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Abstract

The use of Graph Convolutional Networks (GCN)
has been an emerging trend in the network science
research community. While GCN achieves excellent
performance in several tasks, there exists an open issue
in applying GCN to real-world applications. The issue
is the effects of network errors on GCN. Since real-world
network data contain several types of noises and errors,
GCN is desirable to be less affected by such errors.
However, the effects have not been sufficiently evaluated
before. In this paper, we analyze the effects of random
errors on GCN through extensive experiments. The
results show that the node classification accuracy of
GCN is decreased only 5% even when 50% of the edges
are randomly increased or decreased. Moreover, in
terms of false labels, the accuracy of node classification
is decreased only 10% even when 20% of the labels are
changed.

1. Introduction

Research on network analysis, which is used to
analyze large-scale and complex networks such as
social networks, transaction networks, and biochemical
networks, has been actively pursued [1]. In network
analysis, relationships among entities in the real world
are represented by a graph. Network analysis is
useful for understanding the characteristics of networks,
and also useful for enhancing applications such as
recommendation systems.

Node classification is one of the most important tasks
in network analysis. It is the problem of classifying
nodes based on their attributes in a graph. Node
classification algorithms predict the labels of unlabeled
nodes by using the labels of the small subset of
nodes and the graph structure. For instance, suppose
that there exists a paper citation network, where the
nodes represent papers, and a small subset of the
nodes have attribute labels representing the topics of
the papers. Then, the node classification task in

the paper citation network is to identify the label of
each node only from the graph structure and available
small number of node labels. In e-commerce networks
representing co-purchasing relations among users, the
node classification task is to predict the customer
types of users [2]. In protein interaction networks
representing interaction relations among proteins, the
node classification task is to predict the function of each
protein [3]. Effective methods for node classification
tend to be also effective for other tasks of network
analysis [4].

Among several methods for node classification,
Graph Convolution Networks (GCN) have achieved
excellent classification accuracy in the benchmark
experiments [5]. The GCN is a neural network model
that enables to obtain vector representations of nodes
incorporating both graph structure and node features in
a semi-supervised way. In addition, the GCN model is
computationally efficient.

Although GCN recorded excellent classification
accuracy, the datasets used for the evaluation were
clean datasets. GCN have been evaluated on the
benchmark datasets that have been used in the evaluation
of many papers [5, 6, 7]. These datasets have been
cleaned in previous studies by deleting nodes that
occur infrequently and by removing nodes that can
be noises for the analyses (e.g., nodes representing
stemming and stop words in knowledge graphs) [7, 8].
However, real-world networks are different from the
clean networks in these datasets. Typically, the graphs
used for network analyses will contain multiple errors
because it is not easy to accurately and completely
identify the entities to be analyzed and the appropriate
relationships among them. For instance, graphs used
in social network analysis can contain several errors
of various types, such as missing links, false links,
etc [9]. Moreover, fake users and malicious users who
conduct adversarial attacks may introduce errors to the
networks [10, 11].

Some previous studies have investigated the effects
of network errors on GCN, but all of them limit their
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focuses on the errors due to adversarial attacks [10,
12]. Here, attacks to a network with an explicit
intention to reduce the classification accuracy of GCN
are called as adversarial attacks. Zügner et al. [10]
show that a malicious user can significantly degrade
the classification accuracy of GCN by introducing small
amount of adversarial perturbations to features of a
small number of nodes. Although such adversarial
attacks have significant negative impacts on GCN,
conducting such attacks to network data is not easy.
Therefore, the vulnerability of the GCN against
adversarial attacks does not necessarily imply that GCN
are useless in real-world applications. In contrast, as
described above, real-world networks typically contain
non-adversarial errors. We call errors contained in
a network without explicit intentions to reduce the
classification accuracy of GCN as non-adversarial
errors. For instance, spam users who follow a huge
number of unrelated users may introduce noises to the
network, but the spam users do not have intentions to
reduce the accuracy of node classification. We call such
noises as non-adversarial errors. In the literature, while
the effects of errors due to adversarial attacks on GCN
have been investigated, the effects of non-adversarial
errors have not.

The purpose of this paper is to reveal the effects
of various noises in the real world, and to clarify
how effective the GCN is under such noisy situations.
Contrary to the existing studies investigating the
effects of adversarial errors on GCN, we focus on
non-adversarial ones such as the presence of fake users
in social networks and measurement errors in data
collection and coding [9]. These noises are represented
by randomly adding or deleting links and changing
labels. We construct noisy graphs by performing these
operations to clean benchmark graphs, and investigate
the node classification accuracy of the GCN models
trained with the noisy graphs.

The remainder of this paper is organized as follows.
Section 2 introduces related work. In Section 3, we
present the datasets and research methodology. Section
4 examines the accuracy of node classification against
three types of errors (i.e., missing links, false links,
and false labels). In Section 5, we discuss the effects
of network noises on GCN and their applicability
to real-world applications based on the experimental
results. Finally, Section 6 contains our conclusions and
a discussion of future work.

2. Literature Review

2.1. Node classification

For the node classification problem, early studies
have typically used label propagation [13] and
graph laplacian regularization such as manifold
regularization [14]. After the appearance of
skip-grams [15], researchers have focused on models
for learning graph embedding, in which the features of
nodes are represented by vectors. Graph embedding can
be applied to a variety of tasks, and is not limited to
node classification problems. DeepWalk [6] treats short
series of data obtained from random walks on a graph
as input to a skip-gram, and learns graph embedding
from predictions of nodes that have close relationships
with the nodes. While DeepWalk considers only nodes
that are connected by edges, LINE [16] utilizes the
information of nodes that are not directly connected
by edges. In node2vec [17], breath-first search is
used instead of random walk. While these embedding
methods use only the graph structure, Planetoid [7]
realized an embedding method that uses both the graph
structure and label information.

In recent years, with the development of deep
learning, methods using graph-based neural networks
(GNNs) have been proposed. Although all methods
based on deep learning have recorded high classification
accuracy, they are computationally expensive [18] and
require complex preprocessing [19], which impose
significant limitations when considering their use in
actual services. GCN [5] was introduced by Bruna
et al. [20] and extended by Defferrard et al. [21].
GCN is based on a spectral graph convolutional
neural network that performs local convolution at
high speed. By introducing many simplifications to
the conventional framework, GCN achieves higher
classification performance than conventional methods
and can be used for large networks. In this research,
we verify the effects of network errors on GCN, which is
regarded as one of the state-of-the-art node classification
methods.

2.2. Network noises

Network analysis has suffered for a long time from
the network noises. Early studies that focused on
sociometric tests have been affected by the noises
due to respondent bias [22], non-response [23], and
questionnaire design [24, 25]. In recent years, there has
been increasing research analyzing networks in online
communities [26, 27, 28, 29]. In online social networks,
there exist spy users using spy scripts. A spy user
is an account that imitates human activities but has
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inconsistent behavior because it is not operated by a real
person. In Facebook, an independent study [29] revealed
that 27% of all accounts are fake users, but given the
amount of data in these large online communities, it is
difficult to filter them out completely [29]. When using a
real-world network, network noise is always included in
it. Network noise occurs not only in the network itself,
but also when extracting datasets for graph analysis from
the network. The noise generated in the extraction of
the dataset is caused by coding errors in the extraction.
Wang et al. [30] systematically summarized that there
are six types of measurement errors in data collection:
missing nodes, false nodes, missing edges, false edges,
wrongly accumulated nodes, and wrongly failed nodes.
In this study, we focused on the increase of spying users
by spying scripts and the measurement errors during
data collection.

2.3. Effects of network errors on graph neural
networks

Existing studies on the effects of network errors
on graph neural networks have focused on adversarial
attacks [10, 12]. Adversarial attacks introduce small
imperceptible changes to the input data of machine
learning models so that the accuracy of the models
will be significantly degraded. Many studies have
investigated the effects of adversarial attacks on
deep neural networks, mainly for the task of image
classification.[31, 32, 33]. It is also known that graph
neural networks and node embedding techniques are
highly vulnerable to adversarial attacks. [34, 33].

Zügner et al. [10] propose an attack algorithm
called NETTACK that introduces small perturbations
to the structure and node features in attributed graphs.
The algorithm generates unnoticeable perturbations
by preserving the degree distribution of the graph
and features co-occurrences. The performance
of NETTACK on attacking GCN shows that it
can successfully fool GCN and lead to a lot of
misclassification of the target node. In another study,
Dai et al. [12] proposed a reinforcement-learning-based
attack strategy that generates structural perturbations
with full or limited information about the target
classifier. Their approach has shown to be successful for
degrading the accuracy of supervised node classification
models. Studies by other groups investigate the
effects of adversarial attacks on unsupervised node
embeddings [10, 12, 35]. In [10], they transferred their
attack model to DeepWalk embedding [6] and observed
that the performance of DeepWalk drops on a perturbed
graph.

In this study, we focus on non-adversarial attacks.

For instance, graphs used in social network analysis can
contain several errors of various types, such as missing
links, false links, etc [9]. These errors are not adversarial
to node classification models. There are also noises
due to spamming scripts generating fake user activities
in online communities [26, 36, 28]. These spam-users
mimic human online activity, which is often impossible
to filter completely given the amount of data in large
online communities [37]. For example, a report [29]
suggests that 27% of all Facebook accounts are fake.
These noises due to spam and fake users are typically
also not adversarial. This study aims to answer the
following question: Is GCN vulnerable even against
such non-severe errors?

3. Data and Method

3.1. Datasets

Following Kipf et al. [5], we compare the effects of
different types of random errors on GCN by simulating
them in four empirical datasets. Dataset statistics are
summarized in Tab. 1. We used four datasets: Citeseer,
Cora, and Pubmed [8] for citation network datasets,
and NELL [7, 38] for bipartite graph dataset from
a knowledge graphs. In Tab. 1, features denote the
number of dimensions of the feature vector of each
node, and label rate is the number of labeled nodes
used for training divided by the total number of nodes
in the dataset. We use these datasets following the
experimental settings by Kipf et al. [5], which are
common among studies on GCNs to evaluate their
performance. Evaluating the effects of errors on GCN
using other networks such as social networks obtained
from social media remains a future work.

Citeseer, Cora, and Pubmed contain sparse
bag-of-words feature vectors for each document and
a list of citation links between documents. The label
represents the field to which the document belongs.

The knowledge graph dataset, NELL [38], is
a network that represents the connections between
information revealed through the analysis of hundreds
of millions of web pages. Information here is a word or
phrase, such as “Tokyo” and “Japan”. While analyzing
a web page, the system determines that “Tokyo” and
“Japan” have a “city-country” relationship, and connects
these nodes with edges. The edges are given labels such
as “city-country”. In this way, NELL is constructed as
a graph with a set of nodes and labeled edges among
them. In this experiment, we conducted pre-processing
to the NELL dataset following Yang et al. [7]. In the
preprocessing, we extract entities and relations between
them from the NELL knowledge base to construct the
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Table 1. Dataset statistics, as reported in Kipf et al. [5]

Dataset Type Nodes Links Classes Features Label rate
Citeseer Citation network 3,327 4,732 6 3,703 0.036

Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.1

knowledge graph. Bag-of-words features extracted from
the ClueWeb09 1 dataset are used as node features.

3.2. Methodology

Our goal is to investigate the effects of three different
error scenarios on GCN. The three different error
scenarios are: adding random links, removing random
links, and changing random labels. We express the
decrease in the activity levels of users by random link
deletion, the increase of the inconsistent user behavior
by random link addition, and the increase in the number
of spy users by label changes. The process of simulating
an error scenario is as follows:

1. Obtain a clean graph G = (V,E) from the
dataset.

2. Introduce errors to G following one of the three
scenarios, and obtain a perturbed network G′ =
(V ′, E′).

3. Using G′ as an input graph, train a model to
predict the label of each node using GCN, and
evaluate the classification accuracy of the model.

For the GCN setup, we closely follow the experimental
setup of Kipf et al. [5]. We train a two-layer GCN
and evaluate prediction accuracy on a test set of 1,000
labeled examples. We chose the same dataset splits as
Kipf et al. [5] with an additional validation set of 500
labeled examples for hyperparameter optimization. We
do not use the validation set labels for training. For the
citation network datasets, we optimize hyperparameters
on Cora only and use the same set of parameters
for Citeseer and Pubmed. The values of the set of
hyperparameters are shown in Tab. 2. In contrast to
previous experiments [5], we do not set a window size,
and train for 200 epochs in all cases. This is because
with a window size, it is difficult to compare the case
where learning ends early due to large noise and the case
where learning continues until the end. We initialize
weights using the initialization described in Glorot et
al. [39] and accordingly row-normalize input feature
vectors. The experiment was conducted 10 times for one

1https://lemurproject.org/clueweb09/

error strength of an error scenario, and the average of the
classification accuracies was used as the classification
accuracy in that condition.

4. Experimental Results

In this Section, we present the experimental results
for three different error scenarios based on the methods
presented in Section 3. Figure 1 illustrates the scenarios.

4.1. Effects of random link deletion

At first, we investigated the classification accuracy
of GCN models under the missing link scenario. We
randomly deleted fraction p of links in the original graph
G, and obtained perturbed graph G′. Then, classification
accuracy of the GCN model constructed from perturbed
graph G′ was investigated while changing the fraction
p of link deletion. Figure 2 shows the classification
accuracy against the fraction p of deleted links for each
graph. The results for p = 0 are equivalent to the
results when using the original graphs, whereas the
results for p = 1 are equivalent to the results when only
node features are used for classification and network
structures are completely ignored.

From the results, we can find that the classification
accuracy still achieves more than 60% even when all
links are removed, although the classification accuracy
decreases as the link deletion fraction p increases for
all datasets. The difference between the classification
accuracy at p = 0 and the classification accuracy at p =
1 indicates the influence of the existence of links in the

Table 2. Sets of hyperparameters

Dataset
Citeseer,

Cora,
Pubmed

NELL

Dropout
rate 0.5 0.1

L2
regularization 5 · 10−4 1 · 10−5

Number of
hidden units 16 64
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Figure 1. Three different error scenarios.

original network on the classification accuracy of GCN.
The influence of the links on the classification accuracy
is the lowest in the Pubmed dataset. The difference
in classification accuracy between the original graph
and the no-links graph is only approximately 7%. In
contrast, for the Cora dataset, that is approximately
10%, which is the highest among the four datasets.

4.2. Effects of random link addition

Next, we investigated the classification accuracy
of GCN under the false link scenario. We randomly
extracted |E|p pairs from the node pairs without links
in the original graph G, and then, created links between
them to obtain the perturbed graph G′. Note that
p is a parameter for controlling the number of false
links. Then, classification accuracy of the GCN model
constructed from perturbed graph G′ was investigated
while changing the fraction p of link addition. Figure 3
shows the classification accuracy against the fraction p
of added links for each graph.

From the results, we can find that additional false
links degrade the classification accuracy of GCN. The
decrease in accuracy when |E| false links are added
is approximately 0.1 for all datasets. In addition, it
is suggested that the effects of missing links on the
classification accuracy of GCN are slightly larger than

those of false links when comparing the same number
of links are added and removed (see Figs. 2 and 3).

In order to clarify the effects of false links and
existing true links, we conducted an experiment of
investigating the classification accuracy of GCN when
false links were added while all original true links
were removed from the networks. By comparing the
results with previous results (Fig. 3), we examine the
contributions of original true links to the classification
accuracy of GCN. Figure 4 shows the relation between
the fraction of additional links p and the classification
accuracy of GCN when all original links are removed.

From the results, for citation networks, we can find
that the effects of false links are larger for the cases
where all original links are remove (Fig. 4) than for the
cases where all original links exist (Fig. 3). In contrast,
for the NELL dataset, the effects of false links are not so
different for both cases.

4.3. Effects of label changes

Finally, we investigated the classification accuracy
of GCN models under the false label scenario. We
randomly changed fraction p of node labels in the
original graph G, and obtained perturbed graph G′.
Then, classification accuracy of the GCN model
constructed from perturbed graph G′ was investigated
while changing the fraction p of label changes. Figure 5
shows the relation between the fraction p of mislabeled
nodes and the classification accuracy of GCN for each
dataset. In this experiment, labels were changed
to other existing labels. We can see that for all
datasets, an increase in the number of mislabeled nodes
results in a roughly linear decrease in classification
accuracy. However, compared to the results for the
NETTACK [10], the effects of random label changes are
much smaller than those of the NETTACK.

Figure 6 shows the results of the classification
accuracy due to the increase in mislabeling when the
chosen label is changed to a newly added class that does
not exist in the original network. We can see that when
a new label is created, the decrease in classification
accuracy is larger than that of changing to other existing
labels.

5. Discussion

For random edge deletion, our results show that
the classification accuracy of GCN decreases almost
linearly as the number of missing links increases, and
the decrease in accuracy is small. For the Citeseer
and Cora datasets, we recorded higher classification
accuracy than non-GCN baseline reported in [7], even
when 50% of the total links are deleted. We can
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Figure 2. Classification accuracy of GCN under the missing link scenario for each dataset.

see that even with few links, GCN records high
classification accuracy if the node features are rich and
accurate. The number of links in a social network and
e-commerce network indicates the activity level of the
users participating in that network. Links in a social
network represent users’ actions of following other
users, and links in an e-commerce network represent
users’ actions of purchasing products. Therefore, a
network with a large number of edges is considered to
have a large number of active users whereas a network
with a small number of edges is not. From the results
of random edge deletion, we can expect that GCN
will work even for the networks with small number of
edges (i.e., networks of non-active users), as long as the
existing edges are reasonable.

As shown in Fig. 3, the impact of random addition
of links on GCN models is as small as that of random
link deletion. Random additional links in a graph may
connect dissimilar nodes, which we consider as false
links. A false link in a social network represents an
inconsistent action of a user. For instance, a social media
user typically follows users with similar interests, but
may eventually follow users with dissimilar interests.
Such inconsistent actions of users are represented as
false links in a social graph. From the results of
random link addition, we can expect that in a situation

where there is enough user behavior, GCN works for
the network even if the users make a certain amount of
inconsistent actions.

On the other hand, as shown in Fig. 4, after all
the links in the original network have been removed,
random edge addition can significantly reduce the
classification accuracy of GCN. This indicates that
the links in the original network are necessary for
preserving the accuracy of GCN. It is also suggested
that we need to pay attentions to the occurrence of
user’s inconsistent actions when the number of links in
the original network is small, i.e., when there are few
user actions. However, when using the NELL dataset,
even after deleting all the edges, there is no particular
reduction in classification accuracy due to the addition
of random edges. This may be due to the fact that NELL
is very different from other datasets as shown in Tab. 1.
It is beyond the scope of this paper to determine which
specific feature of the NELL affects the results.

As shown in Figs. 5 and 6, the classification accuracy
decreased as the number of changed labels increases.
A node with a changed label in a network represents a
node that has links with other nodes, but most of the
links are inconsistent with the label. This is because
the characteristics of the node itself are expressed in its
label, so changing only the label of a node will make its
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Figure 3. Classification accuracy of GCN under the false link scenario for each dataset.

links inconsistent with the label. Nodes with changes
labels are considered to be similar to spam users in the
real world. A spam-user is a user who behaves like a real
user, but whose behavior differs greatly from his own
characteristics. If we assume that the relabeled nodes
are spam-users in the real world, it is difficult to assume
that 50% of the users in the network are occupied by
spam-users. However, as shown in the related research,
they may occupy 30% of the network, so it is necessary
to take sufficient countermeasures against spam-users
when applying GCN.

6. Conclusion and Future Works

We analyzed the effects of random noises on GCN,
missing links, false links, and false labels. We extended
the scope of the noised from adversarial attacks studied
in existing studies to more diverse types of noises, which
aimed to clarify the applicability of GCN to real world
applications. Experiments on four different datasets
showed the classification accuracy of the GCN under the
three error scenarios.

In this paper, the effects of some noises on GCN
are clarified. Our results suggest that the application of
GCN may be effective in the real-world applications. On
the other hand, there still remain some open issues that
should be addressed in future research. First, the relation

between the effects of errors on GCN in networks
and their structural characteristics should be clarified.
Second, experiments on actual applications of GCN are
also necessary in the future work. Third, improving
the classification accuracy of GCN models in noisy
networks is also an important future work. This study
focuses to understand the effects of noises on GCN, but
improving GCN for noisy networks is also important
when using GCN in the real-world applications.
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