
A Reinforcement Learning Powered Digital Twin to Support Supply Chain
Decisions

Guillaume Martin
IMT Mines Albi

gmartin@mines-albi.fr

Raphaël Oger
IMT Mines Albi

raphael.oger@mines-albi.fr

Abstract

The complexity of making supply chain planning
decisions is growing along with the Volatility,
Uncertainty, Complexity and Ambiguity of supply
chain environments. As a consequence, the complexity
of designing adequate decision support systems
is also increasing. New approaches emerged for
supporting decisions, and digital twins is one of those.
Concurrently, the artificial intelligence field is growing,
including approaches such as reinforcement learning.
This paper explores the potential of creating digital
twins with reinforcement learning capabilities. It first
proposes a framework for unifying digital twins and
reinforcement learning into a single approach. It then
illustrates how this framework is put into practice
for making supply and delivery decisions within a
drug supply chain use case. Finally, the results of
the experiment are compared with results given by
traditional approaches, showing the applicability of the
proposed framework.

Keywords Digital Twin, Reinforcement Learning,
Supply Chain Management, Deep Learning

1. Introduction

A supply chain can be defined as a “network of
connected and interdependent organizations mutually
and co-operatively working together to control, manage
and improve the flow of materials and information from
suppliers to end users.” [1] As such, they face several
systemic cooperation challenges : a fragile equilibrium
between cooperation and competition, opposed views
between locally defined information sharing strategies
and globally enforced ones, or the need for interopable
communication (with interoperability defined as “the
ability of independent logistics and supply networks
to mutually conduct operations and business with one
another, in order to use the functionality of other
networks, or to execute operations for others” [2]).

In parallel with endogenous issues, a supply chain
also faces external hurdles. The most common ones
are fluctuating demands, either from errors in prediction
or from sudden crisis situations, as the world witnessed
during the pandemic [3]. Uncertainty also comes in the
form of sudden disruptions in the chain, be they from
key supplier bankruptcy or environmental issues [4].

In spite of this, the scientific community regularly
shares new approaches to overcome the problems,
by leveraging the power of the latest advances in
communication and computing technology. Recent
contributions include the use of RFID tagging of goods
[5], GPS tracking of vehicles [6] or using the Internet
of Things to enable communication between packages,
sensors and systems as a whole [7]. Some of the
contributions go further and describe systems using
features from the physical and digital words to achieve
a common goal. Cyber-Physical Systems, for example,
use smart components such as storage units or machines,
able to communicate in real time with other components
through a common interoperable network [8]. Other
advances use digital copies of the physical systems in
order to monitor status and plan actions. These are
called digital twins [9]. In these cases, a simulation
and/or optimization engine is hooked up to the digital
copy to simulate the impact of decisions.

A common feature of all these systems is that they
are composed of agents. Each agent either has to
communicate or make decisions based on the supply
chain status. For the system to work correctly, these
agents have to make intelligent decisions. Intelligence,
in this case, may come in various forms: (i)
decision-trees of rules based on practitioner experience,
such as raising an alert on certain levels, (ii) artificial
intelligence sub-systems with a specific task, for
example with routing problems or (iii) human agents.

Such a division into agents is also the basis of
a field called Reinforcement Learning (RL). RL uses
agents in an environment that select actions (setting an
reorder quantity, choosing between suppliers, ...) with
the information of the state of the environment so as

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 2291
URI: https://hdl.handle.net/10125/79620
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



to maximize an expected reward [10]. In RL, agents
are defined as “the learners and decision makers” of the
problem, while the environment is “everything the agent
interacts with” [10]. RL has been evolving quickly in
the last decade with the advent of deep neural networks
and their ability to model complex decisions, leading to
the creation of Deep Reinforcement Learning (DRL). A
key feature of the RL field is to build and train intelligent
agents not on rules but on how the environment reacts to
actions. RL can consequently capture several degrees of
complexity, depending on what is relevant for the task
at hand, while avoiding some biases of the rule-based
systems.

This paper proposes a framework of a supply chain
digital twin where decisions are taken by a DRL agent.
This helps bridge the gap between advances in computer
science and supply chain control. This also serves
as a template for systems where uncertainties are only
known through data collection and cannot be accurately
represented by common models. Section 2 reviews the
recent related works on connected supply chain control
and RL or DRL for supply chain decision-making.
Section 3 details both our proposed framework, how to
train it offline and how to use it online. Section 5 shows
numerical results of training and using such an agent on
an illustrative supply chain. Lastly, Section 6 concludes
on the next steps needed to consolidate our contribution.

2. Related works

This review consists of three subsections. The first
is dedicated to existing works on connected supply
chains. It includes works on the physical internet,
digital twins for better supply chain management. The
second is dedicated to Reinforcement Learning and its
ability to help supply chain management achieve better
performance. The third concludes with our research
question paper.

2.1. Connected supply chain management

Physical internet, as proposed by [11], is defined
as a network of physical and digital elements sharing
common interfaces. For a broad picture of applications
and research themes, [12] recently published a thorough
survey on the topic. As for more specific works,
[13] show how to implement physical internet specific
routing. [14] propose physical internet specific
containers which are active in their own routing and
[15] describe a physical internet city logistics including
physical internet picking waves and distribution.
Applied to supply chain management, physical internet
approaches make heavy use of decentralizing: common
rules are set up to simplify the decision making between

each member (human or otherwise) of the decision
processes. For example, [16] describe a decentralized
inventory management use case.

Besides physical internet implementations, some
authors recommend using digital twins of supply chains
to simulate the effects of their decisions. A digital
twin is defined in [9] as a copy of the physical supply
chain with data coming from “actual transportation,
inventory, demand, and capacity”. A digital twin
can either be “offline” and represent a single point
in time from where we investigate possible decisions,
on “online” and “used for planning and real-time
control decisions” [9]. [17] surveyed the literature on
digital twins for the last 20 year and summarized their
definitions, key features and applications. The surveyed
papers close to our work focus on digital twins as
“integrated systems, acting as virtual clones with data
connections to the real system and some simulation or
prediction capabilities”. The authors also note a sharp
increase in papers with manufacturing applications of
digital twins.

[18] use a digital twin in a large cyber-physical
system applied to a manufacturing case. The authors
describe the different layers needed to tie the physical
and digital levels together in a shared system. [19] goes
over a common framework for using digital twins in an
Industry 4.0 context: a metadata model to ensure digital
interoperability, a simulation framework to model the
system replica and a communication layer to bound
physical and digital worlds together in real-time. [20]
propose a digital twin framework for crisis management
in a city logistics context. They split their framework
into four major components: data collection, data
integration, multi-agent decision making and dynamic
network analysis. Lastly, [21] define an on-demand
shared digital twin for supply chain management. They
raise several key problems: (i) data sovereignty issues
may happen along the chains, especially global ones and
(ii) data formats should be as interoperable as possible,
maybe even language and model agnostic.

2.2. Reinforcement learning for supply chain
decision-making

Reinforcement learning (RL) and Deep
reinforcement learning (DRL) have been successfully
applied to various sub-areas of supply chain
decision-making. The contributions mainly differ
by two criteria: the algorithm used and the number of
agents involved. For brevity’s sake, we do not describe
the algorithms in this paper however. [22], for example,
use a single agent with complete information to dispatch
production in a cloud manufacturing environment. [23]

Page 2292



propose a way to solve the joint distribution problem:
which items to select for which types of deliveries. In
the logistics area, [24] show how to assign vehicles to
platoons of trucks and where to send the platoons. [25]
compare different ways to decide reordering quantities
in an multi stage inventory management problem. The
authors show that DRL policies are more stable than
human-like ones when confronted with higher degrees
of demand variations.

[26] use several agents in a common simulated
environment, each representing a member of a supply
chain. The agents can choose from which market to
order. [27] also model several agents in a beer game
use-case. Each agent only has limited information on
the environment. The authors show that RL policies
outperform human-like ones. [28] build on the previous
work. They apply DRL to the beer game, showing event
greater performance. Apart from using deep neural
networks, the main difference is that information is now
shared across agents in their model.

Several types of decisions coexist in the literature.
The authors cited previously mostly deal with reordering
quantities or combinatorial decisions, but other
contributions allow choosing between different policies
[29]. [30] enables hierarchy in decisions, though their
contribution was never directly applied to supply chains.

2.3. Synthesis and research question

Connected supply chain decision-making and
RL share strong common properties. They both
represent agents immersed in a dynamic and uncertain
environment. They also both put the emphasis on
keeping track of the environment state at all times
to make their decisions. Since they are so closely
related, especially through the digital twin paradigm,
can we establish a common framework to streamline the
application of RL or DRL for connected supply chains?

3. Methods

To combine Reinforcement Learning (RL) and a
digital twin on a supply chain problem, we propose a
two-step procedure, shown in Figure 1. Each step is
described in the next subsections.

Creating
Environment

and Agent

Training the
Agent

Real
World
Data

Use Agent for
Action

recommandation

Use Environment
as Digital Twin

1

2

Reinforcement Learning

Digital Twin

Figure 1. Using the framework in a decision process

The first step is the RL phase, represented by branch
1 in the Figure. The Environment must be created
based on the real world problem along with the Agent
(or Agents). The Agent is then trained to solve the
problem. When training reaches sufficient performance,
we switch to branch 2 and the digital twin. The
Environment is no longer used to simulate the effects of
the Agent’s decisions but to reflect the state of the real
world problem, as a digital twin.

The second step is the digital twin phase, represented
by branch 2 in the Figure. The Agent is used to
recommend actions based on the digital twin. It is up
to the decision-maker to follow the recommendations or
not.

This two-phase approach has the key features
identified by [17]. It creates an integrated system
which acts as a virtual clone of the real system, ensures
data connections to the real system and has simulation
and prediction capabilities. The next two subsections
describe these two branches.

3.1. Step 1: creating the Environment and
training the Agent

Agent training is modeled in Figure 2. It regroups:
choosing a model transformer, creating an Environment,
a reward method and Agents. They are all described
below.

At the start, it is necessary to build the digital
twin of the real system, called the Environment. This
is done through a model transformation scheme by
using mathematical modeling, multi-agent simulation or
process-mining data collected on the field, for example.
For model transformation, no particular technique is
recommended in our framework apart from being able to
define assets (physical or digital, represented by factory
icons) that live in a shared Environment.

Environment

State(t)

Agent

...

Real
World Data

Feed Model
Transformer

Reward(t)

Action(t)

Figure 2. Framework for model training

The Environment must have at least three features:
(i) collect the State at a time step t, (ii) compute a
Reward associated to said State at t and (iii) be able
to update its State according to Actions. The State
method is tasked with collecting all necessary data from

Page 2293



the assets. The meaningful data contained in State will
vary from problem to problem. Examples taken from the
previous literature range from current inventory position
and on-order pipe to vehicle GPS locations.

The Reward method is generally custom-made.
It represents the objective function that must be
maximized. Rewards are computed based on a State
and are made available directly from the Environment as
an interface, represented by the dotted circle in Figure
2. Updating the Environment may be done through
various means. Depending on Environment complexity,
vectorizing the problem in a set of matrices may suffice,
whereas more complex cases warrant for the use of
discrete event simulation.

The Agent is the part that makes decisions to solve
the problem. As shown previously in section 2, one
may define a single or multiple agents depending on the
use-case. The Agent interacts with the Environments
over multiple time steps and, possibly multiple episodes
(if the problem can be defined by a starting and
finishing states). During an interaction step, the Agent
first collects the State(t) and outputs an Action(t),
according to a Policy it is learning. The Environment
registers the Action(t). The effects of this action
are taken into account and the Environment advances
by one time step. The Environment sends back the
Reward(t + 1) to the Agent, as well as the new
State(t + 1) and the loops continue until some ending
criterion is met. Any Action available to the Agent is a
possible supply chain decision. These information form
what is called an Experience tuple and have the form
(State(t), Action(t), Reward(t+ 1), State(t+ 1)).

Training the Agent is done by repeating the
interaction loop, while improving the performance of
the Agent’s Policy. Multiple learning algorithms can
be used but in our DRL approach, we focus on using
deep neural networks to serve as policies. Choosing
the correct algorithm for learning also derives from
several criteria: (i) complexity of implementation,
(ii) discrete or continuous States and (iii) discrete
or continuous Actions. Training stops with different
reasons: (i) sufficient performance has been reached, (ii)
the maximum allowed training time has been consumed
or (iii) early stopping is enforced when performance has
stopped increasing for a set number of episodes.

3.2. Step 2: using the Environment as the
digital twin

Using the Environment and Agent as a digital twin
starts with establishing a model adapter, as described
in Figure 3. The adapter may be of any kind
(communication layer of a digital twin, digital copy of

a physical internet network, for example). It is meant
to transform the raw data from real world feeds into a
State usable by the Agent.

When using the Environment and Agent as a digital
twin, training is deactivated. We only wish to exploit
the Agent’s policy in this case. As a result, there
are no training loops or episodes needed. Instead, the
Agent directly recommends Actions based on its learned
policy. The Actions are then sent to an adapter which,
in turn, transforms them into real world instructions.
The two adapters may be the same and allow for
two-way communication. In this step, the Environment
actually becomes an equivalent to the digital twin and
the Agent replaces the human in charge of evaluating
the different possibilities.

We must note that it is still possible to learn at
this stage, even though it may be detrimental to the
Agent’s performance. When used as a digital twin,
the Environment still keeps track of Experience tuples.
As such, learning can be reactivated either fully or
at selected points in time (every week for example).
As training deep neural networks may result in lower
performance, one must exercise caution before pushing
the newly trained network into production when using it
as a digital twin.

Real
World Data

Feed

State(t)

Action(t)

Model
Adapter

Model
Adapter

Environment

State(t)
Agent

...

Reward(t)

Figure 3. The Environment serves as the digital twin

4. Use-case and data

In order to test our framework, we apply it to a
drug supply chain instance. Our version is based on the
works of [28] on the Beer Game, the works of [31] for
translating inventory management problems into DRL
models and governmental rules for drug-specific aspects
in [32]. Preventing shortages on the drug supply chain
is a major health and governmental issue, even more so
under pandemic conditions [33].

Page 2294



4.1. Use-case specifications

Our supply chain is divided into four actor
classes, named at the governmental level as [34]:
(i) Pharmaceutical establishments who manufacture,
import and sell drugs, (ii) Custodians who distribute
drugs, (iii) Wholesaler-distributors who resell drugs to
pharmacies and (iv) Pharmacies or Internal pharmacies
who act as retailers, respectively outside and inside
hospitals.

Of these four classes, three of them have to place
orders upstream at the end of each period, with a
common objective of minimizing the total supply chain
costs. The pharmaceutical establishments have access to
unlimited raw materials and may place an order of any
size. These four members form the Environment.

Each member is separated by fixed lead times. These
are different between each stage but do not change
over time. The maximum lead time is called maxLT .
Each member i also has a given production capacity Ci.
Any order exceeding capacity is automatically capped
and the remainder is forgotten. The retailer receives
stochastic demands in the form of a normal distribution
of known parameters (µ, σ). In this, we deviate from
classic works, for example on the Beer Game, but this is
done to make the use-case slightly more realistic. It is
also done to make it harder for the Agent to learn the real
nature of the demand. Note that members may also have
an order backlog that will need to be fulfilled before new
orders.

The total reward function reflects the total supply
chain costs. Each member has: (i) a sell price pi, (ii)
holding costs bi and (iii) stock-out costs hi. These
parameters are taken from the real world data. The total
Reward over the i members of the supply chain at time
t is

Reward =
∑
i

Si ∗pi− (ROi ∗ ri+Bi ∗ bi+ ILi ∗hi)

where Si is for sold units at stage i, ROi for
replenishment orders sizes, ILi for inventory levels and
bi for total backlog.

In our use case, model transformation is done
through mathematical modeling of the problem. We
follow [31] and use a set of matrices to define the states
of all members of the supply chain and the state of the
supply lines between the members.

Contrary to [28], we solve the problem using a single
Agent aware of the full state of the supply chain. This
represents the centralized view that is obtained in a
digital twin paradigm. The next step is to define the
State, the Actions and how the Agent learns its policy.

Following [31], the State contains the inventory
levels (and not the inventory positions) of the first three
members and the replenishment order quantities passed
over the last maxLT periods. As a result, State is a
vector of size maxLT + 3. The manufacturer is not
included as it has infinite supply capacity and no lead
time.

The first role of the Agent is to build a policy over
time. This policy should, at minimum, take in the State
and output the Action required by the Environment.
When using DRL, policies are represented by using
different neural network architectures. Our use-case
makes no exception: the Agent neural network follows
the Action Branching Architecture from [35]. An
overview of the architecture is given in Figure 4. The
choice of this architecture is motivated by both the
structure of the supply chain and having a single Agent.
Having a single Agent means that it is responsible for
deciding the individual Action (the replenishment order
size) of each member i. The Agent then issues three
different actions at each period. The action space of a
member i is discrete and defined between 0 and Ci. The
Action Branching Architecture allows for this.

Action
Branch 1

Action
Branch 2

Action
Branch 3

Common
Neural

Network
State(t)

Figure 4. Action Branching Architecture overview

In the Action Branching Architecture, the State first
passes through a common neural network that is used
to share the same representation of the information
between all members. Each member i then has its own
dedicated action branch. Each branch outputs an Action
and all Actions and transmitted to the Environment. All
possible Actions for member i belong to an action space
called Ai. In the case where members have different
capacities, a technique called masking is used. This
allows to create action branches that all have the same
output dimensions (the maximum capacity Cmax) thus
making for easier training. Masking disables the illegal
outputs of each branch without modifying the network’s
structure.

Each branch outputs an individual Q-value for an
action a in a state s, denoted Qi(s, a). The common
network and action branches contain streams of data that
compute the value of a state V (s) and the individual
action advantages Ai(s, a). These streams are not

Page 2295



represented in Figure 4 for brevity but the reader may
refer to [35] for further details. Based on the works of
[35] and [36], we defined the value for member i to take
action a in state s as

Qi(s, a) = V (s) + (Ai(s, a)−
1

n

∑
a′∈Ai

Ai(s, a
′))

The common network follows the works of [35].
It uses an architecture called Dueling Double Deep
Q-Network (Dueling DDQN), taken from [36]. A Deep
Q-Network (DQN) progressively learns the value of
taking an action in a given state [37]. In the RL field, this
value is called the Q-value [10], hence the name DQN.
The Double term refers to the use of twin networks
inside the Agent. One of them is called the online
network, the second is called the target network [38].
The role of these networks is explained in subsection
4.2. The Dueling aspect is the addition of a new stream
in the network to evaluate the Advantage and not only
the Q-value. The Advantage can be understood as
computing the interest of not following the current best
Q-value in the policy. Practically, it makes for faster and
more stable training.

We also include two other agents that do not
implement any RL algorithm, in order to compare
numerical results. These agents act as baselines for
two cases: (i) a base-stock agent represents the use of
DT with shared information but strong hypotheses on
demand distribution and no learning capability and (ii)
a human-like agent represents the absence of shared
information and learning. The first agent uses a
base-stock policy with safety stocks fitted to the same
distribution N (µ, σ) we used for the neural network
agent. We aim for a 95% service level to set safety
stock size. This agent serves as a baseline and has been
shown to obtain good performance on the problem [39].
The second agent is called Human-like and is based on
the heuristic described in [40]. The Human-like agent
is based on practitioner feedback and tries to maintain a
desired stock level and a desired supply level throughout
the periods.

4.2. Agent training

Agent training is then a matter of optimizing the
neural network on experience tuples. To do so, we
run several episodes of simulation on the Environment.
An episode in our use-case is composed of 30 periods
of the Beer Game. Each period is an interaction step
between the Agent and the Environment during which
the Agent gather an experience tuple. Tuples are kept in
the Agent’s memory.

The Agent’s policy is improved by selecting batches
of experiences and feeding them to the neural networks.
Feeding experiences to the Agent’s target network
provides a target to optimize against. Feeding
experiences to the Agent’s online network gives the
current performance of the Agent. Optimization is
then a matter of updating the online network’s weights
according to the error between the two outputs. After an
optimization step, the weights of the online network are
copied onto the target network.

The error between the two outputs is called the
temporal difference target [10]. For each member i, we
define the individual error as

yi = Reward+ γQ−i (s, argmax
a′∈Ai

Qi(s, a
′))

The overall error is defined as

y = Reward+ γ
1

N

∑
i

Q−i (s, argmax
a′∈Ai

Qi(s, a
′))

where N is the total number of agents that need to
place orders upstream (3 in our use-case), Q−i is the
target network function and γ a discount factor (rewards
have more weight if they are obtained early in the
episodes).

Keeping two networks helps with training the Agent.
We must note that training the Agent’s neural network is
quite different from training a regular neural network.
When using DRL, we do not train directly on real world
data, as would be the case for a regular network. Instead,
we feed data from the Environment. As such, we do not
have any ground truth to optimize against and use the
target network as a stable ’synthetic’ target.

At the end of each episode, the Environment is reset.
To obtain a more general policy, we use 5 different
random seeds. As a result, when changing seeds, the
environment is reset to a different state. We used three
criteria to stop the training: (i) having played 10000
episodes total, (ii) having reached a average reward of
2000 points over the last 100 episodes or (iii) having
trained for 30 minutes.

4.3. Using the Agent’s policy after training

Once training is complete, we can start exploiting
the Agent’s policy to produce action recommendations.
We start with model adaptation. It is relatively simple
in this use-case: we hook up a data generator to the
Environment. The generator represents a data feed
similar to what was seen in training, only with different

Page 2296



Usage Mean Max Min Std
BS HL BA BS HL BA BS HL BA BS HL BA

Training 996 -571 1006 1002 -537 1452 990 -615 57 1.39 8.67 280
Evaluation 996 -572 585 1009 -500 1420 992 -596 -636 1.35 7.97 428

Table 1. Training and using the agent result summary

random seeds. The generator has two streams: (i) states
show the state of each member of the supply chain (the
rules for updating the state are the ones from the Beer
Game), and (ii) demands for the retailer that follow
N (µ, σ) we used for training.

To evaluate the Agent’s performance, we simulate
100 episodes of 30 periods, where we will always follow
its recommended actions. During evaluation, the Agent
can no longer learn.

Performance is measured through the moving
average of the Agent’s reward. We used a window
of 100 episodes. We added the envelope of
the performance represented by the minimum and
maximum reward values of the episode. It is useful to
assess the deviations of the recommended actions. We
compare the results of our Agent, the Base-stock agent
and the Human-like agent in the next section.

5. Results

All the results are gathered in Figure 5. The upper
half shows the evolution of the performance during
the Agent’s training. The lower half represents the
performance during evaluation, when we used the Agent
to recommend actions. Time is on the x axis with the
growing number of episodes. Performance is on the
y axis. A summary is given in Table 1 with variants
identified as “BS” for Basestock, “HL” for Human-like
and “BA” for Branching actions.

Our Agent’s performance is figured by the red
dotted lines and envelopes and is called Branching
Actions. By comparison, the Base-stock agent is in
black and the human-like agent in blue. We can see first
that the human-like agent where each member knows
only about its own state has the lowest performance.
The Base-stock agent, as said previously in Section
3 reaches good performance of around 1000 points.
Our Agent slowly comes to the Base-stock level of
performance and sometimes outperforms it on average
or in maximum.

By comparing the red areas to the black and blue
lines, we see however that our Agent is still the less
stable of the three. This is mostly due to the neural
network training procedure. It can be dampened by
switching to other network architectures which may be
more complex. It can also be reduced by finding better
hyper-parameters such as adaptable learning rates or

batch sizes.
As a whole these results first show that it is

feasible to use a RL Agent and Environment scheme in
conjunction with a DT of a supply chain. The much
lower performance of the human-like reinforce the need
for communication between members. The fact that our
RL Agent comes close to the base-stock agent and even
outperforms it in the end shows that adding learning
capabilities bears fruit. We must also note that the
base-stock agent was used in its perfect setting, using
exactly the same distributions. In reality, data would
seldom follow such well-defined patterns however, and
our RL Agent may have been able to achieve event better
results.

6. Conclusion

Through this paper, we developed two main
contributions. First, we showed how the fields of
connected supply chain management and reinforcement
learning could meet by sharing a common framework.
Second, we shared some promising results on applying
DRL inside this framework to recommend actions.

The framework we proposed lends itself to several
adaptations. It was derived with a DT focus in the
use-case but it is not limited to this. A physical
internet based system could be translated in terms of
Environment (the complete list of all physical and digital
assets) and Agents. Furthermore, if the Agents of our
case live in the margins of the Environment, they can be
more involved. Fleets of vehicles can be considered as
Agents with or without another central Agent to guide
them.

With this framework and a simple use-case, we
demonstrated how to give advanced learning capabilities
to digital twins. The common features between the
DT and RL paradigms provide a natural way to control
supply chain systems. Furthermore, the first results are
encouraging and hint at the possibility of expanding
applications: larger problems, complex multiple agents
systems or decentralized decision-making, for instance.
Another implication resides in the possibility to easily
swap components and frameworks: efficient RL agents
could be used in Cyber-Physical Systems, provided they
operate with the same “State”.

The Dueling DDQN we used to learn the Agent’s
policy is also just a first step towards an efficient and

Page 2297



500

0

500

1000

1500

Moving Average Reward - Training
Basestock Human Like Branching Actions

0 1000 2000 3000 4000 5000
Episodes

1000

500

0

500

1000

1500

Moving Average Reward - Evaluation

Figure 5. Training and using the agent over time

connected control of a supply chain. State-of-the-art in
DRL goes further than this network architecture. Recent
contributions allow complex types of inputs such as
graphs or images and also make better use of experience
tuples, thus allowing for faster training.

This paper is merely a first step towards a
streamlined control of supply chains systems.
Next steps involve, for example, the generation of
complex Environments from knowledge databases or
pre-calibrated digital twins in the model transformer
step. At the Environment level, being able to craft
specific rewards and states for different types of
problems is also an interesting avenue of research. It
could lead to faster convergence during training of
the more complex models. Our results should also
be confronted to other frameworks (Cyber-Physical
System with routing algorithms, DTs with human
control) on the same use-case.

References

[1] M. Christopher, Logistics & supply chain management.
Pearson Uk, 2016.

[2] A.-M. Barthe-Delanoë, S. Truptil, F. Bénaben, and
H. Pingaud, “Event-driven agility of interoperability
during the run-time of collaborative processes,” Decision
Support Systems, vol. 59, pp. 171–179, 2014.

[3] A. Fertier, G. Martin, A.-M. Barthe-Delanoë,
J. Lesbegueries, A. Montarnal, S. Truptil, F. Bénaben,
and N. Salatgé, “Managing events to improve situation
awareness and resilience in a supply chain,” Computers
in industry, in press.

[4] D. Ivanov, B. Sokolov, and A. Dolgui, “The
ripple effect in supply chains: trade-off
‘efficiency-flexibility-resilience’in disruption
management,” International Journal of Production
Research, vol. 52, no. 7, pp. 2154–2172, 2014.

[5] A. Sarac, N. Absi, and S. Dauzère-Pérès, “A literature
review on the impact of rfid technologies on supply
chain management,” International journal of production
economics, vol. 128, no. 1, pp. 77–95, 2010.

[6] D. A. Greenwood, C. Dannegger, K. Dorer, and
M. Calisti, “Dynamic dispatching and transport
optimization-real-world experience with perspectives
on pervasive technology integration.,” in hicss, pp. 1–9,
2009.

[7] L. Atzori, A. Iera, and G. Morabito, “The internet of
things: A survey,” Computer networks, vol. 54, no. 15,
pp. 2787–2805, 2010.

[8] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic,
“Cyber-physical systems: the next computing
revolution,” in Design automation conference,
pp. 731–736, IEEE, 2010.

[9] D. Ivanov and A. Dolgui, “A digital supply chain twin for
managing the disruption risks and resilience in the era of
industry 4.0,” Production Planning & Control, pp. 1–14,
2020.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[11] B. Montreuil, “Toward a physical internet: meeting the
global logistics sustainability grand challenge,” Logistics
Research, vol. 3, no. 2, pp. 71–87, 2011.

[12] H. Treiblmaier, K. Mirkovski, P. B. Lowry, and Z. G.
Zacharia, “The physical internet as a new supply
chain paradigm: a systematic literature review and a
comprehensive framework,” The International Journal of
Logistics Management, 2020.

Page 2298



[13] E. Ballot, B. Montreuil, and R. Meller, The physical
internet. La Documentation Française, 2014.

[14] Y. Sallez, S. Pan, B. Montreuil, T. Berger, and
E. Ballot, “On the activeness of intelligent physical
internet containers,” Computers in Industry, vol. 81,
pp. 96–104, 2016.

[15] X. T. Kong, X. Yang, K. Peng, and C. Z. Li, “Cyber
physical system-enabled synchronization mechanism for
pick-and-sort ecommerce order fulfilment,” Computers
in Industry, vol. 118, p. 103220, 2020.

[16] Y. Yang, S. Pan, and E. Ballot, “Innovative
vendor-managed inventory strategy exploiting
interconnected logistics services in the physical
internet,” International Journal of Production Research,
vol. 55, no. 9, pp. 2685–2702, 2017.

[17] B. R. Barricelli, E. Casiraghi, and D. Fogli, “A
survey on digital twin: Definitions, characteristics,
applications, and design implications,” IEEE Access,
vol. 7, pp. 167653–167671, 2019.

[18] S. Singh, A. Barde, B. Mahanty, and M. Tiwari, “Digital
twin driven inclusive manufacturing using emerging
technologies,” IFAC-PapersOnLine, vol. 52, no. 13,
pp. 2225–2230, 2019.

[19] E. Negri, L. Fumagalli, and M. Macchi, “A review of the
roles of digital twin in cps-based production systems,”
Procedia Manufacturing, vol. 11, pp. 939–948, 2017.

[20] C. Fan, C. Zhang, A. Yahja, and A. Mostafavi, “Disaster
city digital twin: A vision for integrating artificial
and human intelligence for disaster management,”
International Journal of Information Management,
vol. 56, p. 102049, 2021.

[21] J. Cirullies and C. Schwede, “On-demand shared
digital twins–an information architectural model to
create transparency in collaborative supply networks,”
in Proceedings of the 54th Hawaii International
Conference on System Sciences, p. 1675, 2021.

[22] H. Liang, X. Wen, Y. Liu, H. Zhang, L. Zhang,
and L. Wang, “Logistics-involved qos-aware
service composition in cloud manufacturing
with deep reinforcement learning,” Robotics and
Computer-Integrated Manufacturing, vol. 67, p. 101991,
2021.

[23] N. Vanvuchelen, J. Gijsbrechts, and R. Boute, “Use of
proximal policy optimization for the joint replenishment
problem,” Computers in Industry, vol. 119, p. 103239,
2020.

[24] E. Puskás, Á. Budai, and G. Bohács, “Optimization of a
physical internet based supply chain using reinforcement
learning,” European Transport Research Review, vol. 12,
no. 1, pp. 1–15, 2020.

[25] H. D. Perez, C. D. Hubbs, C. Li, and I. E. Grossmann,
“Algorithmic approaches to inventory management
optimization,” Processes, vol. 9, no. 1, p. 102, 2021.

[26] A. Aghaie and M. Hajian Heidary, “Simulation-based
optimization of a stochastic supply chain considering
supplier disruption: Agent-based modeling and
reinforcement learning,” Scientia Iranica, vol. 26, no. 6,
pp. 3780–3795, 2019.

[27] T. van Tongeren, U. Kaymak, D. Naso, and E. van
Asperen, “Q-learning in a competitive supply chain,” in
2007 IEEE International Conference on Systems, Man
and Cybernetics, pp. 1211–1216, IEEE, 2007.

[28] A. Oroojlooyjadid, M. Nazari, L. Snyder, and M. Takác,
“A deep q-network for the beer game: A reinforcement
learning algorithm to solve inventory optimization
problems,” arXiv preprint arXiv:1708.05924, 2017.

[29] D. Chodura, P. Dominik, and J. Koźlak, “Market
strategy choices made by company using reinforcement
learning,” Trends in Practical Applications of Agents and
Multiagent Systems, pp. 83–90, 2011.

[30] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess,
M. Jaderberg, D. Silver, and K. Kavukcuoglu, “Feudal
networks for hierarchical reinforcement learning,”
in International Conference on Machine Learning,
pp. 3540–3549, PMLR, 2017.

[31] C. D. Hubbs, H. D. Perez, O. Sarwar, N. V. Sahinidis,
I. E. Grossmann, and J. M. Wassick, “Or-gym: A
reinforcement learning library for operations research
problem,” arXiv preprint arXiv:2008.06319, 2020.

[32] L’Assemblée nationale and Le Président de la
République, “Loi relative au renforcement de la
sécurité sanitaire du médicament et des produits de
santé,” Dec. 2011.

[33] MSS, “Rupture d’approvisionnement d’un médicament,”
Sept. 2016.

[34] MSS, “Le circuit de distribution du médicament en
France,” Jan. 2017.

[35] A. Tavakoli, F. Pardo, and P. Kormushev, “Action
branching architectures for deep reinforcement
learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, 2018.

[36] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot,
and N. Freitas, “Dueling network architectures for deep
reinforcement learning,” in International conference on
machine learning, pp. 1995–2003, PMLR, 2016.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[38] H. Van Hasselt, A. Guez, and D. Silver, “Deep
reinforcement learning with double q-learning,” in
Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, 2016.

[39] A. J. Clark and H. Scarf, “Optimal policies for a
multi-echelon inventory problem,” Management science,
vol. 6, no. 4, pp. 475–490, 1960.

[40] J. D. Sterman, “Modeling managerial behavior:
Misperceptions of feedback in a dynamic decision
making experiment,” Management science, vol. 35,
no. 3, pp. 321–339, 1989.

Page 2299


