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Abstract

We study a multi-period unit commitment problem
under wind energy penetration, in which the load
balance is enforced with a predefined confidence level
across the whole system and over the planning horizon.
Since, except for special cases, chance-constrained
problems are non-convex, we analyze two relaxations of
the load balance based upon robust optimization ideas
and estimated quantiles of the marginal distributions of
the net load processes. The approximation proposals
are benchmarked against the well-known scenario
approximation. Under the scenario approach, we also
analyze a simple decomposition strategy to find a lower
bound of the approximate problem, when the latter
becomes intractable due the size of the set of scenarios.
The reliability of the obtained solutions as well as their
runtimes are examined on three widespread test systems.

1. Introduction

Power systems have gone through high penetration
of wind power sources thanks to their sustainability
and their zero carbon emissions [1]. However, the
high variability of wind speed/power may threaten the
security of power system operations, and as a result,
jeopardize the stability and reliability of the grid [2].
Traditional operation methods developed to address
limited uncertainty in power systems, including load
variations, have failed to consider the uncertainty from
the unprecedented scale of wind generation outputs.
As a result, advanced operation methods are required
to maintain the system security and deal with wind
uncertainty.

Over time, various refinements have been conducted
to improve power system operation methods [3]. Under
a day-ahead market framework, the system operation is
considered as a two-stage problem [4], wherein in the
first stage, a unit commitment (UC) problem is solved
24 hours ahead of market clearance, e.g., [5]. In a
second stage, an economic dispatch problem is solved to

optimize the committed controllable generation outputs
toward minimizing the operating costs over a finite time
frame (typically 24, 48, or 168 hours), e.g. [6].

Stochastic programming has been widely used to
solve UC problems under wind uncertainty. However,
a detailed analytical representation of high-dimensional
random wind speed may make stochastic programs hard
to solve, especially with increasing net load variability
under massive integration of wind generation [7, 8]. In
addition, the implicit assumption of decision makers
being risk-neutral under the stochastic programming
framework might fail to take extreme scenarios into
account, which may jeopardize the power balancing
function of the real-time dispatch, as more capacity
than needed may be committed, or the opposite,
over a multi-period dispatch horizon. It is therefore
necessary to incorporate decision makers’ risk profile in
optimization models.

Robust optimization tackles this issue by seeking
an optimal commitment of the traditional generators
for the worst wind power scenario over a so-called
uncertainty set [8, 9, 10, 11]. An intermediate
approach between risk-neutral stochastic programming
and robust optimization, widely used in power systems,
is chance-constrained programming, wherein a set
of constraints is required to be met with predefined
probability levels [12, 13, 14, 15]. In this vein, [16]
and [17] proposed chance constrained optimal power
flow formulations, under renewable-based uncertainty.
Multiple chance-constrained UC formulations were
developed in [13, 12, 18, 19, 20] to account for variable
load [13], high penetration of wind [12, 18, 20, 21, 22],
generator outages [19] and risk measures [18]. However,
chance-constrained problems are usually non-convex
[23], and as such may be challenging to solve. This has
paved the way for data-driven schemes, as investigated
in [24, 25, 26].

In the same perspective, various quantile-based
methods have been studied to approximate
chance-constrained UC problems. In [27], a
quantile-based technique is used to deal with
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the stochastic distribution of wind generation.
A quantile-based iterative algorithm for
chance-constrained UC problems recognizing correlated
multivariate normal hourly loads was used in [13].
Another quantile approach based on the popular sample
average approximation was presented in [12]. [28]
used jackknife quantile estimators of the net load
marginal distributions to relax the joint load balance
chance-constraint.

In this paper, we study a UC problem for power
systems with wind integration over a multi-period
planning horizon, wherein the overall load balance is
enforced with a predefined confidence level. To pass
the numerical challenge induced by the non-convexity
of the joint load balance chance constraint, we study two
data-driven relaxation approaches based on (i) a robust-,
and (ii) a quantile-based approximations of the marginal
net load distributions. Our proposals are inspired by
the works [29] and [13]. However, our work goes one
step further, as (i) in contrast to [29], we use an iterative
scheme to restore the reliability of the system as a whole,
destroyed by relaxing the joint chance constraint to their
individual counterparts; (ii) unlike [13], our proposal is
data-driven, and as a result distribution free; and (iii)
both proposals are benchmarked against the standard
scenario-based approximation. In addition, as the
scenario approximation approach is limited to modest
size problems due to the so-called knapsack constraints,
we study a simple decomposition scheme to find a
lower bound of the approximate problem. Numerical
case studies of three test systems with different
sizes are conducted to illustrate the effectiveness and
implementation of the two relaxation approaches, as
well as the scenario decomposition.

In the following, a comprehensive multi-period
chance-constrained UC problem with wind uncertainty
is presented in Section 2. The relaxation schemes
alongside the standard scenario approximation approach
are discussed in Section 3. Numerical experiments and
their results are provided in Section 4. Concluding
remarks end the paper.

2. Chance-Constrained Unit
Commitment Problem

Consider a power network represented as a directed
graph, in which each node represents a bus b indexed
in the set B. At each node may be located a subset
of conventional generators Gb ⊂ G, and a subset
of wind farm Ib ⊂ I . Power outputs from the
conventional generators are limited by minimum and
maximum limits, denoted P g and P g , respectively, as
well as ramp-down and ramp-up capacity, denoted

RDg and RUg , respectively. The UC is a multi-period
problem, in which the operator of the system seeks a
schedule for the conventional generators at minimum
cost, - including production, start-up, shut-down, and
reserve cost of each generator g in each period t ∈
T , denoted ctg, cs

t
g, cd

t
g, and crtg , respectively. This

schedule is sought to satisfy the load across the system,
under operating constraints.

More specifically, in each period t, the UC
problem seeks the on/off, start-up, and shut-down
status of the conventional generators, denoted
utg, ν

t
g, and µtg , respectively, their production level

ptg , their contribution, rtg , to the required spinning
reserves, αt, taken as a fraction of the total load. In
addition, in each period t, the power flowing between
end buses i, and j, f ti,j , through the transmission line
li,j := (i, j) ∈ L, is proportional to the susceptance of
the line, Bi,j , and the difference between the voltage
angles at the two buses, θti − θtj , and is bounded by the

line capacity, F i,j .

Lastly, we assume that in each period t, the load
at bus b is forecasted at Ltb, and the wind power at∑
i∈IbW

t
i . However, since wind speed/power is highly

unpredictable, we shall enforce that the load be met with
probability no less than a chosen confidence level, ρ,
over the planing horizon and across the network. Thus,
our UC problem may be formulated as the following
chance-constrained optimization program:

min
∑
g∈G

∑
t∈T

(ctg + cstg + cdtg + crtg) (1)

subject to: ctg ≥ CUgutg + CPgp
t
g, g ∈ G, t ∈ T, (2)

cstg ≥ CSgvtg, g ∈ G, t ∈ T, (3)

cdtg ≥ CDgµ
t
g, g ∈ G, t ∈ T, (4)

crtg ≥ CRgrtg, g ∈ G, t ∈ T, (5)

P
( ∑
g∈Gb

(ptg + rtg) +
∑
li,b∈L

f ti,b−

∑
lb,j∈L

f tb,j ≥ Ltb −
∑
i∈Ib

W t
i ,

b ∈ B, t ∈ T
)
≥ ρ, (6)

utgP g ≤ ptg + rtg ≤ utgP g, g ∈ G, t ∈ T,
(7)

f ti,j = Bi,j(θ
t
i − θtj), (i, j) ∈ L, t ∈ T, (8)
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− F i,j ≤ f ti,j ≤ F i,j , (i, j) ∈ L, t ∈ T,
(9)

utg − ut−1
g = νtg − µtg, g ∈ G, t ∈ T, (10)

t∑
i=t−TUg+1

νig ≤ utg, g ∈ G, t ∈ [TUg, T ],

(11)

t∑
i=t−TDg+1

µig ≤ 1− utg,

g ∈ G, t ∈ [TDg, T ], (12)

−RDg ≤ ptg − pt−1
g ≤ RUg,

g ∈ G, t ∈ T, (13)∑
g∈G

rtg ≥ αt
∑
b∈B

Ltb, t ∈ T, (14)

utg, µ
t
g, ν

t
g ∈ {0, 1}, g ∈ G, t ∈ T, (15)

where inequalities (3)-(5) are linearizations of the total
costs components; CUg, CPg, CSg, CDg, and CRg ,
being the unit commitment cost, unit production cost,
start-up cost, shut-down cost, and unit reserve cost
of generator g, respectively; (6) is the joint load
balance constraint; constraint (7) restricts the power
generation and reserve contribution of generator g to
be within the minimum and maximum capacity in each
period; (8) defines the line flow equations, and (9)
bounds the power flowing through each transmission
line; the logical constraint (10) links the UC status
and start-up/shut-down decisions of the conventional
generators. The minimum up/down time constraint
(11)/(12) forces the generators to stay up/down for at
least a specified number of time periods; the ramping
up/down constraints are defined in (13); (14) guarantees
the minimum reserves to be at least a fraction of the total
net load in each time period; lastly, the commitment,
start-up, and shut-down status of the generators are
given by (15) for each time period.

A few remarks are in order here. First, the
only source of uncertainty considered in this paper is
wind resource, which does not affect the validity of
our proposals. Indeed, the latter invokes no specific
probability distribution assumptions on the net load
process. Thus, other sources of uncertainty can be easily
integrated in the model, without loss of generality. In
addition, the modeling of the renewable energy or the
net load processes is beyond the score of this work.
Interested readers are referred to [30, 4, 31, 32] for
further account.

On the other hand, we know that by Kirchhoff’s first
law, the supply and demand for energy must be balanced
at all time, for the system to be in equilibrium. In (6),
the load balance is instead formulated as an inequality,
which is usually the case under a chance constraint
framework, e.g., [29, 28, 13, 33, 34], as the probability
of a continuous random variable taking on a single
value is virtually zero. But, let us remind ourselves
that the primary goal of the UC problem is to find the
commitment status of the conventional generators for
each time period. In real time, an economic dispatch
problem is solved with the fixed commitment status of
the generators to find the real time power outputs of
the generators. Also, observe that technically speaking,
since the production cost is minimized, no power will
be produced more than needed. In optimal power flow
analysis, other strategies exist. For instance, [16] uses
an affine control to mitigate the fluctuation of power
generation under wind energy integration by requiring
each conventional generator production to be partially
fixed and partially dependent on wind fluctuation.

3. Approximation Approaches

It is well known that chanced-constrained problems
may be difficult to handle numerically, due to potential
non-convexity of their feasible domains [35]. Except
for special cases, e.g., under suitable distributional
assumptions on the net load process [21, 22], it is
no easy task deriving analytical expressions for the
probabilistic load balance (6).

To circumvent this hurdle, two approximation
schemes are presented in this work, namely (i) a robust
relaxation of (6), discussed in Subsection 3.1; and (ii) a
quantile approximation of (6), dealt with in Subsection
3.2. These two proposals will be benchmarked against
the classical scenario-based approximation reviewed in
Subsection 3.4 for the sake of completeness.

In a first step, instead of enforcing the load balance
to jointly be met with probability no less than ρ over the
planning horizon and across the whole system, we shall
require that in each period t ∈ T the load balance be met
with probability greater than ρ at each bus b ∈ B, i.e.,

P(ψtb ≥ L̂tb) ≥ ρ, b ∈ B, t ∈ T, (16)

where ψtb :=
∑
g∈Gb(p

t
g + rtg) +

∑
li,b∈L f

t
i,b −∑

lb,j∈L f
t
b,j , and L̂tb := Ltb −

∑
i∈IbW

t
i .

However, we recognize that the above implicit
independence assumption of the nodal load balances
may be deficient as (i) any two nodal equations
containing the same network flow variable (e.g.,
for two neighboring nodes) may not be considered
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probabilistically independent; and (ii) loads at
individual nodes may be driven by the same weather;
similarly for wind generation. As a result, among other
consequences, the relaxation of the joint load balance
to individual counterparts no longer guarantees the
reliability of the system as a whole. Thus, an iterative
algorithm is proposed in Subsection 3.3 to adjust the
individual confidence levels to the target joint reliability
level, and by the same token restore the reliability of the
whole network.

3.1. Robust Approximation

For each pair b ∈ B, t ∈ T , assume that the
uncertain net load L̂tb depends upon a random variable
ξtb ∈ U tb ⊂ RL in an affine fashion; more specifically:

L̂tb(ξ
t
b) = L̂0t

b +

L∑
l=1

ξtl,bL̂
1t
l,b, (17)

where L̂0t
b is a nominal net load, and the L̂1t

l,bs are known

constant variations. We assume the scalar variates ξtl,bs
to be zero-mean, independent (please, remember that
the deficiency of this assumption will be addressed in
Subsection 3.3), and with support [−1, 1]. Under this
setting, (16) is equivalent to:

P
(
ξt

>

b L̂1t
b ≤ ψtb − L̂0t

b

)
≥ ρ, b ∈ B, t ∈ T. (18)

On the other hand, suppose U tb to be the usual
Euclidean ball, centered at zero, and with radius Ωtb,
i.e., U tb =

{
ξtb : ‖ξtb‖2 ≤ Ωtb

}
. It follows that (17) is

the same as:

P
(
ξt

>

b L̂1t
b ≤ ψtb − L̂0t

b :
∥∥ξtb∥∥2

≤ Ωtb

)
≥ ρ,

b ∈ B, t ∈ T. (19)

Thus, for each period t ∈ T , and each bus b ∈ B, we
want to find a robust feasible solution (to be guaranteed
with probability no less than ρ), such that:

max
‖ξtb‖2≤Ωtb

ξtb
>
L̂1t
b ≤ ψtb − L̂0t

b . (20)

Proposition 1. Constraint (20) is equivalent to:

ψtb − L̂0t
b ≥ Ωtb

√
L̂1t>
b L̂1t

b . (21)

For ease of notation, in the sequel, we drop all the
indices.

Proof. Note that the left hand-side of (20) is the
following quadratically constrained linear program:

max
ξ

ξ>L̂1 (22)

subject to ξ>ξ − Ω2 ≤ 0. (23)

The Lagrangian function associated with Problem
(22)-(23) is:

L(ξ, λ) := −ξ>L̂1 + λ
(
ξ>ξ − Ω2

)
: λ ≥ 0, (24)

and the corresponding dual function is:

D(λ) := max
ξ
− ξ>L̂1 +λ

(
ξ>ξ − Ω2

)
: λ ≥ 0. (25)

In (25), taking the derivative w.r.t. ξ, and setting it to
zero, we obtain:

ξ =
L̂1

2λ
, ∀λ ≥ 0. (26)

Now, since the objective function of (22)-(23) is linear,
the maximum is attained at a boundary point, i.e., ξ>ξ =

Ω2. It is clear from (26) that λ =

√
L̂1t>
b L̂1t

b

2Ω , so that

ξ = ΩL̂1√
L̂1t>
b L̂1t

b

. It is readily verified that the optimal

value of (22)-(23), which is also the left hand-side of

(20), is Ω
√
L̂1t>
b L̂1t

b ; and the proof is complete.

Lemma 1. [Azuma’s inequality] Let z ∈ RL be a
deterministic vector, and ξ1, . . . , ξL zero-mean random
variables taking values in [−1, 1], then for any Ω > 0,

P
(
ξ>z > Ω ‖z‖2

)
≤ exp (−Ω2/2). (27)

Observe that (18) is the same as:

P
(
ξt

>

b L̂1t
b > ψtb − L̂0t

b

)
≤ 1− ρ, b ∈ B, t ∈ T.

(28)
It follows from the lemma that constraint (21) implies
that:

P
(
ξt

>

b L̂1t
b > ψtb − L̂0t

b

)
≤ P

(
ξt

>

b L̂1t
b > Ωtb

√
L̂1t>
b L̂1t

b

)
≤ 1− ρ, b ∈ B, t ∈ T, (29)

provided that 1 − ρ ≥ exp (−Ωt
2

b /2) or Ωtb ≥√
2 ln 1

1−ρ . As a result, the chance constraint (6) will

be relaxed to the robust counterpart:∑
g∈Gb

(ptg + rtg) +
∑
li,b∈L

f ti,b −
∑
lb,j∈L

f tb,j ≥ L̂0t
b +
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√
2 ln

1

1− ρ
L̂1t>
b L̂1t

b , b ∈ B, t ∈ T. (30)

In the numerical experiments, we will take the nominal
net load, L̂0t

b , as the sample mean, and the deviations,

L̂1t
b , as the sample standard deviation.

3.2. A Quantile-based Approximation

In contrast with the robust scheme, here, we invoke
no assumption on the random net load L̂tb, b ∈ B, t ∈

T. We call L̂tb,ρ a ρ-percentile of the (t, b)-marginal
distribution of the net load process, t ∈ T, b ∈ B, if
P(V tb ≤ V tb,ρ) ≥ ρ. As in [29], for each bus, in each

time period, ρ-percentile estimates, ˜̂
Ltb,ρ, t ∈ T, b ∈ B,

of L̂tb,ρ, will be generated as follows.
Assume we have independent (potential

consequences of this assumption are addressed
in Subsection 3.3), identically distributed,
and equally-likely observations (historical or
generated), L̂tb,1, . . . , L̂

t
b,M , ordered as follows:

L̂tb,[1] ≤ L̂tb,[2] ≤ . . . ≤ L̂tb,[M ]. Using L̂tb,dρMe,

d·e being the ceiling function, as a point estimate of
˜̂
Ltb,ρ, t ∈ T, b ∈ B, we have the following quantile
relaxation of (6):

∑
g∈Gb

(ptg + rtg) +
∑
li,b∈L

f ti,b −
∑
lb,j∈L

f tb,j ≥

L̂tb,dρMe, b ∈ B, t ∈ T. (31)

3.3. Iterative Adjustment of the Individual
Confidence Levels

As will be illustrated in the numerical experiments,
enforcing (30) and (31) with high probability does not
guarantee that the joint chance constraint (6) will be
met with the same probability. This is well known in
the literature of chance-constrained programming. As
a result, the robust and quantile approximations may
yield unreliable solutions for the operation of the power
system as a whole.

To mitigate this issue, we will use the following
iterative procedure, inspired by [13], but without any
distributional assumption on the net load, to find sample
risk values φ of each individual probabilistic constraint
(at each time period and for each bus) until the joint load
balance (over the planning horizon and across the power
system) is met above the prescribed reliability level ρ.

In (16), denote the event ψtb ≥ L̂tb, b ∈ B, t ∈ T,

by Etb, and its complement ψtb < L̂tb, b ∈ B, t ∈ T,

by Et
′

b . From the finite subadditivity of P, also called
Boole’s inequality, it is well known that:

P

 ⋃
b∈B,t∈T

Et
′

b

 ≤ ∑
b∈B,t∈T

P
(
Et

′

b

)
. (32)

For each pair b ∈ B, t ∈ T , if we take P
(
Et

′

b

)
≤

(1 − ρ)/(|B| × |T |), it follows immediately from (32)
that:

P

 ⋂
b∈B,t∈T

Et
′

b

 = 1− P

 ⋃
b∈B,t∈T

Et
′

b


≥ 1−

∑
b∈B,t∈T

P
(
Et

′

b

)
≥ 1− (1− ρ)/ (|B| × |T |) .

As a result, we choose our initial confidence level as
φ0 = 1− (1− ρ)/ (|B| × |T |).

The iterative scheme proceeds as follows. First,
we choose a lower bound, φ, of φ, e.g., ρ, as well

as an upper bound, φ, (e.g., a very high probability).
Under the robust approximation, we solve the UC
problems by substituting ρ with φ0, φ, and φ,
respectively in (30). In the quantile approximation,
UC problems are solved with the estimated net
load quantiles L̂tb,dφ0Me, L̂

t
b,dφMe, and L̂t

b,dφMe,

respectively (constraint (31)).
Next, the load balances - for all time periods and

all the buses - are checked to find the empirical joint
probabilities, ρk, ρ, and ρ, respectively. If ρk is higher
than ρ, and lower than ρ, we increase the lower bound,
φ, to the current value of φ, φk; otherwise, if ρk is higher
than ρ, and lower than ρ, we decrease the upper bound,
φ, to φk. Lastly, we interpolate the individual confidence
levels φ as follows:

φk = φ+

(
ρ− ρ
ρ− ρ

)
(φ− φ). (33)

This iterative scheme is repeated until the difference
between the empirical joint probability ρk and the
desired value ρ is less than a fixed tolerance.
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3.4. Scenario-based Approximation

Here, assume the multivariate stochastic net load
process to be discrete and finite, and the realizations
to be indexed in the set S. Without loss of generality,
the probability of each scenario s ∈ S is taken as
ps = 1/|S|. In period t, the net load at bus b under
scenario s is denoted L̂t,sb . For more account of wind
speed/power generation, refer to [36, 31, 37, 38].

We want to enforce the load balance constraint (6)
for a subset of the scenarios indexed in Sρ ⊆ S such
that

∑
s∈Sρ p

s ≥ ρ. This will be achieved through the
following additional binary variables:

δs =

{
1 if all constraints in scenario s are satisfied,
0 otherwise.

The probabilistic load balance (6) is relaxed as follows:∑
g∈Gb

(ptg + rtg) +
∑
li,b∈L

f ti,b −
∑
lb,j∈L

f tb,j ≥

max(0, L̂t,sb )δs, b ∈ B, t ∈ T, s ∈ S, (34)∑
s∈S

psδs ≥ ρ, (35)

δs ∈ {0, 1}, s ∈ S. (36)

The resulting approximate scenario UC problem
may be a large-scale MIP due the size of the set S,
and as a result may be intractable for even modest
sample sizes due to the knapsack constraint (35). To
alleviate the computational burden of the resulting MIP,
a decomposition approach is proposed. A lower bound,
called quantile bound is obtained by solving the MIP
for each scenario s ∈ S, with δs = 1, and relaxing the
knapsack constraint (35).

Let fs, s ∈ S, be the optimal value of the UC
problem under scenario s. Then, sort the |S| optimal
values to obtain a permutation η of S such that fη1 ≤
fη2 · · · ≤ fηS . The quantile bound is then taken as

V Q := fηq , where q := min{k ∈ S :
∑k
i=1 p

ηi ≥ ρ}.
This clearly provides a lower bound for the approximate
scenario UC problem, as at least one scenario of the
permutation η := {η1, · · · , ηq} is satisfied in a feasible
solution [39].

Observe that the resulting UC solutions to the
scenario sub-problems are scenario-dependent, and as
a result are no longer unique or “non-anticipative”.
However, the lower bound, V Q, will still be useful
to benchmark the optimal values of our approximate
problems. This limitation could be tackled through
the popular progressive hedging algorithm of [40],

as applied in [41], but at the expense of more
demanding computations than the simple quantile bound
approximation. For other decomposition strategies,
please see [42, 39].

4. Numerical Experiments

The test problems are briefly described in Subsection
4.1, and their results are reported in Subsection 4.2.

4.1. Experimental Framework

Our test cases comprise the 5-bus system of the
AMES wholesale power market test bed, the IEEE 30-
and 118-bus systems. The AMES 5-bus system has 5
buses, 5 generators, 6 transmission lines, and a wind
farm hosted at bus 2. A scheduling horizon of 24
hours, divided in hourly time steps, is considered. The
load profile is displayed in Figure 1a and an example
of 10 wind scenarios plotted in Figure 1b. The IEEE
30-bus system consists of 30 buses, 6 generators, 41
transmission lines with a wind farm hosted at bus 2.
The IEEE 118-bus system consists of 118 buses, 54
generators, 186 transmission lines, and a wind farm
located at bus 6.

The solution algorithms were implemented in
Python 3.6 and the optimization programs modeled in
Pyomo, an open-source software package for modeling
and solving optimization programs. ILOG CPLEX
12.8 was employed to solve the resulting mixed-integer
linear optimization programs. All the experiments were
conducted on a computer featuring a 2.9 GHz Intel Core
and 8 GB memory.

4.2. Results

The following lines of inquiry are pursued. In
Subsection 4.2.1, we analyze the operating costs across
the approximation methods when individual confidence
levels are set on the load balance; in Subsection
4.2.2, we present the operating costs when a joint
confidence level is sought for the whole system over
the planning horizon, under the robust and the quantile
schemes; lastly, the three approximation methods are
compared based on their associated computation time in
Subsection 4.2.3.

4.2.1. Operating Costs: Individual Reliability
Levels We are interested in the fraction of the total
load that is satisfied for different confidence levels
ρ, and the variation of the resulting UC costs across
the approximation methods. Under the scenario-based
approximation, the value of the reliability level ρ
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(a) Load Profile of 5-Bus Instance

(b) An Example of 10 Wind Scenarios

Figure 1: Load and Wind Profile of the AMES 5-Bus
System

represents the fraction of the scenarios in which the load
balance constraints are satisfied for all the time periods
and all buses, as in (35); while under both the robust and
the quantile-based approximation methods, the value ρ
corresponds to the confidence level of the load constraint
for each bus and each period, as depicted in constraints
(30), and (31), respectively. The resulting approximate
UC costs are displayed in Figure 2. In addition, 100
wind scenarios are randomly generated from a normal
distribution to evaluate the percentage of scenarios in
which electricity loads are satisfied at all the buses over
the entire planning horizon, which is also shown in
Figure 2.

As illustrated in Figure 2, the robust scheme clearly
provides a better approximation of the scenario-based
scheme while the quantile-based approximation
consistently yields a lower bound. This can be
explained by the resulting percentage of scenarios for
which the load balance constraints are jointly satisfied.
As the confidence level, ρ, decreases from 0.99 to 0.9,
the percentage of satisfied scenarios resolved from the
quantile-based approximation decreases dramatically to

Figure 2: UC Operating Costs ($) and Fraction of the
Satisfied Load with Different Values of ρ

0, resulting in a much lower objective costs compared
to the scenario-based counterpart. This suggests that the
individual risk levels need to be uplifted significantly
in order to reach the target joint confidence level. We
analyze the effect of the iterative adjustment heuristic
discussed in Subsection 3.3 next.

4.2.2. Operating Costs: Joint Reliability Level
In this section, we compare the three approximation
schemes with regard to their UC operating costs given
varying target risk levels for the joint load balance
constraint. Under the scenario-based model, we simply
assign the target value ρ to constraint (35). Under
both the robust- and the quantile-based approximation,
we use the iterative algorithm to update the individual
confidence level for each bus and each period until the
percentage of satisfied joint load constraints is close
enough to the target ρ. The optimal costs yielded by
the different approximation schemes are depicted in
Figure 3, which also illustrates the individual confidence
levels that lead to the target confidence level. Here, the
same set of 500 wind scenarios are used under the three
approximation methods.

As can be seen from Figure 3a, both the robust-
and the quantile-based approximation schemes yield
higher operating costs compared to the scenario-based
approximation counterpart, as a result of shrunk
feasible regions from the additional requirements
that all the individual load balance constraints share
the same confidence level. Compared to the
quantile-based scheme, as the individual confidence
levels decrease, the robust model leads to a better
approximation of the scenario-problem, which is also
suggested by the individual reliability levels displayed
in Figure 3. While in the robust models, the
individual confidence levels decrease significantly as
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(a) AMES 5-Bus System

(b) IEEE 30-Bus System

(c) IEEE 118-Bus System

Figure 3: UC Costs ($) and Individual Constraint
Confidence Levels of ρwith Different Target Percentage
of Load Satisfied

the fraction of satisfied load constraints does, under
the quantile-based approximation, the individual risk
levels barely change over the percentage of satisfied load
constraints and stay close to 100% in all three test cases.

Due to the large number of binary variables, the
operating costs of the scenario-based approximation are
not available for larger scales of UC problems, e.g.,
IEEE 30- and IEEE 118-bus systems as in Figures 3b
and 3c. Thus, the decomposition strategy is adopted

to provide a lower bound of the scenario-based model
to benchmark the robust and quantile-based schemes.
This lower bound further demonstrates the tightness
of the upper bounds obtained from the robust- and
quantile-based models.

4.2.3. Runtime Furthermore, the runtimes of the
robust and the quantile approximation approaches
were benchmarked against the classical scenario
approximation and its decomposition strategy on all
three test systems with varying number of wind
scenarios and a risk-level of ρ = 0.9, as displayed in
Table 1. The computation was terminated if the test
instance was not solved within an hour; such cases are
labeled as N/A in Table 1.

As shown in Table 1, the runtime of the
scenario-based method increased dramatically with
the sample size, especially in large scale test cases;
the scheme failed to solve the 5-bus instance with
more than 1, 000 scenarios and the IEEE 118-bus test
case with more than 100 scenarios within an hour.
This computational burden is the result of duplicating
the scenario-wise variables and constraints for each
scenario. When the sample size is large, the size of
the problem significantly increases. The runtimes from
the decomposition strategy, as shown in different test
scales, are consistently proportional to the number of
scenarios. That is because this strategy decomposes
the scenario-based model into scenario sub-problems
and then solves a deterministic UC problem for each
scenario sequentially.

On the contrary, the runtime of the robust and the
quantile-based approximations vary very little across
different sample sizes for all test systems. This
is because both the robust and the quantile-based
approximation solve a set of deterministic optimization
problems with the same number of variables and
constraints regardless of the sample size. As the
number of scenarios increases, the increment in the
computational burden only amounts to checking the
load balance constraints for each scenario, which
is negligible compared to the computational burden
of solving the optimization programs. The results
illustrate the computational efficiency of the robust-
and the quantile-based approximations over the classical
scenario-based counterpart, especially for large-scale
systems.

5. Conclusions

This paper analyzed a multi-period unit commitment
problem under the integration of wind power. Due
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Number of
Scenarios

Scenario Robust Quantile Decomposition

10 7 13 12 23
100 65 14 14 178
200 417 15 14 344
500 2,837 17 18 793
1,000 N/A 16 17 1482

(a) AMES 5-Bus System
Number of
Scenarios

Scenario Robust Quantile Decomposition

10 7 18 22 16
30 46 18 23 44
50 358 18 25 82
100 1,770 17 22 238
200 N/A 25 24 477

(b) IEEE 30-Bus System
Number of
Scenarios

Scenario Robust Quantile Decomposition

10 26 50 40 49
20 208 53 85 90
30 279 78 43 131
50 3,509 70 56 222
100 N/A 73 55 486

(c) IEEE 118-Bus System

Table 1: Run-time (seconds) Comparison

to the high volatility of the latter, the load balance
was enforced with a desired confidence level over the
planning horizon and across the power network. As,
in general, chance-constraints are recognized to be
difficult to handle numerically, this work presented two
approximation schemes to relax the joint probabilistic
load balance. To alleviate the potential operational
consequences of the relaxations, an iterative scheme
aiming at adjusting the individual confidence levels to
the desired joint confidence level was also delineated.

Both the proposed robust- and quantile-based
approximations provide an upper bound of the
scenario-based model within a significantly shorter
time frame. In addition, both approximation
approaches are distribution free. In terms of solution
quality, both schemes provide good approximations
of the problem as benchmarked against a lower
bound of the scenario-based model. From the
perspective of computational efficiency, both schemes
display remarkable advantages over the classical
scenario-based model, especially on large-scale systems
as the associated runtime varies little with increasing
sample sizes. Lastly, overall, the quantile scheme
yields reliability levels closer to the predefined
confidence levels of the load balance constraints,
which might provide an edge against the robust-based
approximation.
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