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Abstract

The quantification of image similarity has been a key
topic in the computer vision literature for the past few
years. Different mathematical theories have been used
in the development of these measures, which we will
refer to as comparison measures. An interesting aspect
in the study of comparison measures is the natural
requirement to replicate human behavior. In almost all
cases, it is appropriate for a comparison measure to
produce results that are consistent with how humans
would perform that assessment. However, despite
accepting this premise, most of the proposals in the
literature ignore a fundamental characteristic of the way
in which humans carry out this evaluation: the context
of comparison. In this work we present a comparison
measure for binary images that incorporates the context
of comparison; more precisely, we introduce an
approach for the generation of ultrametrics for the
context-aware comparison of binary images.

1. Introduction

In the image processing literature there exist a
significant number of measures for binary image
comparison. This variety is mainly due to the
numerous applications of comparison measures for
binary images. For example, in many image processing
tasks, intermediate or final results are represented using
binary images, giving rise to the necessity to compare
automatically generated solutions with the ground truth.
Comparison measures between binary images would
be, in this case, directly used for the evaluation of the
results.

The mathematical inspirations to create comparison
measures for binary images are diverse, and often
driven by the type of elements in the images. The
content in binary images may vary greatly, and normally
depends on the type of imagery and task. For example,
binary images representing meteorological features [1],
fungal structures [2] or object silhouettes [3] take

very different shapes; hence, comparison operators are
often specific for types of images or features. In a
global perspective, common trends can be recognized
in the general foundations of such operators. A
relevant portion of comparison operators in the literature
are based on metrics, many of them extending the
Hausdorff metric [4, 5]. Information theory has also
been used to develop binary consensus operators,
either based on pixel matching/counting [6] or area
coincidence [7]. A perspective that has been rarely
studied in the literature is network- or tree-based
comparison [8], despite the interest it has sparked in
mathematical psychology [9]. Some ideas can be
found in the literature, e.g. introducing the concepts
of confusion and consensus areas in the field of
image segmentation [10], but it has been significantly
less explored than metric-based or information-based
alternatives. Beyond the wide variety of comparison
measures, it is worth mentioning that most of these
measures are presented in a parametric form, giving
rise to an even wider range of instantiations, exhibiting
significantly different behavior.

One of the most unexplored aspects in the
development of comparison measures is the modeling
of the context of comparison. Most of these measures
take into account only the images to be compared, so as
to obtain a quantitative evaluation of the (dis)similarity
between them. Generally, this is the case of metrics,
which define the distance between two elements in a
generic universe, satisfying the corresponding metric
axioms (identity of the indiscernibles, symmetry and
triangle inequality).

Definition 1.1 U being a generic universe, a function
d : U ×U → [0,∞[ is called a metric in U if it satisfies
the following properties:

1. Identity of the indiscernibles: d(x, y) = 0 if and
only if x = y.

2. Symmetry: d(x, y) = d(y, x) for any x, y ∈ U .

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
for any x, y, z ∈ U .
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Metrics are the most used functions for comparison,
although there are many others. For example, if
instead of the triangle inequality, the function d satisfies
the ultrametric inequality or strong triangle inequality,
d(x, y) ≤ max(d(x, z), d(y, z)) for any x, y, z ∈ U , the
resulting function would be an ultrametric. Obviously,
any ultrametric is a metric.

Note that a metric is an ultrametric [11] if and only
if any three points in U can be relabeled as x, y, z such
that

d(x, y) ≤ d(x, z) = d(y, z) .

The use of metrics for image comparison may seem
like a natural and mathematically appropriate approach,
but in fact it is different from how humans proceed.
Humans implicitly incorporate the context in their
comparisons, performing a multidimensional analysis of
the characteristics of each object. This incorporation of
the context may even lead to non-compliance with the
axioms when comparing. The context of comparison
can be explicit, but if no information is provided,
humans will incorporate it implicitly.

The non-necessity of imposing the metric axioms
in human similarity judgment, along with the implicit
contextualization made by humans, have long been
studied. In [12], Yearsley et al. studied the
implications of the famous example presented by
Tversky [13], the Jamaica-Cuba-Russia comparison.
The example is based on the idea that, d being a measure
of dissimilarity between countries, humans normally
judge that d(Jamaica,Russia) > d(Jamaica,Cuba) +
d(Russia,Cuba). In other words, that the perceived
dissimilarity between Jamaica and Russia, is greater
than the sum of the pairwise dissimilarity between
Jamaica and Cuba, and between Russia and Cuba,
hence not fulfilling the triangle inequality. In this
example, each country is considered a multidimensional
object and, in the comparison of each pair of
countries, humans are able to determine the dimension
of comparison implicitly, that is, the context of
comparison. Even when the context is not explicit,
the human evaluator is able to implicitly determine
it based on previous experiences. For example, the
Jamaica-Cuba comparison is normally established in
terms of geography, while Russia-Cuba is based on
its politics; humans selectively alter the role and the
setting of the context in the comparisons. This example
is used to discredit the need to impose the triangle
inequality in human reasoning, as well as to evince the
multidimensional nature of the human interpretation. It
also serves as an illustration of the interesting role of the
notion of context in human comparisons [14].

In general, the comparison measures in the literature
do not make use of the notion of context. Normally,

these measures only consider the two images to be
compared, assuming a global context and thus providing
an absolute quantification of (dis)similarity. While
this may be advantageous in some tasks, the process
moves away from the way in which humans compare.
Nowadays there is a general trend to replicate how
humans naturally perform image processing tasks,
since the intermediate or final results are compared to
hand-labelled ground truth images; this is the concept
behind supervised learning [15], where the training
sets are human-labelled data, with the workload and
waste of time that entails. A perfect simulation of
human behaviour would then be considered a perfect
performance, avoiding the expenses of human labelling.
The aim of this paper is to create a context-aware
comparison measure for binary images. More precisely,
we intend to design an ultrametric that quantifies the
dissimilarity between any two images within the context
of comparison. The quantified distance between two
images not only depends on their coincidences and
divergences, but also on the characteristics of the
remaining images within the context. By including the
context of comparison, our measure brings the process
closer to how humans perform comparisons.

The rest of this article is organized as follows.
Section 2 presents the ultrametrics in context-aware
comparison measures. The methodology for the
construction of the ultrametric for the comparison of
binary images is presented in Section 3, and is evaluated
in Section 4. Finally, Section 5 presents the conclusions
of the article.

2. Ultrametrics for object comparison

This section presents the concept of ultrametrics.
First, a taxonomy of comparison measures and their
main characteristics is presented (Section 2.1). Next,
we focus on a network-based approach for object
comparison (Section 2.2) and finally we present a
methodology for the ultrametric construction through
tree-based comparison measures (Section 2.3).

2.1. Taxonomy of comparison measures

Comparison measures, whether metrics, ultrametrics
or any other type of function, are crucial in most
of the scientific areas. These measures are decisive
in tasks such as quality assessment, classification or
optimization. In Tversky’s terms [16], comparison
measures can be divided into two main classes: (i) the
ones based on geometrical interpretations, called spatial
models, and (ii) those based on graph theory, called
network models. Spatial models represent each object
as a point in a coordinate space, so the distance between
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points represents the closeness between objects. Most
of the metrics and measures of dissimilarity adhere to
this strategy, like the different variants of the Hausdorff
metric [17, 18]. As opposed to spatial models, network
models generate a graph-like representation of the
relations between the objects to be compared. Each
object is defined as a node in a connected acyclic graph,
generally a rooted and labeled binary tree, while edges
or branches (and their weights) are used to represent
dissimilarity (or distance) between each pair of objects.
When using trees to generate hierarchical structures, the
nodes of degree 1 are called leaves and the node of
degree 2 root.

In Tversky’s double taxonomy, network models are
more suitable for modeling the notion of context than
spatial models. Spatial models may potentially establish
a coordinate space depending on some definition of the
context (however this is almost absent in the image
processing literature, except in specific image retrieval
applications through distribution comparison [19]).
Generally it is assumed that the context is sufficiently
large and nonspecific, and containing all possible
elements. Network models are easily adapted to
the context when establishing the topology of the
graph, since they consider all possible interrelationships
between elements. Therefore, the set of objects to
be compared affects the network topology and, thus,
the quantification of the dissimilarity between any two
nodes.

In this work we introduce a network-based
ultrametric that allows for a simple but meaningful
modeling of the comparison context. The generation
of a graph allows to model the relationships between
images of a set, building an ultrametric in the process.
This alternative enables better modeling of the human
behavior when comparing and evaluating dissimilarity,
as it implicitly includes the context. In addition, by
satisfying the properties of the ultrametric, we guarantee
that our comparison measure is a metric and, therefore,
it can be applied in different applications that require
metrics. The main disadvantage of this alternative is
that the network topology cannot establish distances
from or towards elements that were not present when
the structure was settled, so all the elements to be
compared must be known in advance.

2.2. Network-based comparison measures

Network-based comparison measures are obtained by
establishing a network topology on a set of elements.
Although this network topology can be any type of
graph (distances on cyclic road maps are an example
of this), generally rooted trees are the preferred

option, since they impose an appropriate hierarchical
structure on the data. This choice is fundamental to
many algorithms, especially in hierarchical clustering
algorithms [20]. This work focuses on the use of trees
as network topologies.

As an illustration, Figure 1 shows a tree organization
of linguistic terms based on their dissimilarity. This
graph contains, as leaves, the initial terms Train, Subway
and Car, and the resulting groupings of the elements.
In Fig. 1(a), {Train, Subway} are the first grouped,
since they are the closest terms in the set. Then,
{Train, Subway} are grouped with {Car}, forming the
root of the tree. Numerical details are omitted, so we
assume that the dissimilarity between two elements is
proportional to the height of the node where they are
grouped for the first time.

Figures 1(b) and 1(c) show the resulting trees when
adding two different terms to the candidate set of
Fig. 1(a): Airplane and Motorcycle. In the first
case, by including an element perceptually far from
all the elements of the original set, Airplane, the
tree topology does not change significantly; the new
element, Airplane, is grouped at the highest level of the
tree with the other elements of the set. On the contrary,
in Fig. 1(c), by including the element Motorcycle, which
is perceived as close to one of the elements of the
original set, Car, the tree changes significantly; the new
element Motorcycle is grouped with Car at the second
level, altering completely the structure of the tree. This
represents the fact that humans understand that terms are
similar in a variable way, depending on the comparison
context.

2.3. Tree-based comparison measures

The three examples in Fig. 1 provide an idea of
how to establish a hierarchy of the relations between
terms according to their perceived dissimilarity, but
they do not explain how to generate an ultrametric
from them, or any other comparison measure. The
construction process of the tree begins by considering
all the objects to be compared and setting the first
combined node as the closest pair of terms among
all candidate pairs. This choice is not trivial; in
computational terms, multiple different paradigms may
be involved: minimum entropy of the resultant set,
conditional probability, lower dissimilarity, etc. In the
tree construction, it is necessary to iteratively decide
which is the next node to be created, until the root is
reached. Note that the strategy used to select the next
combined node should not only consider the grouping
of leaves, but it must also be prepared to consider the
grouping of intermediate nodes that are generated in the
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Train Subway Car

(a) Tree model of {Train, Subway, Car}

Train Subway Car Airplane

(b) Tree model of {Train, Subway, Car}∪{Airplane}

Train Subway Car Motorcycle

(c) Tree model of {Train, Subway, Car}∪{Motorcycle}

Figure 1. Variants of a tree model of the similarity between linguistic terms for three different sets of terms.

tree construction, i.e., sets of elements.

Once the topology of the tree is established, it is
important to set weights for the edges or branches.
Depending on the nature of the strategy used to merge
nodes, there are two different situations. If the strategy
is qualitative, i.e., it determines which is the next node
that will be generated but does not return a numerical
evaluation of its cost (dissimilarity), each new node is
located at an increasing height of the tree. The cost of
the first node created by combining the leaves will be 1,
the second will have a cost of 2 and so on. If the strategy
used for the node grouping is quantitative, each new
node has a height equal to the cost of its generation. It
is important to remark that this height is not an intrinsic
property of the nodes, but it is represented by the length
of the edges that connect each node to the leaves.

Quantitative strategies must ensure certain
properties, for example, that nodes are created with
increasing height, so that each new node cannot have
a lower cost than older nodes. These strategies must
also consider the situation in which different candidate
nodes present the same cost during the construction
process of the tree; there are multiple strategies to
overcome this situation, like creating several nodes with
the same cost at the same time or randomly selecting.

Whichever the strategy chosen to design the tree
(qualitative or quantitative), the graph can be used
to create an ultrametric. The distance between
any two elements in the set of original elements,

in terms of the ultrametric, is the height of the
lowest node that includes both of them. This
agrees with the strong triangle inequality property
in Def. 1.1 since the distance between two elements
fulfills d(x, y)≤max(d(x, z), d(y, z)) for any x, y, z ∈
U . Also, this measure depends on the context of
comparison, since different groups of elements will
give rise to different tree topologies and, therefore, the
ultrametric will yield different values.

3. Ultrametrics for binary image
comparison

In this section we present the construction of an
ultrametric for the comparison of binary images. First,
we review the existing literature (Section 3.1) and
second we introduce ultrametric trees for binary image
comparison (Section 3.2).

3.1. Binary image comparison

The widespread use of binary images as intermediate
(or final) results in image processing tasks led to the
proliferation of a wide variety of measures for binary
image comparison. Much of the literature is devoted
to measures based on the confusion matrix [6, 21, 22],
but there is also a significant number of measures that
adopt a geometrical interpretation of the space of binary
images [23]. The most popular options in this regard are
the Hausdorff metric [4] and different generalizations
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oriented to specific tasks [17, 18], or the Symmetric
Difference [24, 25]. Other measures like Pratt’s FoM
(PFoM) [26] or Haralick’s Measure [27], even if not
satisfying the metric axioms, are partially based on
metrics.

Despite satisfying certain properties, metric axioms
or not, these measures do not provide an easy and
intuitive way to incorporate the context of comparison.
As far as we know, there are no references in the
image processing literature that present context-aware
comparison measures, where each comparison is made
taking into account, not only the given pair of images
to be compared, but all binary images within a set.
Generally, when used, the term context refers to
the idea that different regions of the image present
local environments and discriminatory global standards,
providing an adaptive comparison measure for each
image; therefore, the concept of context refers to
the relationships of a pixel with its neighborhood.
Examples can be found in a wide variety of applications
such as shape matching [28], edge detection [29], or
tracking [30].

The notion of context-awareness as presented in
this work is only present in certain specific tasks
like classification [31], concept comparison [32] or
recommender systems [33]. Most of these measures
emerge as a fundamental notion of cognitive theories
in psychology [34]. Despite considering the notion of
context as presented in this work, these measures are not
suitable for image comparison. There are no examples
in the image processing literature that attempt to include
this notion of context when comparing binary images.

Our proposal is a context-aware comparison
measure for binary images, applying trees to obtain
a quantification of dissimilarity by means of an
ultrametric.

3.2. Tree-based comparison for binary images

The construction of the tree-based ultrametric
presented in Section 2 can be extended to the case of
binary images. In order to achieve it, a mathematical
tool that allows for node grouping between objects is
required, that is, a quantitative method to carry out
comparisons between images. Due to the hierarchical
nature of the trees, this tool will yield the order in
which different images will be grouped in nodes. In
our proposal, the comparisons between images are
performed using Baddeley’s Delta Metric (BDM) [35,
36], a very popular comparison measure derived
from the Hausdorff metric [4], and the Symmetric
Difference (SDk) [24], an error measure for binary
images based on distances.

In this work we consider images to have fixed
dimensions M × N , such that Ω = {1, . . . ,M} ×
{1, . . . ,N} represents the set of positions in an image.
The set of all possible binary images is denoted as B,
i.e., the set of mappings Ω 7→ {0, 1}.

A,B ∈ B being two binary images in Ω and m a
metric in Ω. The distance between them in terms of
BDM is given by

∆k(A,B) =

 1

|Ω|
∑
p∈Ω

|w(Tm[A](p))− w(Tm[B](p))|k
 1

k

,

(1)
where w : R+ 7→ R+ is a concave function with w(x) =
0 if and only if x = 0, k ∈ R+ and Tm is an image
distance transformation defined by

Tm[I](p) = min
p′∈I

m(p, p′) , (2)

for all p ∈ Ω.
For the same two binary images A,B ∈ B in Ω and

m a metric in Ω, the distance between them, in terms of
SDk is given by

SDk(A,B) =
(
∑

p∈B T k
m[A](p) +

∑
p∈A T k

m[B](p))1/k

(|A ∪B|)1/k
,

(3)
where k ∈ R+ and Tm is an image distance
transformation defined by Eq. 3.2.

These measures provide a quantification of the
distance between images in the set and also a
valid strategy for designing hierarchical tree-based
dissimilarity measures, obtaining a proportionality
relation between the distances between elements and
the topology of the tree. This strategy also allows
for the creation of an ultrametric, since the distance
between two images in the set is the height of the
lowest node that includes both of them. As a result, a
graphical and intuitive representation of the proximity
of the elements to be compared from the original set is
obtained. The addition of new images to the original set
will give rise to different quantifications of dissimilarity
and, consequently, to different configurations of the
ultrametric tree, due to its context-awareness.

The construction of an ultrametric tree requires the
comparison not only of images, but also of sets of
images in the top nodes. However, very few measures
in the literature allow to perform N -to-M comparisons
of binary images; 1-to-1 comparison measures can
be used for the generation of N -to-M comparison
measures. From BDM and SDk we can obtain
comparison measures between sets of binary images
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A,B such that

C(A,B) =
∧
i,j

∆k(Ai, Bj) , (4)

and
D(A,B) =

∧
i,j

SDk(Ai, Bj) , (5)

respectively.

4. Experiments

In this section we conduct the experiments aimed
at testing the performance of our proposed comparison
measure. In this regard, we first present the binary image
dataset employed for the experiments (Section 4.1) and
second, we present a separability analysis based on
quantitative data (Section 4.2).

4.1. BSDS500 dataset

The Berkeley Segmentation Data Set and
Benchmark 500 (BSDS500) [37] is a very popular
dataset for edge detection and image segmentation
applications. The dataset contains a large set of images,
each one associated with a collection of hand-labelled
ground truth images of edges. Figure 2 shows ground
truth images associated with two different images of the
BSDS500 dataset, i.e., belonging to different classes.

Despite the fact that humans incur into great
variability when labelling images, generally any human
can group labelled images that come from the same
original image (intra-class), and differentiate them
from those that do not (inter-class). Any comparison
measure should be able to replicate this human behavior,
producing lower values for the comparison of intra-class
images than for inter-class images. In Section 4.2 we
will evaluate the ability to discriminate between pairs
of intra-class and inter-class images of four different
comparisons measures based on BDM and SDk.

4.2. Separability analysis

The evaluation of the performance of comparison
measures is not an easy task. In this work we
analyze whether different comparison measures for
binary images are able to replicate the human ability
to discriminate when two boundary images in the
BSDS500 are generated from the same original image
or not; quantitatively, whether the comparison measure
yields greater dissimilarity values for inter-class
comparisons than for intra-class comparisons. A pair
of images is considered intra-class if they are generated
from the same original image (by different humans),

and inter-class if they are not. Since this is a task that
humans can perform with little effort, it can be used as a
simple measure of human behavior replication.

In this experiment, we compared all pairs of
images using different configurations of BDM and
SDk, and ultrametric trees based on them. For these
experiments for BDM, we set w(x) = x, k = 2,
and m the bounded Euclidean distance mt(p, p

′) =
min(t,m(p, p′)), p, p′ ∈ Ω, with t = {2.5, 5, 10};
we refer to the direct measures and those generated
with ultrametric trees as ∆2

t and UMT-∆2
t , respectively.

As for SDk, we set k = 2, and m the bounded
Euclidean metric mt(p, p

′) = min(t,m(p, p′)) for any
p, p′ ∈ Ω, with t = {2.5, 5, 10}; we refer to the
direct measures and those generated with ultrametric
trees as SD2,t and UMT-SD2,t, respectively. The
BSDS500 Test dataset contains 200 different classes,
giving rise to 1063 images in total. This implies that
the number of inter-class comparisons is several orders
of magnitude greater than the number of intra-class
comparisons. We also calculated the accuracy (Acc)
of discrimination of the distributions for each possible
threshold. Ideally, Acc = 1 for at least one threshold,
if the two distributions do not overlap, resulting in total
separability.

In Figures 3 and 4 we present the distributions
of the intra-class and inter-class comparisons for the
direct comparison measures ∆2

t and SD2,t (upper rows)
and the ultrametric-tree-based comparison measures
UMT-∆2

t and UMT-SD2,t (bottom rows). In addition,
the accuracy is presented for each given threshold
in both figures. Note that if the distributions were
non-overlapping, the accuracy would reach the value 1.
The results are replicated with t ∈ {2.5, 5, 10}.
It is relevant to point out that, due to the great
difference between the number of intra-class and
inter-class comparisons, the distributions are presented
in percentage terms. Note also that the distributions are
shown on the left axis, while Acc is measured on the
right axis, taking values between 0.5 and 1.

In general, the distributions of the intra-class and
inter-class comparisons in Figs. 3 and 4 are quite
separable for the four comparison measures, both
the direct and the ultrametric tree-based measures.
In general, the inter-class comparisons generate
higher values than intra-class comparisons for all
configurations, correctly simulating the human behavior.
However, it can be seen at first glance that depending of
the comparison measure, the intra-class and inter-class
distributions are visually less overlapping, i.e., more
distant than others.

When comparing the standard (direct) and tree-based
comparison measures, very interesting facts can be
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(a) Ground truth associated to the image 107014 from the BSDS500

(b) Ground truth associated to the image 107072 from the BSDS500

Figure 2. Binary ground truth images from the BSDS500 dataset. Images that belong to the same class present

a high variability due to different humans labelling.

pointed out. We can observe that both UMT-∆2
t and

UMT-SD2,t present a notable improvement compared
to ∆2

t and SD2,t for all values of t. Direct
comparison measures show a lower separability between
the intra-class and inter-class distributions; on the
contrary, the tree-based configurations not only show
higher peaks of Acc, but also a larger area under the
curve. Therefore, we can affirm that the use of trees
not only leads to a qualitative improvement through the
inclusion of the context of comparison, but it also leads
to a quantitative improvement of the separability.

When comparing the results in Figs. 3 and 4, we can
state that both SD2,t and UMT-SD2,t lead to higher
separability values than ∆2

t and UMT-∆2
t , even if the

two direct measures present a notable improvement
when incorporating the ultrametric trees. Despite the
difference between the peaks of the distributions, we
can still affirm that including the use of trees provides
better separability values independently of the measure,
in addition to the incorporation of the context of
comparison.

5. Conclusions

In this work we present a context-aware comparison
measure based on ultrametric trees for binary images.
Specifically we intend to create a comparison measure
that takes into account all binary images of a set,
replicating how humans naturally perform comparisons.
In order to achieve it, we propose a tree-based
comparison measure that allows for an easy adaptation
to the context through the setting of the topology of
the graph; our method also leads to the creation of an
ultrametric, since the distance between any two element
in the set of original elements is the height of the lowest
node that includes both of them, fulfilling the strong
triangle inequality.

To obtain a quantitative comparison between binary
images, we apply BDM [35, 36], a comparison
measure derived from the Hausdorff metric [4], and
the Symmetric Difference (SDk) [24], a distance-based
error measure for binary images. We apply our
algorithm to the BSDS500 dataset and we perform a
separability analysis, obtaining the accuracy and the
corresponding distributions.

As a conclusion, we can affirm that the construction
of an ultrametric tree applying simple mathematical
notions, allows to model the context when comparing
binary images. However, this construction must be
supported by a comparison measure that provides a
dissimilarity quantification for the selection of the
nodes. Using BDM and SDk provides high separability
values, so we can affirm that our algorithm not only
provides context-aware comparison measure, but also a
better simulation of human behavior.

In future work, we shall explore the performance
of ultrametric trees based on comparison measures
that allow to perform N -to-M comparisons of binary
images naturally, and not through the adaptation of
1-to-1 comparison measures. Due to the almost
absence of comparison measures that allow to perform
comparisons involving different cardinalities of images,
the incorporation of these measures could lead to
an interesting new analysis of the separability when
including the context of comparison.

Acknowledgments

The authors gratefully acknowledge the
financial support of the Spanish Research
Agency, project PID2019-108392GB-I00
(AEI/10.13039/501100011033), as well as that of
Navarra de Servicios y Tecnologı́as, S.A. (NASERTIC).

Page 2141



Intra-class comparisons
Inter-class comparisons
Accuracy (right axis)

6

0 max
0

%

0.5

1

A
cc

∆2
t

6

0 max
0

%

0.5

1

A
cc

∆2
t

6

0 max
0

%

0.5

1

A
cc

∆2
t

6

0 max
0

%

0.5

1

A
cc

UMT-∆2
t

6

0 max
0

%

0.5

1

A
cc

UMT-∆2
t

6

0 max
0

%

0.5

1

A
cc

UMT-∆2
t

(a) t = 2.5 (b) t = 5 (b) t = 10

Figure 3. Intra- and inter-class distributions of the values obtained by ∆2
t and UMT-∆2

t , for the images in the

BSDS500 Test set [37]. The accuracy of the separability of the distributions is also included for each threshold in

the interval. Distributions are configured with 100 bins.
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