
A Task Analysis of Static Binary Reverse Engineering for Security

Megan Nyre-Yu, Karin Butler, Cheryl Bolstad
Sandia National Laboratories

mnyreyu@sandia.gov

Abstract

Software is ubiquitous in society, but understanding

it, especially without access to source code, is both
non-trivial and critical to security. A specialized group
of cyber defenders conducts reverse engineering (RE)
to analyze software. The expertise-driven process of
software RE is not well understood, especially from the
perspective of workflows and automated tools. We
conducted a task analysis to explore the cognitive
processes that analysts follow when using static
techniques on binary code. Experienced analysts were
asked to statically find a vulnerability in a small binary
that could allow for unverified access to root
privileges. Results show a highly iterative process with
commonly used cognitive states across participants of
varying expertise, but little standardization in process
order and structure. A goal-centered analysis offers a
different perspective about dominant RE states. We
discuss implications about the nature of RE expertise
and opportunities for new automation to assist analysts
using static techniques.

1. Introduction

Software is ubiquitous in society, controlling
anything from the energy grid to medical devices to
our social connections. As software scales and changes
to meet growing needs, we must ensure that software
will protect our sensitive data and continue to perform
critical functions with fidelity and reliability. In
cybersecurity, a specialized group of defenders uses a
unique set of skills to conduct reverse engineering
(RE), specifically binary analysis, to find software
vulnerabilities and understand malware. For a single
program, this process can take days, weeks, or months,
presenting a major challenge in scaling analysis as
software use grows. As recent events like SolarWinds
have demonstrated [1, 2], detecting potentially
malicious code is critical for national security. How
can we vet software at scale to ensure it is secure?

This problem is tough, and intentional obfuscation
of malicious code by bad actors makes it tougher.

Whereas source code programmers and analysts use
meaningful symbols in the code to help them
understand program behaviors, security analysts often
do not have access to these meaningful symbols. They
must analyze the machine-readable binary code, often
stripped of (human-) meaningful elements like variable
and function names.

RE binary analysis platforms do include automation
to help transform binaries back into code, but they are
imperfect, and malicious actors often write code that
undermines these automations [3-5]. Currently, the
process of binary RE relies a great deal on analysts
engaging in line-by-line analysis. This baseline study
was designed to help build a critical research base for
understanding what the humans-in-the-loop (i.e., the
binary analysts) might need from their automated tools
to improve efficiency and effectiveness in analyzing
code and reasoning about its security.

2. Background and prior work

Some research has explored software RE for given
applications, like security analysis and software
development. Much of the work in software RE is
cognitive, requiring observers to infer its presence
from other indications. Over the years, source code
understanding has come to be explained by hybrid
cognitive process models that combine bottom-up
processes of line-by-line code analysis and chunking
into functional units and top-down processes that rely
on programming domain expertise to guide the analysis
[6]. RE also requires abductive reasoning [7]; analysts
generate hypotheses from observations, build mental
models of the code from the hypotheses, and then look
for information to verify or disprove their hypotheses,
assumptions, and derived conclusions.

Research that explores the RE process from a
cognitive perspective is growing; it has shown that the
RE process contains steps that are consistent with the
scientific discovery process [8]. Process-related studies
identified several 3-phase processes that RE analysts
use. Votipka et al. identified 3 phases of overview &
prioritization, hypothesis generation, and focused
experimentation [9]. Tilley et al. identified 3 phases of

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 2187
URI: https://hdl.handle.net/10125/79608
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

data gathering, knowledge generation, and information
exploration [10]. These studies generalize across types
of RE tasks, while Mullins et al. focused on defining
these phases for a specific RE task [11]. They
identified 3 phases in vulnerability discovery:
reconnaissance, analysis, and patch & proof. All this
foundational research starts to build the task structure
for different RE objectives, but it does not allow
researchers to observe and understand sub-processes,
variance across analysts and tools, and opportunities to
overcome inefficiencies in different RE tasks. RE
literature is also nascent in developing objective
measures to infer when these process phases are
happening [12], especially when analysts engage in
static analysis.

Popular methods for studying the RE process
include interviews and think aloud protocols to elicit
process knowledge and expertise from experienced
individuals. Some studies have collected cognitive
information to gain these expert perspectives [8, 9, 11,
13], but many of these studies allow participants to
choose an example and walk through what they did or
would have done. Unfortunately, people have more
difficulty recalling process steps that did not result in
useful information; thus, retrospective reports are less
likely to capture some of the pain points. Although this
approach is valuable in revealing higher level goals
and summarized processes, it removes the task context
and may not fully generalize to the actual task setting.

3. Study goals and research questions

Our study aimed to investigate basic components of
static binary analysis based on observations of RE
analysts analyzing a small crafted binary. Our research
questions focused on obtaining information about task
execution: component steps, tools and techniques,
goals and strategies, and information needs.

RQ1: What tools and features do analysts use for
static RE? What functionality do they want? Why?

RQ2: Are analysis process states (and sequences)
consistent across participants? In what ways?

RQ3: What activities (states) could be automated
to free up analysts from performing repetitive and
cognitively demanding activities?

Our underlying goals were to illuminate the nature
of expertise in RE, to inform efforts integrating new
automation into workflows, and to identify automation
opportunities. Ultimately, answering these research
questions helps inform long-term goals to strategically
automate parts of the static binary analysis process and
thus address the need for better software security.

This study:
 Provides novel evidence that the RE process

is not conducted in clear phases as previously
thought. Rather, changing phases of analysis
and progress toward an analysis goal are
difficult to observe and measure.

 Identifies novel relevance and frequency
information about cognitive states employed
during RE, particularly regarding information
gathering from external tools and resources.

 Validates that RE is an iterative investigative
process [9] with consistent process states [13].

4. Methodology

4.1. Task description

During the study session, which lasted up to two
hours, participants were asked to determine whether
the checks to unlock a device in a C program could be
bypassed. Participants read a readme file that described
their task and the expected behaviors of the program.
The device was described as unlocking under two
conditions: if the user-provided password allowed root
privileges, or if the time since the last password
challenge was less than some threshold (i.e., relating to
the timestamp). Participants were constrained to static
techniques but could search externally for information
(e.g., APIs). Participants were considered successful if
they discovered that the program could be controlled
through the number of command line arguments;
specifically, if more than 5 arguments were passed to
main, then the device was unlocked without a valid
password and regardless of time since authentication.

To better understand the reasoning processes of the
participants (e.g., their goals, strategies, hypotheses,
information needs, and process order), we used a task
analysis with verbal protocols [14]. Participants were
asked to think aloud as they tried to find the bypass
vulnerability. Concurrent verbal protocols capture self-
commentaries in situ; delayed reporting can lead to
omissions or distortions (e.g., [14]). However, a
concurrent think aloud procedure can disrupt some
types of cognitive processes, including tasks with high
cognitive load and tasks that are so automated that
describing them takes effort (e.g., tying your shoes).
Interviewers limited interruptions, but when the self-
reporting was unclear or when the participant had not
spoken for several seconds, interviewers would ask for
additional information. Participants were instructed to
indicate if the think aloud requirement disrupted their
ability to do the task, but no participants did so.

All study procedures were administered remotely
through a desktop conferencing application that

Page 2188

allowed for audio and video (screen) recording. The
participants used Remote Desktop to access a Linux
virtual machine (VM) containing the program under
test and providing internet access. To avoid process
inconsistency introduced by different RE platforms, we
constrained participants to using the well-known RE
software IDA Pro 64 (IDA) with the Hex-Rays
Decompiler. We chose IDA because we expected to
study a larger population; Ghidra, the comparable
alternative, was only released publicly in 2019.

4.2. Participants

The population of interest included individuals with

two or more years’ experience doing software RE of
binary code. Given the absence of consensus on what
constitutes “expertise” in this area, experienced RE
analysts consulting on the study suggested 2 years as
our minimum level. The number of people with 2 years
of RE experience is low compared to other areas of
cyber security. The relatively small population size N
for binary RE and our choice of qualitative methods
suggests that our sample of 12 participants (n = 12)
recruited from a large company (> 10,000 employees)
is sufficient. This study was reviewed and approved by
an Institutional Review Board. Informed consent was
obtained from all participants. Participants were
compensated for 2 hours of time using a project-
specific charge code.

Table 1. Summary of participant experience

Participant Years in
RE

Estimate of
programs
reverse
engineered

Hours
per week
doing RE
tasks

Experience
with VR
using
binary RE

101 11-15 7-10 5-10 N
102* 6-10 26-50 10-20 Y
104* 2-5 7-10 <5 Y
105 2-5 11-25 5-10 Y
106 16-20 11-25 5-10 N
107 6-10 51-100 10-20 Y
108 20+ 11-25 <5 N
109 20+ 26-50 10-20 Y
110 6-10 26-50 <5 Y
111 6-10 26-50 <5 Y
112* 6-10 26-50 <5 N
113* 6-10 11-25 5-10 Y

*successfully found vulnerability in this study

Table 1 summarizes relevant demographic data

about participant experience. Participants reported
years of experience ranging from 2 years to more than
20 and of hours per week doing RE ranging from less
than 5 to 10-20. When asked to rate their own RE skills
on a 5-point Likert scale (1 is beginner, 5 is expert), all

participants identified themselves as a 3 or higher.
Participants had applied binary RE to vulnerability
analysis, malware analysis, embedded systems
analysis, and general RE, but not all participants had
applied binary RE to vulnerability research (VR).

Of the 12 participants, four (4) were able to find the
vulnerability within the available (2 hour) time.
Participants who did not find the vulnerability were
instructed to stop analysis at the two-hour mark. The
average time to find the vulnerability, for those who
did, was 1h 13 min (min = 57 min, max = 1h 33 min).
The average time for all participants was 1h 14 min,
excluding setup, consent, and troubleshooting at the
beginning of the session. However, this time-related
information is shared to support future studies, not as a
result of the study itself. This study was meant to
reveal process, not to assess performance, and time-on-
task was affected by verbal protocols.

Participants volunteered for this study knowing that
they would be asked to use IDA to do the analysis; this
was stated in the recruitment message. During testing,
11 of 12 participants expressed some unfamiliarity
with IDA (e.g., not their preferred analysis platform,
have not used it recently) or with certain tools or
features in IDA. In such cases, participants were urged
to refamiliarize themselves with the interface before
proceeding. Unfamiliarity with IDA did not appear to
prevent participants from discovering the vulnerability;
all four analysts who successfully found the
vulnerability reported some unfamiliarity with IDA.

4.3. Data processing: qualitative coding

As previously described, audio and screen capture
were recorded for each participant’s session. These
artifacts were analyzed to extract codable units that
reflected the reasoning processes of the participants.
Audio recordings were transcribed and segmented into
units, with screenshots added for context. In addition,
certain easily observed actions were identified as
important to the reasoning process and captured as
analysis units; they included using the cross-reference
(x-ref) feature in IDA and using a tool outside of IDA.

Our study was based in Task Analysis; the goal was
to better understand the process followed (if any) in
static binary RE. We qualitatively analyzed our
analysis units [15] using an inductive coding procedure
to collaboratively infer the type of cognitive process
being used at a given point in time; this approach does
not include a predetermined codebook for independent
rating. Collaborative coding allowed us to develop new
codes to identify emergent process steps. Because we
instructed participants to tell us about their reasoning
process and information used to make decisions, we
expected codes related to goals, strategies, hypotheses,

Page 2189

hypothesis testing, and information gathering. We also
included codes that did not strictly fit into the
definition of a process but might still be pertinent to
discussions about how people do these tasks (e.g.,
statements about how IDA was working, the
participant’s expertise with IDA, and the participant’s
expertise with the type of code).

Our qualitative analysis proceeded in several stages
of partitioning and coding with three raters. All three
raters collaboratively reviewed the codes for consistent
application and conciseness of definition. Thus, the
coding process included discussion and debate about
each statement and its corresponding code. Because the
coding was not conducted independently, inter-rater
reliability cannot be calculated. Instead, collaborative
coding allowed for agreed interpretation across
multiple perspectives [16], especially since the raters
were also the observers. In the final stage of coding,
the raters honed the code list to seven (7) process-
related codes that represent states between which
analysts transition during binary RE. These cognitive
process states then became thematic elements for
analyzing patterns in the data.

4.4. Analysis

We used several visualizations (Fig. 1-3) to
understand larger patterns in RE processes across
participants. First, we created state-based line graphs to
visualize transitions between states with respect to
sequence, somewhat like ‘swimlane’ diagrams [17].
Our representation is not time-based, since the x-axis
basis is participants’ codable units; rather, this shows
how participants switched from one cognitive process
to another. A different line represents each participant,
and the (categorical) y-axis shows the cognitive
process employed. The result depicts transitions of
states over the task sequence across participants.

We used a chord diagram to show frequency of
process steps and patterns of transitions between them.
Nodes represent process states, and edges depict direct
transitions between states. We found this to be an
appropriate way to represent the repetition observed in
static binary analysis.

We also identified three consistent goals that most
participants pursued, and we analyzed the RE process
states used to achieve these goals. These goals were
specific to behaviors in the binary under test. First, we
identified where participants stated hypotheses related
to these goals. Then, we looked for related terms (e.g.,
“timestamp”) in utterances before and after those
statements to identify connected activities. To visually
compare states across goals, we created radar charts,
which have been used to display multivariate,
qualitative data in 2-dimensional form [18].

5. Results

Table 2 lists the 7 process-related states identified
during qualitative analysis, including definitions and
relative frequency. We used these states to categorize
participant utterances and actions in this study. As
described above, these utterances and actions were
observed in sessions lasting from 56 to 98 minutes,
indicating that analysts transition between cognitive
process states relatively frequently during a static RE
task. These states are further discussed in the findings.

Table 2. Static RE cognitive process states

Process
States

Definition Total
Utterances

Goal Information that they are seeking 140

Strategy
How they plan to try to answer a
question or get information

253

Hypothesis
Generation

Expectation or guess about
something in the code (e.g.,
program behavior); Analyst knows
they need investigation/verification

263

Knowledge
&
Information
Gathering

Examination of lines of code/
instructions and understanding
what they mean; Looking up
information from sources outside
tool, like revisiting task description

574

Hypothesis
Testing &
Assessment

When there is a clear hypothesis
generated, the activities followed to
test/verify the hypothesis or
assumptions; Evaluating a piece of
obtained knowledge/information
known about the code

145

Binary
Annotation

Analyst adds comments or notes, or
renames variables or functions

176

Review
Walking through information that
has already been gathered,
hypothesized, or verified

70

5.1. RQ1: Tools and functionality in RE

Binary analysts rely on many tools to help them to
understand binaries. Almost all analysts use an analysis
platform like IDA, Ghidra, or Binary Ninja to conduct
initial disassembly and organize their analyses.
Because we were interested in the similarities in
reasoning across analysts when statically analyzing a
binary, we constrained participants to using standard
IDA Pro and the Hex-Rays Decompiler; no additional
static or dynamic tools or plugins were allowed.

A summary of the tools they used, in the analysis
platform and externally, can be found in Table 3. All
participants began the analysis viewing the start of the
disassembled code in an IDA View A tabbed window.
Although the Hex-Rays Decompiler was available,
two analysts conducted all of their analysis in the
disassembly and the control flow graph (CFG) views.
All participants used cross-referencing tools (x-refs)

Page 2190

that allowed them to see calling functions in some
form; ten displayed cross-references through the x-ref
view, while the two who only analyzed disassembly
relied on the disassembly display of x-refs.

Table 3. RE tools used by participants

IDA tools/features External tools/resources
Disassembly Linux man-pages
Hex-Rays Decompiler Internet search (general)
Control flow graph (CFG) Notepad (physical)
Cross-references (x-refs) Notepad (digital)
Renaming functions or variables
Function window
Strings view

Similarly, all analysts relied on renaming

functions and variables to capture their understanding
of the code and to propagate that information through
the code. Six (6) of the participants used the function
window to navigate to different parts of the code,
including returning to the program start and to
interesting system calls, like execve. Five (5) of the
participants either displayed all strings in a window by
using the strings view or searched through the code for
specific strings, e.g., “timestamp”.

Although we anticipated IDA feature use, it is
noteworthy how frequently participants in our study
relied on two types of external tools and resources
(152 utterances, or 26.5% of the knowledge and
information gathering category). The first type of
resource supported participants’ search for information
about standard functions (e.g., umask and seteuid).
Participants accessed information through the Linux
man-pages or using google search, often looking for
multiple functions. The second type was a notepad in
either physical or digital form. Five participants relied
on these separate note-taking capabilities: three to
provide a high-level overview of their understanding of
the program and two to calculate buffer offsets or
convert values to hexadecimal.

Finally, many participants wanted functionality that

was not available in the study. Eleven (11) of the 12
participants stated that they would use dynamic
analysis techniques to answer certain questions,
including running the file and using a debugger to set
values to verify control flow, to set incremental
breakpoints, and to look for system changes to
understand structures and instruction effects.

5.2. RQ2: RE process consistency

One of the goals of this study was to evaluate,

across participants, the consistency in the process used
to conduct a RE task. In some tasks, the sequence of
states that the analyst progresses through is well-
defined and consistently ordered. In other tasks,
subsets of users might progress through different state
sequences. One way to identify sequences in verbal
protocol data is to look for process tracing patterns
across state transitions. In Figure 1, we present the
sequence of state transitions observed for two
participants in this study, both of whom identified the
vulnerability in the code. This figure shows that state
transitions were frequent in analysis sessions,
consistent with other research identifying the high
cognitive demand associated with this type of work
[12, 19]. We also noted continual “revisiting” of past
states. Thus, the RE process does indeed appear to be
an iterative process as suggested by Votipka et al [9].

To examine the transitions between states in more
detail, we created a state transition chord diagram
across all participants (Figure 2). We ordered the
circumferential axis to reflect a general reasoning
process. The proportion of the axis for each state
indicates the relative number of times that state was
visited across all participants. Link arrows indicate the
direction of state transitions, and link thickness
indicates the number of transitions from one state to
another. Links pointing back to the same state show
consecutive state repetition.

Figure 1. A state sequence graph for two participants conducting static binary analysis

Page 2191

Figure 2. Chord diagram of RE states across
participants.

This diagram indicates that, when summed across
participants, knowledge & information gathering was
the dominant state for static binary analysis; the large
proportion of return paths indicates many consecutive
steps performing knowledge & information gathering.
Goal, strategy, hypothesis generation, and binary
annotation states also had strong links into (and out of)
knowledge & information gathering. The number of
links from the “start” state illustrates the variety of
approaches employed initially by different participants.

When examining the consistency of sequential
processes, we did not detect common patterns across
participants. However, we did observe consistency in
the goals that participants pursued. We identified three
common goals across participants: 1) figuring out how
the timestamp works (i.e., the role of elapsed time
since the last password challenge), 2) understanding
how privileges are set and accessed, and 3) figuring out
how password checking works. All participants
pursued goals 1 and 3, and 10 out of 12 participants
pursued goal 2. We examined consistency by charting
the respective cognitive process states associated with
pursuing each goal. These data are presented in a radar
chart (Figure 3) that shows normalized frequency of
states across all participants for the three common
goals. The polygon similarity indicates that participants
spent about the same proportion of time in each
respective process state across different goals.

Here, hypothesis generation was the most visited
state (28-40% of utterances across all goals) followed
by knowledge & information gathering (21-26%). This

differed from the chord diagram (Figure 2) as not all
codable units were utilized during the goal-oriented
analysis; we only linked utterances with strong,
explicit association with a goal. Remaining units are
likely related to non-verbalized goals (and thus not
identified in our dataset), more abstract goals, or less
consistent goals across participants.

5.3. RQ3: Automatable tasks

Another goal of this study was to identify analyst

activities that are good targets for automation. To do
this, we identified common repetitive activities. Such
activities are cognitively demanding with a low value
for binary understanding, like searching.

As shown in Table 2, analysts engaged in a
surprising amount of knowledge & information
gathering, with external activities accounting for
26.4% of the analysis units in this category. The most
frequent goal of external information gathering was to
understand how functions were called, what functions
do, and what return values mean. Across participants,
99 utterances were about searching for information
about binary functions (e.g., setuid, seteuid, execve,
umask) in reference sources like man pages,
stackoverflow.com, and through google searches.
Every participant engaged in at least one search for
reference information about a function; several
participants looked for information on five or more
functions, sometimes referencing the same information
source more than once. While some searches were
quick, all entailed leaving the binary code, conducting

Figure 3. Radar chart of states across analysis
goals.

Page 2192

a search, and deciding if the result provided the needed
information for the binary under test. As one
participant noted when using the man pages,
“Unfortunately, this documentation is written for C
programmers and not reverse engineers.”

Another dominant action in external information
gathering was returning to the instruction readme file.
These actions accounted for 34 analysis units across
participants, with eleven participants returning to the
readme at least once and three participants returning
six times in the 120-minute session. Participants stated
that they were checking the behavior of the program,
including the timestamp and password checks.

Both accessing function information and accessing
behavior information was critically important for the
RE process. Analysts made decisions about how to
prioritize their analysis and generated hypotheses about
the mapping between code and described behaviors.

6. Discussion

6.1. Discussion of findings

6.1.1. Themes of cognitive processes during
vulnerability analysis. Our findings corroborate prior
research conclusions about RE tasks that use only
static techniques. Bryant [8] investigated binary RE
using interview-based methods on a smaller
population. His qualitative analysis resulted in similar
codes related to process, such as creating goals or
plans, forming hypotheses, and searching for
information. We believe these themes are central to
research that seeks to understand cognitive process
during RE tasks.

As expected, our findings also align with previous
research on the goals and strategies of analysts using
static techniques for source code vulnerability analysis.
Smith et al [20] identified many of the same questions
that our participants asked. For example, “where is this
used in the code?”, “where is the method being
called?”, “how can I get calling information?”, “where
does this information/data go?”, “where is the data
coming from?”, and “what is the context of this
vulnerability/code?”. Thus, there is some similarity in
cognitive processes across different use cases of static
analysis (on binaries and source code, and for reverse
engineers and developers).

We noted that the volume of utterances related to
planning was greater than for execution or review.
There were more verbalizations of goals, strategies,
hypothesis generation, and information gathering than
of hypothesis testing, assessment, and review. One
possible reason for this is that static binary analysis is a
complex task that may be difficult to describe through

verbalization, and not all participants may be adept at
verbalizing their thoughts. However, we conducted
different types of data analyses that resulted in
different dominant states; knowledge & information
gathering was dominant when looking at the data as a
whole (Figure 2), but hypothesis generation was
dominant when looking across specific goals (Figure
3). We note that anchoring goal-oriented analysis
around specific hypotheses could inflate the dominance
of hypothesis generation. These findings are also
consistent with previous research finding that program
understanding is a hybrid of cognitive processes, with
top-down, hypothesis generation driving the analysis
and bottom-up, line-by-line analysis and chunking
processes playing a large role [12]. Further, these
findings suggest that when analysts engage in different
modes of processing they are biased to report, or
engage in, that type of processing, a finding that may
have implications for the efficiency of analysis and for
how to design automation.

6.1.2. RE as a complex, non-linear, highly variable
process. Foundational work in understanding RE
workflows has depicted software analysis as a “3-phase
process” (discussed in Section 2). However, our study
revealed the novel observation that the static binary
analysis process is not clearly broken down into
procedural phases, nor are these phases indicative of
the actual process flow. That is, the 3-phase approach
nicely summarizes progress towards a goal in an
abstract way but does not clearly depict the iteration
and backtracking we observed.

Our findings indicate that the RE process is ad hoc,
repetitive, and iterative. It is a cycle that repeats as new
leads for investigation are identified or removed from
scope. Instead of a 3-phase process with clear
milestones and transitions [11], we observed a range of
process states that are visited frequently and iteratively
during a given RE task, with little indication of how
much progress the analyst was making toward a larger
goal. Moreover, there was a high degree of variation
across participants and their process sequences,
indicating that the RE process is less formal or
organized than previous representations suggest [11].

We also observed that the RE tools did not support
the cyclical nature of this complex task. Bryant [8]
described RE tasks as “large world” problems in which
the goal is not always well-defined at the beginning but
becomes clearer at the end. However, RE tools do not
provide strong support for changing goals. Also, their
usability is still a problem; they require high familiarity
or “tool expertise” [21] to do a relatively simple task
efficiently. Though efficiency was not measured in this
study, participants noted that lesser familiarity with
IDA affected their speed despite having expertise in

Page 2193

the task (RE). Thus, we infer that platform familiarity
would impact their ability to find the vulnerability
within a time limit. Although analysis efficiency is a
valid concern in RE, since our time limit was artificial
and abnormally short, it is irrelevant to our results.
Specifically, although unfamiliarity with IDA could
impact which features and resources were used, it
should not affect the cognitive states presented here.

6.1.3. Overhead tasks: knowledge & information
gathering. Our approach allowed us to identify novel
relevance and frequency information about cognitive
states employed in the RE process. We observed
frequent knowledge & information gathering activities
across all participants, accounting for 31.9% of all
coded units. Our coding differentiated between
“internal” (within IDA) and “external” (outside IDA)
knowledge & information gathering activities: internal
activities accounted for 23.5% of all coded units and
external activities accounted for 8.5% of all units.

Applying principles from industrial engineering, we
can identify overhead, or non-value added, parts of the
process. These overhead tasks can be characterized and
mitigated or removed to increase process efficiency.
Knowledge and information are critical to reasoning
and code comprehension in RE tasks, but the act of
searching for and retrieving that information is not
adding value; as in other investigation-based
cybersecurity settings [22], this makes knowledge &
information gathering a good candidate for automation.

In general, foraging activities that lead analysts
away from the environment where they apply their
collected information is overhead. The “distance” from
the environment is like movement or transportation in
physical processes; further, search and retrieval add a
concurrent cognitive load that could disrupt primary
task performance. Reducing or removing distance by
bringing that external information to the analysis
environment could help increase the speed of analysis.

Again, although it had not been identified as a
significant activity in previous studies about RE, we
observed that participants frequently referenced
external resources throughout the task. These resources
included existing documentation about the program
(readme), man-pages, and internet searches about
specific functions, making these types of information
good candidates for automated information retrieval.

6.2. Implications of findings

6.2.1. What is the nature of expertise in RE? One
goal of human-centered approaches is to characterize
how the work is currently done, preferably by
“experts”. By sampling from the population of
“experts”, the resulting processes, pain points, and

cognitive needs are likely to be the ones that, if
implemented and accommodated in training or new
analysis systems, will result in the most performance
gains for novices.

In this study, we were interested in the processes
and reasoning of individuals that conduct RE tasks but
were unsure how to evaluate “expertise”. As is
standard practice, we used multiple questions to try to
assess “expertise”. These questions included self-
ratings of expertise, reports of numbers of years of
experience and hours per week doing RE, and number
of systems reverse engineered. Each of these measures
has some drawbacks. Self-ratings require knowledge of
the comparison group. Numbers of years of experience
may not reflect skilled performance, and number of
prior systems reverse engineered does not account for
system complexity.

Expertise, particularly when measured through
performance in an applied domain, may be better
conceptualized as a multidimensional construct [21]. In
our study, although analysts reported having at least 2
years of RE experience, their familiarity with the
operating system for which the program was written
constrained their ability to reason about this binary. To
a lesser extent, participants reported that their lack of
familiarity with the analysis platform (IDA) impeded
their speed of reasoning.

The knowledge required to support expert RE differ
for source code and binary code. Analysts discovering
code behaviors in binary code, especially without
symbols, cannot rely on programming knowledge and
skill in the same way as those discovering behaviors in
source code, and most RE analysts do not regularly
program in assembly language. Binary RE relies on
specialized, binary-specific knowledge, including
about assembly instructions, operating systems, and
programming languages. This task is extremely
difficult [7], particularly when binary behaviors are
intentionally obfuscated.

6.2.2. Opportunities for automation. Though the
discussion above touched on several ideas, we discuss
one automation opportunity in more detail. One pattern
we observed was that almost all analysts returned to
the readme file to reconsider and remember known
behaviors of the program. The analyst’s understanding
of known behaviors is a critical element of RE and,
thus, this specific activity is not a target for
automation. However, these types of memory failures
and reference needs will be greater when the program
is larger and when the sources of information about
program behaviors are more dispersed. How might this
activity be organized differently to support better
memory about program behaviors and to aid more
efficient analysis scoping? Despite the readme giving

Page 2194

guidance about what functions were in and out of
scope, several analysts went back and verified what
was stated in the readme during the exploration.

This finding prompts an empirical question: how
time-consuming is this activity for larger programs?
Supporting analysts’ need to reference background
information, whether a readme file or other
information, is similar to delivering reporting from
automated analyses so that information is more
accessible during code review. Automatically marking
certain code or functions as out-of-scope, or providing
easy access to detailed usage information in-line with
the code, may help significantly.

7. Limitations and future research

Our research has several limitations. First, the

reduced analysis scope (our small, two-hour activity)
did not allow us to observe any difficulties with
complex code navigation across a large code base.
Analysis on large binaries can span days to months;
this study could not address cognitive demands and
strategies that come into play across those timeframes.

The use of verbal protocols limited our ability to
capture specific analysis details. Participants may not
have access to knowledge about their thinking, may not
report all their thoughts and activities, and may report
incorrectly about why they took particular actions. For
example, if participants were in a goal state but failed
to verbalize that, we could not identify it as a
consistent, cross-participant goal. However, omissions
or misrepresentations are less likely to happen during a
verbal protocol than during an interview.

This study was meant to provide guidelines for
developing time-based data collection approaches so
that less inference is needed to analyze performance
and conclude, e.g., what participants are thinking and
where they are having trouble. While we were able to
identify more granular steps of the RE process than
previous efforts, there are still questions about what
performance means in this domain and how to measure
it. Future research could focus on specific research
questions about performance (e.g., finite analysis
elements, measures) and use objective, even
experimental, methods to answer them.

This paper did not present specific information
relevant to subtasks in RE, such as information needed
to test specific hypotheses. However, this is an
outstanding research question that we are exploring.

Though we expected to recruit more participants
for this qualitative study, our final sample size was
small and homogeneous; all participants were recruited
from a single company. We also did not collect data for
each participant across multiple tasks and thus cannot
conclude if individuals consistently approach static

binary analysis across different binaries (for the same
objective), across different objectives (e.g., malware
analysis), or across different analysis platforms (e.g.,
Ghidra). Future research could investigate this gap
using within-subjects designs to capture variance
between similar tasks and across different objectives.

8. Conclusions

Our task analysis of a reverse engineering (RE) task

identified which process states analysts use. However,
our findings reveal a lack of cross-subject consistency
in analysis process order and structure. Future research
is needed to understand within-subjects consistency
and how much these states vary over target of analysis,
task, and platform, tool, and technique availability.

In our efforts to better understand the RE process
and the expertise required to execute it, we found
indications of specialized subsets of skills within the
larger RE task space based on role (e.g., developer or
security analyst), task (e.g., vulnerability analysis), and
target of analysis (e.g., binary, C source). Moreover,
additional expertise is needed with respect to the
analysis platforms and tools being utilized.

Our findings highlight opportunities to automate
subtasks in RE, particularly those that are overhead,
such as searching for information within and outside
the analysis platform. Additional analyst support could
target, e.g., overview diagrams, decision support, and
iterative hypothesis generation and testing.

9. Acknowledgments

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
NA0003525. This paper describes objective technical
results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy
or the United States Government.

We would like to formally acknowledge several
individuals for their contributions to this effort,
including Michelle Leger, John Ziegler, Sam Mulder,
Ryan Vrecenar, and D.J. Beyette.

10. References

[1] US-CERT, "Malware Analysis Report (AR21-039A) -
SUNBURST," Apri 15, 2021. [Online]. Available: https://us-
cert.cisa.gov/ncas/analysis-reports/ar21-039a

Page 2195

[2] FireEye, "Highly Evasive Attacker Leverages
SolarWinds Supply Chain to Compromise Multiple Global
Victims With SUNBURST Backdoor," in FireEye Threat
Research vol. 2021, ed, 2020.

[3] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and
A. Pretschner, "Code obfuscation against symbolic execution
attacks," presented at the Proceedings of the 32nd Annual
Conference on Computer Security Applications, Los
Angeles, California, USA, 2016.

[4] S. Sebastio et al., "Optimizing symbolic execution for
malware behavior classification," Computers & Security, vol.
93, p. 101775, 2020.

[5] N. Kuzurin, A. Shokurov, N. Varnovsky, and V.
Zakharov, "On the concept of software obfuscation in
computer security," presented at the Proceedings of the 10th
international conference on Information Security, Valparaíso,
Chile, 2007.

[6] A. von Mayrhauser and A.M. Vans, "Comprehension
processes during large scale maintenance," presented at the
Proceedings of the 16th international conference on Software
engineering, Sorrento, Italy, 1994.

[7] K.A. Weigand and R. Hartung, "Abduction's role in
reverse engineering software," in 2012 IEEE National
Aerospace and Electronics Conference (NAECON), 25-27
July 2012, pp. 57-62, 2012.

[8] A.R. Bryant, "Understanding How Reverse Engineers
Make Sense of Programs from Assembly Language
Representations," Doctor of Philosophy (PhD) Dissertation,
Department of Electrical and Computer Engineering, Air
Force Institute of Technology, 2012.

[9] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M.L.
Mazurek, "An Observational Investigation of Reverse
Engineers' Process and Mental Models," presented at the
Extended Abstracts of the 2019 CHI Conference on Human
Factors in Computing Systems, Glasgow, Scotland Uk, 2019.

[10] S.R. Tilley, S. Paul, and D.B. Smith, "Towards a
framework for program understanding," in WPC '96. 4th
Workshop on Program Comprehension, 29-31 March 1996
1996, pp. 19-28, 1996.

[11] R. Mullins, D. Kelliher, B. Nargi, M. Keeney, and N.
Schurr, "Challenges and Opportunities in Collaborative
Vulnerability Research Workflows," Proceedings of the
Human Factors and Ergonomics Society Annual Meeting,
vol. 64, no. 1, pp. 420-424, 2020.

[12] M.A.D. Storey, F.D. Fracchia, and H.A. Müller,
"Cognitive design elements to support the construction of a
mental model during software exploration," Journal of
Systems and Software, vol. 44, no. 3, pp. 171-185, 1999.

[13] A.R. Bryant, R F. Mills, G.L. Peterson, and M.R.
Grimaila, "Software Reverse Engineering as a Sensemaking
Task," Journal of Information Assurance & Security, Article
vol. 6, no. 6, pp. 483-494, 2011.

[14] B. Kirwan and L.K. Ainsworth, A guide to task
analysis: the task analysis working group. CRC press, 1992.

[15] S B. Merriam and E. Tisdell, "Qualitative research : a
guide to design and implementation," 2016.

[16] F. Cornish, A. Gillespie, and T. Zittoun, "The SAGE
Handbook of Qualitative Data Analysis," London: SAGE
Publications Ltd, 2014.

[17] R. Damelio, "The Basics of Process Mapping," 2011.

[18] J.M. Chambers, W.S. Cleveland, B. Kleiner, and P.A.
Tukey, Graphical Methods for Data Analysis. Wadsworth
International Group, 1983.

[19] J.A. Cowley and F.L. Greitzer, "Organizational Impacts
to Cybersecurity Expertise Development and Maintenance,"
Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 59, no. 1, pp. 1187-1191, 2015.

[20] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H.R.
Lipford, "Questions developers ask while diagnosing
potential security vulnerabilities with static analysis,"
presented at the Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, Bergamo, Italy,
2015.

[21] S.K. Garrett, B.S. Caldwell, E.C. Harris, and M.C.
Gonzalez, "Six dimensions of expertise: a more
comprehensive definition of cognitive expertise for team
coordination," Theoretical Issues in Ergonomics Science, vol.
10, pp. 93-105, 2009.

[22] M. Nyre-Yu, "Determining System Requirements for
Human-Machine Integration in Cyber Security Incident
Response," Doctor of Philosophy, School of Industrial
Engineering, Purdue University, 2019.

Page 2196

