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Abstract

There are many checklists for improving supply
chain resilience under different threats, but a lack of
concrete procedures to rigorously assess and select
among countermeasures (CMs). We present a novel
process and method to elicit the needed information
to identify CMs and assess their ability to reduce
risk. We report on the fine-grained analysis underlying
an effective simulation developed to model both the
impact of threats and the impact of alternative CMs in
the information and communication technology supply
chain subject to disruptions due to natural hazards. We
also describe the coarse-grained descriptions needed
to elicit risk reduction estimates from subject matter
experts, and the problems of integrating these two
approaches, bottom up, and top down, to support
management decisions to choose an optimal set of CMs
given a limited budget.

1. Introduction

1.1. Problem and Approach

Every nation is increasingly aware that information
and communication technologies are sourced from
around the world, with the best performance cost
ratios often coming from sources that are vulnerable
to a number of threats. The information and
communications technology (ICT) products and
services supply chain is vulnerable at every point from
the design of chips to the moment that equipment
or software is installed. The U.S. is responding,
particularly through the Department of Homeland
Security (DHS) Cybersecurity and Infrastructure

Security Agency (CISA), and specifically CISA’s
Information and Communications Technology Supply
Chain Risk Management Task Force Working Group
2: Threat Evaluation. This group has identified nine
categories of threats to the ICT supply chain and
has developed specific threat scenarios for each threat
category that are detailed enough to be useful to industry
and government decision makers. The Working Group 2
report [1] has served as a starting point for this project.

We report on a methodology to quantify the impact,
measured by reduction in risk associated with specific
countermeasures (CMs) to threat scenarios. With the
help of CISA and industry experts from a project
Advisory Board, we have selected and specified three
threat scenarios that span many kinds of issues that
are representative of the major issues raised in the
Working Group 2 report and from which our work
should be readily generalizable to the other threats of
interest. The first involves natural hazards: floods,
storms, earthquakes. They are modeled at the level
of plants and interconnections. The second scenario
involves counterfeit materials. They are modeled
by a flow of individual parts or components. The
third scenario involves problems of “onboarding” a
new supplier. This represents problems of financial
stability, technical competence, intellectual property
rights, and geopolitical factors. Our methodology has
three components: elicitation of CMs and risk reduction
estimates from subject matter experts (SMEs), network
modeling and simulation of the supply chain, and use
of optimization tools to choose an optimal set of CMs.
We report on application of our methods to the natural
hazards threat. While our methodology can be easily
extended to the other two threats we have studied, the
technical details, such as changing from a plant-based
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simulation to an agent-based model for parts requires
detailed expansion of the description that is beyond the
scope of a short paper.

We gather input from SMEs in a Zoom-based
focus group approach that includes development of
consensus risk reduction estimates. From these
consensus estimates, sophisticated computer simulation
using the anyLogistix tool [2] generates hundreds
of random examples. This “Monte Carlo” method
is the gold standard for uncertainty in finance and
climate. To identify best decisions, simulations
are tied to an optimization algorithm using Mixed
Integer Programming that considers many possible
combinations of protections. For any given budget it
finds the best allocation of limited funds.

This project is developing a methodology that we
hope will be of use to CISA, other components of DHS,
and the private sector. Our tools provide new approaches
to eliciting expert assessments of relative risk reduction
of different CMS. Our network models and simulations
for supply chains and our optimization models for
selecting the most effective set of CMs should be of
interest to those concerned with understanding the risk
reduction of different mitigation strategies for supply
chain disruptions. The results should provide some
insight about supply chain threats such as those in the
three chosen scenarios, but also more generally to a wide
variety of scenarios and to a wide variety of types of
supply chains, not just for ICT.

The elicitation process, network modeling and
simulations of supply chains, and optimization tools
both inform and are informed by each other. Section
2 describes the elicitation procedure. The details of the
network models are presented in Section 3, while the
approach we have developed for optimization appears in
Section 4. We discuss the challenges of integrating these
three project components into a single coherent tool
for planning and decision making, and some possible
extensions of this work, in Section 5.

1.2. Related Literature

This project has benefited from an extensive
literature on supply chains and supply chain resiliency;
elicitation of risk and risk reduction; modeling and
simulation; and approaches to risk and risk reduction
in the three scenarios of interest. We mention selected
work that has influenced our own approach.

Supply Chains/Scenarios/Threats: Recent
relevant supply chain risk/disruption reviews are
presented in [3] and [4]. An earlier work that used
extensive qualitative methods is in [5]. However, the
literature lacks information on the quantitative impact

of specific mitigations and CMs.
The key source for our selection of threats/scenarios

is the analysis of CISA Working Group 2 [1]. There
is also an enormous literature on CMs. This literature
proposes checklists, often with anecdotal evidence about
some mitigation, leaving users to select their own
portfolios for implementation. We have found that the
literature on threats to supply chains under the three
scenarios of interest was the most helpful part of the
supply chain literature, so we describe it here.

Natural Disasters: Public sources such as [6] and
reports from FEMA (Federal Emergency Management
Agency), ASCE (American Society of Civil Engineers),
and NOAA (National Oceanographic and Atmospheric
Administration) provide useful information regarding
multiple hazards. Data analytic approaches such as
those of [7, 8, 9, 10] have been very helpful in
providing ways to quantify and characterize supply
chain resilience under multiple natural hazards, helping
us develop performance metrics for our simulations.

Counterfeit Parts: The presence of counterfeit
products has led to the development of the Suspect
Counterfeit database in GIDEP (Government-Industry
Data Exchange Program) [11], a very helpful resource.
The Electronic Resellers Association (ERAI) is a
major resource with the world’s largest database
of suspect counterfeit and noncomforming electronic
parts [12]. The literature also describes best
practices for government and industry, e.g., the
Navy’s Counterfeit Materiel Process Guidebook [13]
provides tools for implementing a risk-based counterfeit
materiel prevention program such as ours. [14]
provides counterfeit risk mitigation strategies and
[15] describes challenges of increasing reliance on
commercial-off-the-shelf (COTS) components. We
build on similar strategies, e.g., different inspection
procedures for components from selected vendors or
from COTS sources. [16] suggests using different kinds
of tests; likewise, our simulations allow for different
levels of testing based on questionable behavior.
[17] suggests stronger preventive measures, which
are reflected in our simulations studying pre-event or
preventive CMs as well as post-event CMs. [18]
describes what makes a good counterfeit prevention plan
and [19] lays out a prototype agent-based simulation that
implements an anti-counterfeiting framework. As in our
project, the goal is to use such simulations to identify
effective anti-counterfeiting policies. However, no prior
work similar to our approaches has been reported in the
literature.

Onboarding of New Suppliers: The literature
lacks quantitative metrics or simulation modeling of
the onboarding of new suppliers. The CISA Working
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Group 2 description of an onboarding threat scenario
emphasizes financial health and early warning signs that
a vendor might be dependent on a foreign government
for financial support, signs also mentioned in the
description of MITRE’s Supply Chain Security System
of Trust [20]. The literature on counterfeit parts is
relevant to the onboarding threat as well. For example,
[17] recommends that a vendor’s reporting of counterfeit
parts be monitored and failures potentially leading
to debarring, ideas our models and simulations use.
Digital watermarking of physical and digital documents
(and components) is among the CMs relevant to the
onboarding scenario, with publications such as [21, 22,
23, 24] influencing our work.

Elicitation: There are many reviews of the literature
on elicitation, e.g., [25]. When scientific advice is
used in government decision making, the traditional
approach has been committee discussion, which can
result in bias. This was one motivation for development
of more structured decision-making processes such
as Delphi [26, 27]. Formal procedures for eliciting
judgments about risk and risk reduction from experts,
and pooling their judgments, can help to quantify risk
as well as uncertainty [28]. We started with established
procedures for eliciting estimates of risk (e.g., [27]).
After reviewing many methods, such as those reviewed
in [25] and the ones instantiated in [29] and [30], we
adopted a recent method aimed at experts unfamiliar
with probabilities [31]. This method extends the classic
methods for the combination of probabilities initiated in
[32]. The central idea is that distributions need not be
well modeled by a well-behaved ”Bayesian conjugate
distribution,” since all down-stream calculations are
numerical Monte Carlo simulations. [30] presented a
similar idea, although their conceptual framework seeks
a parametric form for the distribution. Our elicitation
uses extensions of classical methods by [33, 34, 35, 36].
[35] and [36] point out the importance of training
experts in making probability judgments, influencing us
to include a training component in our elicitation. In our
focus groups estimates are aggregated by averaging, as
suggested by [32], and also using a generalization of the
median concept given by [37].

Our approaches to elicitation of risk and risk
reduction are grounded in the large literature on risk
management. [38] and [39] present the process of
risk management in steps: risk identification, risk
assessment, risk mitigation, and situation monitoring.
Our work concentrates on the risk assessment and risk
mitigation steps – with an emphasis on identifying CMs
to reduce risk. [40] points out how to extend this
stepwise model to the notion of opportunity, the idea that
events can also provide positive impacts, which we do

not consider. [41] describes risk as the combination of
the severity of the effects and probability of occurrence.
This reflects the fact that performance of a supply chain
is dependent on changing conditions, some of which
(such as occurrence and severity of a natural disaster)
are beyond our ability to measure – and something our
elicitation processes and our simulation models reflect.
Risk reduction occurs in the context of uncertainty. [40]
has proposed an interesting framework that reflects the
reality that no supply chain will have a static stable
equilibrium in a world with a constantly changing
environment. Our work also builds on the dynamic
nature of supply chains and the idea that risk and risk
reduction are dynamic concepts.

Simulation: Simulation allows us to study complex,
real-world systems with stochastic elements and to
“see” how different scenarios of disruptions and
implementations of CMs impact the entire supply
chain. Simulation has been widely used for
tackling the uncertainties in supply chain networks.
[42] reviewed several simulation techniques that
quantitatively addresses uncertainty in supply chains.
[43] developed a framework of a digital supply chain
twin for managing the risks in pre, during, and post
disruption stages. [44] proposed a dynamic model
for evaluating the service level of supply chains in
scenarios with disruptions. Mathematical formulation
of the network is difficult since the causes of disruptions
and their severities are often random with unknown
probability distributions, so a simulation model of the
network is a viable and realistic approach to evaluate
the dynamic performance of supply chain(s) in virtual
environments [45, 46, 47].

Our simulation models include estimates of both
the degradation rate and recovery rate in modeling the
ability of each node and arc to meet performance levels.
These are combined to quantify overall supply chain
performance. We compute importance measures for
each node or arc, extending the importance measures
discussed in [48] to incorporate multiple threat types.

2. Elicitation

Subject Matter Experts (so far 34 interviewed, 18
also in Focus Groups) are recruited in a “snowball”
process, starting with members of the project Advisory
Board. Each is interviewed, and those with specific
experience in the effectiveness of mitigations are invited
to a Zoom-based focus group process, supported by a
new FGWare algorithm. After discussion to select a
handful of CMs, each SME provides estimates of how
much each specific mitigation reduces risk. We combine
these estimates to form a consensus. We operationalize

Page 2302



“amount of risk reduction” based on Eq. 1, familiar
throughout the field of risk management. The amount
of risk reduction corresponds to the variable denoted by
E in Eq. 2

R0 = Consequences ∗Vulnerability ∗ Threat (1)
Reduced Risk = (1−E) ∗R0 (2)

We sketch the approach to two technical issues,
detailed in [49].

To elicit probability distributions, as discussed in
Section 1.2, we use a recent method aimed at experts
unfamiliar with probabilities [50].

We ask each SME to sketch the probability density
function, E(r, c), for each risk r and countermeasure c
pair, (r, c). The expert moves colored dots successively,
as in Figure 1, to set the median and range of the
effectiveness, and, if desired, “fatten the tails.” The
underlying algorithm adjusts each side of the curve as
a monomial. This supports both unimodal and bimodal
estimates.

Figure 1. Five-point elicitation interface.

Individual estimates are aggregated by averaging and
also by a generalization of [37] as discussed in Section
1.2. An example array of composite distributions is
shown in Figure 2, in which an array of mean composite
distributions is shown in green.

Clearly, the aggregate distribution is not
“shoe-horned” into any particular parametric form.
For example, it is clear that in the left column
(counterfeit parts threat), the second CM (supplier
vetting) is stronger than the first (careful examination
of the parts) by almost any reasonable criterion. In
the right-hand column (extreme weather threat) the
second CM (diversify suppliers) is modestly to the right
of the first (monitor weather forecasts). The scatter
of the red dots signals the considerable disagreement
among these experts in most cases. For simulation
the median cumulated probability distributions are
transmitted to the simulation team. The overall research
plan is iterative, in the sense that when simulation or
optimization sensitivity analysis calls for a sharper
estimate for particular (r, c) pairs, we can return to
selected experts and solicit additional data.

Figure 2. Array of aggregated expert opinions on

density functions (see text).

3. Simulation

Assessing the resilience of a supply chain in terms of
ability to “absorb” risk associated with disruptions and
ability to “recover” its performance to pre-disruption is
challenging. This may be accomplished by modeling
the supply chain as a network where the nodes represent
entities such as suppliers, manufacturing facilities,
distribution centers (DCs) and customers while the
arcs represent relationships among these entities and
transportation links.

The anyLogistix software has been utilized to
simulate supply chains with disruptions [51, 52, 53].
The simulation model in this paper is a discrete-event
simulation model developed using the anyLogistix 2.13
software [2]. More information about the anyLogistix
simulation environment can be found in [54].

3.1. Simulation model

In this section, a simulation model of an ICT supply
chain network is developed under the natural hazards
threat. Simulation models for our other two scenarios
will be discussed in subsequent papers such as [55] so
that we can describe our work on one of these scenarios
in more detail here. Three CMs based on the results of
the elicitation study (see Section 2) are investigated, and
their effectiveness is assessed in simulation.

A simple yet realistic 4-stage ICT supply chain
network as shown in Figure 3 illustrates the approach.
It consists of three suppliers (S1, S2, and S3, located
in California, Florida, and Texas, respectively), two
factories (F1 and F2), two DCs (DC1 and DC2) and
n =100 customers (C1, C2, ..., Cn, randomly located in
the US). All facilities in the network have their locations
assigned, as shown in Figure 4.

The three suppliers together provide five different

Page 2303



Figure 3. Supply chain network.

Figure 4. Simulated network of ICT supply chain.

components (screen, keyboard, motherboard, battery,
and laptop base) to the factories. Factories assemble the
components into laptops. Finished laptops are delivered
to DCs and then customers.

3.1.1. Baseline scenario

In our baseline scenario, there are no disruptions to
the supply chain, and its performance level is 100%
(meeting all requested demand on time). Each of the
five components is shipped from a supplier to a factory
according to a pre-specified ratio. A factory may receive
a type of component from one or more suppliers: S1

provides a proportion p1 of its demand, and similarly
for S2 and S3. The values of (p1, p2, p3) are shown in
Table 1. For example, both factories receive all of their
screens from S1. F2 receives 1/3 of the keyboards from
S1 and the remaining 2/3 from S2. The transportation
between a supplier and a factory takes 5 hours.

Table 1. Sourcing table showing proportions of

components from each supplier to each factory.
(p1, p2, p3) F1 F2

Screen (1, 0, 0) (1, 0, 0)
Keyboard (0.5, 0.5, 0) (0.333, 0.667, 0)
Motherboard (0, 0.625, 0.375) (0, 0.333, 0.667)
Battery (0, 1, 0) (0, 0.167, 0.833)
Laptop base (0, 0, 1) (0, 0, 1)

Factories use the QR inventory policy (fixed
replenishment quantity policy) with (Q,R) = (1000,
600), starting laptop inventory at s = 1500 units, and
component inventory at r = 1000 units for each type.
The throughput is p = 150 units/day at each factory.

Each factory provides proportions of the demand to the
DCs. DC1’s demand is fulfilled by F1 and F2 equally,
while 40% of DC2’s demand is fulfilled by F1 and
60% by F2. The total factory demand is based on the
requested demand from customers to the DCs. The
transportation between a factory and a DC takes 5 hours.

DCs also use the QR policy with (Q,R) = (1000,
600) and starting inventory at s = 1500 units. Each of the
customers places a demand every single day according
to a uniform distribution of U(1, 3) units. The demand is
sent to the closest DC. Based on the network in Figure
4, there are 45 customers sending orders to DC1, and
55 customers to DC2, every day. The transportation
between a DC and a customer takes 3 days.

3.1.2. Threat scenario

In the threat scenario, natural hazards occur but
no CMs are introduced. Factories F1 and F2 are
located in an area subject to earthquakes and hurricanes
respectively. When a natural hazard occurs, it will
shut down the factory in the area for a number of
days. The frequency of earthquakes/hurricanes and their
severities are expressed by random variables based on
the historical data of the area. The risk associated with
the severity is the duration of the disruption, which is
exaggerated from reality to better show the impact of the
threat. Table 2 shows the parameters in this scenario.

Table 2. Model parameters in the threat scenario.
Natural hazard Earthquake Hurricane
Facility impacted F1 F2

Frequency Once during Jun-Nov
Starting date Random
Duration (day) 60 w.p. 0.5, 90 w.p. 0.3, 120 w.p. 0.2

3.1.3. Countermeasure scenarios

Three different CMs (CM1, CM2, and CM3) have
been developed to provide resilience during disruptive
events caused by natural hazards. CM1 and CM2
are reactive CMs that are implemented after the actual
occurrence of the event. CM3 is a proactive CM
designed for pre-disruption implementation.

When a factory is shut down due to a natural
hazard, we can increase the throughput of the remaining
operating factory to help meet the demand, but this
increase takes several days to implement. So, in CM1,
we increase the throughput of the remaining factory
a few days after the disruption, and the throughput
remains increased till the end of the disruption.

In CM2, we introduce an outsourcing factory to
help cope with the demand. This outsourcing factory
may be reconfigured and subcontracted to handle laptop
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assembly, which takes several days. Since this factory is
located in a non-impacted area, transportation between
it and DCs takes longer.

Pre-disruption CM3 uses accurate monitoring
systems for potential natural hazards, based on which
early actions can be planned in advance. In the days
leading to the disruption, we can increase the throughput
of the to-be-impacted factory so that more laptops can
be assembled before the event. The inventory policies
of the DCs are adjusted accordingly so more finished
laptops are delivered to DCs before the event.

Table 3 summarizes all five scenarios and the
parameters in the three Threat + CM scenarios.

Table 3. Scenario description and parameters.
Scenario Description
Baseline Normal operation, no disruption.
Threat Natural hazards occur but no CMs are introduced.
Threat
+ CM1

Ten days after disruption, the remaining operating
factory’s throughput increases to 200 units/day.

Threat
+ CM2

Ten days after disruption, an outsourcing factory
becomes operational, but transportation from the
outsourcing factory to DCs takes 10 days.

Threat
+ CM3

During the 15 days leading to disruption, factory’s
throughput increases to 200 units/day, and DC’s
reorder point increases to 900 units.

3.1.4. Performance metrics

Five performance metrics are computed to evaluate
the performance of the supply chain and effectiveness
of the CMs.

(1) ELT Service Level by Orders shows the service
level based on the ratio of on time orders to the overall
number of outgoing orders:

ELTSL(i) = OTO/(OTO +DO) (3)

where i is the facility index, OTO is the number of on
time orders, and DO is the number of delayed orders.
OTO+DO is the number of outgoing orders. The ELT
(expected lead time) is set at 4 days, allowing 3 days
for transportation and 1 day for order processing. An
on time order is one for which the time from customer
order placement to delivery is within the ELT.

(2) Service Level by Orders shows the service level
based on the ratio of the number of successfully fulfilled
orders to the sum of all orders placed for this facility:

SL(i) = SO/(SO + UO) (4)

where i is the facility index, SO is the number of orders
that are successfully fulfilled, and UO is the number of
unsuccessful orders. Unsuccessful orders are the placed
orders requiring the quantity of products that is not
available at the facility at the time of order placement.

(3) Max Lead Time is the maximum time between
order placement and delivery across all orders.

(4) Mean Lead Time is the average time between
order placement and delivery across all orders.

(5) Fulfillment (Late Products) shows the quantity
of product which fails to arrive within the specified ELT.

3.2. Results and comparison

We use feedback from stakeholders (industry
Advisory Board and DHS) throughout network model
design and simulation to verify the work by using
small-size, deterministic demand and following it
through the network using “manual” calculations. After
the verification process, the demand is increased and
more stochasticity added, and we simulate for one
year to observe enough inventory cycles and stockout
situations, with 30 replications per scenario. The
number of replications is chosen for the Central Limit
Theorem to hold. The 30 replications take about 60
seconds on a Windows 2017 computer (Intel Core i7).
Model validation is achieved by discussing the output
with the stakeholders, but true validation will only be
possible when/if the model is used by government or
industry in specific situations.

The ELT service level by orders and service level
by orders are recorded for each day in the simulation.
The daily values are then averaged over the threat period
within each replication. Table 4 shows the “threat period
average” values across 30 replications. A service level
closer to 1 indicates a more resilient supply chain. As
can be seen, both metrics are severely affected when
no CMs are employed. All 3 CMs improve upon the
threat scenario. CM2 is the least effective one, because
it is enacted 10 days after the threat has occurred and
the transportation time from the outsourcing factory is
7 days more than usual. This is why the ELT service
level is still poor. CM1 is ranked second. This CM is
also enacted 10 days after the threat has occurred but the
production speed of the remaining factory is increased
with no extra transportation time. CM3 is the most
effective CM due to the 15-day early actions obtained
and the increased inventory levels and production speeds
to deal with the threat.

Table 4. Average service levels from simulation.
ELT Service Level Service Level

Scenario DC1 DC2 DC1 DC2

Threat only 0.3762 0.3678 0.3276 0.3292
Threat + CM1 0.9616 0.9272 0.9675 0.9549
Threat + CM2 0.8089 0.7947 0.7917 0.7668
Threat + CM3 0.9985 0.9955 0.9970 0.9944

The max lead time and mean lead time performance
metrics are summarized in Table 5, showing the average
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values across 30 replications. The lead time from DC to
customer is 3 days in the baseline scenario. CM3 is still
the most effective CM based on both metrics, closely
followed by CM1, and then CM2. While CM2 improves
the lead times from the threat scenario, the lead times
are higher because of extra transportation time from the
outsourcing factory. CM3 results in the lowest lead
times, which are only slightly higher than those in the
baseline. CM1 results in slightly higher max lead times
than CM3, and mean lead times comparable with CM3.

CM1 and CM3 are comparable when looking at
service levels and lead times, but the difference between
CM1 and CM3 is more evident in the fulfillment metric.
The average values are shown in the rightmost section
of Table 5. The average fulfillment of late products at
DC2 is lower in CM3 than in CM1, making CM3 more
effective than CM1.

Table 5. Average lead times and fulfillment
Max Lead Time Mean Lead Time Fulfillment

Scenario DC1 DC2 DC1 DC2 DC1 DC2

Baseline 3.00 3.00 3.00 3.00 - -
Threat only 42.79 45.87 13.32 15.52 57.22 69.78

Threat + CM1 5.91 6.78 3.04 3.05 3.11 4.22
Threat + CM2 12.72 14.36 4.76 5.17 25.64 22.57
Threat + CM3 3.36 3.54 3.01 3.01 3.89 1.83

These results show the effectiveness in terms of
performance metrics of the CMs for mitigating the
impact of natural hazards in the ICT supply chain. CM3
is seen to be the most effective, most likely because
of the planned early actions. When early warnings are
not available, CM1 with increased throughput of the
remaining factory would be the next best option.

4. Optimization

In general, a set of several CMs can be proposed
to mitigate the impact of natural hazards considered
in Section 3. A CM might be proactive as CM3 or
reactive as CM1 and CM2. Different variants of a
CM might be considered, e.g., increase production 5
days or 10 days before a forecast hurricane. Since the
natural disasters are described by random variables, the
ameliorative effect of any given CM must be evaluated
by simulation runs. If only a single optimal CM can
be chosen according to some performance measures,
methods of Section 3 apply. When multiple CMs can
be chosen, the combinatorial explosion of possibilities
requires a stochastic optimization approach.

The two major classic approaches to stochastic
optimization are chance-constrained programming,
which models the assumption that a constraint holds
100(1 − ε)% of the time for some small ε, and
multi-stage programming, in which decisions on the

variables are made at two or more points in time [56].
However, these approaches provide a single solution,
whereas in practice decision makers want insight, and
not just the output of an optimization tool [57]. In
particular, we want to present the decision maker with
different strategies, and a quantitative assessment of
how often each strategy is optimal, depending on the
realizations of the random variables. Thus we solve a
sequence of optimization problems, where each problem
uses the data of a single replication of the anyLogistix
simulation model developed in Section 3. The problem
defined by a single replication is fed to an optimization
tool that solves an integer program to select the optimal
set of CMs, subject to a budget constraint. This optimal
set of CMs is stored. Then another replication is
generated by anyLogistix, the associated data is sent to
the optimization tool, the new optimal set of CMs is
stored, and this process continues for the desired number
of anyLogistix replications. These optimal sets of CMs
(there is one set for each replication) are then analyzed,
using some predefined decision rule, to determine which
optimal set of CMs should be implemented.

4.1. Mathematical Formulation

We consider the demand for a single product by
customers in each of T time periods, e.g., a day or
a week. (Future work will consider a final product
composed of many components, e.g., the laptop example
in Section 3.) Let J be the set of customers, and for
j ∈ J and t ∈ T ≡ {1, 2, · · · , T}, let d(j, t) be the
demand for the product by customer j in period t; we
assume each d(j, t) is a random variable with a given
distribution. The product is produced by factories in a
supply chain: factories feed finished product to DCs,
and DCs feed the finished product to customers. Each
factory can supply multiple DCs. For each factory, the
fraction of its output going to each DC is specified. Each
DC supplies multiple customers, and each customer is
served by a specified DC. Figure 5 illustrates this for
a simpler system with two factories, two DCs, four
customers, and four time periods (T = 4). Each 4-tuple
represents the demand or supply for product in each time
period, e.g., for customer R1 the demand in the 4 time
periods is (3, 1, 6, 5) and the production level of factory
F1 in the 4 time periods is (4, 6, 4, 6).

Let N be the number of CMs and let N ≡
{1, 2, · · · , N}. CM n ∈ N is specified by a vector v(n)
of length T , generated by simulation, which provides
the amount of product provided by the CM in each time
period. For example, if T = 7, then for some n ∈ N
we might have v(n) = (0, 8, 9, 9, 6, 4, 0), meaning that
n supplies 0 units at t = 1, 8 units at t = 2, etc. Also
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Figure 5. Example supply chain with T = 4.

associated with n is a cost cost(n) e.g., a fixed cost of
opening an emergency assembly site plus an incremental
cost for each unit produced at the site over the T time
periods. For n ∈ N , let the binary variable x(n) be
defined by x(n) = 1 if CM n is implemented, and
x(n) = 0 otherwise. A budget B limits the total cost of
CMs:

∑
n∈N cost(n)x(n) ≤ B . Each factory sends its

output to one or more DCs, and the fraction of the output
of a given factory to the set of DCs is given data. Since
CMs offset the loss in production capacity at a specific
factory when disasters occur, the output of each CM is
allocated to the set of DCs using these same fractional
allocations. Let DC be the set of DCs.

If a threat materializes, and the factories are unable
to ship sufficient products to meet the demand for one
or more customers, demand is backlogged rather than
lost. The objective is to minimize the total (over all time
periods and customers) backlogged demand. Since each
customer is served by a particular DC i, for each time
period t we can sum (over all customers) the demand to
be served by DC i; let d(i, t) be this aggregate demand
at DC i in period t. Let s(i, t) be the amount of product
supplied to DC i at time t given the current replication.
For example, if the replication has no threat occurring,
then s(i, t) is the amount supplied to DC i under
normal operating conditions, while if the replication has
reduced production at one or more factories, then s(i, t)
reflects the reduced product available at DC i at time
period t if no CM is implemented. For a given t the
amount of backlogged demand at DC i if no CM is
implemented is max{d(i, t)− s(i, t), 0}.

For n ∈ N and i ∈ DC and t ∈ T , let b(n, i, t)
be the given data specifying the amount of product
provided at time t to DC i if CM n is implemented. If
CM n does not back up DC i then b(n, i, t) = 0. Then
the total threat mitigation supply sent by all CMs to
DC i in time t is

∑
n∈N b(n, i, t)x(n), the total amount

L(i, t) of product backlogged at DC i at time t is

L(i, t) ≡ max
{
d(i, t)− s(i, t)−

∑
n∈N

b(n, i, t)x(n), 0
}

and the total amount of product backlogged over all DCs
and over all time periods is the objective function F (x):

F (x) ≡
∑
t∈T

∑
i∈DC

L(i, t) .

Using standard techniques for dealing with a “max”
term, F (x) can be converted to a linear objective
function together with associated constraints. The
Python PuLP package [58], using the COIN-OR CBC
solver [59], solves the optimization problem. The
solution to this optimization problem (corresponding
to a particular simulation replication) is stored, and
another simulation replication is generated. Together
they support calculations of the mean impact and other
measures of risk and resilience.

The results of the optimization expand upon the
conclusions in Section 3 that CM3 is the most effective
CM, followed by CM1, and then CM2. With 100
replications and B = 1, CM3 at factory 1 (F1) is chosen
69 times, and CM3 at F1 is chosen 31 times. With 100
replications and B = 2, CM3 at both F1 and F2 is
chosen 100 times. We also studied a larger example,
with 8 factories, 6 distribution centers, 100 customers,
and B = 2. With 100 replications, 18 distinct sets of
CMs were generated; the most frequent set generated
(25 replications) used CM3 at F2 and F4; the next most
frequent set (19 replications) used CM3 at F2 and F3.

5. Discussion

This work models an end-to-end approach that
recognizes the fundamentally stochastic nature of risk
mitigation and resilience. By developing the three
components of elicitation, simulation, and optimization
we are able to inform each component by the specific
and changing needs of the other two, which brings us
closer to the goal of providing a sound quantitative
methodology for making rational decisions under a
limited budget for risk mitigation.

If either simulation or optimization should reveal
that the conclusions are particularly sensitive to the
details of a distribution describing some risk-mitigation
CM, SMEs could be reconvened to look for a resolution.

The integrated approach presented here offers
specific operationalizations of the concepts of
uncertainty about the effectiveness of mitigations,
and the stochastic nature of all threats. The framework
permits comparison of CMs not solely in terms of
costs, but also in terms of their likely ability to control
associated risks. With suitable choices of the objectives
and performance metrics, this technology can be
adapted for use at a single plant, a multi-location
organization, or a state or federal agency.

Page 2307



There are numerous opportunities to enhance the
optimization model described in Section 4. The software
could accept a CM scenario and automatically generate
variations of it, or could be enhanced to consider
the impact of the QR inventory policies described in
Section 3.1.1 or to allow any of the performance metrics
described in Section 3.1.4 to be used as the objective
function of the optimization.

Crucial information on effectiveness of specific CMs
is gained in painful experience such as business setback
or failures. Organizations are unwilling to share such
information; even when resilience is achieved, that
fact may well be regarded as a proprietary advantage.
A somewhat similar problem exists in the airline
industry. However, over the years the commercial
airlines and the Federal Aviation Administration have
developed a secure and trusted system for reporting
not only accidents, but also the much more common
“near misses.” This work contributes toward a similar
trust and benefit for the ICT supply chain. By a
systematic integration of elicitation, simulation, and
optimization, our work provides a unified framework
to assess CM effectiveness, strengthen resilience, and
support planning and decision-making.
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