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Abstract 

 
As per the U.S Energy Information 

Administration’s latest inventory of electricity 

generators, renewable energy, most notably solar and 

wind, will account for roughly 70% of nearly 40 

gigawatts of new electricity generating capacity to 

start commercial operation in 2021. The year 2021 

will also set a record in the deployment of utility-scale 

solar capacity by adding 15.4 gigawatts of capacity to 

the grid, which surpasses the 12 gigawatts increase in 

2020.  The rapid increase of renewable energy is 

expected to significantly decrease emissions of 

greenhouse gases and change the load profile in the 

power grid by suppressing production from 

conventional generators.  This paper aims to propose 

a framework to study the impact of utility-scale solar 

PV deployment on the generation resource allocation 

and investigate the economics and policy of electricity 

generation and carbon emissions. The investigation is 

carried on the generation resource pool of the 

southeast region of the U.S augmented by a substantial 

amount of utility-scale solar generation. 

1. Introduction  

Over the past decade the deployment of renewable 

energy especially solar and wind has dominated the 

addition of new generation capacity in the United 

States [1]. Even though the renewable energy appears 

to be the most popular new addition to the existing 

energy mix across many states in the U.S, the 

intermittent nature of such generation adds a new layer 

of complexity to the operation and planning of the 

power grid.  One example of such a complexity is the 

concept of system net load. Traditionally the system 

load profile has been extensively used for power 

system management applications. However, the 

accelerating expansion of the renewables has rendered 

system load profile less informative and thus 

inadequate for most operation and planning 

applications. Instead, system net load, which is 

defined as the demand that must be met by 

dispatchable (non-intermittent) sources has gained 

popularity. An interesting recent work to estimate the 

system net load is presented in [2].  

 

 

 

 

The system net load exhibits much faster changes 

than the traditional load profile when viewed in sub-

hourly time scales. The changes are more pronounced 

when viewed at a very high temporal resolution. This 

is due to the fact that the output of the renewables like 

solar and wind is intermittent and thus imposing a 

variable generation pattern on the system. This has an 

important consequence on the resource allocation of 

the dispatchable sources; the output of which needs to 

be regulated at much shorter timescales to meet the 

rapid changes in the system net load. Responding to 

such rapid changes may even incentivize the 

utilization of generation ramping rates beyond 

traditional elastic limits [3].  To meet the changes in 

the system net load, the system operator can re-

dispatch fast response units like gas turbines while 

maximizing the use of cheap base load units like 

nuclear and coal.  An example of such an economic 

dispatch model while considering ramping rates in the 

fuel cost function is given in [4].  

While adding renewable generation to the resource 

pool will significantly affect the total generation cost, 

as has been reported in previous works [5],  it also 

offers opportunities for utilities to lower their carbon 

footprint. This directly translates into monetary 

savings that could be achieved in the presence of 

policies that control carbon pricing such as carbon tax. 

However, the frequent ramping up or down of the 

dispatchable thermal power plants to meet the system 

net load may also lead to increased emissions, thus 

exposing electric utility to additional losses due to 

carbon emissions. Some early work that investigates 

the impact of gas turbine ramping on the carbon 

emissions is presented in [6], [7]. These studies utilize 

wind or solar photovoltaic at one-minute and five-

minute resolutions respectively and heat data from 

natural gas generators to assess the impact on the 

emission reduction. Both studies have found evidence 

for overall reduction of carbon emissions due to the 

addition of solar generation. The previous work on this 

topic does not consider the marginal cost of carbon and 

the changes in the total generation cost with different 
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penetration levels of utility-scale renewable energy 

deployment.  

The decision whether or not to invest in renewable 

energy to offset the cost incurred due the increased 

emissions is a techno-economic one and should be 

addressed by considering various technical and 

economic aspects of the power system operation and 

planning. In this work, we aim to investigate the 

impact of the utility scale solar energy deployment on 

the total generation costs and the emissions profile, 

and to propose a framework for assessment of 

profitability of investing in intermittent renewable 

energy, especially utility-scale solar generation to 

meet carbon footprint targets.    

 

2. Problem Statement 

The objectives of this study are a) to study the impact 

of geographically dispersed utility-scale solar 

generation on the resource allocation and b) to 

investigate the changes in the carbon footprint of the 

existing resource pool by adding solar generation to 

the mix. We propose to address the economics-related 

part of the problem by observing the changes incurred 

on the marginal cost of carbon as the penetration of the 

solar generation in the energy mix changes. The 

emissions are estimated based on the generation 

profile of the non-renewable sources. This is 

accomplished by running optimal dispatch on the coal 

fired plants and gas turbines while considering the 

ramping costs in the optimization process. The optimal 

dispatch is run to meet the system net demand which 

is obtained by subtracting the net solar generation 

output of the geographically dispersed utility-scale 

plants from the actual system load. To obtain the 

system net demand we propose the use of Markov 

Chain Monte Carlo (MCMC) simulations since the 

output of a photovoltaic system has been consistent 

with Markovian dependence [12].  

 

3. Markov Chain Solar Modeling 

The output of a solar photovoltaic system appears to 

be more stable when viewed in hourly intervals. 

However, due to the transient cloudy conditions and 

random weather disturbances, the generation output of 

a typical photovoltaic system usually suffers rapid 

variations. To estimate the impact of adding solar 

energy to the existing generation pool, it is thus crucial 

that the intermittency of the incident radiation, when 

viewed in sub-hourly time scales, be appropriately 

accounted for. Since the availability of high-resolution 

solar data that adequately captures the sub-hourly 

variations in the solar insolation incident on the solar 

panel, it becomes imperative to use stochastic 

techniques to synthesize data with a very high 

temporal resolution.  In this study we utilize the hourly 

averaged Typical Meteorological Data (TMY3) [8] to 

generate the high resolution minute-by-minute solar 

irradiance profile. The Markov weather model used to 

generate changes in the solar insolation with a 

temporal resolution of one minute from the given 

averaged hourly values is described in Figure 1. The 

model is initialized by calculating the average hourly 

clearness index 𝑘𝑡. The clearness index   𝑘𝑡 is defined 

as the ratio of measured irradiance 𝐸𝑚 at earth’s 

surface and the irradiance that corresponds to 

cloudless conditions at the same location. This is 

referred to as clear sky irradiance𝐸𝑐𝑙𝑒𝑎𝑟 :  

𝑘𝑡 =
𝐸𝑚

𝐸𝑐𝑙𝑒𝑎𝑟

(1) 

The accurate estimation of the clear sky irradiance 

𝐸𝑐𝑙𝑒𝑎𝑟  is very important and has a significant influence 

on the clearness index. The clear sky irradiance is 

estimated based on the procedure given in [9]. The 

model works by using the hourly 𝑘𝑡 values as input 

and the sub-hourly transitions of the clearness index 

are determined by utilizing the transition probabilities 

which are extracted from the clearness index, although 

at a higher temporal resolution as opposed to the 

hourly 𝑘𝑡 values. This information is passed on to a 

first order Markov process which estimates the next 

state of the clearness index (sub-hourly) based on the 

current state (hourly). Assuming that the clearness 

index can assume a total of 𝑛 states, the transition 

probability of the first order Markov process can be 

described by the following equation 

 
𝑃(𝑘𝑡(𝑛 + 1) = 𝑗|𝑘𝑡(𝑛) = 𝑖) = 𝑝𝑖𝑗 (2) 

 

These transition probabilities are determined based on 

changes in the 𝑘𝑡 values that are generated at a higher 

temporal resolution which is the same as the desired 

resolution of the model output. The transition 

probabilities thus calculated are grouped together in a 

transition probability matrix, an 𝑛 by 𝑛 matrix with 𝑛 

representing the total number of states, of the form 

 

𝑃 = [

𝑝11 ⋯ 𝑝1𝑛

⋮ ⋱ ⋮
𝑝𝑛1 ⋯ 𝑝𝑛𝑛

] (3) 

 

 The transition probability matrix in (3) is a stochastic 

matrix since the cumulative probabilities of each row 

sum to one.  

∑ 𝑝𝑖𝑗 = 1

𝑛

𝑗=1

; 𝑖 = 1,2 … , 𝑛 (4) 

Page 3428



 

 

The final step of the model is executed by running a 

Monte Carlo simulation of the Markov process. This 

is accomplished by sampling a uniform random 

number 𝑢~𝑈𝑛𝑖𝑓(0,1)  in the open interval (0,1) and 

comparing with the cumulative probability of each 

row in the transition probability matrix. For instance, 

if the current state of the clearness index is 𝑖, the 

cumulative probability of state 𝑖 can be determined by 

summing the transition probabilities of the 𝑖𝑡ℎ row in 

the transition probability matrix. If 𝑗 and 𝑚 are two 

consecutive states and 𝑘𝑡(𝑛) = 𝑖, the clearness index 

at the next time step   𝑘𝑡(𝑛 + 1) = 𝑚 if  

 
𝐹𝑖𝑗 < 𝑢 ≤ 𝐹𝑖𝑚 (5) 

In (5), 𝐹𝑖𝑚 is the cumulative probability of state 𝑖 and 

is given by  

𝐹𝑖𝑚 = ∑ 𝑝𝑖𝑘

𝑚

𝑘=1

(6) 

An example of the transition probability matrix 

extracted from the sub-hourly clearness index values 

is shown in Figure 2. The sub-hourly clearness index 

values are calculated based on the measured global 

irradiance and the estimated clear sky irradiance of the 

Milford area in Utah. The raw data used to extract the 

transition probabilities has a temporal resolution of 

one minute and was retrieved from the NREL solar 

database [8]. The diagonal dominance of the transition 

probability matrix is evident with some outliers that 

indicate rapid changes in the clearness index. The 

vertical axis represents the current state of the 

clearness index and the horizontal axis is the next state. 

The clearness index takes values in the interval [0,1]. 

The colored boxes in Figure 2 represent the 

corresponding transition probabilities which are color 

coded and can read off the color bar. From Figure 2 it 

can be inferred that the highest transition probabilities 

correspond to clear sky index to stay the same or 

change very slightly. The same is true for a cloudy day 

with 𝑘𝑡 = 0 thus giving the transition matrix a 

diagonal structure overall where the largest 

probabilities occur on the diagonal.   

The transition probability matrices thus obtained 

are used as an input to initiate the Markov Chain 

Monte Carlo simulations. The MCMC simulation 

algorithm combines the transition probabilities 

generated at sub-hourly time scales with the hourly 

average TMY3 meteorological weather data to 

generate high resolution irradiance profiles. We use 

the hourly averaged TMY3 weather data of the seven 

representative sites in the south east region of the 

United States. The PV systems at each of the 

representative sites are oriented at an azimuth of 180o 

Estimated Clear Sky 

Hourly Irradiance in 

W/m2

Measured Minute-

by-Minute 

Irradiance in W/m2

Estimated Minute-

by-Minute 

Irradiance in W/m2

÷ 

÷ 
Minute-by-Minute  

Clearness Index, Kt

TPM extracted from 

Minute-by-Minute 

Clearness Index

Hourly Clearness 

Index, Kt

First Order Markov 

Process

Measured Averaged 

Hourly Irradiance in 

W/m2

Minute-by-Minute 

Synthesized 

Irradiance in W/m2

Figure 1 Markov Weather Model 

Figure 2 Representation of TPM indicating changes 
in kt 
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(south-facing) with a panel tilt of 30o.  The capacity of  

the each  solar farm is chosen to be proportional to the 

population of each site in 2019.  

The solar output of each representative site show 

significant variability and it is expected when the 

generation outputs are averaged over a number of solar 

farms that are dispersed geographically, the variability 

in the production will decrease. The reduced 

variability in the aggregated output however will 

depend on the measure of similarity in the production 

patterns which in turn depends on the spatial spread of 

the cluster. For the seven representative sites shown in 

Figure 3 the aggregated output on the same day is 

shown in Figure 4. The red curve represents the 

aggregated output for clear sky conditions while the 

blue curve is the aggregated generation output that 

accounts for the cloud movement. Figure 4 shows a 

significantly smaller variation in the generation output 

as compared to any of individual solar farms in Figure 

3 on a transient cloudy day.  

 
4. Framework for Optimal Dispatch 

The synthesis of the solar irradiance with high 

temporal resolution is essential for estimating the 

output of the solar generation plant. The solar output 

in turn is used to estimate the system net load. The 

dispatchable resources, such as coal and gas plants are 

then considered in the optimization of generation 

allocation to meet the system net load. In this work, 

we use the fuel cost model presented in [4]. This model 

accounts for the ramping of fast dispatchable units like 

gas turbines by adding a ramping cost term to the 

conventional quadratic cost function. The cost 

functions for coal and gas generators used in the 

optimization process are 

 

𝐶𝑖,𝑐𝑜𝑎𝑙 = 𝛼 + 𝛽𝑃𝑔𝑖 + 𝛾𝑃𝑔𝑖
2 (7) 

Figure 4 Combined output of seven 

representative sites in SE region 

Figure 3 Generation output of seven sites in the SE region. Red curves represent clear sky conditions and 

the blue curves show the impact of transient clouds. 
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𝐶𝑗,𝑔𝑎𝑠 = 𝛼 + 𝛽𝑃𝑔𝑗 + 𝛾𝑃𝑔𝑗 + 𝑑
𝑑𝑃𝑔𝑗

𝑑𝑡
(8) 

 

Since coal fired plants do not possess a fast-ramping 

capability, the ramp rate constraint is not considered 

for the coal generators. The gas generators on the other 

hand due to their fast-ramping capability are allowed 

to follow the load. The coefficients in the fuel cost 

model are computed by using the method of least 

squares applied to the real data. The coefficient of the 

ramp rate constraint 𝑑 is identified separately 

depending on whether the output is decreasing or 

increasing.  Table I lists the values of the cost 

coefficients as reported in [10].  

Due to the variable output of the solar generation, the 

system net load experiences fast changes which need 

to be compensated to satisfy the system demand at 

each time instant. While this compensation is achieved 

by regulating the output of the gas turbines, the 

formulation of the cost function levies a heavy penalty 

for an increasing ramp rate when compared with a 

decreasing ramp rate.  

 
Table I Coefficients of Fuel Cost Model [10] 

Coefficient Coal Gas 

𝛼 3.1626 11.908 

𝛽 0.19499 0.0684 

𝛾 0.000023 0.000082 

𝑑 - 0.03 ; 
𝑑𝑃𝑔𝑖

𝑑𝑡
> 0 

 

0.018;  
𝑑𝑃𝑔𝑖

𝑑𝑡
< 0 

 

The base load data with zero percent photovoltaic is 

obtained from EIA grid monitor website [11]. To 

better appreciate the energy consumption of the 

southeast region in 2019, the load duration curve 

(LDC) is shown in Figure 5.  The base LDC curve is 

derived from the actual net generation and demand of 

the southeast region which in the year 2019 stood at 

252,490 GWh and 243,140 GWh respectively and 

peak load of approximately 46 GW. Figure 5 also plots 

the LDC curves corresponding to different penetration 

level of the utility scale solar generation. The addition 

of the increasing solar generation to the existing 

resource portfolio decreases the system effective load 

as in Figure 5. 

The economic dispatch problem to meet the system net 

load for different penetrations of solar generation is 

formulated as  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝐶𝑖(𝑃𝑔𝑖) + ∑ ∑ 𝐶𝑗(𝑃𝑔𝑗)

𝑀

𝑗=1

Κ

𝑘=1

𝑁

𝑖=1

Κ

𝑘=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑃𝑔𝑖 + ∑ 𝑃𝑔𝑗

𝑀

𝑗=1

− 𝑃𝐷 = 0

𝑁

𝑖=1

(9) 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 

𝑃𝑔𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑗 ≤ 𝑃𝑔𝑗

𝑚𝑎𝑥 

In (9), 𝑃𝐷 refers to the system net load and 

approximate losses,  𝑁 is the total number of coal 

generators, 𝑃𝑔𝑖  is the output of 𝑖𝑡ℎ coal generator, 𝑀 is 

the number of gas generators, 𝑃𝑔𝑗  is output of the 𝑗𝑡ℎ 

gas generator and 𝑘 is the optimization period.  Since 

losses are non-essential to this study we choose to 

consider them constant. This simplification does not 

necessarily affect the conclusions of this study, but 

should be addressed in practice as it is impacted by 

locations of plants and loads as well as by network 

topology.  We define the augmented cost function in 

(10). The optimal solution of the constrained problem 

can be found from the Kuhn Tucker conditions. The 

search for the optimal solution continues until an 

acceptable tolerance is met.  

 

𝐶𝑇̃ = ∑ [∑ 𝐶𝑖(𝑃𝑔𝑖) + ∑ 𝐶𝑗(𝑃𝑔𝑗)

𝑀

𝑗=1

 
𝑁

𝑖=1
]

Κ

𝑘=1

−

𝜆 [∑ 𝑃𝑔𝑖 + ∑ 𝑃𝑔𝑗

𝑀

𝑗=1

− 𝑃𝐷

𝑁

𝑖=1

] (10)

 

Figure 5 Load Duration Curves for base load and 
with PV 

Page 3431



 

 

 

5.  Case Study 
 

To assess the impact of utility-scale solar deployment 

on the generation costs and emissions the study 

assumes that solar plants are installed across the 

southeast region of the U.S. The study uses the energy 

mix of the southeast region as an input for running the 

economic dispatch. Table II lists the energy mix of the 

SE region as reported by EIA for the year 2019. The 

data used pertains to the fuel type, percentage of the 

mix and operating costs of generation specific to fuel 

type in $/MWh. The study uses the unsubsidized 

average levelized cost of energy of the solar 

generation [1]. 

 

Table II Energy Mix of SE Region, 2019 [11] 

Type Gen  

(TWh) 

Fuel % Mix $/MWh 

Base 47.719 Nuclear 18.89 10.63 

Inter-

mediate 

57.225 Coal 22.64 21.17 

 12.982 Hydro 5.14 6.86 

Peak 129.54 Gas 51.03 22.57 

  PV - 31-42 

  

The sites chosen for the installation of the solar plants 

are given in [12]. It is assumed that all solar plants are 

geographically dispersed across the SE region. The 

solar generation is simulated in capacities ranging 

from 5% to 30% of the annual peak demand. This 

translates to a total solar capacity of 2.25 GW 

corresponding to 5% penetration and 13.5 GW for 

30% penetration. The individual PV modules are 

oriented at an azimuth of 180 degrees (south facing) 

and tilt angle of 30 degrees. To simulate the solar 

generation the study collects the hourly TMY3 solar 

insolation data of the representative sites and estimates 

the hourly clearness index values. The National Solar 

Radiation Database [8]  contain high resolution data 

for the state of Georgia and Alabama. Hence the study 

uses the high resolution data from seven test sites from 

2010-2012 [12]. The transition probability matrix 

from the Milford area in Utah is chosen to synthesize 

the high resolution clearness index for the 

representative sites across the SE region since the 

annual output of Utah most closely resembles that of  
Georgia. The solar output in minute intervals is 

estimated using PV_LIB [13]. The study assumes 

Canadian Solar CS5P-220M solar modules and 

Siemens SINVERT PVS 1401 UL inverters. 

The study utilizes annual simulations of the net 

generation as well as generation by source and net 

system demand of the SE region for the year 2019.  

The results of the generation allocation when the 

flexible sources like gas generation are dispatched to 

meet the net load are shown in Figure 6, Figure 7 and 

Figure 8. The generation profiles shown represent the 

day with some transient cloud activity that 

corresponds to the aggregate generation output shown 

Figure 6 Generation Profile with 10% Utility-
Scale Solar 

Figure 7 Generation Profile with 20% Utility-
Scale Solar 

Figure 8 Generation Profile with 30% Utility-
Scale Solar 
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in Figure 4. Since nuclear is the base unit with little or 

no impact on the emissions results of resource 

allocation are shown only for coal, gas and solar 

generation. When the generation pool is assumed to 

consist of solar energy the output of the gas turbine 

exhibits ramping characteristics and the magnitude of 

the ramping increases with the increase in the 

penetration of solar generation. The results shown in 

Figures 6, 7, 8 do not consider ramping constraints on 

coal since load following by coal is very expensive and 

large units may undergo significant damage due to fast 

ramping. The gas turbine is used to follow the load and 

is assumed to have fast ramping capability. The gas 

output increases when the solar production drops to 

make up for the deficit. Similarly, when the solar 

generation increases the gas output ramps down to 

balance the load. The frequent ramping up and down 

of the more expensive gas along with the cost of solar 

generation has the impact of increasing the total cost 

of generation. As the share of solar continues to grow, 

at one point solar will start pushing nuclear out. At that 

point, the system will need more coal and gas to 

balance solar and the total CO2 emissions would start 

rising. Such “renewable paradox” (i.e. increasing 

emissions as more RE is added to the system) is 

already noticed in Ukraine where nuclear accounts for 

about 50% of power generation.  

The annual cost of generation of coal, gas and PV 

when no constraints are applied to the coal output is 

shown in Figure 9. The cost of generation increases 

with penetration level since utility-scale photovoltaic 

is still the most expensive source of generation as 

compared to coal and gas. However, since the ramping 

constraints on coal are ignored and given that coal is 

least expensive, the presence of additional solar 

generation leads to an overall decrease in the more 

expensive gas generation in order to balance the load. 

Overall, the cost of generation increases with the 

addition of solar to the mix.  

Figure 10 shows the annual generation costs when 

the output of coal is constrained and the amount of coal 

retired is set equal to the peak solar generation at each 

penetration level[14] . The generation costs in this case 

are observed to increase at a faster rate than in the case 

in which no ramping constraints were applied to the 

coal generation. Since coal is progressively retired the 

amount of gas generation required to support the solar 

increases at each penetration level. The overall 

generation costs do not exhibit an exorbitant rise as has 

been reported earlier. This can be attributed to the 

significant decline in the generation costs of the 

utility-scale solar plants. As a result, the relevance of 

the solar generation costs to act as a deterrent to the 

wide-spread adoption of solar generation is rapidly 

wearing down. What is concerning, however, is the 

economic impact of frequent ramping up and/or down 

of the gas turbines to compensate for the variability of 

the solar generation. 

To make up for the rapid changes in the solar 

output the gas spinning reserve is set equal to the 

maximum change in the solar generation for a given 

day. The spinning reserve is thus scheduled at every 

minute to offset the changes in the solar output. This 

however results in increased emissions and increased 

ramping costs of the gas turbine. The relative ramping 

costs of gas at different penetration levels of solar can 

be visualized in the form of the bar graph in Figure 11. 

Although the cost of gas ramping is small as compared 

to the total operating cost of fuel, it increases with 

additional solar deployment. This is expected since 

higher capacity solar will result in higher changes in 

the system load. 

Figure 10 Annual Generation Costs with Coal 
Retirement 

Figure 9 Annual Generation Cost without Coal 

Retirement 
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𝑆𝑅 = max {
Δ𝑃𝑔

𝑃𝑉

Δ𝑡
} (11) 

From the emissions perspective, the deployment of 

additional solar capacity reduces the amount of 

pollutants and greenhouse gases by reducing the 

dependency on fossil-fuels. To estimate the amount of 

carbon emitted in the form of carbon dioxide in metric 

tons this study used the emission data as reported by 

EIA [15]. The amount of emission is estimated based 

on the emission coefficients of each fuel type. Figures 

12 and 13 show the amount of carbon emitted in metric 

tons for one day with and without coal retirement. 

When the ramping constraint on coal is ignored the 

carbon footprint of the gas generation decreases with 

the increase in peak solar capacity (Figure 12). On the 

other hand, when coal is retired, as additional solar 

capacity is added to the system, the generation and 

carbon emissions of gas-fired plants increase with the 

increasing solar capacity (Figure 13). 

To estimate the costs related with the carbon emissions 

and also to investigate the impact of the carbon tax 

policies we estimate the emission costs for a range of 

carbon tax values in interval [1 100]$/MT. The 

resulting range of emission costs as a function of solar 

penetration are shown in Figure 14 and Figure 15. The 

minimum value in the box plots of Figure 14 and 

Figure 15 for each penetration level corresponds to the 

carbon tax of $1/MT and the maximum value 

corresponds to the carbon tax of $100/MT. When the 

output of coal fired plants is held constant as the 

penetration of solar is progressively increased, the 

range of cost emissions narrows as the solar 

penetration increases. However, the constriction of the 

range of cost emissions is much more pronounced 

when the coal is progressively retired as opposed to 

not retiring coat at all.  This is mainly because the 

emission coefficient of coal-fired generation is  2.21 

pounds per kWh from coal which compares to 0.91 

pounds per kWh from gas-fired power generation [1]. 

Figure 11 Annual Ramping Costs of Gas Turbines 

Figure 12 Carbon Emitted in MT/year without Coal 

Retirement 

Figure 13 Carbon Emitted in MT/year with Coal 
Retirement 

Figure 14 Range of Cost Emissions ($/yr) 
without Coal Retirement 
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With subsequent retirement of coal (Figure 15) the cost 

of carbon emissions incurred to the utility decreases by 

more than 50% as the solar penetration level increases 

from 0% to 30% of the annual peak demand. 

An interesting aspect of this study is the 

investigation of the impact that frequent ramping of 

gas turbines can have on the benefit in terms of carbon 

emissions that is expected from the deployment of 

solar generation. To address this the study calculates 

the annualized marginal benefit of carbon abatement 

which is defined as the ratio of  change in the annual 

cost of carbon emissions and  corresponding change in 

the annual generation costs as a function of carbon tax 

rates and solar penetration. The addition of renewable 

generation to the existing generation pool is predicated 

on the assumption of lowering the carbon emissions 

and hence the costs associated with the emissions. 

However, since solar generation is more expensive 

than coal and/or gas, the addition of solar to the mix 

increases the overall generation cost. Moreover, at 

higher penetrations of solar generation, the frequent 

ramping up and down of gas turbines further 

diminishes the savings in terms of cost emissions. The 

marginal benefit curve when plotted as a function of 

carbon tax rates and solar penetration can be used to 

investigate the profitability of adding solar generation 

to the mix. The marginal benefit as a function of 

carbon tax rate and solar generation without and with 

coal retirement is shown in Figure 16 and Figure 17 

respectively. 
From Figure 16 and Figure 17 we conclude that for 

a fixed carbon tax rate the marginal benefit decreases 

with increase in solar generation. Moreover, the 

decrease is more rapid at higher carbon tax rates than 

at lower carbon tax rates. This is because increasing 

the solar generation also increases the frequency and 

the magnitude of the gas turbine ramping which results 

in increased carbon emissions thereby rapidly 

curtailing the benefits of adding solar to the mix. 

Furthermore, when viewed as a function of carbon tax 

alone, the marginal benefit decreases with the increase 

in carbon tax rate up to a certain point and then begins 

to increase as the carbon tax is further increased. When 

coal retirement is not considered this inflection point 

where the curvature changes sign corresponds to a 

carbon tax rate of $31/MT which coincides with the 

levelized cost of solar generation. Also, the inflection 

point is the same for all levels of installed solar 

capacity in the scenario where coal generation is not 

retired. However, when coal retirement is considered 

as shown in Figure 17, the inflection point corresponds 

to different carbon tax rates for different solar capacity 

levels; progressively increasing as the solar capacity 

increases. This seems to suggest that a fixed carbon tax 

will result in a decreasing or at best a constant 

Figure 15 Range of Cost Emissions ($/yr) with 
Coal Retirement 

Figure 16 Marginal Benefit of Carbon abatement 
without Coal Retirement when seen as a function of 

Carbon Tax Rate and PV Penetration 

Figure 17 Marginal Benefit of Carbon abatement 
with Coal Retirement when seen as a function of 

Carbon Tax Rate and PV Penetration 
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marginal benefit with increasing penetration of solar 

generation. On the other hand, a variable carbon tax 

rate, one that changes with the change in the installed 

solar capacity can result in a marginal benefit that 

increases as the installed solar capacity increases. 

6. Conclusions 

 
The purpose of the study is to investigate various 

technical and economic challenges associated with a 

widespread adoption of intermittent renewable energy. 

The increasing intermittent generation has a 

significant impact on the allocation as well as the 

carbon footprint of conventional resources. For 

example, it is shown that a higher penetration of solar 

generation significantly increases the cycling of the 

gas turbines and the magnitude of cycling is more 

pronounced with the subsequent retirement of coal 

fired plants. The frequent cycling of the gas turbines 

could lead to an increased wear and tear of the 

equipment especially the high temperature 

components in a phenomenon referred to as creep-

fatigue interaction [4]. 

From the emissions and economics standpoint the 

addition of solar generation results in an overall net 

reduction in the emission costs but increases the 

amount of gas ramping required to balance the 

variable net load. This further increases the ramping 

costs and carbon emission thereby resulting in an 

exponential decline of marginal benefit of carbon 

abatement derived by adding solar generation to the 

existing generation portfolio.  

The results presented call for a more nuanced and 

a multifaceted approach towards the management of 

intermittent generation, load following and the 

scheduling of spinning reserve. From a utility 

perspective the end goal is to operate the system at the 

optimal economic point that would not impact the 

system reliability while at the same time keeping the 

overall costs low enough not to exceed the cost of 

alternative solutions. From the point of view of policy 

makers and regulators, it is important to recognize that 

targets set for specific technology (e.g. use of solar 

PV) to decarbonize the power sector cannot be applied 

as a “one size fit all” across different power utilities. 

Each power utility, depending on the energy mix of its 

power generation, faces specific task of finding an 

optimal level of penetration of renewable energy 

sources for the given cost of carbon. As the cost of 

carbon (e.g. carbon price or tax) increases, some 

utilities will be able to integrate more renewables in a 

cost-effective manner faster than others. This calls for 

a careful planning and coordination between policy 

makers, regulators, and utilities to ensure that 

consumers pay the least cost for energy transition 

towards a carbon neutral power sector.  
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