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Abstract 
This paper addresses the slow-onset crisis of 

global warming caused by CO2 emissions. Although 

electrical load is a major influence in a country’s 

growth and development, it is also one of largest 

sources of greenhouse gases (GHG), CO2 in 

particular. Therefore, switching to cleaner energy 

sources is a clear objective and forecasting electricity 

load and its environmental cost is a necessary task for 

electrical energy planning and management. This 

paper addresses short-term load forecasting of 

renewable energy (RE) production in the region of 

Adrar in Algeria with Adrar’s photovoltaic (PV) farm 

and Kabertene’s wind farm. The forecast is compared 

to the overall load demand, and the reduced amount 

of CO2 resulting from using renewable energy instead 

of fossil fuels is calculated. The forecasting models use 

Long short-term memory (LSTM) neural networks, 

which were trained and validated using real data 

provided by the national state-owned company 

SONALGAZ. The results show good performance for 

the forecasting models with PV and wind models 

achieving a Mean-absolute-error (MAE) of 0.024 and 

0.1 respectively. This RE can help to reduce CO2 

emissions by up to 25% per hour. 

 

Keywords: Neural networks, Renewable energy, 

short-term forecasting, Carbon dioxide. 

1. Introduction  

Energy is undoubtedly a fundamental element in 

our lives due to its increased use in several domestic 

and industrial contexts. This prompts us to consider 

new techniques for producing energy.  

Algeria is a major player in global energy markets 

due to its colossal natural resources. It has the world’s 

tenth-largest natural gas (NG) reserves and is the 

sixth-largest exporter of natural and liquefied gas. 

Based on the annual report of the Algerian Ministry of 

Energy for 2018 [1], the total energy production 

reached 166.5 million Ton Equivalent of Petroleum 

(MTEP), of which 100.8 MTEP was exported in its 

different forms, and only 1.5 MTEP was imported. 

Regarding energy production, the primary electric 

load production saw a large increase from 635 GWh to 

783 GWh over the year of 2018, scoring an increase of 

25%, while the natural gas production had a minor 

increase of 97 Bm3 with an estimated increase of 0.9%.  

In terms of national consumption, there was an 

important increase of 7.7% reaching 65 MTEP 

compared to 2017. This increase was mainly to the rise 

in natural gas consumption which saw a significant 

increase of 13.4%, representing 65% of total energy 

consumption. This was in addition to a 2.9% increase 

in electric load consumption, with 90% of Algerian 

electricity is being produced by natural gas-fired 

power plants [2]. 

Although the core of the Algerian economy is its 

energy sector, the growing production and 

consumption of energy comes at a big environmental 

cost due to emission of pollutants. Therefore, investing 

in renewable energy sources is a viable medium and 

long-term solution. Due to its geographical location, 

Algeria has one of the biggest solar energy potentials 

in the world with an estimated 13.9 TWh per year; this 

is in addition to other renewable energy sources, such 

as wind and biomass [3]. RE is the major axis of the 

national energy program devoting an important part to 

solar thermal and solar photovoltaic sources. By 2030 

solar energy is expected to reach around 37% of 

national electricity generation (12,000 MW for the 

domestic market along with an export potential of up 

to 10,000 MW). Despite a fairly low potential, the 
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program does not exclude wind power, which 

constitutes the second development axis and whose 

share should be around 3% of electricity production in 

2030. 

In summary, this paper makes the following 

contributions: 

i) A comprehensive study of the RE fields of 

Adrar (Algeria) both for the wind power 

(Kabertene) and the photovoltaic (PV).  

ii) The development of LSTM models for 

short-term RE forecasting.  

iii) Calculation of CO2 emissions for equivalent 

electric load produced using fossil fuels, 

and the calculation of estimated reduction 

in CO2 from using RE.  

iv) The work is applied to a real case study of 

the region of Adrar using real data provided 

by the national electricity and gas producer 

and distributor company called 

SONALGAZ. 

2. Related works 

Energy forecasting is a wide field, and can be 

divided into three categories depending on their 

forecasting horizon: short-term, medium-term, and 

long-term. Different research has been conducted on 

energy forecasting where several methods and 

approaches were used; Soldo [4] presented a survey of 

forecasting natural gas consumption. The paper 

described detailed insights on the methods, data and 

results in the published research papers. The methods 

that have been applied in those studies can be divided 

into two main categories: firstly, the traditional time 

series prediction techniques such as autoregressive 

moving average (ARMA) [5], non-linear regression 

techniques like regression trees [6] and support vector 

regression (SVR) [7], and Kalman filters [8]. The 

second category consists of artificial intelligence-

based methods, particularly: fuzzy logic as in [9], 

where a hybrid model composed of an Adaptive 

Neuro-Fuzzy Inference System (ANFIS) and an Auto-

Regressive Integrated Moving Average (ARIMA) 

were employed to forecast annual Iranian energy 

consumption. Support Vector Machines (SVM) are 

also frequently used in this area of study [10-11]. 

However, the most frequently successfully used 

forecasting technique in several studies is the Artificial 

Neural Network (ANN) [12], Tonkovic et al. [13] used 

a Multi-Layered Perceptron (MLP) and Radial Basis 

Function (RBF) to forecast the next 24h natural gas 

consumption in Croatia. [14] used several MLP to 

predict the gas demand in the Polish city of Szczecin 

in any hour or day of the year taking into consideration 

weather and calendar inputs. Laib et al. [15] employed 

multiple MLPs to predict the yearly gas consumption 

in Algeria, where each MLP was used to predict the 

consumption in a specific area before summing all the 

results to get the total consumption. Jetcheva et al. in 

[16] developed several ANNs to forecast the next 24h 

electricity load and divided the dataset into subsets, 

where each subset was used to train a different ANN. 

Taspinar et al. [17] used RBF, MLP and SARIMAX 

models to forecast the short-term gas consumption in 

Sakarya (Turkey). Hsu et al. [18] presented a two-

phased ANN model to forecast the short-term load in 

Taiwan, the first phase was used to forecast the daily 

load pattern, while the second phase was used to 

predict both minimum and maximum loads. In order 

to forecast the solar energy in the next month in hourly 

steps, Abuella and Chowdhury [19] implemented an 

ANN using a dataset that consisted of fourteen 

meteorological variables and compared the obtained 

results to multiple linear regression (MLR) and 

persistence models. Bhaskar and Singh [20] described 

an approach that consists of two phases in order to 

forecast wind energy; in the first phase, the wind speed 

for the next 30 hours was forecasted using an adaptive 

wavelet neural network (AWNN). In the second phase, 

a MLP was used to map the predicted wind speed into 

wind power. 

 In addition to traditional shallow ANN, 

researchers in recent years have explored new types 

and topologies of ANN, namely, deep learning 

networks. These networks showed promising results in 

time series forecasting and they are gaining increasing 

popularity [21], Peng et al. [22] used a Multilayer 

Restricted Boltzmann Machine to forecast four hours 

in advance of wind power production, this type of 

ANN is characterized by a strong feature interpretation 

ability.  Kong et al. [23] compared LSTM to other 

benchmark models such as MLP and k-Nearest 

Neighbors in a residential short-term load forecasting 

problem; the results showed that the LSTM 

outperformed the rest of the models. Laib et al. [24] 

used a hybrid approach to forecast the short-term 

natural gas consumption. The approach is composed 

of a MLP to estimate the next day profile, and LSTM 

models to forecast the consumption. Wang [25] 

implemented a framework to forecast solar power 

generation for 24 hours in advance, the framework 

consists of a LSTM forecasting model with time 

correlation principles. Hossain and Mahmoud [26] 

developed two LSTM forecasting models for short-

term electric load forecasting, where one model is used 

to forecast a single step ahead, while the second 

predicts multi-step intraday rolling horizons, historical 

load data was used in addition to weather data. Wang 

et al. [27] used a LSTM to model both short-term and 

long-term electric load for both residential and 
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commercial consumers, the LSTM is guided by a 

pinball loss and based on a dataset from Ireland. 

Muzaffar and Afshari [28] used LSTM for short-term 

load forecasting, the used data consisted of 13 months 

of hourly observations of electric load in addition to 

weather related exogenous inputs. Kumar et al. [29] 

presented an approach for forecasting the electric load 

using LSTM and GRU models. For computation and 

training, spark and a cluster of machines were used to 

reduce the training time and lower the error rate. 

Bouktif et al. [30] focused on both short-term and 

medium-term electric load forecasting by proposing 

an approach that consisted of a LSTM model for load 

forecasting, a genetic algorithm for optimizing the 

LSTM hyper-parameters, and finally, feature selection 

for removing unnecessary or redundant features. Other 

research papers demonstrated that LSTM can be 

reliable in most forecasting problems, such as stock 

market predictions [31] and wind speed [32].  

The above works are similar to the one presented 

in this paper. However, they focus mainly on 

forecasting the energy production and consumption 

and they ignore its cost. In this work, we solve two 

problems, the first one is short-term forecasting of RE 

by proposing efficient LSTM models, and the second 

is estimating the costs of energy production in terms 

of CO2 emissions and examining the benefits of 

switching to RE sources. Furthermore, this work is 

practically applied to the region of the north African 

desert. As such, the results are very valuable for 

determining the future of the energy sector, as well as 

the best way to obtain good performances in the 

region.  

3. Renewable energy production in the 

region of Adrar 

The region of Adrar is located in the southwest of 

Algeria, more than 1400 km from the capital Algiers 

and falling between the meridians: 6 ° W and 2 ° E, 

and the parallels 32 ° and 20 ° North. Adrar has 

399,712 inhabitants over an area of 424,948 km² 

which is about 18% of the total area of Algeria, and 

has a population density of 0.9 inhabitants per km². 

Adrar was chosen for the implantation of wind and PV 

farms due to its interesting geographical location that 

provides ideal solar and wind conditions.  

Oudrane et al. [33] conducted a detailed study 

about the solar potential of the region and found that 

the south-facing facade in the summer season is the 

most optimal for obtaining a very high density of the 

solar flow. Furthermore, the optimal solar gain is 

recorded in the month of July with a density of 245.48 

W/m2, which is considered as one of the highest ratios 

in the world. In addition to the solar energy potential, 

wind energy is also interesting, as the frequency of fast 

and strong winds is very high over the year, in 

particular the sirocco wind reaches 100 Km/h. Also, 

sand winds are very common throughout the spring 

season. 

Based on that potential and since Adrar is not part 

of the interconnected electrical grid, this region was 

chosen to hold some of the most important RE projects 

and plans. 

 

3.1. Adrar’s photovoltaic farm 

     

 A new photovoltaic 20 MW capacity power plant 

has been put into service at the level of the RE research 

unit in Adrar. The project’s goal is to test the energy 

efficiency of such an installation in the Saharan 

regions and derive a scientific database that could pave 

the way for possible generalization. Figure 1 illustrates 

the PV power plant of Adrar.  

 

 
Figure 1. Adrar's PV power plant 

 

3.2. Kabertene wind farm 

 
 Kabertene’s wind farm for electricity generation 

is situated in the commune of Tissabit (80 km north of 

Adrar). From a partnership between Algeria and 

France, the first of its kind on the national scale, it is 

considered to be a successful model for harnessing 

renewable and clean energy. The wind farm consists 

of dozens of wind turbines based on field and technical 

studies that take into account the wind current that 

characterizes the region. This wind farm ensures 

renewable and a clean alternative production of 10 

MW of electrical power.  

Kabertene’s experience allowed the energy 

producers to know about some of the difficulties and 

obstacles that others may face with such types of 

power plants, such as extreme temperatures, the 

impact of desert dust on turbines, intermittency and its 
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impact on the network. Figure 2 shows Kabertene’s 

wind farm. 

 

 
Figure 2. Kabertene's wind farm 

 Currently, the RE production from both wind and 

solar farms, is nearly 40% of the 60 to 100 MW 

produced in the region when meteorological condition 

are optimum.  

 

3.3. Available data 
  

 The presented work was validated using datasets 

provided by the national energy distribution company 

SONALGAZ concerning RE types (PV and wind 

energy). The datasets consist of historical load values 

of PV and wind turbines. In addition a set of 3 

exogenous inputs were used, which are: temperature, 

irradiance and wind speed. The data is subsampled 

every 15 minutes and covers the period from January 

2016 to April 2017. 

 The electric load produced from both PV panels 

and wind turbines are the main variables. The values 

are expressed in megawatt-hours (MWh) and vary 

between 0 to 19.4 MWh and from 0 to 9 MWh for PV 

and wind turbines, respectively. The total solar 

irradiance (TSI) is the total intensity of radiative 

energy coming from the sun received by a surface of 1 

m² from the top of the Earth's atmosphere. The 

irradiance of this series varies in an interval between 0 

and 1237.8 Watt / m² approximately. These values are 

zero at night and reach peak values between 12pm and 

2pm. For temperatures, the values are measured in 

degree Celsius (C°), and vary between 0 and 50 (the 

peak values are observed between 12 pm and 2 pm in 

the months of summer). The wind speed is expressed 

in km/h, the values vary between 0 and 18 km / h, these 

values are not correlated with time but with 

sandstorms that can cover the solar panels and 

decrease their efficiency and therefore the energy 

production. High wind speeds will affect irradiance 

and therefore production. Therefore, wind speed must 

be taken into account as an exogenous variable in 

modeling PV electrical load production. Figure 3 

shows the exogenous inputs.  

 

 
Figure 3. Available exogeneous data samples 

4. LSTM neural networks as a modeling 

tool  

Forecasting is a technique that consists of using 

past data to forecast future values and future trends 

using various methods. Machine learning techniques 

and in particular ANN is known to be one of the most 

popular paradigms in this field. ANNs are a collection 

of artificial intelligence-based algorithms modeled 

after biological neural networks and are designed to 

recognize patterns. ANNs copy the human and animal 

nervous system and their information processing 

capabilities. An ANN is composed of layers of 

interconnected nodes called neurons that are the core 

of these networks. The information passes from one 

neuron to another through weighted links. 

The fact that an ANN network is composed of 

multiple single neurons of different types led to 

several different topologies, such as feed-forward, 

recurrent neural networks (RNN), and self-organizing 

maps. RNNs are radically different from the 

traditional neural networks called feed-forward. Feed-

forward neural networks pass the data from the input 

layer to the output, whereas RNNs have a feedback 

loop. RNNs are sequence-based models. This makes 

them a suitable solution for time series forecasting 

problems as they are able to learn the temporal 

dependence between past and present information. 

However, RNNs suffer from some limitations, for 

instance, they can suffer from exploding and vanishing 

gradient problems [34, 35] which lead to difficulties in 

learning long sequences. Therefore, in order to 

overcome these drawbacks, [36] presented the long 

short-term memory (LSTM), a variant architecture of 

RNN that includes a memory cell. This was later 
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enhanced by Gers et al. in [37] by including a forget 

gate. Therefore, a typical LSTM is composed of a cell, 

an input gate, a forget gate, and an output gate, and its 

output can be a sequence of a variable length. Figure 4 

shows the structure of an LSTM [38]. 

 

 
Figure 4. The structure of an LSTM block 

▪ x(ti) is the input vector 

▪ h(ti), h(ti-1) are the output values at time i 

and i-1 

▪ {wc, wa, wf, wo}: are the weights of the 

internal state, input, forget, and output 

gates. 

▪ {whc, wha, whf, who}: are the recurrent 

weights 

▪ {bc, ba, bf, bo}: are the biases  

▪ {c(ti), a(ti), f(ti), o(ti)}: are the output 

values. 

 

Based on the above notations, [38] described the 

LSTM functioning as follows: 

The forget gate f(ti) uses x(ti) and h(ti-1) as inputs 

in order to compute the information to be conserved in 

c(ti-1) using a sigmoid activation, the input gate a(ti) 

uses the inputs x(ti) and h(ti-1) to calculate c(ti), and the 

output gate o(ti) regulates the output of an LSTM cell 

by taking into consideration the cell state c(ti) and 

using tanh and sigmoid layers. The equations below 

represent the LSTM’s forward learning: 

 

𝑎(𝑡𝑖) = 𝜎(𝑤𝑎𝑥(𝑡𝑖) + 𝑤ℎ𝑎ℎ(𝑡𝑖−1) + 𝑏𝑎                  (1) 

𝑓(𝑡𝑖) = 𝜎(𝑤𝑓𝑥(𝑡𝑖) +  𝑤ℎ𝑓ℎ(𝑡𝑖−1) + 𝑏𝑓                  (2) 

𝑐(𝑡𝑖) = 𝑓𝑡 × 𝑐(𝑡𝑖−1) + 𝑎𝑡 × tanh(𝑤𝑐𝑥(𝑡𝑖) +
𝑤ℎ𝑐(ℎ(𝑡𝑖−1) + 𝑏𝑐)               (3) 

𝑜(𝑡𝑖) = 𝜎(𝑤𝑜𝑥(𝑡𝑖) +  𝑤ℎ𝑜ℎ(𝑡𝑖−1) + 𝑏𝑜                    (4) 

ℎ(𝑡𝑖) = 𝑜(𝑡𝑖)  × tanh(𝑐(𝑡𝑖))        (5) 

 

 Where σ and tanh are activation functions and × 

is the point-wise multiplication.  

Therefore, the outlines of an LSTM learning 

process are as follows:  

▪ A forward pass, where the output is 

calculated using the equations (1-5). 

▪ Computing the error of each layer between 

the output and the input. 

▪ A backward pass by propagating the error 

backwardly to the input gate, cell, and forget 

gate. 

▪ Updating the weights based on the error and 

by using an optimization algorithm. 

In order to forecast the electric load for both solar 

and wind energy, a dedicated LSTM model for each 

type of energy was developed. Choosing the best 

architecture for the LSTM models requires tuning 

several hyperparameters, e.g., choosing the number of 

hidden layers and the number of neurons in each layer, 

setting the learning and dropout rates, choosing a 

suitable lag size (number of used past values), batch 

size, and the number of epochs. Hence, several tests 

and trials were performed with different combinations 

of hyperparameters in order to select the best topology 

based on the validation errors. Table 1 presents some 

of the tested hyperparameters values. 

  

Table 1. Tested hyperparameters values 

Hyperparameter Values 

Number of hidden layers [1, 2, 3] 

Number of neurons in 

each layer 

[10, 20, 40, 80, 160, 320, 

500] 

Lag size [1, 2, 3, 5, 7, 12] 

Learning rate [0.0001, 0.001, 0.01]  

Dropout rate [0.1, 0.2, 0.3] 

Batch size [8, 16, 32, 64] 

Number of epochs [500, 1000, 1500, 2000] 

 

For the optimisation algorithm we used the Adam 

optimizer [39] for both models. More details about the 

models are as follows: 

The PV model: To forecast PV electric load 

production, we used a dataset for Adrar, which 

consists of 7237 data points (hourly steps), 70% of the 

data were used for training, while 30% were used for 

testing the model, which are unknown data that was 

not used in the training. The topology of the used 

LSTM is composed of two hidden layers, with 50 

neurons in the first hidden layer and 30 in the second. 

The input vector consists of three lagged values of 

each one of the four input variables, which are the past 

load values, temperature, wind speed, and irradiance.  

The Wind energy model: Similar to the PV 

model, the LSTM consists of two hidden layers with 

50 and 30 hidden neurons. The input vector consists of 
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2 lagged values of the two used variables: past load 

and wind speed. 

 

5. Results and discussion  
In this section, the results are presented, 

discussed, and compared with some of the field’s 

benchmark models. 

 

5.1. Forecasting the energy 
 

 In order to decide the most suitable topologies and 

hyperparameters for our models, we performed several 

tests and used the root-mean-squared-error (RMSE) 

and the mean-absolute-error (MAE) evaluation 

metrics, which are computed using equations (6) and 

(7) where ai is the predicted value, pi is the observed 

value, and i is the length of the input vector. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (a𝑖 −  pi)²𝑁

i                                  (6)  

𝑀𝐴𝐸 =  
1

𝑁
 ∑ |𝑎𝑖 − 𝑝𝑖|𝑁

𝑖=1                                                   (7) 

 

Table 2 summarizes the used hyperparameters of 

both models that were selected based on the validation 

errors obtained from the multiple performed tests. 

Table 3 presents the obtained performances in terms of 

RMSE and MAE metrics, the solar energy model 

achieved a MAE of 0.024 and a RMSE of 0.026, while 

the wind energy model achieved a MAE of 0.109 and 

a RMSE of 0.166 on the test dataset. 

 

Table 2. The used hyperparameters 

Models 

Hidden 

layers 

size 

Lag 

size 

Learning 

rate 

Dropout 

size 

Batch 

size 

Solar 

energy 
[50-30] 3 0.001 

[0.1-

0.1] 
16 

Wind 

energy 
[50-30] 2 0.001 

[0.1-

0.1] 
16 

 

Table 3. Models' performance 

 Models 
MAE RMSE 

Train Test Train Test 

Solar energy 0.021 0.024 0.019 0.026 

Wind energy 0.106 0.109 0.105 0.166 

 

Figures 5 and 6, compare the real and the 

forecasted values of a 24-hour sample for a winter’s 

day for both wind and solar models. The models were 

able to forecast the daily production trends very 

accurately over the entire 24-hour period. 

  
Figure 5. Forecasting wind load production 

 

5.2. Comparison with benchmark models 

 
 We compared our LSTM models against some of 

the most used forecasting techniques in the literature, 

mainly: ARIMA, SVR, and feed forward Mutli-

layered perceptron (MLP) networks, in order to 

validate the obtained performance of our models. 

 

5.2.1. SVR  

 

 Support vector regression (SVR) is an extension 

of the traditional support vector machine (SVM) and it 

has been used successfully to address regression 

problems on different research areas [40]. SVR keeps 

all the main characteristics and principals of SVM for 

classification with some minor changes. The most 

important hyperparameter in SVR is the kernel 

function, in our case we used radial basis function 

(RBF). 

 

5.2.2. ARIMA 

 

 ARIMA which stands for Autoregressive 

integrated moving average, is a first-class time series 

forecasting technique introduced by Box and Jenkins 

[41]. ARIMA models are defined by three parameters: 

Figure 6. Forecasting Adrar PV load production 
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p, q, and d, which refer to the number of lag 

observations included in the model, the moving 

average parameters, and the number of differencing 

passes respectively. In our experiments we set the 

parameters p to be equal to the used lag size in the 

LSTM models, and we set the parameter q to 0 and d 

to 1. 

 

5.2.3. MLP 

 

 The last used benchmark model is a feed forward 

neural network, which is one of the most widely used 

models for forecasting and function approximation 

problems [42]. In our experiments we used two hidden 

ANNs with a sigmoid activation function. 

 

5.2.4. Comparison and discussion 

 

 All the tested models received the same training 

and test data, the evaluation metrics MAE and RMSE 

were used to compare the performances of the models. 

The obtained performance of each model is presented 

in table 4. 

 

Table 4. Comparison between LSTM and other 
Benchmark models 

Metric Model LSTM MLP SVR ARIMA 

RMSE Solar energy 0.026 0.241 0.380 0.217 

Wind energy 0.166 0.344 0.338 0.214 

MAE Solar energy 0.024 0.222 0.073 0.137 

Wind energy 0.109 0.311 0.078 0.146 

 

 Based on the obtained results, all the tested 

methods achieved good and acceptable performances 

with a small advantage for our LSTM models as they 

achieved smaller MAE and RMSE errors. Therefore, 

despite the good performances of the benchmark 

models especially ARIMA and MLP, the proposed 

LSTM models relatively enhanced the forecasting 

quality on the available datasets. 

 

5.3. Forecasting the costs of Adrar’s energy 

demand  

 In this work we address the issue of mixed energy 

sources for electrical production (RE and fossil 

energy) in Adrar’s region; hence, adding both PV and 

wind energy forecasting and subtracting it from the 

daily demand of Adrar. This gives us the load to be 

produced using fossil energy via gas turbines as 

illustrated in figure 7. Forecasting the remaining load 

to be produced may be helpful to optimize the quantity 

of NG needed for production. Although NG is highly 

subsidized by the government and therefore relatively 

inexpensive, optimization of its use benefits the 

environment by reducing the use of fossil fuels, 

decreasing CO2, and increasing air quality  

 
Figure 7. Adrar's fossil production and global energy 

demand (The difference is filled by RE) 

 As illustrated in Figure 7, the evening is mostly 

covered by fossil production using Adrar's gas-fired 

power plant. RE production covers an important 

portion of the demand from 6am to 4pm, which is 

mainly due to the fact that the main renewable source 

is solar, which tends to decrease to zero after sunset 

(around 7pm). This limitation cannot be overcome 

unless the wind farm of Kabertene is extended, and 

even then, it will still rely on wind speed. The best 

solution would be to store excess PV production and 

release it at peak time, but this is a totally different 

issue in terms of technological constraints. 

Thus, to calculate the equivalent amount of NG 

that was used to generate the fossil energy output, the 

equation (8) from the U.S Energy Information 

Administration [43] was used:  

 
𝐴𝐺 =  𝐻𝑅 / 𝐻𝑉                         (8) 

 

Where AG is the amount of gas used to produce 

one kWh, HR is the heat rate of the power plant and 

HV is the heat value of the used fuel. Hence, assuming 

that the HV of natural gas is 1,023,000 Btu/Mcf and the 

average HR of a natural gas-fired power plant is 8,039 

Btu/kWh, producing 1 kWh of electric power requires 

burning 0.00786 Mcf of natural gas, which is 

equivalent to 0.22 m3. 

Secondly, to compute the CO2 emitted from 

producing electric power using fossil energy, we used 

the emission factors from [44], which indicates that the 

CO2 equivalent of burning natural gas is 

0.0551 𝑡𝐶𝑂2/𝑀𝑐𝑓 which is equal to 0.0019 𝑡C𝑂2/
𝑚3. 
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Figure 8. Comparison of CO2 emission in the case of 

using and not using RE 

Figure 8 above compares the emitted amount of 

CO2 if all of the produced electric demand in Adrar 

was produced using only the NG fired power plant 

with the emissions using RE to produce a portion of 

the load. It can be seen that RE can help reduce the 

emissions by up to 15 tons of CO2 per hour (25%). 

Figure 9 illustrates a comparison between the 

consumed amount of NG in the two cases (whether 

renewable energy sources were used to generate the 

electric load or not). 

 

 
Figure 9. Comparison of NG consumption in the 

case of using and not using RE 

6. Conclusion  

The world is facing a climate crisis and steps must 

be taken to reduce the amount of CO2 in the 

atmosphere. Short term load forecasting is an essential 

task in order to define, at an hourly or even quarterly 

basis, the electric load to be produced. This should be 

matched with the daily future demand for an optimal 

distribution of production resources and to avoid any 

energy shortage or waste. 

This paper presented the modeling steps of both 

wind turbine and PV electrical energy production 

fields in the region of Adrar, Algeria in terms of 

electrical load. The artificial intelligence approach 

used is LSTM neural networks. LSTM has proved to 

be a suitable solution for short-term forecasting by 

achieving good performances and accuracy. The 

production forecast accurately evaluates the remaining 

load to be produced using traditional fossil 

capabilities. Thus, generating substantial savings in 

terms of NG and environmental protection in terms of 

reducing CO2 emissions.  

Looking forward to reducing CO2 emissions, we 

hope that in some way the approaches developed in 

this paper will help us to be more resilient towards the 

effects of climate change.  

For future work we aim to generalize the approach 

to include more regions of Algeria, as well as 

including more energy and air pollution sources. 
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