
Bayesian Augmentation of Deep Learning to Improve Video Classification

Emmie Swize 
Air Force Institute of 

Technology, USA 
Emmie.Swize@afit.edu 

 

 

Lance Champagne 
Air Force Institute of 

Technology, USA 
Lance.Champagne@afit.edu 

 

 

Bruce Cox 
Air Force Institute of 

Technology, USA 
Bruce.Cox@afit.edu 

 

 

Trevor J. Bihl 
Air Force Research 

Laboratory, USA 
Trevor.Bihl.2@us.af.mil 

 

 

Abstract 
 

Traditional automated video classification 

methods lack measures of uncertainty, meaning the 

network is unable to identify those cases in which its 

predictions are made with significant uncertainty. This 

leads to misclassification, as the traditional network 

classifies each observation with same amount of 

certainty, no matter what the observation is. Bayesian 

neural networks are a remedy to this issue by 

leveraging Bayesian inference to construct 

uncertainty measures for each prediction. Because 

exact Bayesian inference is typically intractable due to 

the large number of parameters in a neural network, 

Bayesian inference is approximated by utilizing 

dropout in a convolutional neural network. This 

research compared a traditional video classification 

neural network to its Bayesian equivalent based on 

performance and capabilities. The Bayesian network 

achieves higher accuracy than a comparable non-

Bayesian video network and it further provides 

uncertainty measures for each classification. 

 

1. Introduction  
 

Video classification involves detecting and 

identifying objects and activities autonomously.  This 

builds upon image classification, which is commonly 

performed by neural networks.  The combination of 

convolutional neural networks (CNN), often used for 

image classification, and recurrent neural networks 

(RNN), which handle time series data, allow for the 

classification of videos whereby videos broken into a 

series of images for analysis.  

However, the current technology is not flexible 

enough in nature to handle novelty data. For example, 

currently available classification algorithms are 

largely static in nature once trained and context from 

recently observed data is not considered in making 

decisions, meaning such algorithms are unequipped to 

handle uncertain and unexpected situations. The 

remedy for this is to create classification algorithms 

that are aware of their own uncertainty and therefore 

able to identify unexpected data [1]. 

As mentioned in [2], there are in general 5 “tribes” 

of machine learning algorithms: symbolists (e.g. 

decision trees), Bayesians (e.g. Naïve Bayes), 

Connectionists (e.g. Neural Networks), Evolutionaries 

(e.g. Genetic Programs), and Analogizers (e.g. 

Support Vector Machines).  While great advances 

have been made from these approaches, it is 

hypothesized that much more is capable by 

combinations of approaches [2]; however, this is 

difficult due to these “tribes” having very different 

philosophies and terminologies. The general video and 

image based recognition systems fall into the 

connectionists tribe; however, they are inefficient in 

that they do not remember prior results and often treat 

each frame in an image as an independent observation. 

This research aims to explore blending of the 

connectionist and Bayesian tribes to classify videos 

and images with the goal of allowing the classification 

model to measure its uncertainty in each prediction.  

The approach taken herein consists of a CNN for 

image classification, an RNN for sequences of images 

(video) classification, with a Bayesian neural network 

(BNN) incorporated to measure uncertainty. 

Comparisons are made against the baseline, non-

Bayesian equivalent, algorithm.  Results show a 

significant improvement in classification accuracy 

when using the hybrid approach.   

This paper is organized as follows: a background 

on artificial neural networks (ANN) is presented, 

uncertainty is discussed, and the video dataset under 

analysis is presented. Then the paper presents the 

implemented algorithm. Finally, results and 

conclusions end the paper.   

 

2. Background 
 

ANNs are machine learning models loosely based 

on the structure of the brain’s biological network, in 

which biological neurons pass information through 

connections when triggered  [3].  ANNs are versatile 
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machine learning tools that can handle large and 

complex tasks, including image recognition. 

Furthermore, constructed appropriately, ANNs are a 

provably optimal approach to learning patterns in data 

[3].   

One basic unit of ANNs are threshold logic units 

(TLU) [4], which are neurons activated by the inputs 

passed to them where numerical value are both input 

and produced as an output.  As illustrated in Figure 1, 

the connections around TLUs are weighted, meaning 

each unit computes the weighted sum of the inputs 

passed to it according to the connection weights.   

 

 
Figure 1. Threshold Logic Unit [4] 

The output of each TLU is the result of a step 

function applied to the weighted sum of the inputs. To 

provide inferential capabilities, the Perceptron was 

developed as single layer of TLUs [5]; Figure 2 

demonstrates the structure of a Perceptron with two 

inputs and three TLUs. While the output of the TLU 

presented in Figure 2 is the result of step functions, 

modern ANNs build off the work of [6] and use a 

weight-training method called backpropagation which 

employs gradient descent and differentiable activation 

functions, such as the sigmoid activation function.  

 

 
Figure 2. The Perceptron [4] 

The capabilities of such a model improve with 

breadth and depth, whereby multiple TLUs and their 

interconnection enable increasing powers of inference.  

Multilayer Perceptron (MLP) are the result which are 

ANNs composed of multiple layers of TLUs [4].  In an 

MLP, the middle layers are referred to as the hidden 

layers and the last layer is referred to as the output 

layer. A Deep Neural Network (DNN) builds on the 

structure of the MLP, consisting of a deep stack of 

hidden layers, typically three or more. 

 

2.1. Convolutional Neural Networks 

 
CNNs are a variant of DNNs that are particularly 

useful in processing and categorizing 2-dimensional 

visual data, such as images and handwriting [4]. The 

earliest stage of the CNN, the Neocognitron, was 

proposed by [7], and it contained simple cell 

operations for the feature extraction of an image and 

complex cell operations that pool the simple cell 

results to provide spatial invariance. This CNN model 

inspired further development, particularly of the 

LeNet-5 model in 1998 [8], which introduced 

convolutional layers and pooling layers, the backbones 

of the modern-day CNN.  

In a general CNN, convolutional layers apply a 

learned filter, called the kernel, to the input arrays to 

detect co-occurrences and spatial information in the 

input [4]. In doing so, small ``neighborhoods" of the 

image are examined, revealing each neuron's area of 

influence based on its location. This lends well to 

image and video classification, in which pixels closer 

together are typically more correlated than pixels 

farther apart. Pooling layers create a summarized 

version of the features identified by the preceding 

convolutional layer, reducing the dimensionality. With 

convolutional and pooling layers, CNNs assemble 

simple features into increasingly more complex 

features with each hidden layer [4].  

 

Table 1. LeNet-5 Architecture of [8] 

Layer Type Description 
Kern. 

Size 

in Input 1 map of size 32x32  

1 Convolutional 6 maps of 28x28 neurons 5x5 

2 Avg pooling 6 maps of 14x14 neurons 2x2 

3 Convolutional 16 maps of 10x10 neurons 5x5 

4 Avg pooling 16 maps of 5x5 neurons 2x2 

5 Convolutional 120 maps of 1x1 neurons 5x5 

6 Fully connect. 84 neurons  

Out Fully connect. 10 softmax neurons  

 

Table 1 demonstrates the layout of the LeNet-5 

architecture. Each convolutional layer outputs one 

feature map for each filter, each of which emphasizes 

the image locations that activate the respective filter 

the most. By applying multiple filters to the inputs, a 

convolutional layer is able to extract multiple features 

at each location. The sub-sampling layers represent the 

pooling layers, which reduce the sensitivity of the 

outputs to shifts and distortions in the image. This 

gives the CNN the powerful capability of recognizing 

a learned pattern in any location in the image, not just 
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where the original pattern instance occurred [8]. As a 

final classifier, the LeNet-5 architecture includes an 

MLP at the end consisting of fully connected layers 

and an output layer.  

 

2.2. Recurrent Neural Networks 

 
While CNNs are useful at processing and 

categorizing individual images, they are not good at 

processing sequential data, such as a video, which 

includes a temporal component.  RNNs possess a type 

of memory in the form of a hidden state, which passes 

previous output information as additional inputs to 

future time steps in the network [4]. This extends from 

the associative memory concepts instantiated in 

Hopfield Networks [9], and build upon the 

Backpropagation Through Time (BPTT) methods 

developed by Rumelhart [9]. Backpropagation is a 

procedure that repeatedly updates a network’s 

connection weights according to the error of the 

network’s output. BPTT is the application of 

backpropagation to each time step of an RNN or RNN 

variant [9]. Figure 3 demonstrates a layer of recurrent 

neurons unrolled through time. At each step, the layer 

receives the input xi and the output of the previous time 

step yt-1 as inputs. 

 

 
Figure 3. RNN Layer Unrolled through     

Time [9] 

Standard RNNs, although able to process 

sequential data, can suffer from short-term memory, 

meaning the network’s memory is limited in the 

number of past outputs it can represent clearly. An 

evolved version of the standard RNN, the Long Short-

Term Memory (LSTM) cell, was developed as a 

solution [10]. LSTM cells outperform standard RNNs 

by converging more quickly and by detecting long-

term dependencies in sequential data. Figure 4 shows 

that LSTMs possess not only a hidden state, but a cell 

state as well. The hidden state is similar to that of the 

standard RNN and represents the short-term 

information, while the cell state represents the long-

term information. LSTM cells also utilize three gate 

controllers that are responsible for adding information 

to the stored memory or erasing information from the 

stored memory [4]. These controllers are the forget 

gate, the input gate, and the output gate.  With the use 

of these gates, the LSTM cell is able to discern which 

content should be stored in its memory and which 

content it should forget. 

 
Figure 4. LSTM Cell [4] 

2.3. Bayesian Neural Networks 

 
Standard ANNs and DNNs learn point estimates 

for network weights and produce point estimates for 

predictions. These networks do not have a measure of 

certainty or confidence in the parameters and 

predictions, making the results potentially difficult to 

trust. In other words, standard DNNs output point 

estimate predictions, but no measure of respective 

uncertainty. Using Bayesian inference, a BNN 

incorporates a measure of uncertainty by learning 

parameters as distributions instead of point estimates 

[9] [11]. Bayesian inference is a type of statistical 

inference that uses Bayes’ theorem to update the 

inferred weight distributions as more information 

becomes available to the network. Any kind of 

network can become a BNN by treating the parameters 

in a Bayesian manner [9]. Figure 5 presents a visual of 

the weight-learning difference between a standard 

CNN (left) and BNN (right). 

Neal [12] expanded his contribution to the growth 

of BNNs the following year by establishing a link 

between BNNs and Gaussian processes, which are 

stochastic processes in which every finite linear 

combination of random variables is normally 

distributed. Although the Gaussian process properties 

do not translate easily to finite neural networks, 

Bayesian inference can be approximated for finite 

neural networks that have Gaussian priors for the 

weights.  As pointed out by Shridhar et al. [13], even 

for a network with few parameters, performing exact 

Bayesian inference to determine a network’s posterior 

is a lengthy and difficult task. For this reason, 

Bayesian inference is often approximated using 

variational inference, a method that fits a Gaussian 

distribution as closely as possible to the true posterior 
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distribution [9]. This is done by minimizing the 

Kullback-Leibler (KL) divergence, a measure of how 

much information is lost in the approximation. 

However, because variational inference significantly 

increases the number of model parameters, it comes at 

a high computational cost. 

2.4. Dropout as a Bayesian Approximation 

 
A simple method of Bayesian inference 

approximation that does not sacrifice computational 

complexity is dropout. In 2016, Gal and Ghahramani 

[14] demonstrated that applying dropout before every 

weighted layer in a network is mathematically 

equivalent to a Bayesian approximation of a Gaussian 

process. Their work shows that the application of 

dropout minimizes the KL divergence between an 

approximate distribution and a Gaussian process 

posterior distribution.  

Dropout, a popular regularization technique that 

prevents a model from overfitting training data, is a 

process that randomly omits neurons and their 

associated connections from the neural network 

according to a fixed probability p. In other words, at 

each step, each neuron will be retained in the network 

at that step with probability p. Figure 6, created by 

Srivastava et al., demonstrates the difference between 

standard neural network layers and neural network 

layers with dropout. This technique essentially 

samples a thinned version of the full network for each 

training case. For a neural network with n neurons, 

applying dropout to training amounts to a collection of 

2n possible networks [15]. Additionally, dropout 

prevents individual neurons from relying on other 

specific neurons to supplement their contributions to 

the network [16]. This causes the contribution of each 

neuron to become more helpful regarding correct 

network predictions. 

A typical dropout procedure is only implemented 

during the training stage, causing predictions during 

the testing stage to be deterministic. Monte Carlo 

dropout (MCD), proposed by [14], applies dropout to 

both the training and testing stages of a network. 

Implementing dropout during the testing stage means 

that the model output can be treated as a random 

sample generated from the posterior predictive 

distribution. The model uncertainty can therefore be 

estimated with the distribution of repeated predictions 

for an instance, constructing a distribution of 

probabilities for every class. With this distribution of 

multiple predictions, the average and the variation can 

reveal the networks uncertainty in its predictions. Gal 

and Ghahramani [14] show that not only is this 

procedure simple in execution, but that it has no 

negative impact on model performance. 

 

 
Figure 6. Dropout Neural Net Model. Left: A 

standard neural net with 2 hidden layers. 
Right: An example of a thinned net produced 

by applying dropout to the network on the 
left. Crossed units have been dropped [15] 

2.5. Rejecting Uncertain Classifications 
 

A known limitation of machine learning classifiers 

is that possessing a fixed set of classification 

 
Figure 5. Example of a BNN with an input image with exemplary pixel values, filters, and 
corresponding output with point estimates (left) and probability distributions (right) over  

weights [13] 
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categories they attempt to emplace all test data into 

these categories. When the test data either does not 

come from the closed training domain (e.g., a CNN 

trained on MNIST which is then fed test data from the 

not-MNIST data set), is sufficiently noisy to fall 

outside the classification boundaries, or the resulting 

confusion matrix is unbalanced (indicating some 

categories were poorly trained or have fuzzier  

boundaries).  Since at least 1969 researchers (see e.g., 

[18], [19], [20], [21],) have proposed various 

techniques for either enabling classifiers to refuse to 

classify an image that falls outside the closed domain 

of the training set, or to explicitly place uncertain test 

data into an “I don’t know” catchall category. 

Broadly these techniques fall into the following 

categories. ‘First, the test data may be eliminated via 

preprocessing. Second, after the classifier is trained 

the output for the test data may be examined and 

discarded as appropriate.  Third, the researcher can 

build the ability to classify a test point as unknown into 

the neural network’ [22]. Our technique is a hybrid of 

the first and third approaches. Specifically, we utilize 

a novel hybrid Bayesian Augmented CNN-RNN.  

Similar to Chows seminal work [20] we establish 

rejection rules, such that a trained Bayesian Neural 

Network acts as a preprocessor and eliminates test data 

that meets any of the rejection rules. The remaining 

“certain” test data is then fed into the RNN and is 

classified. In this fashion we create a classifier which 

exhibits high accuracy for the test data it is certain of 

and notifies a human operator when it is uncertain of a 

video’s classification.  Such a risk adverse approach is 

particularly appropriate when high negative 

consequences are associated with false positives. 

 

2.6. Representative Video Data 
 

The data set used in this research is the UCF101 

Action Recognition Data Set [17]. The University of 

Central Florida (UCF) introduced this dataset in 2012 

as the largest to date compilation of human action 

videos, comprising of 13,320 videos that span 101 

classes of actions in total. UCF101 offers a large 

amount of variety regarding actions, camera motion 

and viewpoint, object pose and scale, background 

appearance, and lighting conditions. The 101 action 

classes are divided into five types: Human-Object 

 
Figure 7. Sample frames of each of the 101 action classes in UCF101. The color of each frame 
border corresponds to the respective action type: blue for Human-Object Interaction, red for 

Body-Motion Only, violet for Human-Human Interaction, cyan for Playing Musical Instruments, 
and green for Sports [17]. 
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Interaction, Body-Motion Only, Human-Human 

Interaction, Playing Musical Instruments, and Sports.  

Table 2 provides the summary statistics of the data 

set structure and Figure 7 provides visual 

representations of the data set. Figure 7 contains 

frames of an example video from each of the 101 

action classes along with corresponding class and class 

type labels.  

Each class of actions is also subsequently divided 

into 25 groups based on common features, such as 

background or viewpoint. For all classes, the 25 

groups contain anywhere from 4 to 7 videos each. 

Although the videos of roughly half of the action 

categories also contain audio, this feature is not taken 

into consideration in this research. As preparation for 

training and testing, each video is partitioned into 

individual frames sized 224 x 224 pixels, with each 

pixel containing values for 3 color channels. The 

images are converted to three-dimensional arrays, 

sized 224 x 224 x 3. These arrays are normalized by 

dividing all values by 255 to have all pixel values 

range from 0 to 1.  

 

Table 2. UCF101 Summary Statistics [17] 
Statistic Values 

Actions 101 

Clips 13,320 

Groups per action 25 

Clips per Group 4-7 

Mean clip length 7.21 

Total duration 1600 mins 

Min Clip Length 1.06 

Max Clip Length 71.04 

Frame Rate 25 fps 

Resolution 320 x 240 

Audio Yes (51 actions) 

 

3. Bayesian Augmented CNN-LSTM 
 

This research explores the effects of utilizing a 

blend of the best of breed of the networks discussed 

above to gain synergistic effects. The CNN is 

responsible for classifying individual frames of a 

video, which is then passed to the RNN as a sequence 

of frames for classification of the video as a whole. 

However, this doesn’t involve any memory of what 

was previously seen.  Thus, the main contribution is in 

treating the CNN parameters in a Bayesian manner, 

and making it a BCNN. The front-end network is a 

BCNN and the back-end network is an RNN. The goal 

of this network architecture is to classify videos and 

provide a measure of uncertainty in each video's frame 

predictions.  

 

3.1. Front-end BCNN 
 

The front-end BCNN is constructed from a simple 

CNN consisting of two weighted layers with dropout 

applied before every weighted layer. This is following 

Gal’s finding that applying dropout before every 

weighted layer is an approximate Bayesian inference. 

Both dropout layers utilize an identical dropout rate of 

0.5 according to the precedent set by [14]. This 

reduction in the front-end model's size does not impact 

this research, as its aim is to show a proof of concept. 

 

Table 3. Front-end BCNN 

Layer Type Description 
Kern. 

Size 

in Input 1 image: 224x224x3  

1 Convolutional 
32 maps of 222x222 

ReLu neurons 
3x3 

2 Convolutional 
32 maps of 220x220 

ReLu neurons 
3x3 

3 Max pooling 
32 maps of 73x73 ReLu 

neurons 
3x3 

4 Flatten 32 ReLu neurons  

5 Dropout 170528 parameters  

6 Fully connect. 170528 neurons  

7 Dropout 50 parameters  

8 Fully connect. 50 ReLu neurons  

Out Fully connect. 
101 neurons: 

classification 

 

 

Table 3 presents the architecture of the front-end 

model. The input consists of three colored images (red, 

green, blue) which then passes through two 

convolutional layers, stride of 1, zero-padding of 1.  

The kernel size used in the convolutional layers is the 

smallest kernel size that can capture the concept of left  

and right, up and down, and center. This is followed 

by a max-pooling layer and two fully connected layers, 

one with 50 units and one with 101 units, which is the 

number of classes in the UCF101 dataset. The 

activation function of all the layers, aside from the 

final fully connected layer, is the rectified linear unit 

activation function (ReLU). The final fully connected 

layer uses a softmax activation function, which 

converts the input to a vector of categorical 

probabilities, each between 0 and 1, that sum to 1. 

However, as shown by [14], the output vector of 

probabilities from the softmax function alone cannot 

be interpreted as model confidence or uncertainty.  

The output of the BCNN is a list of matrices, one 

for each video that is classified by the front-end 

network. Initially, each matrix contains as many rows 

as a video has frames and as many columns as the data 

set has classes.  

 

3.2. Back-end RNN 
 

Given a video index, the matrix corresponding to 

that index in the list contains the MCD predicted 
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probabilities for each of the 101 classes for each frame 

of the video. However, the Keras LSTM layers used to 

build the back-end network require that all sequences 

within each batch have the same number of timesteps. 

To standardize the number of frames across the data 

passed to the back-end network, all matrices in the list 

outputted by the front-end network are padded with 

arrays of zeros to match the highest number of frames 

that occurs in the data. Using zero padding allows for 

the list to preserve the original content of the data.  

This list of matrices, the BCNN output, is fed into 

an RNN consisting of two LSTM layers, each with 50 

units and a softmax activation function. These two 

LSTM layers are followed by two fully connected 

layers that contain 50 units and 101 units, respectively. 

The architecture of the back-end network is 

represented in Table 4. 

 

Table 4. Back-end RNN 
Layer Type Description 

in Input 1 vector of 101x1 

1 LSTM 50 units, softmax 

2 LSTM 50 units, softmax 

3 Fully connect. 50 softmax neurons 

Out Fully connect. 101 softmax neurons 

 

3.3. Hyperparameter Tuning 
 

Because the performance and required training 

time of a model depend on the specified 

hyperparameter values [23]; thus tuning the 

hyperparameters to find optimal or near-optimal 

values is of interest.  The approach used herein was 

cross validation to exhaustively consider all parameter 

combinations from a grid search to determine the 

optimal parameter values for a model, with a value of 

3 for K-fold cross validation [4].  

For the models developed herein, the tunable 

hyperparameters included the batch size, epochs, 

optimizer, weight initialization method, and size of 

hidden layers. The batch size is the number of data 

observations that are shown to the network before 

updating the weights [4]. RNNs and CNNs are 

particularly sensitive to the batch size. The number of 

epochs is the number of times that the entire training 

data set is shown to the network during training [4]. 

The optimizer is the algorithm used to update the 

model weights in response to the loss function results 

[4]. The weight initialization method determines with 

which random distribution, if any, the network weights 

are initialized, which heavily affects network training 

time [4] }. The size of a hidden layer refers to the 

number of neurons it contains, which controls the 

representational capacity of the network at that layer 

[4].   

 

4. Comparative Assessment and 

Evaluation 
 

The performance and capabilities of the above 

Bayesian model will be compared to a non-Bayesian, 

baseline model consisting of the same front-end CNN 

and back-end RNN structure, but with the dropout 

layers removed from the front-end network during the 

testing phase. Thus both the Bayesian front-end 

network and the baseline front-end network are 

identical other than the employment of dropout during 

the testing phase for the Bayesian front-end network. 

The same back-end RNN is used after each of these 

front-end networks. 

First, we compared the baseline and Bayesian 

models on their performance in classifying the entire 

test set without the ability to leave images non-

classified. Next, both models are evaluated on the 

measures of uncertainty that they can each provide for 

their predictions. This includes a sensitivity analysis 

on the non-classified thresholds for each model. 

Finally, both models are evaluated on their 

performance on the subsection of the test set they 

choose to classify based on the uncertainty thresholds. 

The test set used for evaluation spans all 101 classes 

and contains 3,782 videos, which collectively contain 

28,890 images. 

All model training and evaluation were conducted 

on a Windows 10 Professional PC with an AMD 

Ryzen 5 5600X CPU, 32 GB RAM, and Sapphire 

Nitro+ RX 5700XT, as well as the Python 3.7 

packages Tensorflow 2.1.0, Keras 2.3.1, and all 

necessary dependencies.  

 

4.1. Network Performance without 

Uncertainty 
 

Without accounting for uncertainty, both the 

baseline and Bayesian neural network configurations 

classified the video data set. The baseline front-end 

model achieves 25.2% accuracy on the whole test set. 

Feeding the baseline front-end network's predictions 

to the back-end network, the combined model 

achieves 1.3% accuracy. The Bayesian front-end 

network achieves 20.9% accuracy on the whole test 

set. With the Bayesian front-end network predictions 

as input for the back-end network, the Bayesian RNN 

combined model achieves 1.3% accuracy.  

 

4.2. Uncertainty Thresholds 
 

The appeal of measuring the network's uncertainty 

lies in the network's ability to know what it does not 

know. However, this ability is not useful unless the 
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network is also able to request clarification for those 

cases about which it is uncertain. To address this, both 

front-end networks, baseline and Bayesian, will 'flag' 

any image and its associated video that corresponds to 

high uncertainty based on respective network 

thresholds.  

 

For the Bayesian front-end network, the 

distribution of MCD predictions for an image is used 

to determine whether the network will classify the 

image or leave it non-classified. There are many ways 

to set the network uncertainty threshold for flagging 

an image, some of which will suit certain data and 

situations more than others. For the purposes of this 

research, the uncertainty thresholds are set as follows: 

1. An image and its video are flagged if the 

maximum mean predicted class probability is less 

than a determined cutoff value.  

2. An image and its video are flagged if there are two 

or more mean predicted class probabilities greater 

than another determined value.  

3. An image and its video are flagged if the 

maximum standard deviation for any of the 

predicted class probabilities is greater than a 

determined value. 

These values and their respective sensitivity analyses 

are specified in the following section. These flag 

 

Figure 8.   Classified to non-classified ratio for each front-end network.

 

Figure 9.  Model performances on whole test set and on modified test set. Here the entire 
bar represents the accuracy of a model on the modified test set, while the shaded portion of 

the bar represents the accuracy of a model on the whole test set. 
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thresholds are chosen to ensure reasonable network 

certainty in the unflagged images.  

The baseline front-end network cannot provide the 

same distribution of predictions that the Bayesian 

front-end network can. For this reason, in order to gain 

a semblance of the baseline front-end network's 

uncertainty, this research applies a frequentist 

methodology, which treats uncertainty as a probability 

that is the limit of the relative frequency of an event 

after many trials [24]. To accomplish this, augmented 

data is created from the images and used to construct 

a distribution of correct predictions and incorrect 

predictions for each class [25]. The data is augmented 

using the Image Data Generator class in Keras [26]. 

The baseline `non-classified' threshold for each class 

is found using the same determined value as 

mentioned in the first Bayesian threshold as a 

percentile cutoff in the correct predictions distribution 

for that class. During the testing stage, if the softmax 

output for the predicted class is below the threshold of 

that class, then the image is rendered ‘non-classified.’ 

 

4.3. Determining Uncertainty Thresholds 
 

Experimental runs were conducted to determine 

the sensitivity of the three threshold uncertainty 

values. In order for the Bayesian front-end network to 

classify at least half of the test set videos (14,445), the 

standard deviation threshold (criterion 3) must be 

greater than 0.32; below this value, the other two 

threshold values do not allow the network to classify 

even half of the test set. In fact, even with a standard 

deviation threshold of 0.32, the Bayesian network only 

classifies half of the test set with a cutoff value of 0.10 

for criterion 1 and a value of 0.5 for criterion 2. With 

these values, the Bayesian network classifies all 

images that have maximum mean predicted class 

probability greater than 0.10, no more than one class 

with a mean predicted probability greater than 0.50 

(which could not occur regardless), and with no 

standard deviations greater than 0.32 for the predicted 

class probabilities. 

For this research, we chose the final thresholds for 

all three Bayesian uncertainty thresholds and for the 

baseline uncertainty threshold to enable the Bayesian 

front-end network to classify at least 20% of the whole 

test set (min 5,778 videos). This will enable a more 

thorough analysis of the network's capabilities. To 

accomplish this, the criterion 1 threshold value is 0.6, 

the value for Bayesian uncertainty (criterion 2) is 0.25, 

and the Bayesian standard deviation threshold 

(criterion 3) value is 0.4. For the baseline network, this 

means that for an image to be classified, the softmax 

output for the predicted class must be at least the value 

of the 60th percentile of that class's correctly predicted 

augmented data softmax probabilities. For the 

Bayesian network, then the mean predicted class 

probability must be at least 0.6, no more than one mean 

class probability can be over 0.25, and no standard 

deviation of the class probabilities can exceed 0.4. 

 

4.4. Network Results Including Non-

Classification Due to Uncertainty 
 

Using the threshold settings outlined in section 4.2, 

the baseline and Bayesian networks again attempted to 

classify the test data. Under these settings, each 

network configuration either categorized the 

image/video or flagged it as “non-classified.” Figure 8 

shows the ratio of classified to non-classified for both 

images and videos for the networks with the chosen 

threshold values. The baseline network classifies 

significantly more images and videos than the 

Bayesian network, but at a significant cost in accuracy.  

On the modified test set, the baseline front-end 

network achieves 38.2% accuracy. The Bayesian 

front-end network achieves 61.0% accuracy. Figure 9 

provides a visual of the difference between whole test 

set performances and modified test set performances. 

As shown in Figure 9, the baseline network with the 

CNN front-end and RNN back-end experienced a 52% 

and 8% increase in accuracy, respectively. The 

Bayesian front-end experienced a 192% increase in 

accuracy, while its RNN back-end had a 100% 

decrease in accuracy. It should be noted that both the 

increase and decrease in RNN accuracy represents a 

large percentage change that is due to the small 

denominator. That is, the RNN performed poorly in all 

cases. Improving the RNN performance through 

architecture or data structure changes is left to future 

study. 

 

5. Conclusions 
 

The Bayesian model construct for video 

classification provided significant accuracy 

improvements in video classification over a baseline 

convolutional neural network with similar criterion for 

flagging videos as “unclassified.” With estimation for 

Bayesian priors calculated through network node 

dropout, three criteria were developed to flag certain 

videos as “non-classified.”  

The Bayesian CNN’s success was shown for this 

particular data set over a traditional data set. With 

careful threshold selection, the Bayesian network was 

able to leave troublesome images/videos non-

classified, rather than forcing (or allowing) an 

incorrect classification.  
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However, the results also show significant 

challenges that must be overcome. First, as 

implemented in this research, the subsequent recurrent 

neural network did not improve the accuracy of the 

video classification, and in some cases showed worse 

accuracy. Second, the uncertainty can leave a large 

portion of the data set non-classified. This may be 

acceptable in cases where the cost of incorrect 

classification is catastrophic, but the cost of human 

intervention may still be quite significant.  

Finally, this research demonstrated success in the 

comparison of a baseline CNN to a Bayesian CNN in 

an AR context and, therefore, has only been tested in 

a limited sense. To broadly compare these algorithms, 

it is necessary to both find applicable data and 

comparison metrics.   
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