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Abstract

Forecast combination is an established methodology
to improve forecast accuracy. The primary questions
in the current literature are how many and which
forecasts to include (selection) and how to weight the
selected forecasts (weighting). Although integrating
both tasks seems appealing, we are only aware of
a few data analytical models that integrate both
tasks. We introduce Linear Hybrid Shrinkage (LHS),
a novel method that uses information criteria from
statistical learning theory to select forecasters and
then shrinks the selection from their in-sample optimal
weights linearly towards equality, while shrinking
the non-selected forecasts towards zero. Simulation
results show conditions (scenarios) where LHS leads to
higher accuracy than LASSO-based Shrinkage, Linear
Shrinkage of in-sample optimal weights, and a simple
averaging of forecasts.

1. Introduction

Since the seminal papers of Reid [1] and Bates and
Granger [2], improving accuracy of individual forecasts
through their combination evolved to a predominating
strategy in the forecasting literature (see, amongst
others, [3, 4, 5, 6, 7]). Recent successes of forecast
combination in real-world scenarios are observed, for
example, in the area of short-term electricity demand
forecasting [8]. By learning weighting schemes of
forecasts an average accuracy improvement of 15.887%
based on the Mean Absolute Percentage Error could be
achieved. Thereby, the results of the combination based
on French and Australian load data show better results
than individual methods, especially on public holidays,
which are considered to be particularly difficult to
predict. The merits of forecast combination are also
demonstrated in the area of oil price forecasting with
a 13% reduction in the Mean Squared Prediction
Error, showing that forecasting by combining several
forecast methods based on oil price information is a

viable alternative than relying on judgemental forecasts
as a sole source in this realm [9]. Interestingly,
both examples either use techniques for calculating
optimal weights based on the in-sample error structure
of forecasts or average the influence of forecasters
for the combination, although further improvements
might be achieved by introducing regularization like the
shrinkage of optimal weights towards a simple average
as shown in [10, 11, 12].

Besides the optimal weighting of forecasts, other
studies have shown that a selection of forecasters to
be included in forecast combination, i.e., how many
and which forecasts to include (selection), can also
lead to benefits. Mannes et al. [13] propose that
either the whole crowd, a selected crowd, or the best
member should be selected depending on the dispersion
of expertise and the cancellation effects of errors of
different forecasters. Further work has been published
based on hard thresholding over filtering criteria from
information theory to pick one single best forecast from
the crowd [14].

While a fusion of both strategies into one holistic
model seems promising, combined model selection and
weighting has received scant attention so far as most
articles either consider the weighting task or the group
selection task in depth.

An exception is the recently published work by
Diebold and Shin [15]. The authors propose and test
combination methods that first select forecasts using
the Least Absolute Shrinkage and Selection Operator
(LASSO), relearn optimal weights and then shrink the
weights of the selection to equal weights.

Inspired by this work, in this paper we propose
Linear Hybrid Shrinkage (LHS) – a model that also
selects a subgroup of forecasters and shrinks their
weights. LHS, however, differs in the following
aspects. First, instead of using the LASSO it
uses information criteria like permutation based
variable importance to rank the individual forecasters.
Second, using the number of forecasters p′ to be
selected from p forecasters as a hyperparameter, LHS
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shrinks the in-sample optimal weights of the top p′

forecasters linearly towards their average weighting,
while shrinking (out) the weights of the remaining p−p′
forecasters linearly towards zero.

One motivation for LHS stems from the behavior
of LASSO-based Shrinkage. LASSO is a very popular
shrinkage technique successfully used in a multitude
of applications. A strength of LASSO is its tendency
to select one forecast from a group of more strongly
correlated forecasts and therewith its ability to shrink out
several forecasters and reduce dimensionality. However,
this strength can – to some extend – also turn into
a weakness when multiple accurate and correlated
forecasts and only a small or moderate set of training
records are available. Indeed, in cases with limited data
and many highly correlated and similarly performing
individual forecasts, a situation common in practice,
LASSO is therefore somewhat prone to overfitting as
it often relies on fewer forecasters and might put
everything ”on one or few horses” although this might
not be optimal in terms of out-of-sample accuracy.

A second motivation is based on findings in recent
literature that recommend to select a forecaster subgroup
and shrink their in-sample optimal weights to the
simple average, while there is no analytical model to
determine the best number of forecasters to be kept
in the combination. LHS considers these findings
by also shrinking a subgroup of forecasters towards
their average weighting, while not removing remaining
forecasters completely, but shrinking their weights
towards zero to a controllable extent; thus, these are only
shrunk out if cross-validation-based procedures have
determined a maximal level of shrinkage.

The remainder of this paper is structured as follows.
In Section 2, the foundations of (linear) forecast
combination and shrinkage are summarized. Section
3 presents LHS, the method we introduce. The
simulation-based experimental design used to study the
behavior of LHS is described in Section 4. Section 5
presents and discusses the experimental results. The
paper finishes with conclusions and an outlook to future
research in Section 6.

2. Forecast Combination and Shrinkage

Let p out of i ∈ 1, ..., p forecasting models
(henceforth: forecasters) generate not-perfectly
collinear forecasts, f = (f1, . . . , fp). In a linear
combination of forecasts, weights w ∈ Rp with∑p
i=1 wi = 1 are assigned to form f ′w, where f ′ is the

transpose of the forecast vector. The task considered
here is to find w that minimize a certain loss function
with the combination, typically the Mean Squared Error

(MSE). As shown in [2] for two forecasts and in [16]
for its multivariate extension, assuming individually
efficient, unbiased forecasts, i. e., with errors following
a multivariate normal distribution with a mean of zero,
the weights that minimize MSE (called optimal weights
OW, wo) can be derived with the error covariance matrix
of forecasts Σe. With γ denoting a column vector of p
ones, OW are defined in (1).

wo =
Σ−1e γ

γ′Σ−1e γ
(1)

Since the true Σe is usually not known, available
training data on past forecast error E ∈ Rn×p for
periods t ∈ 1, ..., n is used to estimate it as Σ̂e = 1

nE
′E.

The estimated optimal weights ŵo are shown in (2).

ŵo =
Σ̂−1e γ

γ′Σ̂−1e γ
(2)

Estimated OW, ŵo (with ŵo 6= wo), are then
applied to unseen forecasts (the evaluation or test data)
which makes this combination scheme approach prone
to overfitting. Therefore, shrinking OW for example
towards equal weights (EW), we, can be expected
to result in lower MSE on test data, in particular
with higher levels of uncertainty due to less observed
spread in forecast ability between forecasters and small
amounts of training data [12].

One approach is to linearly shrink ŵo towards we
using a shrinkage parameter λ ∈ [0, 1], resulting in the
weight vector ŵλ defined in (3). With larger values of
λ a greater degree of shrinkage towards we is applied,
whereas λ = 0 corresponds to ŵo and λ = 1 to we.

ŵλ =
λ

p
γ + (1− λ) ŵo (3)

As an alternative to Linear Shrinkage as shown in
(3), ŵo can also be shrunk non-linearly using e. g. a
LASSO or Ridge penalty on the weight deviations from
equal weights as done in [15]. The authors coin the
respective formulations Egalitarian LASSO (eLASSO)
and Egalitarian Ridge (eRidge). With eit indicating
the error of forecast i on forecast event t, and λ as a
hyperparameter that can be tuned using cross-validation,
the eRidge regression formulation is shown in (4) and
the eLASSO formulation is shown in (5).

ŵeRidge = arg min
w

(

n∑
t=1

(

p∑
i=1

wieit)
2+

λ

p∑
i=1

(wi −
1

p
)2)

(4)
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ŵeLASSO = arg min
w

(

n∑
t=1

(

p∑
i=1

wieit)
2+

λ

p∑
i=1

|wi −
1

p
|)

(5)

A drawback of shrinking all forecasters towards
equal weights is that poorly performing forecasts are
retained and no forecast selection occurs. As optimal
shrinkage levels increase with uncertainty (e. g. with
decreasing number of training samples), weights of
poor performing forecasts then approach weights of the
individually best forecasts.

However, numerous researchers found that including
poor performing models in a forecast combination can
worsen forecast performance. Therefore, several papers
have investigated how poorly performing forecast
models can be removed from a combination with the
result that forecast accuracy often improves by simply
discarding models with the worst performance (e.g.
[17, 18, 19]).

In this sense, Diebold and Shin [15] propose a
data-analytical approach to first eliminate forecasts
from the selection and then estimate OW and
beneficial shrinkage parameters using cross-validation.
The authors propose partially-egalitarian LASSO
(peLASSO), which combines a LASSO penalty that
selects and shrinks to zero, and a second penalty,
which shrinks the remaining non-zero elements in f(w)
towards equality. peLASSO is shown in (6).

ŵpeLASSO = arg min
w

(

n∑
t=1

(

p∑
i=1

wieit)
2+

λ1

p∑
i=1

|wi|+ λ2

p∑
i=1

|wi −
1

f(w)
|)

(6)

Due to the discontinuity of the objective function at
wi = 0, the function in (6) is implemented in two steps.
In step 1 (selection to zero), forecasts are shrunk out
using standard LASSO as shown in (7).

ŵLASSO = arg min
w

(

n∑
t=1

(

p∑
i=1

wieit)
2+

λ

p∑
i=1

|wi|)

(7)

In step 2 (shrinkage towards equality), the p′

forecasts that survive step 1 are shrunk toward 1
p′ using

(4), named peLASSO (eRidge), or (5), named peLASSO
(eLASSO), or directly setting the weights of the p′

forecasts to 1
p′ , which is termed as peLASSO (Avg.).

Inspired by the novel approach introduced by the
authors, we now propose Linear Hybrid Shrinkage
(LHS) – a model that also selects a subgroup of
forecasters and shrinks their OW. LHS first uses
information criteria like permutation-based variable
importance to rank the individual forecasters. Second,
using the number of forecasters p′ to be selected
as a hyperparameter, LHS simultaneously shrinks the
in-sample OW of the top p′ forecasters linearly towards
their average weights, while shrinking (out) the weights
of the remaining forecasters linearly towards zero.

3. Linear Hybrid Shrinkage

The aim of Linear Hybrid Shrinkage (LHS), the
method we introduce, is to rank and select forecasts
based on information criteria discussed later in this
section, and to shrink the top p′ forecasts from
their in-sample OW to equality, while the remaining
forecasters are shrunk towards zero (i.e., given high
shrinkage, out of the selection).

To achieve both selection and weighting, LHS
adjusts (3). Instead of shrinking all p forecasters towards
1
p , only the top p′-ranked forecasters are shrunk towards

their EW, 1
p′ . The remaining p− p′ forecasts are shrunk

linearly towards zero.
As shown in Table 1, the decision which forecasters

are shrunk towards EW can be represented by a vector v
of size p, in which each element represents a forecaster
and the selected forecasters (those that are shrunk
towards EW) are set to 1, while the others (that are
shrunk towards zero) are set to 0.

Top p′ v v
γ′v

p′ = 1 (1, 0, 0)′ (1, 0, 0)′

p′ = 2 (1, 1, 0)′ ( 12 , 1
2 , 0)′

p′ = 3 (1, 1, 1)′ ( 13 , 1
3 , 1

3 )′

Table 1. Example of top p′-selection based on

forecaster performance or importance

With γ as a column vector of p ones, the optimal
weights wo and the shrinkage parameter λ, LHS is
formulated in (8).

ŵλp′ =
λv

γ′v
+ (1− λ) ŵo (8)

As in (3), λ = 0 corresponds to ŵo. With
increasing λ, a hyperparameter that will be tuned using
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cross-validation, ŵo of p′ forecasts will be increasingly
shrunk towards we = 1

p′ and the remaining ones to zero.
To determine the ranking of individual forecasters, i.

e., to set their values in v, LHS uses two types of prior
information which are now presented.

3.1. Selection Based on Forecaster Ability

As a first strategy we consider a common measure
to assess forecast ability, i.e., forecaster performance.
A forecaster’s performance is thereby usually measured
by an in-sample loss function such as the MSE, which
corresponds to the error variance of an individual
forecast if forecasts are efficient. Ranking the top p′

forecasters, with p′ ∈ {1, ..., p} by their MSE leads
to p possible shapes of v as shown in Table 1 for
p = 3 forecasters, whereby, for reasons of brevity
we assume forecasters are already ordered by their
individual in-sample MSE in ascending fashion.

A potential disadvantage of using forecasters’
individual performances (MSE) as ranking criterion
is that a forecaster is evaluated in isolation and
the contribution or importance of a forecaster in
a combination model is not explicitly considered.
Therefore, as a second ranking criterion, we propose a
measure that quantifies the importance of a forecast in a
combination.

3.2. Selection Based on Forecaster Importance

To take into account, e.g. interaction effects, mutual
variance reduction effects or suppressor effects that
might increase accuracy but cannot be accounted for
in an isolated assessment of forecasters, we consider
importance measures.

To estimate the importance of a forecaster for the
accuracy of a combined prediction, several variable
importance (VI) measures have been reported in
the literature (for a more detailed review, see e.g.
[20]). From the group of VI measures, we use
the permutation-based VI, also called Model Reliance
(MR), as proposed in [21].

The intuition of MR is to first learn a model, in
our case in-sample OW, and then determine the MSE
with the model on validation data. For each forecaster,
its prediction values are then randomly permuted, the
model is re-applied to the validation data, and again
the MSE is measured, but this time using randomly
permuted predictions from a forecaster i. The signal
of this forecaster i is then considered as noise without
predictive value, and the ratio of the MSE with noise
and the MSE with the original data is considered as
the importance Ii (or variable importance, V Ii) of a
forecaster i as in (9).

Ii =
MSE(OW, i under noise)

MSE(OW, i without noise)
(9)

The intuition is that removing the information
of a forecaster’s (predictions) leads to an increase
in MSE. Consequently, the most important
forecaster is considered as the one with the highest
permutation-based VI value.

To determine Ii ∀ i, we first split the available data
in k folds, learn OW on k − 1 folds and evaluate their
performance on the k-th fold by MSE to get the expected
loss without noise. To introduce noise, we permutate the
points in fold k for one forecaster i and again calculate
the MSE in fold k given the OW learned. We shuffle the
data points for this forecaster several times, average the
results and repeat this process k times by shifting the
folds for training and validation sets. Performing this
procedure for each forecaster i, we receive a forecaster
importance score Ii which is larger for forecasters for
whom swapping the values reduces the accuracy of the
combined forecast more.

As mentioned before, given p forecasters, there are
p different shapes for v. To determine the selection of
the final v, we consider v as a hyperparameter tuned via
k-fold cross-validation as will be described in the next
section.

4. Experimental Evaluation

We now describe the setup of our simulation-based
experiments used to analyze the behavior of LHS in
scenarios with different numbers of forecasts, training
sample sizes, error variances and covariances. As
commonly assumed, the simulation errors of individual
forecasts generated in the simulations are efficient,
i.e., time-invariant and following a multivariate normal
distribution with zero means. Hence, the error variance
of an individual forecast is the forecaster’s MSE.

Subsequently, we provide and discuss the
experimental outcome with LHS and compare the
results to the results obtained with alternative weighting
schemes, namely OW, SA, Linear and eLASSO
shrinkage as well as shrinkage and selection via
peLASSO.

4.1. Experimental Design

In our simulation-based experiments, we generate
synthetic error samples according to a given
covariance matrix of forecasters’ errors (unknown
to the models). The errors are drawn from a
multivariate normal distribution with pairwise
correlation ρ amongst forecasters’ errors, with
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No. Individual Forecast i
1 2 3 4

1 1.00 1.26 1.58 2.00
2 1.00 1.44 2.08 3.00
3 1.00 1.58 2.52 4.00
4 1.00 1.71 2.92 5.00

Table 2. Example of simulated forecast variance

vectors with p = 4

Treatment Combinations

Forecaster 8, 10, 12, 14, 16
Correlation 0.4, 0.525, 0.65, 0.775, 0.9
Variance 2, 3, 4, 5
Train 30, 40, 50, 60, 70
Test 5000

Table 3. Overview of treatment combinations

ρ ∈ {0.4, 0.525, 0.65, 0.775, 0.9}. We assume
error correlations of medium to high positive values,
as usually assumed in scientific work on forecast
combination.

For every scenario (a simulation with a set of
treatments like ρ and other treatments introduced later
in this section) a small empirical snapshot (n error
observations) is drawn, that serves as training data. We
consider n ∈ {30, 40, 50, 60, 70}. For all of the
treatment combinations we run simulations with five
different numbers of forecasters p = 8, 10, 12, 14, 16
and four different spreads of the individual forecasts’
error variances. We let the variance of the p-th forecast

σ2
p be 2, 3, 4 or 5, decreasing geometrically by (σ2

p)
i−1
p−1

for the i-th forecast, with i ∈ {1, ..., p − 1}. For
instance, for p = 4 we obtain the four variance vectors
shown in Table 2.

With five different numbers of forecasters, five
training data sizes, four different variances as well as
five correlations, we receive a total of 500 scenarios.
Each scenario, i.e. treatment combination, is repeated
ten times, with different errors drawn from multivariate
normal distributions to increase robustness. Since the
ultimate goal is to approximate the optimal weights
behind the true underlying data generation process based
on the given training patterns, a generous test set size
of 5,000 data points is chosen. An overview of the
treatment combinations can be found in Table 3.

Several benchmark methods are implemented and
tested besides LHS to compare the performance of LHS
and determine scenarios where it might be favorable to
be used or dominated by alternative approaches.

As benchmark methods, OW, SA, Linear Shrinkage

as well as non-linear shrinkage via eLASSO are used.
The idea of crowd selection and subsequent averaging
is reflected in the peLASSO method presented in [15],
with the combination of peLASSO (Avg.) and peLASSO
(eRidge) used for this purpose. For LHS and Linear
Shrinkage, shrinkage is performed in 50 steps, whereby
λ = 0 corresponds to a shrinkage level of 0% and
λ = 49 to a maximum shrinkage level of 100%. LASSO
learns max(λ) as the smallest value of lambda for which
all coefficients are zero, i.e. EW for eLASSO, over
the free available R package and respective function
genlasso [22]. For the shrinkage in peLASSO over
eRidge, a grid of λ ranging from zero to 3,000,000 is
used to learn λopt, as depending on the scenario heavy
penalization can be required according to [15].

Before we present and discuss the results obtained in
our simulation, we will briefly illustrate how LHS works
and how its hyperparameters are tuned.

4.2. Example LHS Weight Shrinkage Path
and Associated MSE Curve

For illustration, we use an example simulation run
with p = 14, n = 60, ρ = 0.525 and a high variance
treatment with σ2

p = 4. As selection criterion, forecaster
performance is taken which ranks the forecaster
according to their MSE in the in-sample data. For the
in-sample forecast performance of forecaster i, ..., p, we
observe the following variance vector MSEtraini ∈
{1.15, 1.04, 0.99, 0.99, 1.28, 1.76, 1.58, 2.20, 2.17,
2.62, 2.65, 2.54, 2.23, 3.01} (Note that this is not
corresponding to the true variance of the forecast,
as we are only using a snapshot of the simulated
data). After performing cross-validation, top p′ = 4
was selected, leading to the following shape of v =
(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ and v

γ′v =

(0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

accordingly.

Figure 1. Example shrinkage path of weights over λ

using selection over forecaster performance

Figure 1 shows the coefficients along the shrinkage
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path. With λ = 0, no shrinkage is performed and
OW can be observed. With λ = 49, the maximum
shrinkage level is reached and weights of non-selected
forecasters (gray lines) are linearly shrunk to zero, while
the weights of selected forecasters (black lines) are
shrunk to v

γ′v in a linear fashion.

Figure 2. Example MSE development over λ

To analyze LHS performance, Figure 2 plots the
development of MSE over λ. The dark gray line
depicts the in-sample MSE, the gray line the MSE
on validation data, and the black line the MSE on
test data. As a shrinkage of zero (OW) is by design
optimal on the training data but prone to overfitting
and high MSE on the validation and test sample, the
minimum MSE in-sample, but maximum MSE value
out-of-sample can be observed at λ = 0. The curves
show that the MSE monotonously increases in-sample,
but show an U-shaped MSE curve on the validation
and test set. On validation data, a medium optimal
shrinkage level of 58% (or λ = 29) has been learned
using cross-validation. Applying the learned model
and shrinkage level to the test set a MSE of 0.747 is
achieved. Inspecting the MSE test curve, it is noticeable
that by cross-validation still a slightly overfitted model
is learned. Yet the actual optimal lambda value on MSE
test is 38, which would have yielded a test MSE of
0.734.

5. Experimental Results

We now present and discuss the experimental
outcome. First, we provide aggregated results of
the average test MSE of the considered combination
approaches. Second, we drill-down the results to
treatment combinations to analyze whether certain
scenarios are dominated by certain weighting methods
in terms of the ranges of treatment values. Third, we
discuss the results and provide further analysis regarding
optimal shrinkage levels and the number of forecasters
included in a combination with the various approaches.

Method MSE λopt Forecaster
OW 0.772 12
SA 1.317 12
Linear Shrinkage 0.727 17.241 12
eLASSO 0.725 2.820 12
LHS P 0.714 31.528 3.006
LHS VI 0.729 25.463 6.279
peLASSO (Avg.) 1.231 10.322 6.617
peLASSO (eRidge) 0.733 310,091 6.617

Table 4. Aggregated results over all scenarios

5.1. Aggregated Results

Aggregated experimental results are provided in
Table 4. The table shows the average test MSE
over all scenarios per combination method. Thereby,
LHS P denotes the LHS using forecaster performance
as selection criterion, whereas LHS VI uses the
forecasters’ variable importances. The methods
peLASSO (Avg.) and peLASSO (eRidge) first use
LASSO as shown in (7) for selection, whereby the
first subsequently averages the survivors and the second
learns new optimal weights for the survivors and another
λ for optimal shrinkage towards equality via eRidge.
Consequently, the lambda value shown for peLASSO
(Avg.) applies to both peLASSO techniques.

The table shows that over all scenarios, all shrinkage
approaches outperformed the SA as well as the OW
approach with the exception of peLASSO (Avg.). In
detail, the LHS-based approaches, Linear Shrinkage,
eLASSO as well as peLASSO (eRidge) lead to the lowest
test MSE values between 0.714 and 0.733, compared to
a mean test MSE with SA (OW) of 1.317 (0.772).

However, these aggregated results are limited
regarding the insights one can gain from them, as MSE
values are averaged over very different scenarios that
entail very different MSE values. Therefore, we now
drill-down the results and provide further insights for
which scenarios which method performs best on average
and can be recommended to be used.

5.2. Comparative Results with Different
Treatment Value Combinations

As aforementioned, MSE results are only directly
comparable for a particular variance–correlation
treatment combination, as otherwise the minimum
MSE that can be achieved differs strongly between
different values of those parameters. Therefore, for
each treatment combination (scenario), we determine
the scenario-winner as the method that results in the
lowest mean test MSE.

We then train a classification tree (using the
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open-source CART implementation rpart [23],
available in the programming language R) in its
default configuration and using Gini as splitting
criterion, all treatments as predictor variables and the
scenario-winner as the label of the target variable. The
tree aims at finding subsets of parameter values (leaf
nodes) that are pure, i.e., having a high concentration
of scenarios with the same scenario-winner label. The
labels correspond to the method labels in Table 4,
with the exception of peLASSO (eRidge) and Linear
Shrinkage, which are now called Lin. Shrink. and
peLAS(eRidge) for shorter rendering. The resulting
model trained with 500 scenarios is shown in Figure 3
as a binary tree, whereby the R package rpart.plot [24]
was used for visualisation.

Figure 3. CART classification tree over all

treatment combinations

The decision tree starts with the root node, indicated
by the framed node number one. Below each node, the
splitting criterion that leads to the maximum reduction
in Gini impurity is shown. All observations that satisfy
the condition follow the left branch, and observations
that do not meet the condition are on the right branch.

Resulting leaf nodes are displayed with wider
boxes containing the following information. First, the
name of the most frequently chosen model, i.e., the
scenario-winner in that node, is presented. Second,
the absolute frequency per model in that node is

reported. As peLASSO (Avg.) did not win a treatment
combination, the numbers represent the following
models within a leaf node from top left to (bottom)
right: eLASSO, LHS P, LHS VI, Linear Shrinkage, OW,
peLASSO (eRidge), and SA. As a third information, the
relative share of the 500 observations within a node is
shown on the bottom of a box.

Summing all absolute frequencies for each model
at the corresponding position within a leaf across all
leaves, the most frequent scenario-winner is LHS P with
a total of 179 wins, followed by eLASSO with 118 wins,
peLASSO (eRidge) with 80 wins, Linear Shrinkage with
51 wins, OW with 45 wins, and LHS VI with 25 and
SA with two wins. However, these overall figures
largely depend on the scenarios considered (i.e., on the
design of the experimental treatment space). The more
interesting analysis is therefore the interpretation of the
results with respect to the treatment combination where
LHS P is the majority label, and why.

A first observation is that all four variables
Forecaster, Correlation, Variance and Train are selected
in the tree. Thereby, the variables Correlation and
Forecasters are used for the first splits, indicating
a higher importance of these variables in finding
treatment conditions with a high proportion of same
scenario-winner labels.

Summing-up the percentages of observations, 80%
of scenarios can be assigned to a dominant model
by separating the correlation into ranges of higher vs.
medium correlation and using the number of forecaster
as second splitting criterion.

We observe that scenarios with Correlation >=
0.71 are dominated by eLASSO and OW, where for lower
numbers of forecasters of eight or ten OW dominates,
and eLASSO dominates when Forecaster >= 13,
i.e., for high numbers of forecasters. This observation
seems reasonable, as OW performs comparably well
in scenarios with high correlations. In contrast, with
a higher number of forecasters relative to the training
sample size, the estimation uncertainty and hence
overfitting increases and a correction (shrinkage) of
learned weights might be necessary [3, 11, 16]).

In scenarios with moderate correlation
(Correlation < 0.71), where generally stronger
shrinkage is recommended in the literature, and high
numbers of forecaster, i.e. Forecaster >= 11, LHS P
mostly wins. Considering ten forecasters and moderate
correlation, Linear Shrinkage wins 28 of a total of
60 scenarios with these treatment combination. In
summary, the treatment combinations described include
scenarios where shrinkage is expected to have the
observed positive effect and the results are generally
consistent with previous findings in the literature.

Page 2131



The more interesting observations, revealing a
more granular picture for the remaining 20% of all
scenarios, are found further down the tree, where CART
additionally uses the variables Variance and Train. In
the case of high correlation and a number of twelve
forecasters, the wins are split between LHS P, eLASSO
and peLASSO (eRidge). Similarly, in the case of
moderate correlation and a number of eight forecasters,
wins are split between LHS P and peLASSO (eRidge),
but also Linear Shrinkage. Thereby, at a smaller training
sample size, i.e. Train < 45, and high variance,
i.e. V ariance >= 2.5, LHS P dominates, with Linear
Shrinkage dominating in case of smaller variances.

These results are reasonable, since smaller amounts
of training data are likely to require high shrinkage
values to avoid overfitting. As ability dispersion
increases, additional selection might be beneficial, while
more equalization of weights between all forecasters
might be necessary when dispersion is equal.

Further, in the case of moderate correlation, for
training sample sizes of 45 and above, a correlation
smaller than 0.59 as well as a variance smaller than
4.5, LHS P dominates, whereby in the two other
combinations peLASSO (eRidge) dominates.

In the following subsection, we will provide more
in-depth analysis to interpret these more complex results
by studying the shrinkage levels determined by the
different combination methods. Specifically, we study
whether keeping the non-selected forecasts in the set
(but shrinking them towards zero) provides benefits.

5.3. Analyses of Shrinkage Levels

As shown above, LHS P performs particularly well
in scenarios with moderate correlations among forecasts
and a number of forecasts greater than eleven, whereas
in scenarios with higher correlation and high numbers
of forecasters eLASSO dominates. Interesting questions
are why eLASSO tends to outperform LHS P in high
correlation scenarios, LHS P eLASSO in moderate
correlation scenarios, and also why peLASSO (eRidge)
dominates LHS P in moderate correlation scenarios with
lower numbers of forecasters (Forecaster = 8), very
high spread in ability (V ariance >= 4.5) and a high
number of training data (Train > 45).

To shed light on this phenomena, we first filter the
results according to a specific treatment combination,
namely Correlation = 0.9 and Forecaster = 16,
and compare the average weights, shrinkage levels and
numbers of selected forecasters of the node winner
(i.e. eLASSO) versus LHS P. To gain further insights
into the optimal shrinkage level, we include the actual
OW (henceforth: OW (act.)) calculated by the true

covariance matrix of the forecasters’ errors from the
simulation process as shown in (1), and analyze the
difference between the average weights of the methods
and the average OW (act.).

Figure 4. Learned weights by eLASSO and LHS P

and weight deviations to OW (act .) in scenarios with

16 forecasters and high correlation of 0.9

The average weights of the methods eLASSO and
LHS P for all scenarios with Correlation = 0.9 and
Forecaster = 16 are plotted in Figure 4 with the
colors black and dark gray, respectively. The weight
deviations of eLASSO and LHS P from OW (act.) are
further displayed below in bars with the respective color.
As known from recent studies, in scenarios of high
correlations OW are sensitive to even minor changes in
the forecasters’ variances leading to the assignment of
high positive weights to forecasters with lower variances
and negative weights to bad-performing forecasters [25].
Due to the low shrinkage levels and the geometrically
descending variance simulation between forecasters, the
resulting high spread in weights can be seen in Figure 4.

The average MSE on test data for all scenarios is
0.43 for eLASSO and 0.475 for LHS P, whereby LHS P
selects 1.885 forecaster on average. We observe a small
relative shrinkage level of around 3% for eLASSO, and
moderate relative shrinkage levels of around 32% for
LHS P. Comparing the estimated weights of eLASSO
and LHS P, the estimated weights of eLASSO are on
average closer to the OW (act.) for well-performing
forecasters (FC1 - FC6), while LHS P estimated the
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weights slightly better for moderate forecasters (FC8 -
FC11). The main difference in weights is observed for
the individually worst-performing forecasters (FC14 -
FC16). Here, eLASSO assigns negative weights to
these forecasters, while LHS P shrinks them towards
zero. By reducing the magnitude of the negative
weights, LHS P loses the ability to neutralize errors by
combining predictions that simultaneously overestimate
or underestimate the true value, which might overall
result in increased test MSE.

A reason for the slight over-shrinkage of
bad-performing forecasts could be the high spread
of the estimated OW, which increases the slope between
the OW and the shrinkage target in terms of the mean
or zero for forecasters with high absolute weights. The
steep slope, in turn, leads to larger weight losses or
gains per shrinkage step for all forecasters due to the
linear shrinkage in LHS P, while eLASSO may correct
individual forecaster’s weights to varying degrees and
benefit from the non-linear shrinkage behavior.

Similar to the analysis above, we now filter the
result data for moderate Correlation = 0.4 and
Forecaster = 16. The average weights of the methods
eLASSO and LHS P as well as their deviations to the OW
(act.) within the filtered scenarios are plotted in Figure
5 with the colors black and dark gray, respectively.

Figure 5. Learned weights by eLASSO and LHS P

and weight deviations to OW (act .) in scenarios with

16 forecasters and moderate correlation of 0.4

The average MSE on test data for all scenarios is

0.664 for LHS P and 0.706 for eLASSO, with shrinkage
ratios of relatively 95% for LHS P and 23.5% for
eLASSO indicating that more shrinkage is required in
areas of moderate correlations.

The required higher shrinkage seems to be
unfavorable for eLASSO. As eLASSO increasingly
pushes forecasters’ weights toward their mean
value, too little weights seem to be assigned to
well-performing forecasters (FC1 - FC6) and too
much weight to moderate- and poor-performing
forecasters (FC7 - FC16). This behavior leads to
higher average deviations to OW (act.). LHS P, on the
other hand, focuses on a subset of well-performing
forecasters, while moderately to poorly performing
forecasters are shrunk toward low positive weights
or zero. As displayed in the bar chart, assigning
more weighting to well-performing forecasters on
average leads to lower deviations from OW (act.) for
well-performing forecasters compared to eLASSO. This
finding underlines that shrinking toward a higher mean
may be beneficial if the right forecasters are selected.
Although LHS P reveals slight deviations to the OW
(act.) for poor-performing forecasters, they are shown
to be acceptable as the impact of cancellation of errors
by combination is lower with moderate correlation.

Compared to the second best method, peLASSO
(eRidge), with an average test MSE of 0.689, the
reason for the dominance of peLASSO (eRidge) in some
scenarios could be explained. Although 96% of the
selected forecasters are congruent in both methods,
LHS P selects on average the 5.2 best forecasters, while
peLASSO (eRidge) selects more diverse 10.4 forecasters.
With a higher number of forecasters (Forecaster =
16), the probability of selecting unfavorable forecasters
increases, especially for smaller datasets. While
the forecasters in peLASSO (eRidge) are completely
removed, LHS P can still benefit from forecasters by
assigning at least some weight to them even if no
optimal selection was made. This could be a reason
why peLASSO (eRidge) shows slight MSE losses on test
data compared to LHS P for Forecaster = 16, but
dominated LHS P for the scenarios in Forecaster = 8,
V ariance >= 4.5 and Train > 45. In these cases,
it is easier for peLASSO (eRidge) to select the correct
forecasters, and the complete removal of forecasters
may result in improvements in terms of MSE.

6. Conclusion and Future Work

We introduced Linear Hybrid Shrinkage (LHS) for
forecast combination and selection. LHS first selects
forecasts based on a prior information criterion, and
then only shrinks the selection to equality, but the
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remaining forecasters towards zero. For forecast
selection, we proposed to rank forecasters either based
on their individual forecast ability (MSE on training
data) or variable importance measures (based on their
contribution to the accuracy of a combined forecast).

The results show improvements over existing
weighting approaches in specific scenarios over
LASSO-based shrinkage approaches, which can likely
be attributed to the latter property of LHS, namely
the ability of shrinking worse performing forecasts
toward zero, but not completely shrinking them out of
the group. In addition, using information criteria to
rank forecasters might provide additional benefits over
cross-validation-based out-shrinkage in case of lower
amounts of forecasts. A more detailed investigation of
the advantages of information criteria-based selection
will be the subject of our future research.

Future work will also be related to further studying
the conditions under which LHS can be expected to
lead to lower MSE than alternative approaches. In
addition, we plan to explore different forecast selection
and ranking criteria, such as Shapley values or the
penalization of model complexity using criteria such
as the Bayesian or Akaike information criterion. A
further, promising direction of future research is also
the usage of different starting values or initial values for
shrinkage than in-sample OW, as well as the application
of non-linear shrinkage instead of the proportional
shrinkage currently implemented in LHS. Finally, we are
working on approaches to prune the vector of potential
selection candidates to reduce the computational costs
of the conducted cross-validation.
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