information will provide the neural network
in the RT agent valuable information regarding the

uncertainty and variability of the underlying process
of these weather-related variables that directly affect
its performance. Instead of using forecasted values,
we take advantage of the whole stochastic structure of
the time series provided by the copula autoregressive
methodology. Usually, forecasting strategies focus on
modeling the mean value of the process; moreover, they
do not emphasize modeling the underlying variability
of the phenomena. furthermore, we also use the
copula autoregressive methodology to generate hourly
synthetic data of solar irradiance, air temperature, and
airspeed for the definition of the a priori DA energy
commitment parameters for the respective distributions

P
(k)
ψ

2.14. COPAR: Copula Auto-regressive
simulation

We use the methodology proposed by [19] to
generate synthetic data of wind speed time series
and the methodology proposed by [20] to generate
synthetic data of solar irradiance and air temperature.
These methodologies exploit the flexibility of vine
copulas for non-linear and asymmetric modeling of
serial and between-series dependence. The fundamental
pieces to build these autoregressive models are the
bivariate copulas, which are distributions on the unit
square [0, 1]2 such that both marginals are uniform
U(0,1). Sklar’s theorem [21] explains that for any given
continuous variables X and Y with joint distribution
FX,Y (x, y) and marginals cumulative distribution
functions (CDF) FX(x) and FY (y) respectively, there
exists a unique copula function CXY (·, ·) that connects
FX,Y (·, ·) to FX(·) and FY (·) via FX,Y (x, y) =
CXY (FX(x), FY (y)).

3. Application and case study

We selected a region in Colombia north of
the equatorial line [Uribia, Guajira, Colombia] in
Latitude (10.76°N) and Longitude (73.00°W) with an
approximate elevation of 47 meters as our case study.
The data set for this place consist of time series from
January 2016 to December 2016. The information was
downloaded from Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2)
data base. For solar irradiance, the data was downloaded
from Goddard Earth Sciences Data and Information
Services Center (GES DISC) product M2T1NXRAD
variable swgnt (surface net downward shortwave flux
[W/m2]). Similarly, for air temperature time series, we
selected data from (GES DISC) product M2I1NXLFO
variable tlml (surface air temperature [K]). Finally ,
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for air speed time series, we selected data from (GES
DISC) product M2T1NXFLX variable speed (surface
air speed [m s−1]).

The virtual power plant configuration consists of
an aggregation of two Distributed energy resources
(DER) and an Energy Storage system (ESS) with a
150MW/194MWh grid-connected battery. The first
DER consists of an hypothetical solar farm with an
installed capacity of 28.03 MW (76.800 panels with
a nominal power of 365 W) whose characteristics are
shown in Table 1.

Array parameters Value
Number of panels 76,800

Panel type Flat plate
Dimensions [L×W] 1.7 m × 1.016 m

Nominal (Maximum) Power 365 W
Reference Cell Temperature 25◦C

Reference efficiency 21.1%
Array surface irradiation NOCT 800 W/m2

Temperature coefficient 0.003/◦C
Ambient Temperature NOCT , 20◦C

Cell Temperature NOCT , 44◦C

Table 1: Photo-voltaic farm characteristics.

The energy generation of a PV array is dependent
on the solar irradiance and the panel efficiency η. This
efficiency is a function of the irradiance but also of the
cell or cell-array temperature and characteristics of the
panel technology.

With the equation 3, the panel efficiency is
determined using the cell reference efficiency (at
Standard Test Conditions, STC, ηr), STC ambient
temperature (Tr) and Nominal Operating Cell
Temperature, NOCT, measurements as irradiance
(Iarray,NOCT ), air temperature (Ta,NOCT ) and cell
temperature (Tc,NOCT ).

η = ηr[(1− 0.9)β
Iarray

Iarray,NOCT

(Tc,NOCT − Ta,NOCT )− β(Ta − Tr)] (6)

The electrical energy output Qe of the array is
given by the equation 7. In addition to irradiance and
efficiency, we include the number of panels in the solar
arrayNpanels, the total surface area of a panelA and the
exposition time (∆t = 1 hour):

Qe = NpanelsηAIarray∆t [Wh] (7)

Using this methodology, it is possible to directly
generate hourly electricity output data from GHI and
air temperature synthetic series. The second DER also

consist of an hypothetical wind farm with an installed
capacity of 30.00 MW (10 panels with a nominal power
of 2.35 MW - 3.00 MM) whose characteristics are
detailed in Table 2. The energy generation of the wind

Wind turbine characteristic Value
Nominal power 2.3 MW / 3.0 MW

Wind class (IEC) IEC IIA
Cut in wind speed 2.5 m/s

Cut out wind speed 25-27 m/s
normal operation Temperature -10 °C to +40 °C

Grid feed / control system ENERCON inverter
Hub height (IEC IIA) 59m / 69m

Rotor Diameter 82m

Table 2: Wind farm characteristics.

farm depends on an specific power curve for the wind
turbine selected and the wind speed information. We
used the precise information of the power curve [22] to
directly generate hourly electricity output data.

4. Results

We analyze the performance of the agents and
the main results found after applying the proposed
methodology. First, we analyze the convergence
measures of the RT MDP agent as well as the DA MDP
agent. Figure 3 shows the reward for each one of the
4,000 episodes of the run assessed. The DA MDP
agent reached convergence following the convergence
measurements presented in Algorithm 1. Due to the
restrictions in computing power, we selected 4,000
episodes to be a satisfactory run to pre-train the RT
agent.
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Figure 3: RT MDP Agent sum of rewards per one year
episode alongside the agent pre-train run

Figure 4 presents the hourly energy price for the
case study. The first semester of the year presented
one of the most drastic droughts in the history of
Colombia. This weather phenomenon caused a dramatic
increase in prices towards the first quarter of the year
due to the lack of energy production capacity from the
hydro-electric plants in the country. Prices eventually
normalized once the ENSO season finished. We decided
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to select this year (2016) to showcase the capabilities
of the methodology to take advantage of the inherent
variability of the problem.
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Figure 4: Hourly Electricity closing energy price,
Colombia [7]
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Figure 5: Hourly Energy Storage System (ESS) State
of Charge (SOC) (Blue) and Energy market purchase
(Red)(The reader is referred to the online version for the
color palette)
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Figure 6: Aggregated monthly ESS state of charge
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Figure 7: Aggregated monthly RT MDP Market
Purchase

Figure 5, 6 and 7 shows the hourly state of charge
(SOC) and respective energy market purchases with
our proposed methodology. The SOC of the ESS is
directly affected by the reduction in energy purchase
by the VPP due to the increment in market energy

prices experienced in the first quarter of the year as
explained before. This price increment creates an
opportunity for the agent to takes advantage of the
volatility in the market prices to empty its reservoirs
and increase its DA energy commitment (Figure 8).
Moreover, towards the end of the first semester and
during the rest of the year the SOC is capable of
responding to the day ahead requirements. In addition,
the seasonality trend in Figures 5, 6 and 7 is reflected
in the hourly SOC (Figure 5) as well as the energy
market purchase in the later months of the first and
second semester of the year. This seasonality is mainly
generated by the fluctuations in energy production;
moreover, this behavior is also affected heavily by the
price increments that occur in the first days of every
month as shown in Figure 4. Figures 8 and 9 present the
hourly parameters (mean and variance) of the DA energy
commitment load distributions. Overall, we can see
how the agent is adapting to the changing environment
without extensive knowledge of the dynamics of the
components in the VPP or the mechanics of energy
market pricing formation. Figure 11 presents the hourly
reward for the proposed methodology. This reward
is consistent with the environment state and agent
dynamics. The total reward of this exercise for the year
2016 is USD$ 18.5MM. Furthermore, when we analyze
both the decisions of the RT MDP agent and the DA
MDP agent, both agents make preventive decisions to
account for the high variability of the process. This
creates a robust DA energy commitment strategy even
under extreme conditions that significantly affect the
price dynamics of the system.
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Figure 8: Aggregated monthly day ahead mean from
load distribution ψi
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Figure 9: Aggregated monthly day ahead variance from
load distribution ψi
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Figure 10: Renewable energy hourly production:
Wind farm energy production (red) Solar farm energy
production (blue) (The reader is referred to the online
version for the color palette)
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Figure 11: Hourly virtual power plant (VPP) Reward

For the sake of comparing and benchmarking the
results presented here, we generate a hypothetical agent
(naive agent) for the day ahead energy commitment
control problem. This hypothetical agent will use
the simulations of weather variables to estimate the
renewable energy production for the next day as a proxy
for the day ahead energy commitment load. This day
ahead actions would be supported by real-time actions
regarding when and how much energy to purchase from
the market. Using the same VPP environment and in
order to make this agent realistic, we coded the agent
to buy 30% of the installed energy storage capacity
whenever the energy price is below a certain threshold.
This threshold is estimated as a percentile of the historic
energy price. Whenever the price is below the median of
the historic price the agent will purchase a specific load
to the energy market. Although the decision of this agent
is not sophisticated, we want to compare a deterministic
approach with a threshold policy with the proposed
methodology. Figure 12 presents the hourly reward
comparison between the two agents. This comparison
reflects on how the naive agent takes advantage of the
price increment for the first quarter. However, in a
more normal scenario (second semester) the naive agent
could not adapt to the changing environment and gets
penalized by this.

5. Discussion and Conclusions

We apply (i) An implementable method for
peer-to-peer resource sharing that generates optimal day
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Figure 12: Hourly virtual power plant (VPP) Reward
comparison. Proposed methodology (red) and Naive
agent (blue) (The reader is referred to the online version
for the color palette)

ahead scheduling policies (ii) A Deep reinforcement
learning methodology using the temporal difference
method expected SARSA with experience replay for
day ahead action validation in real-time. This is
assessed integrating two hierarchical Markov decision
process using the constrained cross entropy approach
(iii) a multivariate copula autoregressive algorithm
for simulating solar irradiance, air temperature, and
wind speed to solve the optimal control problem
on a theoretical day-ahead unit commitment virtual
power plant (VPP) environment. The results can
provide a better understanding of the VPP day ahead
optimal control problem. The copula autoregressive
methodology allowed us to generate insightful a priori
distribution for the DA agent and simulate valuable
information of the weather phenomena underlying
stochastic process for the RT agent training. The three
main advantages of the applied methodology are: (i) The
reinforcement learning algorithm is flexible and capable
to adapt to ever changing environments with limited
previous knowledge of the system and taking advantage
of the variability of the phenomena. (ii) The trained
agents are able to contribute to the integration of agents
in a smart grid. (iii) The use of simulation strategies
that focus on understanding the underlying stochastic
nature of weather variables rather than just modeling the
mean of the process brings insightful information to the
decisions makers e.g., the system operator (SO) in the
virtual power plant environment.

In our case, the use of an ESS in combination
with VRES magnified the benefits of using renewable
sources in the hypothetical VPP environment designed.
Moreover, the estimation of optimal day-ahead energy
commitment distributions could help the system
operators to better understand the requirements of the
network and work with a better understanding of the
underlying stochastic nature of the optimal control
problem. In addition, countries that seek to diversify the
electricity generation portfolio, such as Colombia, could
use the bast amount of natural resources to generate
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a more reliable and robust network that is not so
dependent on one particular energy source as well as
support the decarbonization of the electricity system.
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