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Abstract 
 
Software is ubiquitous in society, but understanding 

it, especially without access to source code, is both 
non-trivial and critical to security. A specialized group 
of cyber defenders conducts reverse engineering (RE) 
to analyze software. The expertise-driven process of 
software RE is not well understood, especially from the 
perspective of workflows and automated tools. We 
conducted a task analysis to explore the cognitive 
processes that analysts follow when using static 
techniques on binary code. Experienced analysts were 
asked to statically find a vulnerability in a small binary 
that could allow for unverified access to root 
privileges. Results show a highly iterative process with 
commonly used cognitive states across participants of 
varying expertise, but little standardization in process 
order and structure. A goal-centered analysis offers a 
different perspective about dominant RE states. We 
discuss implications about the nature of RE expertise 
and opportunities for new automation to assist analysts 
using static techniques.   
 
 
1. Introduction  
 

Software is ubiquitous in society, controlling 
anything from the energy grid to medical devices to 
our social connections. As software scales and changes 
to meet growing needs, we must ensure that software 
will protect our sensitive data and continue to perform 
critical functions with fidelity and reliability. In 
cybersecurity, a specialized group of defenders uses a 
unique set of skills to conduct reverse engineering 
(RE), specifically binary analysis, to find software 
vulnerabilities and understand malware. For a single 
program, this process can take days, weeks, or months, 
presenting a major challenge in scaling analysis as 
software use grows. As recent events like SolarWinds 
have demonstrated [1, 2], detecting potentially 
malicious code is critical for national security. How 
can we vet software at scale to ensure it is secure? 

This problem is tough, and intentional obfuscation 
of malicious code by bad actors makes it tougher. 

Whereas source code programmers and analysts use 
meaningful symbols in the code to help them 
understand program behaviors, security analysts often 
do not have access to these meaningful symbols. They 
must analyze the machine-readable binary code, often 
stripped of (human-) meaningful elements like variable 
and function names.  

RE binary analysis platforms do include automation 
to help transform binaries back into code, but they are 
imperfect, and malicious actors often write code that 
undermines these automations [3-5]. Currently, the 
process of binary RE relies a great deal on analysts 
engaging in line-by-line analysis. This baseline study 
was designed to help build a critical research base for 
understanding what the humans-in-the-loop (i.e., the 
binary analysts) might need from their automated tools 
to improve efficiency and effectiveness in analyzing 
code and reasoning about its security. 
 
2. Background and prior work 
 

Some research has explored software RE for given 
applications, like security analysis and software 
development. Much of the work in software RE is 
cognitive, requiring observers to infer its presence 
from other indications. Over the years, source code 
understanding has come to be explained by hybrid 
cognitive process models that combine bottom-up 
processes of line-by-line code analysis and chunking 
into functional units and top-down processes that rely 
on programming domain expertise to guide the analysis 
[6]. RE also requires abductive reasoning [7]; analysts 
generate hypotheses from observations, build mental 
models of the code from the hypotheses, and then look 
for information to verify or disprove their hypotheses, 
assumptions, and derived conclusions.  

Research that explores the RE process from a 
cognitive perspective is growing; it has shown that the 
RE process contains steps that are consistent with the 
scientific discovery process [8]. Process-related studies 
identified several 3-phase processes that RE analysts 
use. Votipka et al. identified 3 phases of overview & 
prioritization, hypothesis generation, and focused 
experimentation [9]. Tilley et al. identified 3 phases of 
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data gathering, knowledge generation, and information 
exploration [10]. These studies generalize across types 
of RE tasks, while Mullins et al. focused on defining 
these phases for a specific RE task [11]. They 
identified 3 phases in vulnerability discovery: 
reconnaissance, analysis, and patch & proof. All this 
foundational research starts to build the task structure 
for different RE objectives, but it does not allow 
researchers to observe and understand sub-processes, 
variance across analysts and tools, and opportunities to 
overcome inefficiencies in different RE tasks. RE 
literature is also nascent in developing objective 
measures to infer when these process phases are 
happening [12], especially when analysts engage in 
static analysis. 

Popular methods for studying the RE process 
include interviews and think aloud protocols to elicit 
process knowledge and expertise from experienced 
individuals. Some studies have collected cognitive 
information to gain these expert perspectives  [8, 9, 11, 
13], but many of these studies allow participants to 
choose an example and walk through what they did or 
would have done. Unfortunately, people have more 
difficulty recalling process steps that did not result in 
useful information; thus, retrospective reports are less 
likely to capture some of the pain points. Although this 
approach is valuable in revealing higher level goals 
and summarized processes, it removes the task context 
and may not fully generalize to the actual task setting. 
 
3. Study goals and research questions  
 

Our study aimed to investigate basic components of 
static binary analysis based on observations of RE 
analysts analyzing a small crafted binary. Our research 
questions focused on obtaining information about task 
execution:  component steps, tools and techniques, 
goals and strategies, and information needs. 

 
RQ1: What tools and features do analysts use for 
static RE? What functionality do they want? Why? 

RQ2: Are analysis process states (and sequences) 
consistent across participants? In what ways? 

RQ3:  What activities (states) could be automated 
to free up analysts from performing repetitive and 
cognitively demanding activities? 

Our underlying goals were to illuminate the nature 
of expertise in RE, to inform efforts integrating new 
automation into workflows, and to identify automation 
opportunities. Ultimately, answering these research 
questions helps inform long-term goals to strategically 
automate parts of the static binary analysis process and 
thus address the need for better software security. 

This study: 
 Provides novel evidence that the RE process 

is not conducted in clear phases as previously 
thought. Rather, changing phases of analysis 
and progress toward an analysis goal are 
difficult to observe and measure.  

 Identifies novel relevance and frequency 
information about cognitive states employed 
during RE, particularly regarding information 
gathering from external tools and resources. 

 Validates that RE is an iterative investigative 
process [9] with consistent process states [13]. 

 
4. Methodology 
 
4.1. Task description 
  

During the study session, which lasted up to two 
hours, participants were asked to determine whether 
the checks to unlock a device in a C program could be 
bypassed. Participants read a readme file that described 
their task and the expected behaviors of the program. 
The device was described as unlocking under two 
conditions: if the user-provided password allowed root 
privileges, or if the time since the last password 
challenge was less than some threshold (i.e., relating to 
the timestamp). Participants were constrained to static 
techniques but could search externally for information 
(e.g., APIs). Participants were considered successful if 
they discovered that the program could be controlled 
through the number of command line arguments; 
specifically, if more than 5 arguments were passed to 
main, then the device was unlocked without a valid 
password and regardless of time since authentication.  

To better understand the reasoning processes of the 
participants (e.g., their goals, strategies, hypotheses, 
information needs, and process order), we used a task 
analysis with verbal protocols [14]. Participants were 
asked to think aloud as they tried to find the bypass 
vulnerability. Concurrent verbal protocols capture self-
commentaries in situ; delayed reporting can lead to 
omissions or distortions (e.g.,  [14]). However, a 
concurrent think aloud procedure can disrupt some 
types of cognitive processes, including tasks with high 
cognitive load and tasks that are so automated that 
describing them takes effort (e.g., tying your shoes). 
Interviewers limited interruptions, but when the self-
reporting was unclear or when the participant had not 
spoken for several seconds, interviewers would ask for 
additional information. Participants were instructed to 
indicate if the think aloud requirement disrupted their 
ability to do the task, but no participants did so. 

All study procedures were administered remotely 
through a desktop conferencing application that 
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allowed for audio and video (screen) recording. The 
participants used Remote Desktop to access a Linux 
virtual machine (VM) containing the program under 
test and providing internet access. To avoid process 
inconsistency introduced by different RE platforms, we 
constrained participants to using the well-known RE 
software IDA Pro 64 (IDA) with the Hex-Rays 
Decompiler. We chose IDA because we expected to 
study a larger population; Ghidra, the comparable 
alternative, was only released publicly in 2019. 

 
4.2. Participants 

 
The population of interest included individuals with 

two or more years’ experience doing software RE of 
binary code. Given the absence of consensus on what 
constitutes “expertise” in this area, experienced RE 
analysts consulting on the study suggested 2 years as 
our minimum level. The number of people with 2 years 
of RE experience is low compared to other areas of 
cyber security. The relatively small population size N 
for binary RE and our choice of qualitative methods 
suggests that our sample of 12 participants (n = 12) 
recruited from a large company (> 10,000 employees) 
is sufficient. This study was reviewed and approved by 
an Institutional Review Board. Informed consent was 
obtained from all participants. Participants were 
compensated for 2 hours of time using a project-
specific charge code.  

 
Table 1. Summary of participant experience 

Participant Years in 
RE 

Estimate of 
programs 
reverse 
engineered 

Hours 
per week 
doing RE 
tasks 

Experience 
with VR 
using 
binary RE 

101 11-15 7-10 5-10 N 
102* 6-10 26-50 10-20 Y 
104* 2-5 7-10 <5 Y 
105 2-5 11-25 5-10 Y 
106 16-20 11-25 5-10 N 
107 6-10 51-100 10-20 Y 
108 20+ 11-25 <5 N 
109 20+ 26-50 10-20 Y 
110 6-10 26-50 <5 Y 
111 6-10 26-50 <5 Y 
112* 6-10 26-50 <5 N 
113* 6-10 11-25 5-10 Y 

*successfully found vulnerability in this study 
 
Table 1 summarizes relevant demographic data 

about participant experience. Participants reported 
years of experience ranging from 2 years to more than 
20 and of hours per week doing RE ranging from less 
than 5 to 10-20. When asked to rate their own RE skills 
on a 5-point Likert scale (1 is beginner, 5 is expert), all 

participants identified themselves as a 3 or higher. 
Participants had applied binary RE to vulnerability 
analysis, malware analysis, embedded systems 
analysis, and general RE, but not all participants had 
applied binary RE to vulnerability research (VR). 

Of the 12 participants, four (4) were able to find the 
vulnerability within the available (2 hour) time. 
Participants who did not find the vulnerability were 
instructed to stop analysis at the two-hour mark. The 
average time to find the vulnerability, for those who 
did, was 1h 13 min (min = 57 min, max = 1h 33 min). 
The average time for all participants was 1h 14 min, 
excluding setup, consent, and troubleshooting at the 
beginning of the session. However, this time-related 
information is shared to support future studies, not as a 
result of the study itself. This study was meant to 
reveal process, not to assess performance, and time-on-
task was affected by verbal protocols. 

Participants volunteered for this study knowing that 
they would be asked to use IDA to do the analysis; this 
was stated in the recruitment message. During testing, 
11 of 12 participants expressed some unfamiliarity 
with IDA (e.g., not their preferred analysis platform, 
have not used it recently) or with certain tools or 
features in IDA. In such cases, participants were urged 
to refamiliarize themselves with the interface before 
proceeding. Unfamiliarity with IDA did not appear to 
prevent participants from discovering the vulnerability; 
all four analysts who successfully found the 
vulnerability reported some unfamiliarity with IDA.  

 
4.3. Data processing: qualitative coding 
 

As previously described, audio and screen capture 
were recorded for each participant’s session. These 
artifacts were analyzed to extract codable units that 
reflected the reasoning processes of the participants. 
Audio recordings were transcribed and segmented into 
units, with screenshots added for context. In addition, 
certain easily observed actions were identified as 
important to the reasoning process and captured as 
analysis units; they included using the cross-reference 
(x-ref) feature in IDA and using a tool outside of IDA.  

Our study was based in Task Analysis; the goal was 
to better understand the process followed (if any) in 
static binary RE. We qualitatively analyzed our 
analysis units [15] using an inductive coding procedure 
to collaboratively infer the type of cognitive process 
being used at a given point in time; this approach does 
not include a predetermined codebook for independent 
rating. Collaborative coding allowed us to develop new 
codes to identify emergent process steps. Because we 
instructed participants to tell us about their reasoning 
process and information used to make decisions, we 
expected codes related to goals, strategies, hypotheses, 
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hypothesis testing, and information gathering. We also 
included codes that did not strictly fit into the 
definition of a process but might still be pertinent to 
discussions about how people do these tasks (e.g., 
statements about how IDA was working, the 
participant’s expertise with IDA, and the participant’s 
expertise with the type of code).  

Our qualitative analysis proceeded in several stages 
of partitioning and coding with three raters. All three 
raters collaboratively reviewed the codes for consistent 
application and conciseness of definition. Thus, the 
coding process included discussion and debate about 
each statement and its corresponding code. Because the 
coding was not conducted independently, inter-rater 
reliability cannot be calculated. Instead, collaborative 
coding allowed for agreed interpretation across 
multiple perspectives [16], especially since the raters 
were also the observers. In the final stage of coding, 
the raters honed the code list to seven (7) process-
related codes that represent states between which 
analysts transition during binary RE. These cognitive 
process states then became thematic elements for 
analyzing patterns in the data. 

 
4.4. Analysis 
 

We used several visualizations (Fig. 1-3) to 
understand larger patterns in RE processes across 
participants. First, we created state-based line graphs to 
visualize transitions between states with respect to 
sequence, somewhat like ‘swimlane’ diagrams [17]. 
Our representation is not time-based, since the x-axis 
basis is participants’ codable units; rather, this shows 
how participants switched from one cognitive process 
to another. A different line represents each participant, 
and the (categorical) y-axis shows the cognitive 
process employed. The result depicts transitions of 
states over the task sequence across participants. 

We used a chord diagram to show frequency of 
process steps and patterns of transitions between them. 
Nodes represent process states, and edges depict direct 
transitions between states. We found this to be an 
appropriate way to represent the repetition observed in 
static binary analysis. 

We also identified three consistent goals that most 
participants pursued, and we analyzed the RE process 
states used to achieve these goals. These goals were 
specific to behaviors in the binary under test. First, we 
identified where participants stated hypotheses related 
to these goals. Then, we looked for related terms (e.g., 
“timestamp”) in utterances before and after those 
statements to identify connected activities. To visually 
compare states across goals, we created radar charts, 
which have been used to display multivariate, 
qualitative data in 2-dimensional form [18]. 

 
5. Results  
 

Table 2 lists the 7 process-related states identified 
during qualitative analysis, including definitions and 
relative frequency. We used these states to categorize 
participant utterances and actions in this study. As 
described above, these utterances and actions were 
observed in sessions lasting from 56 to 98 minutes, 
indicating that analysts transition between cognitive 
process states relatively frequently during a static RE 
task. These states are further discussed in the findings. 

 
Table 2. Static RE cognitive process states 

Process 
States 

Definition Total 
Utterances 

Goal Information that they are seeking 140 

Strategy 
How they plan to try to answer a 
question or get information 

253 

Hypothesis 
Generation 

Expectation or guess about 
something in the code (e.g., 
program behavior); Analyst knows 
they need investigation/verification  

263 

Knowledge 
& 
Information 
Gathering 

Examination of lines of code/ 
instructions and understanding 
what they mean; Looking up 
information from sources outside 
tool, like revisiting task description 

574 

Hypothesis 
Testing & 
Assessment 

When there is a clear hypothesis 
generated, the activities followed to 
test/verify the hypothesis or 
assumptions; Evaluating a piece of 
obtained knowledge/information 
known about the code 

145 

Binary 
Annotation 

Analyst adds comments or notes, or 
renames variables or functions 

176 

Review 
Walking through information that 
has already been gathered, 
hypothesized, or verified 

70 

 
5.1. RQ1: Tools and functionality in RE 
 

Binary analysts rely on many tools to help them to 
understand binaries. Almost all analysts use an analysis 
platform like IDA, Ghidra, or Binary Ninja to conduct 
initial disassembly and organize their analyses. 
Because we were interested in the similarities in 
reasoning across analysts when statically analyzing a 
binary, we constrained participants to using standard 
IDA Pro and the Hex-Rays Decompiler; no additional 
static or dynamic tools or plugins were allowed.  

A summary of the tools they used, in the analysis 
platform and externally, can be found in Table 3. All 
participants began the analysis viewing the start of the 
disassembled code in an IDA View A tabbed window. 
Although the Hex-Rays Decompiler was available, 
two analysts conducted all of their analysis in the 
disassembly and the control flow graph (CFG) views. 
All participants used cross-referencing tools (x-refs) 
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that allowed them to see calling functions in some 
form; ten displayed cross-references through the x-ref 
view, while the two who only analyzed disassembly 
relied on the disassembly display of x-refs.  
 
Table 3. RE tools used by participants 

IDA tools/features External tools/resources 
Disassembly Linux man-pages 
Hex-Rays Decompiler Internet search (general) 
Control flow graph (CFG) Notepad (physical) 
Cross-references (x-refs) Notepad (digital) 
Renaming functions or variables  
Function window  
Strings view  

 
Similarly, all analysts relied on renaming 

functions and variables to capture their understanding 
of the code and to propagate that information through 
the code. Six (6) of the participants used the function 
window to navigate to different parts of the code, 
including returning to the program start and to 
interesting system calls, like execve. Five (5) of the 
participants either displayed all strings in a window by 
using the strings view or searched through the code for 
specific strings, e.g., “timestamp”.    

Although we anticipated IDA feature use, it is 
noteworthy how frequently participants in our study 
relied on two types of external tools and resources 
(152 utterances, or 26.5% of the knowledge and 
information gathering category). The first type of 
resource supported participants’ search for information 
about standard functions (e.g., umask and seteuid). 
Participants accessed information through the Linux 
man-pages or using google search, often looking for 
multiple functions. The second type was a notepad in 
either physical or digital form. Five participants relied 
on these separate note-taking capabilities: three to 
provide a high-level overview of their understanding of 
the program and two to calculate buffer offsets or 
convert values to hexadecimal.  

Finally, many participants wanted functionality that 

was not available in the study. Eleven (11) of the 12 
participants stated that they would use dynamic 
analysis techniques to answer certain questions, 
including running the file and using a debugger to set 
values to verify control flow, to set incremental 
breakpoints, and to look for system changes to 
understand structures and instruction effects. 
 
5.2. RQ2: RE process consistency 

 
One of the goals of this study was to evaluate, 

across participants, the consistency in the process used 
to conduct a RE task. In some tasks, the sequence of 
states that the analyst progresses through is well-
defined and consistently ordered. In other tasks, 
subsets of users might progress through different state 
sequences. One way to identify sequences in verbal 
protocol data is to look for process tracing patterns 
across state transitions. In Figure 1, we present the 
sequence of state transitions observed for two 
participants in this study, both of whom identified the 
vulnerability in the code. This figure shows that state 
transitions were frequent in analysis sessions, 
consistent with other research identifying the high 
cognitive demand associated with this type of work 
[12, 19]. We also noted continual “revisiting” of past 
states. Thus, the RE process does indeed appear to be 
an iterative process as suggested by Votipka et al [9].  

To examine the transitions between states in more 
detail, we created a state transition chord diagram   
across all participants (Figure 2). We ordered the 
circumferential axis to reflect a general reasoning 
process. The proportion of the axis for each state 
indicates the relative number of times that state was 
visited across all participants. Link arrows indicate the 
direction of state transitions, and link thickness 
indicates the number of transitions from one state to 
another. Links pointing back to the same state show 
consecutive state repetition. 

Figure 1. A state sequence graph for two participants conducting static binary analysis 
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Figure 2. Chord diagram of RE states across 
participants. 

This diagram indicates that, when summed across 
participants, knowledge & information gathering was 
the dominant state for static binary analysis; the large 
proportion of return paths indicates many consecutive 
steps performing knowledge & information gathering. 
Goal, strategy, hypothesis generation, and binary 
annotation states also had strong links into (and out of) 
knowledge & information gathering. The number of 
links from the “start” state illustrates the variety of 
approaches employed initially by different participants. 

 

When examining the consistency of sequential 
processes, we did not detect common patterns across 
participants. However, we did observe consistency in 
the goals that participants pursued. We identified three 
common goals across participants: 1) figuring out how 
the timestamp works (i.e., the role of elapsed time 
since the last password challenge), 2) understanding 
how privileges are set and accessed, and 3) figuring out 
how password checking works. All participants 
pursued goals 1 and 3, and 10 out of 12 participants 
pursued goal 2. We examined consistency by charting 
the respective cognitive process states associated with 
pursuing each goal. These data are presented in a radar 
chart (Figure 3) that shows normalized frequency of 
states across all participants for the three common 
goals. The polygon similarity indicates that participants 
spent about the same proportion of time in each 
respective process state across different goals.  

Here, hypothesis generation was the most visited 
state (28-40% of utterances across all goals) followed 
by knowledge & information gathering (21-26%). This 

differed from the chord diagram (Figure 2) as not all 
codable units were utilized during the goal-oriented 
analysis; we only linked utterances with strong, 
explicit association with a goal. Remaining units are 
likely related to non-verbalized goals (and thus not 
identified in our dataset), more abstract goals, or less 
consistent goals across participants. 

 
 

 
5.3. RQ3: Automatable tasks 

 
Another goal of this study was to identify analyst 

activities that are good targets for automation. To do 
this, we identified common repetitive activities. Such 
activities are cognitively demanding with a low value 
for binary understanding, like searching.  

As shown in Table 2, analysts engaged in a 
surprising amount of knowledge & information 
gathering, with external activities accounting for 
26.4% of the analysis units in this category. The most 
frequent goal of external information gathering was to 
understand how functions were called, what functions 
do, and what return values mean. Across participants, 
99 utterances were about searching for information 
about binary functions (e.g., setuid, seteuid, execve, 
umask) in reference sources like man pages, 
stackoverflow.com, and through google searches. 
Every participant engaged in at least one search for 
reference information about a function; several 
participants looked for information on five or more 
functions, sometimes referencing the same information 
source more than once. While some searches were 
quick, all entailed leaving the binary code, conducting 

Figure 3. Radar chart of states across analysis 
goals. 
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a search, and deciding if the result provided the needed 
information for the binary under test. As one 
participant noted when using the man pages, 
“Unfortunately, this documentation is written for C 
programmers and not reverse engineers.”  

Another dominant action in external information 
gathering was returning to the instruction readme file. 
These actions accounted for 34 analysis units across 
participants, with eleven participants returning to the 
readme at least once and three participants returning 
six times in the 120-minute session. Participants stated 
that they were checking the behavior of the program, 
including the timestamp and password checks.  

Both accessing function information and accessing 
behavior information was critically important for the 
RE process. Analysts made decisions about how to 
prioritize their analysis and generated hypotheses about 
the mapping between code and described behaviors.   
 
6. Discussion  
 
6.1. Discussion of findings 
 
6.1.1. Themes of cognitive processes during 
vulnerability analysis. Our findings corroborate prior 
research conclusions about RE tasks that use only 
static techniques. Bryant [8] investigated binary RE 
using interview-based methods on a smaller 
population. His qualitative analysis resulted in similar 
codes related to process, such as creating goals or 
plans, forming hypotheses, and searching for 
information. We believe these themes are central to 
research that seeks to understand cognitive process 
during RE tasks.  

As expected, our findings also align with previous 
research on the goals and strategies of analysts using 
static techniques for source code vulnerability analysis. 
Smith et al [20] identified many of the same questions 
that our participants asked. For example, “where is this 
used in the code?”, “where is the method being 
called?”, “how can I get calling information?”, “where 
does this information/data go?”, “where is the data 
coming from?”, and “what is the context of this 
vulnerability/code?”. Thus, there is some similarity in 
cognitive processes across different use cases of static 
analysis (on binaries and source code, and for reverse 
engineers and developers).  

We noted that the volume of utterances related to 
planning was greater than for execution or review. 
There were more verbalizations of goals, strategies, 
hypothesis generation, and information gathering than 
of hypothesis testing, assessment, and review. One 
possible reason for this is that static binary analysis is a 
complex task that may be difficult to describe through 

verbalization, and not all participants may be adept at 
verbalizing their thoughts. However, we conducted 
different types of data analyses that resulted in 
different dominant states; knowledge & information 
gathering was dominant when looking at the data as a 
whole (Figure 2), but hypothesis generation was 
dominant when looking across specific goals (Figure 
3). We note that anchoring goal-oriented analysis 
around specific hypotheses could inflate the dominance 
of hypothesis generation. These findings are also 
consistent with previous research finding that program 
understanding is a hybrid of cognitive processes, with 
top-down, hypothesis generation driving the analysis 
and bottom-up, line-by-line analysis and chunking 
processes playing a large role [12]. Further, these 
findings suggest that when analysts engage in different 
modes of processing they are biased to report, or 
engage in, that type of processing, a finding that may 
have implications for the efficiency of analysis and for 
how to design automation. 
 
6.1.2. RE as a complex, non-linear, highly variable 
process. Foundational work in understanding RE 
workflows has depicted software analysis as a “3-phase 
process” (discussed in Section 2). However, our study 
revealed the novel observation that the static binary 
analysis process is not clearly broken down into 
procedural phases, nor are these phases indicative of 
the actual process flow. That is, the 3-phase approach 
nicely summarizes progress towards a goal in an 
abstract way but does not clearly depict the iteration 
and backtracking we observed. 

Our findings indicate that the RE process is ad hoc, 
repetitive, and iterative. It is a cycle that repeats as new 
leads for investigation are identified or removed from 
scope. Instead of a 3-phase process with clear 
milestones and transitions [11], we observed a range of 
process states that are visited frequently and iteratively 
during a given RE task, with little indication of how 
much progress the analyst was making toward a larger 
goal. Moreover, there was a high degree of variation 
across participants and their process sequences, 
indicating that the RE process is less formal or 
organized than previous representations suggest [11].  

We also observed that the RE tools did not support 
the cyclical nature of this complex task. Bryant [8] 
described RE tasks as “large world” problems in which 
the goal is not always well-defined at the beginning but 
becomes clearer at the end. However, RE tools do not 
provide strong support for changing goals. Also, their 
usability is still a problem; they require high familiarity 
or “tool expertise” [21] to do a relatively simple task 
efficiently. Though efficiency was not measured in this 
study, participants noted that lesser familiarity with 
IDA affected their speed despite having expertise in 
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the task (RE). Thus, we infer that platform familiarity 
would impact their ability to find the vulnerability 
within a time limit. Although analysis efficiency is a 
valid concern in RE, since our time limit was artificial 
and abnormally short, it is irrelevant to our results. 
Specifically, although unfamiliarity with IDA could 
impact which features and resources were used, it 
should not affect the cognitive states presented here. 
 
6.1.3. Overhead tasks: knowledge & information 
gathering. Our approach allowed us to identify novel 
relevance and frequency information about cognitive 
states employed in the RE process. We observed 
frequent knowledge & information gathering activities 
across all participants, accounting for 31.9% of all 
coded units. Our coding differentiated between 
“internal” (within IDA) and “external” (outside IDA) 
knowledge & information gathering activities: internal 
activities accounted for 23.5% of all coded units and 
external activities accounted for 8.5% of all units.  

Applying principles from industrial engineering, we 
can identify overhead, or non-value added, parts of the 
process. These overhead tasks can be characterized and 
mitigated or removed to increase process efficiency.  
Knowledge and information are critical to reasoning 
and code comprehension in RE tasks, but the act of 
searching for and retrieving that information is not 
adding value; as in other investigation-based 
cybersecurity settings [22], this makes knowledge & 
information gathering a good candidate for automation.  

In general, foraging activities that lead analysts 
away from the environment where they apply their 
collected information is overhead. The “distance” from 
the environment is like movement or transportation in 
physical processes; further, search and retrieval add a 
concurrent cognitive load that could disrupt primary 
task performance. Reducing or removing distance by 
bringing that external information to the analysis 
environment could help increase the speed of analysis.  

Again, although it had not been identified as a 
significant activity in previous studies about RE, we 
observed that participants frequently referenced 
external resources throughout the task. These resources 
included existing documentation about the program 
(readme), man-pages, and internet searches about 
specific functions, making these types of information 
good candidates for automated information retrieval.  

 
6.2. Implications of findings 
 
6.2.1. What is the nature of expertise in RE? One 
goal of human-centered approaches is to characterize 
how the work is currently done, preferably by 
“experts”. By sampling from the population of 
“experts”, the resulting processes, pain points, and 

cognitive needs are likely to be the ones that, if 
implemented and accommodated in training or new 
analysis systems, will result in the most performance 
gains for novices. 

In this study, we were interested in the processes 
and reasoning of individuals that conduct RE tasks but 
were unsure how to evaluate “expertise”. As is 
standard practice, we used multiple questions to try to 
assess “expertise”. These questions included self-
ratings of expertise, reports of numbers of years of 
experience and hours per week doing RE, and number 
of systems reverse engineered. Each of these measures 
has some drawbacks. Self-ratings require knowledge of 
the comparison group. Numbers of years of experience 
may not reflect skilled performance, and number of 
prior systems reverse engineered does not account for 
system complexity.  

Expertise, particularly when measured through 
performance in an applied domain, may be better 
conceptualized as a multidimensional construct [21]. In 
our study, although analysts reported having at least 2 
years of RE experience, their familiarity with the 
operating system for which the program was written 
constrained their ability to reason about this binary. To 
a lesser extent, participants reported that their lack of 
familiarity with the analysis platform (IDA) impeded 
their speed of reasoning.  

The knowledge required to support expert RE differ 
for source code and binary code. Analysts discovering 
code behaviors in binary code, especially without 
symbols, cannot rely on programming knowledge and 
skill in the same way as those discovering behaviors in 
source code, and most RE analysts do not regularly 
program in assembly language. Binary RE relies on 
specialized, binary-specific knowledge, including 
about assembly instructions, operating systems, and 
programming languages. This task is extremely 
difficult [7], particularly when binary behaviors are 
intentionally obfuscated. 
 
6.2.2. Opportunities for automation. Though the 
discussion above touched on several ideas, we discuss 
one automation opportunity in more detail. One pattern 
we observed was that almost all analysts returned to 
the readme file to reconsider and remember known 
behaviors of the program. The analyst’s understanding 
of known behaviors is a critical element of RE and, 
thus, this specific activity is not a target for 
automation. However, these types of memory failures 
and reference needs will be greater when the program 
is larger and when the sources of information about 
program behaviors are more dispersed. How might this 
activity be organized differently to support better 
memory about program behaviors and to aid more 
efficient analysis scoping? Despite the readme giving 
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guidance about what functions were in and out of 
scope, several analysts went back and verified what 
was stated in the readme during the exploration.  

This finding prompts an empirical question: how 
time-consuming is this activity for larger programs? 
Supporting analysts’ need to reference background 
information, whether a readme file or other 
information, is similar to delivering reporting from 
automated analyses so that information is more 
accessible during code review. Automatically marking 
certain code or functions as out-of-scope, or providing 
easy access to detailed usage information in-line with 
the code, may help significantly. 

 
7. Limitations and future research 

 
Our research has several limitations. First, the 

reduced analysis scope (our small, two-hour activity) 
did not allow us to observe any difficulties with 
complex code navigation across a large code base. 
Analysis on large binaries can span days to months; 
this study could not address cognitive demands and 
strategies that come into play across those timeframes.  

The use of verbal protocols limited our ability to 
capture specific analysis details. Participants may not 
have access to knowledge about their thinking, may not 
report all their thoughts and activities, and may report 
incorrectly about why they took particular actions. For 
example, if participants were in a goal state but failed 
to verbalize that, we could not identify it as a 
consistent, cross-participant goal. However, omissions 
or misrepresentations are less likely to happen during a 
verbal protocol than during an interview.  

This study was meant to provide guidelines for 
developing time-based data collection approaches so 
that less inference is needed to analyze performance 
and conclude, e.g., what participants are thinking and 
where they are having trouble. While we were able to 
identify more granular steps of the RE process than 
previous efforts, there are still questions about what 
performance means in this domain and how to measure 
it. Future research could focus on specific research 
questions about performance (e.g., finite analysis 
elements, measures) and use objective, even 
experimental, methods to answer them. 

This paper did not present specific information 
relevant to subtasks in RE, such as information needed 
to test specific hypotheses. However, this is an 
outstanding research question that we are exploring. 

Though we expected to recruit more participants 
for this qualitative study, our final sample size was 
small and homogeneous; all participants were recruited 
from a single company. We also did not collect data for 
each participant across multiple tasks and thus cannot 
conclude if individuals consistently approach static 

binary analysis across different binaries (for the same 
objective),  across different objectives (e.g., malware 
analysis), or across different analysis platforms (e.g., 
Ghidra). Future research could investigate this gap 
using within-subjects designs to capture variance 
between similar tasks and across different objectives. 

 
8. Conclusions  

 
Our task analysis of a reverse engineering (RE) task 

identified which process states analysts use. However, 
our findings reveal a lack of cross-subject consistency 
in analysis process order and structure. Future research 
is needed to understand within-subjects consistency 
and how much these states vary over target of analysis, 
task, and platform, tool, and technique availability. 

In our efforts to better understand the RE process 
and the expertise required to execute it, we found 
indications of specialized subsets of skills within the 
larger RE task space based on role (e.g., developer or 
security analyst), task (e.g., vulnerability analysis), and 
target of analysis (e.g., binary, C source). Moreover, 
additional expertise is needed with respect to the 
analysis platforms and tools being utilized. 

Our findings highlight opportunities to automate 
subtasks in RE, particularly those that are overhead, 
such as searching for information within and outside 
the analysis platform. Additional analyst support could 
target, e.g., overview diagrams, decision support, and 
iterative hypothesis generation and testing. 
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