
Bayesian Augmentation of Deep Learning to Improve Video Classification

Emmie Swize
Air Force Institute of

Technology, USA
Emmie.Swize@afit.edu

Lance Champagne
Air Force Institute of

Technology, USA
Lance.Champagne@afit.edu

Bruce Cox
Air Force Institute of

Technology, USA
Bruce.Cox@afit.edu

Trevor J. Bihl
Air Force Research

Laboratory, USA
Trevor.Bihl.2@us.af.mil

Abstract

Traditional automated video classification

methods lack measures of uncertainty, meaning the

network is unable to identify those cases in which its

predictions are made with significant uncertainty. This

leads to misclassification, as the traditional network

classifies each observation with same amount of

certainty, no matter what the observation is. Bayesian

neural networks are a remedy to this issue by

leveraging Bayesian inference to construct

uncertainty measures for each prediction. Because

exact Bayesian inference is typically intractable due to

the large number of parameters in a neural network,

Bayesian inference is approximated by utilizing

dropout in a convolutional neural network. This

research compared a traditional video classification

neural network to its Bayesian equivalent based on

performance and capabilities. The Bayesian network

achieves higher accuracy than a comparable non-

Bayesian video network and it further provides

uncertainty measures for each classification.

1. Introduction

Video classification involves detecting and

identifying objects and activities autonomously. This

builds upon image classification, which is commonly

performed by neural networks. The combination of

convolutional neural networks (CNN), often used for

image classification, and recurrent neural networks

(RNN), which handle time series data, allow for the

classification of videos whereby videos broken into a

series of images for analysis.

However, the current technology is not flexible

enough in nature to handle novelty data. For example,

currently available classification algorithms are

largely static in nature once trained and context from

recently observed data is not considered in making

decisions, meaning such algorithms are unequipped to

handle uncertain and unexpected situations. The

remedy for this is to create classification algorithms

that are aware of their own uncertainty and therefore

able to identify unexpected data [1].

As mentioned in [2], there are in general 5 “tribes”

of machine learning algorithms: symbolists (e.g.

decision trees), Bayesians (e.g. Naïve Bayes),

Connectionists (e.g. Neural Networks), Evolutionaries

(e.g. Genetic Programs), and Analogizers (e.g.

Support Vector Machines). While great advances

have been made from these approaches, it is

hypothesized that much more is capable by

combinations of approaches [2]; however, this is

difficult due to these “tribes” having very different

philosophies and terminologies. The general video and

image based recognition systems fall into the

connectionists tribe; however, they are inefficient in

that they do not remember prior results and often treat

each frame in an image as an independent observation.

This research aims to explore blending of the

connectionist and Bayesian tribes to classify videos

and images with the goal of allowing the classification

model to measure its uncertainty in each prediction.

The approach taken herein consists of a CNN for

image classification, an RNN for sequences of images

(video) classification, with a Bayesian neural network

(BNN) incorporated to measure uncertainty.

Comparisons are made against the baseline, non-

Bayesian equivalent, algorithm. Results show a

significant improvement in classification accuracy

when using the hybrid approach.

This paper is organized as follows: a background

on artificial neural networks (ANN) is presented,

uncertainty is discussed, and the video dataset under

analysis is presented. Then the paper presents the

implemented algorithm. Finally, results and

conclusions end the paper.

2. Background

ANNs are machine learning models loosely based

on the structure of the brain’s biological network, in

which biological neurons pass information through

connections when triggered [3]. ANNs are versatile

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 2097
URI: https://hdl.handle.net/10125/79596
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

machine learning tools that can handle large and

complex tasks, including image recognition.

Furthermore, constructed appropriately, ANNs are a

provably optimal approach to learning patterns in data

[3].

One basic unit of ANNs are threshold logic units

(TLU) [4], which are neurons activated by the inputs

passed to them where numerical value are both input

and produced as an output. As illustrated in Figure 1,

the connections around TLUs are weighted, meaning

each unit computes the weighted sum of the inputs

passed to it according to the connection weights.

Figure 1. Threshold Logic Unit [4]

The output of each TLU is the result of a step

function applied to the weighted sum of the inputs. To

provide inferential capabilities, the Perceptron was

developed as single layer of TLUs [5]; Figure 2

demonstrates the structure of a Perceptron with two

inputs and three TLUs. While the output of the TLU

presented in Figure 2 is the result of step functions,

modern ANNs build off the work of [6] and use a

weight-training method called backpropagation which

employs gradient descent and differentiable activation

functions, such as the sigmoid activation function.

Figure 2. The Perceptron [4]

The capabilities of such a model improve with

breadth and depth, whereby multiple TLUs and their

interconnection enable increasing powers of inference.

Multilayer Perceptron (MLP) are the result which are

ANNs composed of multiple layers of TLUs [4]. In an

MLP, the middle layers are referred to as the hidden

layers and the last layer is referred to as the output

layer. A Deep Neural Network (DNN) builds on the

structure of the MLP, consisting of a deep stack of

hidden layers, typically three or more.

2.1. Convolutional Neural Networks

CNNs are a variant of DNNs that are particularly

useful in processing and categorizing 2-dimensional

visual data, such as images and handwriting [4]. The

earliest stage of the CNN, the Neocognitron, was

proposed by [7], and it contained simple cell

operations for the feature extraction of an image and

complex cell operations that pool the simple cell

results to provide spatial invariance. This CNN model

inspired further development, particularly of the

LeNet-5 model in 1998 [8], which introduced

convolutional layers and pooling layers, the backbones

of the modern-day CNN.

In a general CNN, convolutional layers apply a

learned filter, called the kernel, to the input arrays to

detect co-occurrences and spatial information in the

input [4]. In doing so, small ``neighborhoods" of the

image are examined, revealing each neuron's area of

influence based on its location. This lends well to

image and video classification, in which pixels closer

together are typically more correlated than pixels

farther apart. Pooling layers create a summarized

version of the features identified by the preceding

convolutional layer, reducing the dimensionality. With

convolutional and pooling layers, CNNs assemble

simple features into increasingly more complex

features with each hidden layer [4].

Table 1. LeNet-5 Architecture of [8]

Layer Type Description
Kern.

Size

in Input 1 map of size 32x32

1 Convolutional 6 maps of 28x28 neurons 5x5

2 Avg pooling 6 maps of 14x14 neurons 2x2

3 Convolutional 16 maps of 10x10 neurons 5x5

4 Avg pooling 16 maps of 5x5 neurons 2x2

5 Convolutional 120 maps of 1x1 neurons 5x5

6 Fully connect. 84 neurons

Out Fully connect. 10 softmax neurons

Table 1 demonstrates the layout of the LeNet-5

architecture. Each convolutional layer outputs one

feature map for each filter, each of which emphasizes

the image locations that activate the respective filter

the most. By applying multiple filters to the inputs, a

convolutional layer is able to extract multiple features

at each location. The sub-sampling layers represent the

pooling layers, which reduce the sensitivity of the

outputs to shifts and distortions in the image. This

gives the CNN the powerful capability of recognizing

a learned pattern in any location in the image, not just

Page 2098

where the original pattern instance occurred [8]. As a

final classifier, the LeNet-5 architecture includes an

MLP at the end consisting of fully connected layers

and an output layer.

2.2. Recurrent Neural Networks

While CNNs are useful at processing and

categorizing individual images, they are not good at

processing sequential data, such as a video, which

includes a temporal component. RNNs possess a type

of memory in the form of a hidden state, which passes

previous output information as additional inputs to

future time steps in the network [4]. This extends from

the associative memory concepts instantiated in

Hopfield Networks [9], and build upon the

Backpropagation Through Time (BPTT) methods

developed by Rumelhart [9]. Backpropagation is a

procedure that repeatedly updates a network’s

connection weights according to the error of the

network’s output. BPTT is the application of

backpropagation to each time step of an RNN or RNN

variant [9]. Figure 3 demonstrates a layer of recurrent

neurons unrolled through time. At each step, the layer

receives the input xi and the output of the previous time

step yt-1 as inputs.

Figure 3. RNN Layer Unrolled through

Time [9]

Standard RNNs, although able to process

sequential data, can suffer from short-term memory,

meaning the network’s memory is limited in the

number of past outputs it can represent clearly. An

evolved version of the standard RNN, the Long Short-

Term Memory (LSTM) cell, was developed as a

solution [10]. LSTM cells outperform standard RNNs

by converging more quickly and by detecting long-

term dependencies in sequential data. Figure 4 shows

that LSTMs possess not only a hidden state, but a cell

state as well. The hidden state is similar to that of the

standard RNN and represents the short-term

information, while the cell state represents the long-

term information. LSTM cells also utilize three gate

controllers that are responsible for adding information

to the stored memory or erasing information from the

stored memory [4]. These controllers are the forget

gate, the input gate, and the output gate. With the use

of these gates, the LSTM cell is able to discern which

content should be stored in its memory and which

content it should forget.

Figure 4. LSTM Cell [4]

2.3. Bayesian Neural Networks

Standard ANNs and DNNs learn point estimates

for network weights and produce point estimates for

predictions. These networks do not have a measure of

certainty or confidence in the parameters and

predictions, making the results potentially difficult to

trust. In other words, standard DNNs output point

estimate predictions, but no measure of respective

uncertainty. Using Bayesian inference, a BNN

incorporates a measure of uncertainty by learning

parameters as distributions instead of point estimates

[9] [11]. Bayesian inference is a type of statistical

inference that uses Bayes’ theorem to update the

inferred weight distributions as more information

becomes available to the network. Any kind of

network can become a BNN by treating the parameters

in a Bayesian manner [9]. Figure 5 presents a visual of

the weight-learning difference between a standard

CNN (left) and BNN (right).

Neal [12] expanded his contribution to the growth

of BNNs the following year by establishing a link

between BNNs and Gaussian processes, which are

stochastic processes in which every finite linear

combination of random variables is normally

distributed. Although the Gaussian process properties

do not translate easily to finite neural networks,

Bayesian inference can be approximated for finite

neural networks that have Gaussian priors for the

weights. As pointed out by Shridhar et al. [13], even

for a network with few parameters, performing exact

Bayesian inference to determine a network’s posterior

is a lengthy and difficult task. For this reason,

Bayesian inference is often approximated using

variational inference, a method that fits a Gaussian

distribution as closely as possible to the true posterior

Page 2099

distribution [9]. This is done by minimizing the

Kullback-Leibler (KL) divergence, a measure of how

much information is lost in the approximation.

However, because variational inference significantly

increases the number of model parameters, it comes at

a high computational cost.

2.4. Dropout as a Bayesian Approximation

A simple method of Bayesian inference

approximation that does not sacrifice computational

complexity is dropout. In 2016, Gal and Ghahramani

[14] demonstrated that applying dropout before every

weighted layer in a network is mathematically

equivalent to a Bayesian approximation of a Gaussian

process. Their work shows that the application of

dropout minimizes the KL divergence between an

approximate distribution and a Gaussian process

posterior distribution.

Dropout, a popular regularization technique that

prevents a model from overfitting training data, is a

process that randomly omits neurons and their

associated connections from the neural network

according to a fixed probability p. In other words, at

each step, each neuron will be retained in the network

at that step with probability p. Figure 6, created by

Srivastava et al., demonstrates the difference between

standard neural network layers and neural network

layers with dropout. This technique essentially

samples a thinned version of the full network for each

training case. For a neural network with n neurons,

applying dropout to training amounts to a collection of

2n possible networks [15]. Additionally, dropout

prevents individual neurons from relying on other

specific neurons to supplement their contributions to

the network [16]. This causes the contribution of each

neuron to become more helpful regarding correct

network predictions.

A typical dropout procedure is only implemented

during the training stage, causing predictions during

the testing stage to be deterministic. Monte Carlo

dropout (MCD), proposed by [14], applies dropout to

both the training and testing stages of a network.

Implementing dropout during the testing stage means

that the model output can be treated as a random

sample generated from the posterior predictive

distribution. The model uncertainty can therefore be

estimated with the distribution of repeated predictions

for an instance, constructing a distribution of

probabilities for every class. With this distribution of

multiple predictions, the average and the variation can

reveal the networks uncertainty in its predictions. Gal

and Ghahramani [14] show that not only is this

procedure simple in execution, but that it has no

negative impact on model performance.

Figure 6. Dropout Neural Net Model. Left: A

standard neural net with 2 hidden layers.
Right: An example of a thinned net produced

by applying dropout to the network on the
left. Crossed units have been dropped [15]

2.5. Rejecting Uncertain Classifications

A known limitation of machine learning classifiers

is that possessing a fixed set of classification

Figure 5. Example of a BNN with an input image with exemplary pixel values, filters, and
corresponding output with point estimates (left) and probability distributions (right) over

weights [13]

Page 2100

categories they attempt to emplace all test data into

these categories. When the test data either does not

come from the closed training domain (e.g., a CNN

trained on MNIST which is then fed test data from the

not-MNIST data set), is sufficiently noisy to fall

outside the classification boundaries, or the resulting

confusion matrix is unbalanced (indicating some

categories were poorly trained or have fuzzier

boundaries). Since at least 1969 researchers (see e.g.,

[18], [19], [20], [21],) have proposed various

techniques for either enabling classifiers to refuse to

classify an image that falls outside the closed domain

of the training set, or to explicitly place uncertain test

data into an “I don’t know” catchall category.

Broadly these techniques fall into the following

categories. ‘First, the test data may be eliminated via

preprocessing. Second, after the classifier is trained

the output for the test data may be examined and

discarded as appropriate. Third, the researcher can

build the ability to classify a test point as unknown into

the neural network’ [22]. Our technique is a hybrid of

the first and third approaches. Specifically, we utilize

a novel hybrid Bayesian Augmented CNN-RNN.

Similar to Chows seminal work [20] we establish

rejection rules, such that a trained Bayesian Neural

Network acts as a preprocessor and eliminates test data

that meets any of the rejection rules. The remaining

“certain” test data is then fed into the RNN and is

classified. In this fashion we create a classifier which

exhibits high accuracy for the test data it is certain of

and notifies a human operator when it is uncertain of a

video’s classification. Such a risk adverse approach is

particularly appropriate when high negative

consequences are associated with false positives.

2.6. Representative Video Data

The data set used in this research is the UCF101

Action Recognition Data Set [17]. The University of

Central Florida (UCF) introduced this dataset in 2012

as the largest to date compilation of human action

videos, comprising of 13,320 videos that span 101

classes of actions in total. UCF101 offers a large

amount of variety regarding actions, camera motion

and viewpoint, object pose and scale, background

appearance, and lighting conditions. The 101 action

classes are divided into five types: Human-Object

Figure 7. Sample frames of each of the 101 action classes in UCF101. The color of each frame
border corresponds to the respective action type: blue for Human-Object Interaction, red for

Body-Motion Only, violet for Human-Human Interaction, cyan for Playing Musical Instruments,
and green for Sports [17].

Page 2101

Interaction, Body-Motion Only, Human-Human

Interaction, Playing Musical Instruments, and Sports.

Table 2 provides the summary statistics of the data

set structure and Figure 7 provides visual

representations of the data set. Figure 7 contains

frames of an example video from each of the 101

action classes along with corresponding class and class

type labels.

Each class of actions is also subsequently divided

into 25 groups based on common features, such as

background or viewpoint. For all classes, the 25

groups contain anywhere from 4 to 7 videos each.

Although the videos of roughly half of the action

categories also contain audio, this feature is not taken

into consideration in this research. As preparation for

training and testing, each video is partitioned into

individual frames sized 224 x 224 pixels, with each

pixel containing values for 3 color channels. The

images are converted to three-dimensional arrays,

sized 224 x 224 x 3. These arrays are normalized by

dividing all values by 255 to have all pixel values

range from 0 to 1.

Table 2. UCF101 Summary Statistics [17]
Statistic Values

Actions 101

Clips 13,320

Groups per action 25

Clips per Group 4-7

Mean clip length 7.21

Total duration 1600 mins

Min Clip Length 1.06

Max Clip Length 71.04

Frame Rate 25 fps

Resolution 320 x 240

Audio Yes (51 actions)

3. Bayesian Augmented CNN-LSTM

This research explores the effects of utilizing a

blend of the best of breed of the networks discussed

above to gain synergistic effects. The CNN is

responsible for classifying individual frames of a

video, which is then passed to the RNN as a sequence

of frames for classification of the video as a whole.

However, this doesn’t involve any memory of what

was previously seen. Thus, the main contribution is in

treating the CNN parameters in a Bayesian manner,

and making it a BCNN. The front-end network is a

BCNN and the back-end network is an RNN. The goal

of this network architecture is to classify videos and

provide a measure of uncertainty in each video's frame

predictions.

3.1. Front-end BCNN

The front-end BCNN is constructed from a simple

CNN consisting of two weighted layers with dropout

applied before every weighted layer. This is following

Gal’s finding that applying dropout before every

weighted layer is an approximate Bayesian inference.

Both dropout layers utilize an identical dropout rate of

0.5 according to the precedent set by [14]. This

reduction in the front-end model's size does not impact

this research, as its aim is to show a proof of concept.

Table 3. Front-end BCNN

Layer Type Description
Kern.

Size

in Input 1 image: 224x224x3

1 Convolutional
32 maps of 222x222

ReLu neurons
3x3

2 Convolutional
32 maps of 220x220

ReLu neurons
3x3

3 Max pooling
32 maps of 73x73 ReLu

neurons
3x3

4 Flatten 32 ReLu neurons

5 Dropout 170528 parameters

6 Fully connect. 170528 neurons

7 Dropout 50 parameters

8 Fully connect. 50 ReLu neurons

Out Fully connect.
101 neurons:

classification

Table 3 presents the architecture of the front-end

model. The input consists of three colored images (red,

green, blue) which then passes through two

convolutional layers, stride of 1, zero-padding of 1.

The kernel size used in the convolutional layers is the

smallest kernel size that can capture the concept of left

and right, up and down, and center. This is followed

by a max-pooling layer and two fully connected layers,

one with 50 units and one with 101 units, which is the

number of classes in the UCF101 dataset. The

activation function of all the layers, aside from the

final fully connected layer, is the rectified linear unit

activation function (ReLU). The final fully connected

layer uses a softmax activation function, which

converts the input to a vector of categorical

probabilities, each between 0 and 1, that sum to 1.

However, as shown by [14], the output vector of

probabilities from the softmax function alone cannot

be interpreted as model confidence or uncertainty.

The output of the BCNN is a list of matrices, one

for each video that is classified by the front-end

network. Initially, each matrix contains as many rows

as a video has frames and as many columns as the data

set has classes.

3.2. Back-end RNN

Given a video index, the matrix corresponding to

that index in the list contains the MCD predicted

Page 2102

probabilities for each of the 101 classes for each frame

of the video. However, the Keras LSTM layers used to

build the back-end network require that all sequences

within each batch have the same number of timesteps.

To standardize the number of frames across the data

passed to the back-end network, all matrices in the list

outputted by the front-end network are padded with

arrays of zeros to match the highest number of frames

that occurs in the data. Using zero padding allows for

the list to preserve the original content of the data.

This list of matrices, the BCNN output, is fed into

an RNN consisting of two LSTM layers, each with 50

units and a softmax activation function. These two

LSTM layers are followed by two fully connected

layers that contain 50 units and 101 units, respectively.

The architecture of the back-end network is

represented in Table 4.

Table 4. Back-end RNN
Layer Type Description

in Input 1 vector of 101x1

1 LSTM 50 units, softmax

2 LSTM 50 units, softmax

3 Fully connect. 50 softmax neurons

Out Fully connect. 101 softmax neurons

3.3. Hyperparameter Tuning

Because the performance and required training

time of a model depend on the specified

hyperparameter values [23]; thus tuning the

hyperparameters to find optimal or near-optimal

values is of interest. The approach used herein was

cross validation to exhaustively consider all parameter

combinations from a grid search to determine the

optimal parameter values for a model, with a value of

3 for K-fold cross validation [4].

For the models developed herein, the tunable

hyperparameters included the batch size, epochs,

optimizer, weight initialization method, and size of

hidden layers. The batch size is the number of data

observations that are shown to the network before

updating the weights [4]. RNNs and CNNs are

particularly sensitive to the batch size. The number of

epochs is the number of times that the entire training

data set is shown to the network during training [4].

The optimizer is the algorithm used to update the

model weights in response to the loss function results

[4]. The weight initialization method determines with

which random distribution, if any, the network weights

are initialized, which heavily affects network training

time [4] }. The size of a hidden layer refers to the

number of neurons it contains, which controls the

representational capacity of the network at that layer

[4].

4. Comparative Assessment and

Evaluation

The performance and capabilities of the above

Bayesian model will be compared to a non-Bayesian,

baseline model consisting of the same front-end CNN

and back-end RNN structure, but with the dropout

layers removed from the front-end network during the

testing phase. Thus both the Bayesian front-end

network and the baseline front-end network are

identical other than the employment of dropout during

the testing phase for the Bayesian front-end network.

The same back-end RNN is used after each of these

front-end networks.

First, we compared the baseline and Bayesian

models on their performance in classifying the entire

test set without the ability to leave images non-

classified. Next, both models are evaluated on the

measures of uncertainty that they can each provide for

their predictions. This includes a sensitivity analysis

on the non-classified thresholds for each model.

Finally, both models are evaluated on their

performance on the subsection of the test set they

choose to classify based on the uncertainty thresholds.

The test set used for evaluation spans all 101 classes

and contains 3,782 videos, which collectively contain

28,890 images.

All model training and evaluation were conducted

on a Windows 10 Professional PC with an AMD

Ryzen 5 5600X CPU, 32 GB RAM, and Sapphire

Nitro+ RX 5700XT, as well as the Python 3.7

packages Tensorflow 2.1.0, Keras 2.3.1, and all

necessary dependencies.

4.1. Network Performance without

Uncertainty

Without accounting for uncertainty, both the

baseline and Bayesian neural network configurations

classified the video data set. The baseline front-end

model achieves 25.2% accuracy on the whole test set.

Feeding the baseline front-end network's predictions

to the back-end network, the combined model

achieves 1.3% accuracy. The Bayesian front-end

network achieves 20.9% accuracy on the whole test

set. With the Bayesian front-end network predictions

as input for the back-end network, the Bayesian RNN

combined model achieves 1.3% accuracy.

4.2. Uncertainty Thresholds

The appeal of measuring the network's uncertainty

lies in the network's ability to know what it does not

know. However, this ability is not useful unless the

Page 2103

network is also able to request clarification for those

cases about which it is uncertain. To address this, both

front-end networks, baseline and Bayesian, will 'flag'

any image and its associated video that corresponds to

high uncertainty based on respective network

thresholds.

For the Bayesian front-end network, the

distribution of MCD predictions for an image is used

to determine whether the network will classify the

image or leave it non-classified. There are many ways

to set the network uncertainty threshold for flagging

an image, some of which will suit certain data and

situations more than others. For the purposes of this

research, the uncertainty thresholds are set as follows:

1. An image and its video are flagged if the

maximum mean predicted class probability is less

than a determined cutoff value.

2. An image and its video are flagged if there are two

or more mean predicted class probabilities greater

than another determined value.

3. An image and its video are flagged if the

maximum standard deviation for any of the

predicted class probabilities is greater than a

determined value.

These values and their respective sensitivity analyses

are specified in the following section. These flag

Figure 8. Classified to non-classified ratio for each front-end network.

Figure 9. Model performances on whole test set and on modified test set. Here the entire
bar represents the accuracy of a model on the modified test set, while the shaded portion of

the bar represents the accuracy of a model on the whole test set.

Page 2104

thresholds are chosen to ensure reasonable network

certainty in the unflagged images.

The baseline front-end network cannot provide the

same distribution of predictions that the Bayesian

front-end network can. For this reason, in order to gain

a semblance of the baseline front-end network's

uncertainty, this research applies a frequentist

methodology, which treats uncertainty as a probability

that is the limit of the relative frequency of an event

after many trials [24]. To accomplish this, augmented

data is created from the images and used to construct

a distribution of correct predictions and incorrect

predictions for each class [25]. The data is augmented

using the Image Data Generator class in Keras [26].

The baseline `non-classified' threshold for each class

is found using the same determined value as

mentioned in the first Bayesian threshold as a

percentile cutoff in the correct predictions distribution

for that class. During the testing stage, if the softmax

output for the predicted class is below the threshold of

that class, then the image is rendered ‘non-classified.’

4.3. Determining Uncertainty Thresholds

Experimental runs were conducted to determine

the sensitivity of the three threshold uncertainty

values. In order for the Bayesian front-end network to

classify at least half of the test set videos (14,445), the

standard deviation threshold (criterion 3) must be

greater than 0.32; below this value, the other two

threshold values do not allow the network to classify

even half of the test set. In fact, even with a standard

deviation threshold of 0.32, the Bayesian network only

classifies half of the test set with a cutoff value of 0.10

for criterion 1 and a value of 0.5 for criterion 2. With

these values, the Bayesian network classifies all

images that have maximum mean predicted class

probability greater than 0.10, no more than one class

with a mean predicted probability greater than 0.50

(which could not occur regardless), and with no

standard deviations greater than 0.32 for the predicted

class probabilities.

For this research, we chose the final thresholds for

all three Bayesian uncertainty thresholds and for the

baseline uncertainty threshold to enable the Bayesian

front-end network to classify at least 20% of the whole

test set (min 5,778 videos). This will enable a more

thorough analysis of the network's capabilities. To

accomplish this, the criterion 1 threshold value is 0.6,

the value for Bayesian uncertainty (criterion 2) is 0.25,

and the Bayesian standard deviation threshold

(criterion 3) value is 0.4. For the baseline network, this

means that for an image to be classified, the softmax

output for the predicted class must be at least the value

of the 60th percentile of that class's correctly predicted

augmented data softmax probabilities. For the

Bayesian network, then the mean predicted class

probability must be at least 0.6, no more than one mean

class probability can be over 0.25, and no standard

deviation of the class probabilities can exceed 0.4.

4.4. Network Results Including Non-

Classification Due to Uncertainty

Using the threshold settings outlined in section 4.2,

the baseline and Bayesian networks again attempted to

classify the test data. Under these settings, each

network configuration either categorized the

image/video or flagged it as “non-classified.” Figure 8

shows the ratio of classified to non-classified for both

images and videos for the networks with the chosen

threshold values. The baseline network classifies

significantly more images and videos than the

Bayesian network, but at a significant cost in accuracy.

On the modified test set, the baseline front-end

network achieves 38.2% accuracy. The Bayesian

front-end network achieves 61.0% accuracy. Figure 9

provides a visual of the difference between whole test

set performances and modified test set performances.

As shown in Figure 9, the baseline network with the

CNN front-end and RNN back-end experienced a 52%

and 8% increase in accuracy, respectively. The

Bayesian front-end experienced a 192% increase in

accuracy, while its RNN back-end had a 100%

decrease in accuracy. It should be noted that both the

increase and decrease in RNN accuracy represents a

large percentage change that is due to the small

denominator. That is, the RNN performed poorly in all

cases. Improving the RNN performance through

architecture or data structure changes is left to future

study.

5. Conclusions

The Bayesian model construct for video

classification provided significant accuracy

improvements in video classification over a baseline

convolutional neural network with similar criterion for

flagging videos as “unclassified.” With estimation for

Bayesian priors calculated through network node

dropout, three criteria were developed to flag certain

videos as “non-classified.”

The Bayesian CNN’s success was shown for this

particular data set over a traditional data set. With

careful threshold selection, the Bayesian network was

able to leave troublesome images/videos non-

classified, rather than forcing (or allowing) an

incorrect classification.

Page 2105

However, the results also show significant

challenges that must be overcome. First, as

implemented in this research, the subsequent recurrent

neural network did not improve the accuracy of the

video classification, and in some cases showed worse

accuracy. Second, the uncertainty can leave a large

portion of the data set non-classified. This may be

acceptable in cases where the cost of incorrect

classification is catastrophic, but the cost of human

intervention may still be quite significant.

Finally, this research demonstrated success in the

comparison of a baseline CNN to a Bayesian CNN in

an AR context and, therefore, has only been tested in

a limited sense. To broadly compare these algorithms,

it is necessary to both find applicable data and

comparison metrics.

6. Bibliography

[1] T. Bihl and M. Talbert, "Analytics for autonomous c4isr
within e-government: a research agenda.," Hawaii

International Conference on System Sciences, pp. 2218-

2227, 2020.

[2] P. Domingos, The Master Algorithm, Basic Books,

2015.

[3] T. Bihl, et al., "Artificial neural networks and their

applications in business," Encyclopedia of Information

Science and Technology, 4th Edition, pp. 6642-6657, 2018.

[4] A. Géron, Hands-on machine learning with Scikit-

Learn, Keras, and TensorFlow, O'Reilly Media, 2019.

[5] F. Rosenblatt, The perceptron, a perceiving and

recognizing automaton, Cornell, 1957.

[6] P. Werbos, Beyond regression: New tools for prediction

and analysis in the behavior science., Unpublished Doctoral

Dissertation: Harvard University., 1974.

[7] K. Fukushima and S. Miyake, "Neocognitron: A self-
organizing neural network model for a mechanism of visual

pattern recognition," Competition and cooperation in neural

nets, pp. 267-285, 1982.

[8] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner,
"Gradient-based learning applied to document recognition,"

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,

1998.

[9] Y. Gal, Uncertainty in deep learning, University of

Cambridge, 2016.

[10] S. Hochreiter and J. Schmidhuber, "Long short-term

memory," Neural computation, vol. 9, no. 8, pp. 1735-1780,

1997.

[11] N. Park,et al., "Vector Quantized Bayesian Neural

Network Inference for Data Streams," Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 35, no. 10,

pp. 9322-9330, 2021.

[12] R. Neal, Bayesian learning for neural networks, vol.

118, Springer Science & Business Media., 2012.

[13] K. Shridhar, et al., "A comprehensive guide to

bayesian convolutional neural network with variational

inference.," arXiv preprint arXiv:1901.02731., 2019.

[14] Y. Gal and Z. Ghahramani, "Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning," International Conference on Machine Learning,

pp. 1050-1059, 2016.

[15] N. Srivastava, et al., "Dropout: a simple way to

prevent neural networks from overfitting," The Journal of

Machine Learning Research, vol. 15, no. 1, pp. 1929-1958,

2014.

[16] G. Hinton, et al., "Improving neural networks by

preventing co-adaptation of feature detectors," arXiv

preprint arXiv:1207.0580., 2012.

[17] K. Soomro, A. Zamir and M. Shah, "UCF101: A
dataset of 101 human actions classes from videos in the

wild," arXiv preprint arXiv:1212.0402, 2012..

[18] B. Dubuisson and M. Masson, "A statistical decision

rule with incomplete knowledge about classes,," Pattern

Recognition, vol. 26, no. 1, pp. 155-165, 1993.

[19] D. Chakraborty and N. R. Pal, "Making a

multilayered perceptron network say - "Don't Know" when

it should," in 9th International Conference on Neural

Information Processing, 2002.

[20] C. Chow, "On Optimum Recognition Error and

Reject Tradeoff," IEEE Transactions on Information

Theory, vol. 16, no. 1, pp. 41-46, 1970.

[21] W. J. Scheirer, L. P. Jain and T. E. Boult,

"Probability models for open set recognition," IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 36, no. 11, pp. 2317-2324, 2014.

[22] B. Karmakar and N. R. Pal, ""How to make a neural

network say “don’t know”," Information Sciences, vol. 430,

pp. 444-466, 2018.

[23] T. Bihl, et al., "Easy and Efficient Hyperparameter
Optimization to Address Some Artificial Intelligence

“ilities”," Hawaii International Conference on System

Sciences, pp. 943-952, 2020.

[24] M. Ambaum, "Frequentist vs Bayesian statistics-a
non-statisticians view," arXiv preprint arXiv:1208.2141,

2012.

[25] M. Cerliani, "When your Neural Net doesn't know:

a bayesian approach with Keras," Towards Data Science,
Jun. 2020. [Online]. Available:

https://towardsdatascience.com/when-your-neural-net-

doesnt-know-a-bayesian-approach-with-keras-

4782c0818624. [Accessed 2 Feb. 2021].

[26] F. Chollet, "Keras," 2015. [Online]. Available:

https://github.com/fchollet/keras. [Accessed 9 Feb. 2021].

Page 2106

