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Abstract

In zone-based evacuations, the evacuated region
is divided into zones, and vehicles follow the single
evacuation path assigned to their corresponding zone.
Ideally, these evacuation paths converge at intersections
to reduce driver hesitation; and non-preemptive
schedules ensure that the evacuation of a zone proceeds
without interruptions once it starts. We present a
column-generation algorithm that produces, for the first
time, convergent and non-preemptive evacuation plans
in real large-scale evacuation scenarios. Furthermore,
we compare our algorithm against existing models that
produce convergent paths or non-preemptive schedules
separately. Finally, we use a traffic simulator to evaluate
the quality of the generated plans in real-world settings.

1. Introduction

The traditional disaster management cycle consists
of four primary phases: preparedness, mitigation,
response, and recovery [1]. Upon the threat of
a man-made or natural disaster, evacuation planning
plays a critical role in the preparedness and response
phases [2]. Therefore, when dealing with large-scale
evacuations, emergency services require actionable
evacuation plans that can be clearly communicated and
controlled by authorities in these two phases.

Actionable evacuation plans require authorities to
clearly communicate the evacuation paths and the
evacuation schedule. To achieve this, a common practice
is to use zone-based evacuation plans in which the
evacuated region is divided into smaller zones, and
a single evacuation path is assigned to each one of
them [3]. Thus, all the vehicles from the same zone
should follow the same assigned evacuation path, that
conducts to a safe zone. Additionally, authorities often
use non-preemptive schedules, which guarantee that the
departure of vehicles from a zone is never interrupted
once its evacuation starts [4]. This type of schedules are
also easier to enforce and control.

Furthermore, to better control the development of
the evacuation, erratic behavior from evacuees must be
reduced. If two evacuation paths meet at the same
intersection but lead to different places, driver hesitation
will increase, resulting in additional congestion [5]. For
this reason, authorities often prefer to use convergent
paths that merge when they meet at intersections [6].
Convergent paths allow authorities to appropriately
close access to unoccupied roads at strategic locations
so that the flow of vehicles proceeds as planned.

The most challenging question when planning an
evacuation is how to deal with the congestion. If poorly
handled, arising congestion can delay evacuations for
several hours, causing evacuees to remain at threat
in the affected area [7]. One way to control its
appearance is by conservatively setting departure rates
in the non-preemptive schedule so that the network is
never used above its capacity [8]. Another way is by
using the contraflows procedure, which increases the
capacity of the road network by reversing the direction
of certain lanes on major arteries [9]. In this way,
contraflows can virtually double the capacity of the
selected roads without affecting traffic safety [10].

In this paper we present, for the first time, a
column-generation (CG) algorithm for zone-based
evacuation planning that simultaneously produces
convergent paths and non-preemptive schedules.
Our algorithm can be easily extended to consider
contraflows. We test our algorithm in a case study
inspired by a real evacuation scenario and compare
our approach to existing models in the literature that
create convergent or non-preemptive plans, separately.
Furthermore, we use a traffic simulator to evaluate the
quality of our plans in real settings.

The remainder of this paper is organized as follows.
Section 2 presents a literature review on existing models
for zone-based evacuation. Section 3 formally presents
our problem description. Section 4 presents our CG
algorithm. Section 5 presents our case study and results.
Finally, Section 6 concludes the paper and outlines
research currently underway.
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2. Literature Review

Evacuation planning models can be classified
according to their precision level at a macroscopic or
microscopic scale [11, 12]. Models at the macroscopic
scale usually focus on strategic decisions, consider
evacuees as homogeneous, and use network flows
models in graphs expanded over discretized time [11].
For example, Lim et al. [13] evacuate three regions
in the Greater Houston area in Texas using a capacity
constrained network flow model on a time-expanded
network. Models at a microscopic scale commonly use
simulation models to capture the movement, behavior,
and interactions of evacuees [12]. Pel et al. [14]
presented a review on traffic simulation models used
for evacuation planning. Models at the less-known
mesoscopic scale usually couple optimization and
simulation models in iterative feedback loops [15]. In
this paper, we follow the macroscopic trend of using a
time-expanded network in our optimization model; and
we use a traffic simulator to microscopically evaluate the
resulting evacuation plans.

The zone-based evacuation planning problem
(ZEPP), firstly introduced by Pillac et al. [16], aims
to find a single evacuation path for every zone at
a macroscopic scale. To solve it, Pillac et al. [10]
proposed a conflict-based path generation (CPG)
heuristic that produces evacuation plans in a small
computational time, with neither convergent paths nor
non-preemptive schedules.

The problem of finding convergent paths for
the ZEPP (C-ZEPP) was solved by Romanski and
Van Hentenryck [17] using a Benders decomposition
(Benders Convergent) algorithm. Their restricted master
problem (RMP) is based on a tree-design problem
(TDP) that maximizes the number of evacuated vehicles
in a predefined time horizon while producing convergent
paths in a network with aggregated capacities over
time. The subproblem is a flow scheduling problem
(FSP) that maximizes the number of evacuated vehicles
and schedules their flow along the convergent paths
(generated by the RMP) while ensuring the network
capacity at any time. They used Pareto-optimal cuts to
speed up the convergence of the algorithm, which stops
when both the RMP and FSP evacuate the same number
of vehicles. Furthermore, they embedded this Benders
Convergent (B-C) algorithm within a binary search that
finds the minimum clearance time of the evacuation.
Although the B-C algorithm generates convergent
paths efficiently, it does not produce non-preemptive
schedules.

Even et al. [18] and Artigues et al. [19]
find non-preemptive schedules for an evacuation using

constraint programming (CP). Their models receive as
input parameters the unique evacuation routes for each
zone and determine their evacuation start times and
their departure rates. Other approaches formulate the
problem as a resource-constrained project scheduling
problem (RCPSP) [20]. For example, Artigues et al.
[21] propose a RCPSP model using a static network
where every arc is a resource, the evacuation of a
zone is a job that requires these resources, and the
exchange of resources between jobs is constrained by
conditional time lags. As all of these approaches receive
the evacuation routes as inputs and focus on scheduling
evacuees, they are more concerned with operational
decisions. In contrast, in this paper we deal with
strategic or tactical decisions by jointly considering the
design of the evacuation routes and the scheduling of
evacuees.

The problem of jointly determining the routes and
the non-preemptive schedules for the ZEPP (NP-ZEPP)
was solved by Pillac et al. [22] and Hasan and
Van Hentenryck [23] by introducing the concept of
response curves to model the behavioral response of
the individuals to evacuation orders [14]. A response
curve models the departure rate of a zone once its
evacuation starts. Thus, a plan for a given zone is
determined by three components: an evacuation path, an
evacuation start time, and a response curve for vehicles
in that zone to follow. They presented a CG (CG-NP)
algorithm for the NP-ZEPP in which columns are plans
for zones and the RMP is a set partitioning problem
that selects a plan for every zone while ensuring the
network capacity. Hasan and Van Hentenryck [23]
solve in parallel multiple pricing subproblems (PSPs)
that generate feasible plans for every zone and every
response curve. They do so by solving a shortest
path problem with resource constraints (SPPRC) in
every PSP using a hybrid approach that first computes
k-shortest paths [24] until finding an elementary one
or hitting a K threshold and switching to solve the
CSP using a mixed-integer programming (MIP) model.
Although this CG-NP algorithm produced evacuation
plans with non-preemptive schedules, the resulting paths
were not convergent.

The use of contraflows has been extensively studied
in the literature. Kim et al. [25] demonstrated
that the problem of selecting which arcs to be used
in contraflow in an evacuation network is NP-hard.
Recently, Pyakurel [26] presented efficient algorithms
for the quickest evacuation planning problem using
contraflows and flow-dependent transit times. Hasan
and Van Hentenryck [4, 8] presented a systematic review
and comparison of all the existing models for the ZEPP
in settings with and without contraflows, but none of
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the compared models produced convergent paths and
non-preemptive schedules simultaneously.

In this paper, we present a CG algorithm for
the ZEPP that considers contraflows and, for the
first time, simultaneously produces convergent paths
and non-preemptive schedules. Our RMP is a set
partitioning problem that selects a plan for every zone
and generates convergent paths while ensuring the
network capacity. The additional convergent constraints
in the RMP enforce the PSPs to produce elementary
paths. Thus, every PSP is a SPPRC solved using
the Pulse algorithm [27] that outperforms the hybrid
approach proposed by Hasan and Van Hentenryck [23].
We compare the performance and the generated plans
of the B-C, the CG-NP, and our algorithm from a
macroscopic perspective. Finally, we use a traffic
simulator to evaluate the quality of the generated plans.

3. Problem Description

Consider an example evacuation scenario in which
20 vehicles have to be evacuated from one evacuation
zone (i.e., 0) and there are two available safe zones (i.e.,
A and B). To represent this scenario, let G = (N =
E ∪ T ∪ S,A) be a static graph in which E , T , and
S are the sets of evacuation, transit, and safe nodes,
that represent evacuation zones, intersections of the road
network, and safe zones, respectively; and A is the set
of arcs that represent segments of the road network. For
every evacuation node k ∈ E , let dk be its demand,
which represents the number of vehicles to be evacuated.
For every arc e ∈ A, let τe be its travel time and ue
its capacity (vehicles per unit time). Let Ac ⊆ A be
the subset of arcs that can be used in contraflow and
let ē ∈ Ac be the unique arc that goes in the opposite
direction of arc e ∈ Ac. Figure 1 presents the static
graph of this example. Arcs in Ac appear with their
corresponding opposite next to them.
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Figure 1. Static graph

To model traffic flow over time, we convert our static
graph into a time-expanded graph Gx = (N x,Ax).
We first discretize time into periods of equal length.
Let H = [0, h] ⊂ Z be the set of periods in the
planning horizon. Let Λ(i) = { it | t ∈ H} be the set of

time-space copies of node i ∈ N and let v be a virtual
sink node. Thus, N x = ∪i∈NΛ(i) ∪ {v}. For every
static arc e = (i, j) ∈ A and every period t ∈ H, let
et = (it, jt+τe) be a movement arc that allows vehicles
to flow through space and time. Each movement arc
et is a time-space copy of e with capacity uet = ue.
LetMe = { et = (it, jt+τe) | t, t+ τe ∈ H} be the set
of movement arcs generated by arc e = (i, j) ∈ A.
Thus, the set of all movement arcs is Axm = ∪e∈AMe.
LetAxw = { (kt, kt+1) | k ∈ E , t ∈ H, t < h } be the set
of waiting arcs that allow vehicles to wait until their
departure. Let Axs = { (it, v) | i ∈ S, t ∈ H} be the
set of sink arcs that allow vehicles to reach the virtual
sink node after arriving to a safe node. Waiting and sink
arcs have infinite capacity. Thus,Ax = Axm∪Axw ∪Axs .
We further remove from the time-expanded graph every
node and arc that cannot be reached from an evacuation
node at period 0 or that cannot reach the virtual sink
node. Finally, we let n ∈ N x and α ∈ Ax be a generic
node and arc in Gx; and δ−(·) and δ+(·) be the sets
of incoming and outgoing arcs of any node in N or
N x. Figure 2 presents the time-expanded graph in our
example. Removed nodes and arcs are greyed out, every
arc is labeled with its capacity, and all movement arcs
Me are in the same color as static arc e ∈ A.
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Figure 2. Time-expanded graph

Let Fk be the set of predefined response curves
associated with evacuation node k ∈ E that model the
number of departing vehicles from k at every period
after its start period t0 ∈ H. For every f ∈ Fk, let
F be its cumulative function. Let Dk(t) be the number
of departing vehicles from evacuation node k ∈ E at
period t ∈ H under response curve f ∈ Fk. Formally,

Dk(t) =

{
0, if t < t0;

f(t− t0), if t ≥ t0.
(1)

Figure 3 shows the values of Dk(t) under different
response curves with an evacuation start time t0 = 60.
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Clearly, Dk(t) can be used to define a non-preemptive
schedule (i.e., uninterrupted departures).

Figure 3. Number of departing vehicles with
different response curves (from [22])

The following definitions are necessary to formally
describe our problem.
Definition 1. A graph G = (N ,A) is connected if for
each k ∈ E , there exists a path P from k to a safe node.
Definition 2. A graph G = (N ,A) is convergent if for
each i ∈ E ∪ T , the outdegree of i is 1.

As stated by Even et al. [6], any connected
evacuation graph G has a connected and convergent
subgraph G′. If an evacuation graph is connected and
convergent, each evacuation node has a unique path to
a safe zone. Now we are ready to formally define our
problem.
Definition 3. Given a connected evacuation graph G, the
Convergent and Non-preemptive Evacuation Planning
Problem (CNP-ZEPP) consists on finding a convergent
subgraph G′ ⊆ G, an evacuation start time t0 ∈ H, and a
response curve f ∈ Fk for every evacuation node k ∈ E
that maximizes the number of evacuated vehicles in the
minimum number of periods available and respects the
network capacity.
Definition 4. The CNP-ZEPP with Contraflows
(CNP-ZEPP-CF) has the addition of finding the subset
A∗c ⊆ Ac of arcs to be used in contraflow.

4. The Column-Generation Algorithm

The key idea behind our CG algorithm for the
CNP-ZEPP (CG-CNP), which we borrow from Pillac
et al. [22], is to generate time-response plans for the
evacuation nodes, henceforward referred to as plans.
A plan for the evacuation node k ∈ E is of the form
p = 〈P, f, t0〉, where P is an evacuation path in the
static graph (it should start at k and end at a safe
node) that vehicles in k should follow; f ∈ Fk is a
response curve specifically adapted for k’s demand from
a predefined set F of response curves; and t0 is the
period at which the vehicles from k start evacuating
following the response curve f .

Our CG-CNP is composed by a restricted master
problem (RMP) and multiple Pricing Subproblems
(PSPs). The RMP is the linear relaxation of an integer
program (IP) that selects plans for every evacuation
node from a small subset of available generated plans,
while ensuring network capacity. Each PSP, one
for every evacuation node and every response curve,
generates feasible promising plans that improve the
incumbent solution. The algorithm has two phases: a
column-generation phase and a last iteration. At every
iteration of the column-generation phase, we first solve
the RMP and then the PSPs until no other promising
plan is generated. Then, in the last iteration, we solve
the RMP as an IP with the generated columns. Thus, our
algorithm is a heuristic for the CNP-ZEPP. We refer the
interested reader to [28, 29] for a review of techniques
and applications of CG on MIPs.

4.1. The Restricted Master Problem

The RMP is a set partitioning problem that selects
plans from a subset of generated plans while ensuring
that the selected plans induce a convergent graph and
respect its capacity. Its objective is a multi-criteria
function that aims to minimize the evacuation time and
maximize the number of evacuated vehicles.

Let Ω′k be the subset of generated plans for
evacuation node k ∈ E , initially populated with an
empty plan that evacuates no vehicles. Thus, Ω′ =
∪k∈EΩ′k is the subset of all generated plans. Let ω(e) ⊂
Ω′ be the subset of generated plans whose path contains
arc e ∈ A, i.e., ω(e) = { p ∈ Ω′ | e ∈ p }. Let ap,et
be the flow of vehicles on arc e ∈ A at period t ∈ H
induced by plan p ∈ Ω′. Let cp be the cost of plan
p ∈ Ω′k, which considers the time at which vehicles
arrive to a safe zone and heavily penalizes the number
of non-evacuated vehicles. Formally, cp is defined as

cp =
∑
e∈p

∑
t∈H

cet · ap,eet + c̄ · d̄p, (2)

where cet , defined by Equation (3), is a cost for
movement arc et ∈ Axm that tallies the normalized time
at which a vehicle arrives in a safe node; c̄, defined by
Equation (4), is a heavy penalty for every non evacuated
vehicle; and d̄p is the number of vehicles from k ∈ E
that could not be evacuated using plan p ∈ Ω′k.

cet = c(i,j)t =

{
t
h , if j ∈ S;

0, otherwise;
(3)

c̄ = 100 · max
et∈Ax

m

{cet} ·max
k∈E
{dk}; (4)
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The RMP considers a binary variable yp that
indicates whether plan p ∈ Ω′ is selected and a binary
variable xe that indicates if arc e ∈ A is included in the
convergent graph. The mathematical formulation of the
RMP is as follows:

minimize
∑
p∈Ω′

cp · yp (5)

Subject to, ∑
p∈Ω′k

yp = 1, ∀ k ∈ E ; (6)

∑
e∈δ+(i)

xe ≤ 1, ∀ i ∈ T ; (7)

∑
p∈ω(e)

yp ≤ |ω(e)| · xe, ∀ e ∈ A; (8)

∑
p∈ω(e)

ap,et · yp ≤ uet , ∀ et ∈ Axm; (9)

yp ∈ [0, 1], ∀ p ∈ Ω′; (10)
xe ∈ [0, 1], ∀ e ∈ A. (11)

Objective function (5) is a multi-criteria function
that jointly minimizes the overall time of the evacuation
and maximizes the number of evacuated vehicles.
Constraints (6) guarantee that a plan is selected for every
evacuation node. Constraints (7) guarantee that the
resulting evacuation graph is convergent (see Definition
2). Constraints (8) prevent from selecting a plan
that uses an arc not present in the convergent graph.
Constraints (9) preserve the capacity of the network.
Constraints (10)-(11) define the variables’ domain.

After solving the RMP at every iteration of the
column-generation phase, we retrieve the dual variables
{πk}, {πe}, and {πet} of constraints (6), (8), and (9),
respectively and plug them into the PSPs. Finally, in the
last iteration, we set the variables to binary.

4.2. The Pricing Subproblem

The PSP is in charge of finding promising plans to
include in the RMP. Since each plan is independent to
the others, multiple PSPs, one for every evacuation node
k ∈ E and every response curve f ∈ Fk, can be solved
concurrently in parallel to find multiple promising plans.
Therefore, henceforward in this subsection, when we
refer to a promising plan p, we imply that p is for
evacuation node k ∈ E and uses response curve f ∈ Fk.

A promising plan has a negative reduced cost in
the RMP, implying that the new plan will decrease the
objective function if it enters the RMP basis. Thus,

the PSP minimizes the reduced cost rp of the generated
plan. Namely,

rp = c̄·d̄p−πk−
∑
e∈p

πe+
∑

et∈Ax
m

(cet−πet)·ap,et . (12)

Let us gain insight on the above expression. First,
note that the only term that is independent to the plan’s
path is πk. Thus, to find a plan with negative reduced
cost, we can find a path P and a start time t0 that
minimizes the other terms in Equation (12). Let these
terms be grouped as:

Ckf (P, t0) = c̄ · d̄p −
∑
e∈p

πe +
∑

et∈Ax
m

(cet − πet) · ap,et .

(13)

Second, consider the highlighted time-expanded
path { 00, 01, 22, B3, v } in Figure 4. Its projected path
in the static graph is { 0, 2, B }, which departs from 0
at period 1. Let the generated plan use this (static) path
and this start period. Then, vehicles will also use the
other non-highlighted (time-expanded) path in Figure
4. Since the generated plan’s response curve is known
a priori, the highlighted time-expanded path uniquely
determines the flow of vehicles in advance. Thus, flows
can be aggregated in advance.
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Figure 4. Path in the time-expanded graph

Therefore, to jointly find a path P (in the static
graph) and an evacuation start period t0 for a new plan
(for evacuation node k ∈ E), we can just find path P x

(in the time-expanded graph) from k0 to v. P is the
projected path of P x into the static network and t0 is
the period at which P x departs from a time-space node
Λ(k) using any movement arc.

To find a path P x that minimizes Ckf (P, t0), it is
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necessary to define the following costs:

csp
α = 0, ∀ α ∈ Axw.

(14)

csp
α = csp

(it,v) = c̄ · (dk − F (h− t)), ∀ α ∈ Axs ;

(15)

csp
et = −πe +

h∑
t′=t

(cet′ − πet′ ) · f(t′ − t), ∀ et ∈ Axm;

(16)

Equation (15) accounts for the penalty cost of
non-evacuated vehicles with the generated plan, which
is the first term in Equation (13). Since flows can
be aggregated and the accumulated function F of the
response curve is known a priori, the number of
non-evacuated vehicles can be computed and thus, its
penalty. Equation (16) aggregates future costs of every
movement arc. However, there is a crucial consideration
to note. The summation in Equation (16) accounts
for the last summation in Equation (13) by aggregating
future costs of the movement arcs. Nonetheless, note
that in Equation (13), there is one term πe for every
arc e ∈ p. However, note that all the movement arcs
Me have the same term πe in Equation (16). It follows
that the resulting path P x cannot have more than one
movement arcMe of any e ∈ A and hence

∑
α∈Px

csp
α =

∑
(it,v)∈Ax

s∩Px

c̄ · (dk − F (h− t))−
∑

et∈Ax
m∩Px

πe+

∑
et∈Ax

m∩Px

h∑
t′=t

(cet′ − πet′ ) · f(t′ − t)

= c̄ · d̄p −
∑
e∈p

πe +
∑

et∈Ax
m

(cet − πet) · ap,et

= Ckf (P, t0) (17)

Thus, to find a path P x that minimizes Ckf (P, t0), we
can find a shortest path in the time-expanded network,
using cost csp

α for every arc α ∈ Ax, and guaranteeing
that no more than one movement arc Me is used for
any static arc e ∈ A. Note that this last constraint is
equivalent to P x not having more than one time-space
node Λ(i) for any transit node i ∈ T . Thence, each PSP
is a SPPRC that ultimately produces elementary paths in
the static graph as in [23].

Let xα be a binary variable that indicates whether
arc α ∈ Ax is used in path P x. The mathematical

formulation of each PSP is as follows:

minimize
∑
α∈Ax

csp
α · xα (18)

Subject to,

∑
α∈δ+(n)

xα −
∑

α∈δ−(n)

xα =


1, if n = k0;

0, ∀ n ∈ N x \ {k0, v};
−1, if n = v;

(19)∑
it∈Λ(i)

∑
et∈δ+(it)∩Ax

m

xet ≤ 1, ∀ i ∈ T ; (20)

xα ∈ {0, 1}, ∀ α ∈ Ax. (21)

Objective function (18) minimizes the cost of
P x. Constraints (19) are the classical flow-balance
constraints. Constraints (20) are the resource
constraints. Finally, constraints (21) define the
variables’ domain.

Every PSP tries to find a plan p for evacuation node
k ∈ E using response curve f ∈ Fk. After finding
the constrained shortest path P x, we can find all the
remaining components of p. The path P can be obtained
by projecting P x into the static network. The plan’s start
time t0 is the time at which P x leaves a node Λ(k) using
a movement arc. Formally,

t0 =
∑

kt∈Λ(k)

∑
et∈δ−(kt)

t · xet (22)

By substituting Equations (17) and (13) into Equation
(12), the reduced cost rp of the generated plan is

rp =
∑
α∈Ax

csp
α · xα − πk (23)

Finally, if the reduced cost of the generated plan p
satisfies rp < 0 and p /∈ Ω′k, we include p in the subset
of generated plans Ω′k and, consequently, in Ω′. When
no additional plan is generated, the column-generation
phase ends and the last iteration solves the RMP as an
IP with the generated plans.

The result of the algorithm is the set Ω′∗ ⊂ Ω′ of
the selected plans, one for every evacuation node, which
induce a convergent subgraph G∗ = (N ∗,A∗).

4.3. The Contraflow Extension

Our CG-CNP can be easily extended to consider
contraflows by following the same intuition that Hasan
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and Van Hentenryck [4] used to consider contraflows
in the B-C algorithm proposed by Romanski and Van
Hentenryck [17]. Because of Constraints (7), which
guarantee that the outdegree of every node is at most 1,
it follows that arc e ∈ Ac and its opposite ē ∈ Ac cannot
be in the resulting convergent graph G∗ at the same time.
Therefore, if e ∈ Ac is used in the resulting convergent
graph (i.e., e ∈ A∗), its opposite ē can be safely used
in contraflow as it is guranteed that ē is not used by any
other evacuation path (i.e, ē /∈ A∗).

Therefore, to consider contraflows, let uoe be the
original capacity of arc e ∈ Ac. Before constructing
the time-expanded graph, we set the capacity of every
arc e ∈ Ac to ue = uoe + uoē. Then, we proceed to build
the time-expanded graph with the augmented capacities
and execute the CG-CNP algorithm as usual. After its
completion, we can easily determine whether an arc is
used in contraflow by checking if the flow on its opposite
arc exceeds its original capacity at any period.

A∗c =

 e ∈ Ac

∣∣∣∣∣∣ ∃ t ∈ H s.t.
∑
p∈Ω′∗

ap,ēt > τē · uoē


(24)

4.4. The Solution Approach for the PSP

When solving the RMP in the last iteration (as an IP),
if Ω′ contains all the possible existing plans for every
zone, then it is guaranteed that the optimal solution
will be found. However, in practice, there are available
only a small subset of generated plans. Having a larger
set of plans increments the chances of finding a better
solution in the last iteration. Nonetheless, to get a plan,
every PSP must solve a SPPRC, which is NP-hard
[27]. Hasan and Van Hentenryck [23] solved the SPPRC
in every PSP using a Hybrid algorithm that has two
stages. The first stage attempts to solve the SPPRC
indirectly using the Recursive Enumeration Algorithm
(REA) [24] to iteratively find k-shortest paths. The REA
stops as soon as it finds a path P x that, when projected
into the static graph, results in an elementary path P .
However in practice, many instances required a large k,
consuming limited memory and time. For that reason,
they impose a K limit that, when reached, switches
the Hybrid algorithm to the second stage that solves
the SPPRC directly using a MIP solver. Therefore, the
Hybrid algorithm can generate at most one plan per PSP.

In this paper, we use the Pulse algorithm by Lozano
and Medaglia [27] to directly solve the SPPRC in every
PSP. The Pulse is an specialized algorithm for the
SPPRC that has been successfully extended and used
to solve different problems [30]. The key idea is to

recursively propagate pulses from a source node towards
an end node. As a pulse traverses the network from node
to node, it builds a partial path P x and stores multiple
attributes associated with it, such as the cumulative cost
or resource consumption. At the core of the algorithm,
the pruning strategies by dominance, feasibility, and
bounds prevent the propagation of a pulse as soon as
there is enough evidence that the partial path will not
lead to a feasible or improved solution. Then, each pulse
that reaches the final node contains all the information
for a feasible path that is associated with a new plan.
This plan is included in the subset of generated plans
if it satisfies the reduced cost criterion. Hence, the key
advantage of the Pulse over the Hybrid approach is its
ability to generate multiple plans per PSP.

In our simplest version of the Pulse, we propagate
pulses in the time-expanded network in a forward
direction from the evacuation node k0 in each PSP
towards the virtual sink node v. The resources are
associated with each one of the transit nodes T .
Therefore, as soon as a pulse visits more than one node
in Λ(i) for any i ∈ T , we safely prune it because
it has already consumed all the resource available.
Additionally, for the pruning by dominance, we use an
elitist rule by fixing one label in every node that stores
the best cost among the paths that have visited them.
Finally, we use the original prune by bounds.

One of our contributions is the flexibility when using
the Pulse to discover even more plans per PSP. In case
that more plans are needed for any reason, e.g., not all
the evacuees could be evacuated, we can easily extend
the Pulse to find more plans that could resolve this issue.
To do so, we use the Pulse F+B: After running the
forward Pulse in every PSP, we run a backwards Pulse
from the virtual sink node v towards the evacuation node
k0. The Pulse F+B allows us to find new paths that may
not be found in the forward direction, at the expense
of more computational time, and with the potential
benefit of finding new plans that could remedy any lack
of options to completely evacuate the desired region.
Experimental results presented in Section 5 demonstrate
the benefits of this approach.

5. The Case Study

Our case study is the evacuation of 38,343 vehicles
in the Hawkesbury-Nepean (HN) floodplain, located at
the north-west of Sydney, Australia. The resulting static
graph has 80 evacuation nodes, 184 transit nodes, 5 safe
nodes, and 580 edges. Our planning horizon is 10 hours
with 5-minute periods, resulting in h = 120. We first
present a comparison between the Hybrid and the Pulse
algorithms for solving the PSPs in the CG-CNP. Then,
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we present a macroscopic evaluation of our algorithm
and other algorithms in the literature for the ZEPP.
Finally, we present a microscopic evaluation of the
same algorithms using a traffic simulator. All of the
algorithms were implemented in JAVA 8 and solved with
GUROBI 9.2. All of our experiments were ran using a
PC with an Intel® CoreTM i7-1085H processor running
at 2.7GHz, 32 GB RAM, and using Windows 10 Pro.

5.1. The Hybrid vs. Pulse Comparison

We ran the CG-CNP algorithm specifying a set of
step response curves F with departure rates of 2, 5,
10, 25, and 50 vehicles per period. Additionally, we
imposed a limit of 24 hours for the last iteration and a
limit of 48 hours for all the algorithm. We set a K limit
of 105 paths for the REA and a time limit of 300 seconds
in the MIP for the SPPRC in the Hybrid algorithm.

Table 1 presents the results of the CG-CNP. We
first focus our attention on the rows associated with
the Pulse and the Hybrid approaches in both settings
without and with contraflows. We can evidence
that the Pulse generates more plans, which allow the
column-generation phase to converge in fewer iterations
and in less computational time. Figure 5 presents a
clear picture of how drastically the Pulse outperforms
the Hybrid algorithm when solving all the PSPs in every
iteration of the column-generation phase (in the scenario
without contraflows). The average speedup achieved
is up to 47.8 when the Pulse is faster and 20.2 in
general. Furthermore, the plans generated allow the
last iteration to converge even faster to a final solution
(Column 7). Overall, the Pulse always outperforms
the Hybrid algorithm in terms of CPU time. This is
specially relevant considering that the CG-CNP is a
heuristic algorithm for the CNP-ZEPP.

Now, we focus our attention on the Pulse F+B.
Overall, the additional plans found with the backwards
Pulse heavily impact the time to solve the RMP in
the last iteration of the algorithm. However, this
approach is the one that produces the best objective
functions. In the setting with contraflows, the new
experiment also evacuates everyone within the same
evacuation time as the forward Pulse. In contrast,
without contraflows, neither the Pulse nor the Hybrid
approaches can evacuate all the vehicles. However,
with the additional plans found with the Pulse F+B, the
algorithm is not only able to evacuate all the vehicles
but it does more efficiently (i.e., 585 mins). A possible
rationale for this behavior is that the backwards Pulse,
due to its nature, discovers new paths from the future to
the past that could not be found using the forward Pulse.
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Figure 5. Time (mins) solving the PSPs

5.2. The Macroscopic Comparison

We now compare our CG-CNP algorithm for the
CNP-ZEPP against the B-C for the C-ZEPP [17], and
the CG-NP for the NP-ZEPP [23]. We use the results
of the B-C algorithm for minimizing the clearance
time and imposing a time limit of 300 seconds on the
FSP. For the CG-NP, we used the same parameters as
the CG-CNP. Table 2 presents the results of all the
algorithms. Among the three versions of the ZEPP,
the C-ZEPP is the most relaxed one because it allows
evacuation schedules without conservative departure
rates that can be interrupted anytime. On the other
hand, the CNP-ZEPP is the most constrained version
because it requires paths to be convergent and schedules
to be non-preemptive with conservative departure rates.
Both the B-C and the CG-NP, which solve more relaxed
versions of the ZEPP, are able to evacuate 100% of
the vehicles. However, the CG-CNP with neither the
Hybrid nor the Pulse, which solve the most constrained
version of the ZEPP, can evacuate them all. Columns 6
and 9 clearly show that as the problem becomes more
constrained, the evacuation takes more time.

An interesting insight from Columns 4 and 7 is
that the convergent constraints in the RMP allow the
CG-CNP converge faster than the CG-NP. Moreover,
considering contraflows relaxes the capacity constraints
and allows all the CG algorithms to find a final solution
even faster. Then, convergent plans are inherently
amenable to contraflows.

5.3. The Microscopic Evaluation

None of the above models capture microscopic
attributes that ultimately affect the evacuation
dynamics. For this reason, similarly to Hasan and
Van Hentenryck [8], we use Sumo (Simulation for
Urban Mobility) traffic simulation package [31] to
evaluate the performance of the generated evacuation
plans in a more realistic scenario. We use actual
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Table 1. Results of the CG-CNP algorithm for the CNP-ZEPP

Contraflows
algorithm

used in
PSPs

Column-generation phase Last iteration Algorithm

Generated
plans

Number of
iterations

CPU time
(mins)

Final objective
function value

CPU time
(mins)

Final objective
function value

CPU time
(mins)

Evacuated
percentage

Evacuation
time (mins)

No
Hybrid 11,312 77 408.43 8,815.61 291.03 20,857,053.13 699.46 99.14 590
Pulse 17,284 30 104.82 8,815.61 43.45 36,995,819.98 148.28 98.72 590

Pulse F+B 40,567 20 514.96 8,815.61 1,440.02 13,731.27 1,954.98 100.00 585

Yes
Hybrid 3,023 49 14.13 6,202.69 1.19 8,631.05 15.34 100.00 470
Pulse 3,517 28 5.91 6,202.69 2.41 8,536.44 8.36 100.00 455

Pulse F+B 5,834 20 4.86 6,202.69 21.43 8,312.58 26.31 100.00 455

Table 2. Macroscopic results

Problem Algorithm Version Without contraflows With contraflows

CPU time
(mins)

Evacuated
percentage

Evacuation
time (mins)

CPU time
(mins)

Evacuated
percentage

Evacuation
time (mins)

C-ZEPP B-C Min. clearance 0.26 100.00 335 1.10 100 210
NP-ZEPP CG-NP Hybrid 2,881.40 100.00 480 1,495.72 100 245

CNP-ZEPP CG-CNP
Hybrid 699.46 99.14 590 15.34 100 470
Pulse 148.28 98.72 590 8.36 100 455
Pulse F+B 1,954.98 100.00 585 26.31 100 455

data of the road network such as speed limits, lane
counts, and GPS coordinates to construct a simulation
that considers vehicles’ instantaneous speed, safe
distances between vehicles, car-following behavior,
and lane-changing behavior. The path and departure
times for the evacuated vehicles are retrieved from the
solutions of the algorithms exactly as generated.

Table 3 presents the results of the single-run
simulation of the five algorithms’ solutions without
contraflows. Note that the evacuated percentages
achieved with the five simulations are equal to
the macroscopic results. However, the evacuation
times are different. For this reason, we calculated
the evacuation time ratio as the fraction between
the microscopic (numerator) and the macroscopic
(denominator) evacuation times. A ratio closer to 1
indicates that the gap between the optimization and the
simulation times is lower, which makes the optimization
solution more realistic.

In the B-C algorithm, the generated schedule
specifies departure rates that could induce the utilization
of the road network at full capacity. Thus, in the
simulation, the road network gets saturated, producing
congestion hot spots that severely delay the evacuation.
So the simulation time becomes greater than the
optimization time, causing a ratio above 1. However,
with the CG algorithms, the non-preemptive schedules
with conservative departure rates prevent the road
network to be used at its full capacity. Thus, in the
simulation, the produced delay due to congestion is
so small that it cannot overcome the overestimation of
the transit times due to time discretization. Thus, the

simulation times becomes lesser than the optimization
times, so ratios are below 1. Overall, convergent paths
and non-preemptive schedules with conservative rates
allow the generated plans to be more realistic and behave
accordingly in real-world scenarios.

Table 3. Microscopic results without contraflows
Simulated solution Evacuated

percentage
Evacuation
time (mins)

Evacuation
time ratioAlgorithm Version

B-C Min. clearance 100.00 398.82 1.19
CG-NP Hybrid 100.00 402.18 0.84

CG-CNP
Hybrid 99.14 562.47 0.95
Pulse 98.72 567.73 0.96
Pulse F+B 100.00 544.12 0.93

6. Concluding Remarks

In this paper we presented a column-generation
algorithm for zone-based evacuation planing that, for the
first time, jointly produces convergent evacuation paths,
determines non-preemptive schedules, and selects roads
to be used in contraflow. The key idea of the algorithm is
to use time-response curves with conservative departure
rates that prevent the road network to be used at
its full capacity. We embedded the Pulse algorithm
within our CG to find high-quality solutions efficiently.
We compared our results against existing models in
the literature that produce separately convergent paths
or non-preemptive schedules. When evaluated under
the lens of a microscopic traffic simulation, the joint
use of convergent paths and non-preemptive schedules
produce plans closer to real-world settings. Overall, our
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algorithm produces high-fidelity actionable evacuation
plans.

Future research will integrate the design of routes
into the scheduling models in [18, 21], and using
instance generators in the literature [32] to compare
different approaches. Research currently underway
includes considering electric vehicles (EVs) in the
evacuation in such a way that the electric power grid
does not get overloaded when charging the EVs.
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