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Abstract

Granular computing is a growing computing
paradigm of information processing that covers any
techniques, methodologies, and theories employing
information granules in complex problem solving.
Within the recent past, it has been applied to solve
group decision-making processes and different granular
computing-based models have been constructed,
which focus on some particular aspects of these
decision-making processes. This study presents a
new granular computing-based model for group
decision-making processes defined in multi-criteria and
heterogeneous environments that is able to improve with
minimum adjustment both the consistency associated
with individual decision-makers and the consensus
related to the group. Unlike the existing granular
computing-based approaches, this new one is able to
take into account a higher number of features when
dealing with this kind of decision-making processes.

1. Introduction

Granular Computing (GrC) [1] has arisen as a sound
and consistent methodology of processing, describing
and constructing information granules, which are the
underlying concept that has far achieving implications
by causing non-specific, semantically significant entities
being essential to the understanding of real-world [2].

Despite of the fact that the evident variety of the
existing approaches in which the information granules
can be formalized, there exist several underlying
shared features articulated with regards to the ensuing
application domains, algorithmic developments and
fundamentals. A requirement to start with the
processing of the information granules, irrespective
of the way in which they are formalized, is to
search for certain general ways of forming them [3].
First, the principle of justifiable granularity provides
an option. Second, by bringing into a picture the
issue of non-numeric data, the information granularity

helps accomplish more suitable rapport with reality
by quantifying the nature of the data by means of
information granules.

In group decision-making processes [4, 5], the
distribution of information granularity has been used
to make the models dealing with such processes
more reflective of reality and to capture the variety
of knowledge sources and viewpoints expressed by
individual decision-makers. A group decision-making
process is an example of granularity distribution in
which the assignment of granularity arises as a crucial
element to build consensus, a crucial question in
this kind of decision-making processes. Building
consensus is about arriving at the decision that every
decision-maker is at ease with [6]. To achieve this
situation, obviously each decision-maker must exercise
a certain flexibility degree and be ready to soften her or
his posture, and, here, information granularity becomes
involved [7]. In a nutshell, by admitting a granular
realization of the decision-makers’ assessments, instead
of numeric, the collaboration is facilitated.

In the literature, we can find a number of
approaches constructed from the perspective of
the GrC, in particular by using the concept of
information granularity, to build consensus in a group
decision-making process. In addition to the consensus,
a number of approaches have been developed to deal
with consistency [8], another important point that must
be taken into account in a group decision-making
process. For example, in [7] a model dealing with
consensus and consistency in the context of the analytic
hierarchy process (AHP) was proposed; in [9] a model
managing both consensus and consistency was also
presented, but in this case fuzzy preference relations
were used to model the assessments; in [10] a model
improving multiplicative consistency in reciprocal
preference relations was developed; in [11] a model
handling consensus with intuitionistic reciprocal
preference relations was introduced; in [12] a modified
consensus model also handling consistency in the AHP
was proposed; in [13] a model managing consensus
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with minimum adjustment in multi-criteria contexts
was implemented; and in [14] a model dealing with
consistency in multi-criteria and heterogeneous contexts
was introduced, to cite some examples. It is needless
to say that there exist a great number of approaches
based on GrC that deal with different features of group
decision-making processes. However, any of them is
able to deal with all those features at the same time.

The aim of this study is to make use of
the GrC paradigm, in particular the concept of
distribution of information granularity, by giving rise
to a granular model managing group decision-making
processes. First, this new granular model has the
ability to deal with multi-criteria environments, i.e.,
decision-making processes in which different criteria
must be kept in mind to assess the alternatives.
Second, it has the ability to handle heterogeneous
environments, i.e., decision-making processes in which
every decision-maker has a different knowledge about
the alternatives and criteria. Third, it is able to improve
the consistency of the individual decision-makers and
the consensus achieved among the group. And, fourth,
it is able to make this improvement with minimum
adjustment, i.e., by modifying the minimum possible the
assessments given by the decision-makers.

The material is structured as follows. In Section 2,
we recall the formal definition of a multi-criteria group
decision-making problem and the fundamentals aspects
to keep in mind when facing them. Section 3 elaborates
on the new granular computing-based model for group
decision-making in multi-criteria and heterogeneous
environments that is able to improve consistency and
consensus with minimum adjustment. Section 4
conducts a case study to illustrate the proposed granular
computing-based model. Its advantages, shortcomings
and performance are discussed in Section 5. Finally,
Section 6 covers conclusions and future research studies.

2. Multi-criteria group decision-making

Because the wisdom of a number of decision-makers
is assumed to be better than any individual
decision-maker in political forecasting, public policies,
and so forth [15], group decision-making processes
have been widely investigated. These processes
define scenarios where various decision-makers
collectively select the best alternative (course of
action, option) from a collection of them [16, 7].
To do so, the decision-makers must provide their
assessments of the alternatives, being usual the
consideration of a number of criteria [17]. In such a
case, a multi-criteria group decision-making problem
is faced [18], which is formally characterized by

a finite set of alternatives, A = {a1, a2, . . . , an},
being n ≥ 2; a finite group of decision-makers,
DM = {dm1, dm2, . . . , dmm}, being m ≥ 2; and a
finite set of criteria, C = {c1, c2, . . . , cq}, being q ≥ 2,
that are used to assess the alternatives. In addition, an
importance weight wl ∈ [0, 1] is associated with every
criterion cl ∈ C. Generally, the weights are normalized,
i.e.,

∑q
l=1 wl = 1.

To solve a multi-criteria group decision-making
problem, the following steps are usually carried out:

• Expressing the assessments. The decision-makers
provide their assessments of the alternatives using
a particular representation domain and a given
representation format [19].

• Consensus reaching process. In order to reach
an enough agreement, a dynamic and iterative
process of debating and revision of assessments
by the decision-makers is carried out [20, 21].

• Selection process. A collective assessment is
determined by aggregating all the individual
assessments expressed by the decision-makers.
Then, the information contained in this collective
assessment is exploited to rank the alternatives.
The first alternative of this ranking is selected as
solution to the decision-making process [22].

The decision-makers’ assessments of the alternatives
can determine the preference degree of an alternative
over other according to a criterion or the degree up to
which the alternative satisfies the criterion. In the first
case, a pairwise comparison is used as representation
format. In the second case, a utility value (non-pairwise
comparison) is used as representation format. Even
though both have been used in decision-making
processes, the pairwise comparisons better model such
processes [23]. However, when pairwise comparisons
are used to model the assessments, it is produced
more information than the one required. In addition,
the global understanding of the alternatives by the
decision-makers is restricted. This can lead to some
contradictory (inconsistent) assessments [8]. Therefore,
consistency in the assessments expressed by the
decision-makers must be analyzed [24].

Once the representation format has been chosen,
the representation domain in which the assessment
are modeled must be established. In multi-criteria
group decision-making processes, which are cognitive
processes where decision-makers (humans) participate,
the fuzzy set theory has demonstrated to be a useful
tool in modeling assessments pervaded with human
uncertainty [25]. In particular, this theory and its
extensions have been widely used [26].
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Another aspect that must be considered is that of the
different decision-makers’ knowledge about the criteria
and alternatives, which is generally characterized by
assuming that every decision-maker, dmz ∈ DM ,
has a different importance weight, vzl ∈ [0, 1], for
every criterion, cl ∈ C. In such a case, we face a
multi-criteria group-decision making process defined in
a heterogeneous (non-homogeneous) environment [27].

In this study, we suppose that both the weights
related to the criteria and the weights associated with
the decision-makers for every criterion are assigned
directly by the person in charge of the decision problem.
However, any other approach could be used. In the
case of the criteria, any of the existing subjective
weighting methods, objective weighting methods, or
hybrid weighting methods could be used [28]. In
the case of the decision-makers, the weights can
also be obtained automatically from the assessments
provided by the decision-makers. For instance, the
most consistent decision-makers could receive a higher
weight than inconsistent ones [29].

3. Granular computing-based model

This section describes in detail the new granular
computing-based model for group decision-making in
multi-criteria and heterogeneous environments. Being
based on the concept of information granularity, it
aims to improve both consistency and consensus with
minimum adjustment, i.e., by adjusting as little as
possible the initial assessments communicated by the
decision-makers.

This new granular computing-based model is
divided into three steps: (i) expressing assessments,
(ii) improving of consistency and consensus with
minimum adjustment, and (iii) selection process. These
steps are presented in detail in the next subsections.

3.1. Expressing assessments

In Section 2, we have mentioned that there exist
different representation domains and representation
formats to characterize the assessments [19]. Here,
we assume [0,1]-values as representation domain and
preference relations as representation format. It means
that fuzzy preference relations are used to model the
assessments [30]. They have been chosen because they
are the most used in group decision-making processes.

The function µP zl : A × A → [0, 1] characterizes
the fuzzy preference relation P zl given by the
decision-maker dmz on the set of alternatives A for the
criterion cl. To symbolize the fuzzy preference relation
P zl in an understanding way, the matrix P zl = (pzljk)
can be employed, being n × n the size of this matrix.

Here pzljk = µP zl(aj , ak) indicates the preference
degree of aj over ak (j 6= k) according to dmz for cl.
Particularly, a value equal or greater than 0.5 is assigned
to pzljk whether the decision-maker dmz prefers aj over
ak for the criterion cl; a value equal to 0.5 is assigned to
pzljk whether the decision-maker dmz equally prefers aj
and ak for the criterion cl; and a value lower than 0.5 is
assigned to pzljk whether the decision-maker dmz prefers
ak over aj for the criterion cl. In a nutshell, the starting
point of the granular computing-based model is a set of
m × q fuzzy preference relations, P zl, z = 1, . . . ,m,
l = 1, . . . , q, of dimension n× n.

3.2. Improving of consistency and consensus
with minimum adjustment

Before applying the selection process, both
the consistency levels associated with individual
decision-makers and the consensus achieved among
them must be as higher as possible. This improvement
requires that the decision-makers modify their initial
assessments. It means that the decision-makers accept
the adjustment of their assessments to some extent.
Nevertheless, the decision-makers could not accept the
modified assessments if they are far from the initial
ones expressed.

The flexibility allowed by the decision-makers in
their assessments can be modeled by the concept of
information granularity that transforms the entries of
the fuzzy preference relations, which are composed of
a numerical value, into information granules of higher
abstraction [31], leading to granular fuzzy preference
relations [9]. As formalism of granulation, intervals are
used. It means that the entries of the fuzzy preference
relations are interpreted as intervals instead of precise
numeric values. Particularly, the information granularity
level α determines the length of the intervals and can be
used to improve both the consistency and the consensus.

In a nutshell, by modifying the [0, 1]-assessments
provided by the decision-makers within the limits
of the intervals formed according to the information
granularity level α, we aim to improve both the
consistency and the consensus. In addition to it, we
aim to obtain modified assessments as close as possible
to the ones provided by the decision-makers. To
perform this task, the particle swarm optimization (PSO)
algorithm is used [32]. We use this algorithm as it is easy
to execute via programming, it has a fast convergence
rate, and it needs a low number of parameters that
require to be adjusted [33]. In addition, this algorithm
has successfully been applied in similar problems [7, 9,
13]. Anyway, any other optimization technique such as
differential evolution could also be applied [34].
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3.2.1. Algorithm PSO starts with a swarm
consisting of a number of particles depicted as positions
in a search-space of d dimensions, i.e., the particles
represent potential solutions of the optimization task.
By moving to a new position based on their previous
positions and a new velocity, the particles try to
discover, in a iterative way, a solution that optimizes a
fitness function f .

Even though there exist several variants of the PSO
algorithm [33], which could be applied, we assume
the generic form in this study. Considering that every
particle i is composed of three d-dimensional vectors,
vi = (vi,1, vi,2, . . . , vi,d), xi = (xi,1, xi,2, . . . , xi,d)
and xbi = (xbi,1, xbi,2, . . . , xbi,d), representing its
velocity, current position and best position achieved so
far, respectively, the following expressions control the
next velocity and position of the particle [32]:

vi,h(t+ 1) = ω(t) · vi,h(t)
+ c1 · rh · (xbi,h − xi,h(t))
+ c2 · sh · (xgh − xi,h(t)) (1)

xi,h(t+ 1) = xi,h(t) + vi,h(t+ 1) (2)

being t the current iteration and h the dimension
of the particle i; ω, called inertia weight, serves to
scale the current velocity (a small value means local
exploration and a high value means global exploration);
c1 and c2 denote two acceleration coefficients modeling
the step size the particle takes in the direction of
its best position and in the direction of the best
global position, respectively; r = (r1, r2, . . . , rd)
and s = (s1, s2, . . . , sd) are two vectors of values
from two random sequences in [0, 1]; and xg =
(xg1, xg2, . . . , xgd) is a vector characterizing the global
best position achieved by a particle of the swarm.

3.2.2. Particle’s representation According to the
distinguishing features of the group decision-making
processes in multi-criteria and heterogeneous
environments that we model, every particle is
characterized by a vector whose components belong
to the interval [0, 1]. Particularly, whether the
decision-making problem is set up with q criteria,
m decision-makers and n alternatives, every particle
consists in a vector of q · (n− 1) · n ·m dimensions.

Let pzljk ∈ [0, 1] be an element of the fuzzy

preference relation P zl expressed by the decision-maker
dmz on the criterion cl. Whether α is the information
granularity level established, the element, pzljk, can take
values within the interval [Ljk,Ujk], whose boundaries

are computed as follows:

[Ljk,Ujk] = [max(0, pzljk −
α

2
),min(pzljk +

α

2
, 1)] (3)

For illustrative purposes, let pzljk and α be 0.6
and 0.3, respectively. Let xi,h = 0.4 be the
corresponding component of the particle i. Using (3),
the corresponding interval to pzljk is [0.45, 0.75]. Finally,

using (4), we get that the adjusted value pzljk associated

with pzljk is 0.57.

pzljk = Ljk + (Ujk − Ljk) · xi,h (4)

3.2.3. Fitness function The particles aim to
maximize the value returned by the fitness function
f at their positions, i.e., by modifying the initial
values of the entries of the fuzzy preference relations
provided by the decision-makers, first, we aim to
improve the individual consistency associated with
the decision-makers, second, we aim to improve the
consensus among the group and, third, we aim to
improve the similarity between the modified values of
the entries of the fuzzy preference relations and the
initial ones. Therefore, f is defined as follows:

f = β · (γ · f1 + (1− γ) · f2) + (1− β) · f3 (5)

being γ ∈ [0, 1] a parameter establishing a trade-off
between the consistency, f1, and the consensus, f2, and
β ∈ [0, 1] a parameter establishing a trade-off between
these two values, f1 and f2, and f3, which measures the
similarity between the fuzzy preference relations given
by the decision-makers, P zl, and the modified ones,

P
zl

, z = 1, . . . ,m, l = 1, . . . , q.
Based on (5), the computation of three values,

namely f1, f2 and f3, is required to get the value of the
fitness function f .

First, to compute f1, the average of the individual
consistency associated with the decision-makers is
calculated:

f1 =
1

m

m∑
z=1

clz (6)

where clz denotes the global consistency level
associated with the decision-maker dmz . This value
is calculated by means of the weighted average of the
consistency levels associated with that decision-maker
in every criterion cl:

clz =
1∑q

l=1 vzl

q∑
l=1

vzl · clzl (7)
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where clzl denotes the consistency level associated with
the decision-maker dmz in the criterion cl. This value is
calculated by means of the procedure developed in [29].
Refer to it for a description in detail of this procedure.

Second, to compute f2, a new approach based on
the coincidence concept is implemented [35]. It is as
follows:

• Computation of a matrix, SM = (smzyl
jk ), for

every pair of decision-makers, dmz and dmy ,
and every criterion, cl, determining the similarity
between the assessments communicated by them
on that criterion:

smzyl
jk = 1− |pzljk − p

yl
jk| (8)

• Computation of a matrix, CM l = (cml
jk), for

every criterion, cl, determining the consensus
reached by the group on that criterion:

cml
jk =

2

m · (m− 1)

m−1∑
z=1

m∑
y=z+1

smzyl
jk (9)

• Computation, for every matrix CM l, of a global
consensus measure, gcl, associated with the
criterion cl:

gcl =
1

n · (n− 1)

n∑
j=1

n∑
k=1;k 6=j

cml
jk (10)

• Computation of f2 via the weighted average of the
measures of global consensus associated with the
criteria:

f2 =

q∑
l=1

wl · gcl (11)

And third, to compute f3, the similarity between
the fuzzy preference relations expressed by the
decision-makers and the adjusted ones must be obtained.
This is carried out as follows:

• Computation of a similarity index, sizl, related
to every decision-maker, dmz , on every criterion,
cl, determining the similarity between the
fuzzy preference relation communicated by that
decision-maker and the suggested one on that
criterion:

sizl =
1

n · (n− 1)

n∑
j=1

n∑
k=1
k 6=j

1− |pzljk − pzljk| (12)

• Computation of a similarity index, sil, for every
criterion, cl, determining the similarity between
the fuzzy preference relations communicated by
the group of individuals and the suggested ones
on that criterion:

sil =
1

m

m∑
z=1

sizl (13)

• Computation of f3 via the weighted average of the
similarity indexes related to the criteria:

f3 =

q∑
l=1

wl · sil (14)

In this study, we have used the Manhattan distance
to calculate the similarity measures. However, other
distance functions such as the Euclidean or the Cosine
distances, to cite some of them, could be used depending
of the characteristics sought. Refer to [36] for a
comparative study of the effect of the application of
some different similarity measures.

3.3. Selection process

This step returns the best alternative (or alternatives)
by means of an aggregation process and an exploitation
process, which are elaborated on next.

3.3.1. Aggregation The collective assessments is
calculated by fusing all the individual decision-makers’
assessments. It means that the individual fuzzy
preference relations must be aggregated to obtain a
collective fuzzy preference relation, which is done by
using a certain aggregation function [37]. Here, as we
consider that both the criteria and the decision-makers
have associated weights of importance, the weighted
arithmetic mean is used as aggregation function. In
particular, the procedure for obtaining the collective
fuzzy preference relation is the following:

• A collective fuzzy preference relation, P
cl

=
(pcljk), is obtained for each criterion cl as follows:

pcljk =
1∑m

z=1 vzl
·

m∑
z=1

vzl · pzljk (15)

• Using the information contained in the collective
fuzzy preference relations related to the criteria,
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the collective fuzzy preference relation, P
c

=
(pcjk), is calculated as follows:

pcjk =

q∑
l=1

wl · pcljk (16)

3.3.2. Exploitation To select the best alternative (or
alternatives) solving the decision-making problem, the
information included in the collective fuzzy preference
relation is exploited. Different functions can be applied
to carried out it [22]. Among then, we use the following
two choice degrees of alternatives:

• The quantifier-guided dominance degree,
QGDDj , determining the dominance that the
alternative aj has over the other alternatives. It is
computed as:

QGDDj =
1

n− 1

n∑
k=1;k 6=j

pcjk (17)

• The quantifier-guided non-dominance degree,
QGNDDj , determining the degree in which
the alternative aj is not dominated by the other
alternatives. It is computed as:

QGDNDj =
1

n− 1

n∑
k=1;k 6=j

1− dkj (18)

being dkj = max{pckj − pcjk, 0}, which
determines the degree in which the alternative aj
is dominated by the alternative ak.

Based on these two choice degrees of alternatives,
the procedure to select the best alternative (or
alternatives) is as follows:

• Both choice degrees of alternatives are applied
over A to get the next sets of alternatives:

DD = {aj ∈ A | QGDDj

= sup
ak∈A

QGDDk} (19)

NDD = {aj ∈ A | QGNDDj

= sup
ak∈A

QGNDDk} (20)

• The intersection is applied to the above sets to get
the following set of alternatives:

QG = DD
⋂
NDD (21)

If #QG = 1, then this is alternative chosen as
solution to the problem. Otherwise, continue.

• If #DD = 1, then the alternative located in this
set is chosen as solution to the problem. If not,
the alternative, aj , of this set having the higher
QGNDDj is selected as solution to the problem.

4. Case study

A company wants to invest in the stock market. To
do it, the company asks to four stock market investors
(decision-makers), dm1, dm2, dm3 and dm4, who
must choose the best choice between four possible
stocks, a1, a2, a3 and a4, considering four criteria,
earnings momentum (c1), conservative capital structure
(c2), favorable asset utilization (c3) and good current
and projected profitability (c4), whose weights of
importance are 0.2, 0.3, 0.1 and 0.4, respectively. Based
on their background and knowledge, the weights of
importance of the stock market investors related to the
criteria are:

v11 = 0.2 v12 = 0.3 v13 = 0.3 v14 = 0.2

v21 = 0.3 v22 = 0.3 v23 = 0.2 v24 = 0.2

v31 = 0.4 v32 = 0.1 v33 = 0.2 v34 = 0.3

v41 = 0.1 v42 = 0.3 v43 = 0.3 v44 = 0.3

Initially, the stock market investors give these fuzzy
preference relations on the different criteria:

P 11 =


− 0.3 0.5 0.5
0.5 − 0.7 0.7
0.5 0.3 − 0.7
0.5 0.3 0.3 −

P 12 =


− 0.3 0.9 0.9
0.7 − 0.1 0.1
0.1 0.9 − 0.7
0.1 0.9 0.3 −



P 13 =


− 0.3 0.3 0.7
0.9 − 0.3 0.3
0.9 0.7 − 0.3
0.5 0.7 0.9 −

P 14 =


− 0.7 0.9 0.9
0.3 − 0.6 0.7
0.2 0.3 − 0.8
0.2 0.2 0.1 −



P 21 =


− 0.5 0.3 0.9
0.5 − 0.9 0.9
0.7 0.1 − 0.5
0.1 0.1 0.5 −

P 22 =


− 0.7 0.7 0.7
0.1 − 0.9 0.3
0.5 0.3 − 0.9
0.5 0.5 0.3 −



P 23 =


− 0.5 0.5 0.3
0.5 − 0.5 0.7
0.5 0.5 − 0.5
0.9 0.1 0.5 −

P 24 =


− 0.8 0.7 0.2
0.2 − 0.4 0.4
0.1 0.6 − 0.8
0.9 0.6 0.3 −



P 31 =


− 0.1 0.7 0.3
0.7 − 0.5 0.3
0.3 0.5 − 0.5
0.7 0.7 0.5 −

P 32 =


− 0.9 0.9 0.7
0.3 − 0.7 0.5
0.3 0.1 − 0.7
0.3 0.5 0.3 −



Page 2082



P 33 =


− 0.3 0.3 0.7
0.5 − 0.5 0.7
0.3 0.5 − 0.5
0.3 0.7 0.9 −

P 34 =


− 0.5 0.6 0.3
0.5 − 0.2 0.5
0.3 0.6 − 0.7
0.7 0.5 0.4 −



P 41 =


− 0.8 0.9 0.7
0.3 − 0.7 0.5
0.3 0.2 − 0.7
0.2 0.5 0.2 −

P 42 =


− 0.2 0.2 0.7
0.8 − 0.5 0.6
0.7 0.5 − 0.6
0.3 0.4 0.3 −



P 43 =


− 0.5 0.3 0.7
0.5 − 0.9 0.7
0.8 0.1 − 0.5
0.1 0.3 0.5 −

P 44 =


− 0.1 0.1 0.2
0.8 − 0.2 0.8
0.9 0.7 − 0.9
0.8 0.1 0.1 −


Before presenting the values returned by the

proposed granular computing-based model, we show
the values given to the parameters of the PSO. These
values, which are assigned because of an intense
experimentation, are the following: c1 and c2 are set to
2 in (1); the swarm contains 100 particles; 300 iterations
are carried out; and ω is linearly decreased from 0.9 to
0.4 in (1) as follows:

ω(t) = (0.9− 0.4) · 300− t
300

+ 0.4f (22)

being t the current iteration. In addition, α, β and γ, are
established as 0.2, 0.75 and 0.5, respectively.

The values of 0.917, 0.825 and 0.915, are returned
by the PSO for f1, f2 and f3, respectively. It means
the global consistency is 0.917, the consensus achieved
is 0.825 and the similarity between the original fuzzy
preference relations and the adjusted ones is 0.915.
In addition, the adjusted fuzzy preference relations
generated by the PSO are:

P
11

=


− 0.4 0.6 0.6
0.6 − 0.6 0.6
0.4 0.4 − 0.6
0.4 0.4 0.4 −

P 12
=


− 0.4 0.8 0.8
0.6 − 0.2 0.2
0.2 0.8 − 0.6
0.2 0.8 0.4 −



P
13

=


− 0.4 0.4 0.8
0.8 − 0.4 0.3
0.8 0.68 − 0.4
0.4 0.6 0.8 −

P 14
=


− 0.6 0.8 0.8
0.4 − 0.6 0.6
0.3 0.4 − 0.7
0.3 0.3 0.2 −



P
21

=


− 0.6 0.4 0.8
0.4 − 0.8 0.8
0.6 0.2 − 0.6
0.2 0.2 0.4 −

P 22
=


− 0.6 0.6 0.69
0.2 − 0.8 0.4
0.49 0.4 − 0.8
0.6 0.5 0.4 −



P
23

=


− 0.6 0.6 0.4
0.4 − 0.6 0.69
0.4 0.49 − 0.6
0.8 0.2 0.4 −

P 24
=


− 0.7 0.6 0.3
0.3 − 0.5 0.5
0.2 0.5 − 0.7
0.8 0.5 0.4 −



P
31

=


− 0.2 0.6 0.4
0.6 − 0.5 0.4
0.2 0.5 − 0.6
0.6 0.6 0.4 −

P 32
=


− 0.8 0.8 0.6
0.4 − 0.6 0.5
0.2 0.2 − 0.6
0.4 0.6 0.4 −



P
33

=


− 0.3 0.4 0.6
0.5 − 0.5 0.6
0.2 0.5 − 0.6
0.4 0.6 0.8 −

P 34
=


− 0.5 0.6 0.4
0.5 − 0.3 0.4
0.2 0.5 − 0.6
0.6 0.6 0.4 −



P
41

=


− 0.7 0.8 0.6
0.4 − 0.6 0.6
0.4 0.3 − 0.8
0.3 0.4 0.3 −

P 42
=


− 0.3 0.3 0.6
0.7 − 0.6 0.7
0.8 0.41 − 0.7
0.3 0.5 0.3 −



P
43

=


− 0.45 0.3 0.6
0.6 − 0.8 0.8
0.8 0.2 − 0.6
0.2 0.3 0.4 −

P 44
=


− 0.2 0.2 0.3
0.7 − 0.3 0.8
0.8 0.6 − 0.8
0.7 0.2 0.2 −


Once both the consistency and consensus have

been improved with minimum adjustment, the selection
process is applied to obtain the best stock (or stocks).
Using (15), we get these collective fuzzy preference
relations for the criteria:

P
c1

=


− 0.41 0.56 0.58
0.52 − 0.62 0.58
0.38 0.37 − 0.62
0.41 0.42 0.39 −



P
c2

=


− 0.47 0.59 0.69
0.49 − 0.54 0.44
0.47 0.50 − 0.69
0.37 0.60 0.37 −



P
c3

=


− 0.44 0.41 0.62
0.60 − 0.58 0.59
0.60 0.46 − 0.54
0.42 0.43 0.60 −



P
c4

=


− 0.47 0.52 0.43
0.50 − 0.40 0.58
0.40 0.51 − 0.70
0.61 0.40 0.30 −


The collective fuzzy preference relation P

c
is

calculated by fusing P
c1

, P
c2

, P
c3

and P
c4

, which is
done by using (16):

P
c
=


− 0.46 0.54 0.56
0.51 − 0.50 0.54
0.44 0.47 − 0.67
0.48 0.47 0.37 −
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By means of (17) and (18), we get these
quantifier-guided dominance degrees and the
quantifier-guided non-dominance degrees associated
with the stocks, respectively:

QGDD1 = 0.52 QGNDD2 = 0.98

QGDD2 = 0.52 QGNDD2 = 1.00

QGDD3 = 0.53 QGNDD3 = 0.96

QGDD4 = 0.44 QGNDD4 = 0.85

Considering these values of the choice degrees,
DD = {a3}, NDD = {a2}, and QG = {∅}.
Therefore, as #DD = 1, it means that the company
should invest in the stock a3 according to the opinions
of the four stock market investors.

5. Discussion

When the group decision-making models deal with
different features of the decision-making process, a
comparison of the results of a model with others is
not a straightforward task. The aspects considered
by the models are different and, as a consequence,
a quantitative comparison would be not meaningful.
However, as mentioned previously, the proposed
granular computing-based model is able to deal
with more features related to group decision-making
processes than the existing approaches based on
granular computing. On the contrary, it presents a higher
number of parameters that must be established. In any
case, in the following, we analyze the performance of
the model from several viewpoints.

5.1. Information granularity level α

With the purpose of putting the returned results
by the proposed granular computing-based model in
a certain context, the results achieved when using the
initial assessments expressed by the decision-makers are
reported (it means that α = 0). In such a case, the
consistency, f1, reached is 0.916 and the consensus,
f2, achieved is 0.711. If we compare with the results
achieved when α = 0.2 (the value used in the case study
illustrated in Section 4), i.e., a certain flexibility in the
initial assessments is allowed by the decision-makers,
both the consistency and the consensus achieved by the
proposed model are higher. Therefore, the analysis of
how the consistency and the consensus are improved and
how the similarity is deteriorated according to the value
of the granularity level α is a matter of interest.

Table 1 shows the values of f , f1, f2 and f3, for
chosen values of α, having β and γ the same values
that the ones used in the case study, i.e., β = 0.75 and
γ = 0.5. We can observe that the higher the information

Table 1. f , f1, f2 and f3x for given values of α.

f f1 f2 f3
α = 0.2 0.882 0.917 0.825 0.915
α = 0.4 0.904 0.917 0.916 0.868
α = 0.6 0.912 0.918 0.950 0.847
α = 0.8 0.915 0.918 0.961 0.842
α = 1.0 0.916 0.919 0.967 0.836

Table 2. f1 and f2 for given values of γ.

f1 f2
γ = 0.00 0.915 0.924
γ = 0.25 0.916 0.917
γ = 0.50 0.917 0.916
γ = 0.75 0.918 0.827
γ = 1.00 0.919 0.712

granularity level allowed, the higher the probability of
achieving better values for f1 and f2, and the higher
the probability of achieving worst values for f3. It is
natural because a certain flexibility level to be exploited
is injected into the assessments. It means that a higher
interval is allowed, which implies that the probability of
improving the consistency and the consensus is higher,
but the probability of obtaining and adjusted assessment
more different from the initial one is also higher.
Notably the improvement of the consensus achieved as,
in this case, the global consistency is already high for
the initial assessments.

5.2. Parameter γ

Table 2 shows the impact of the parameter γ,
which stands in the composite fitness function f (these
values are obtained by using the same fuzzy preference
relations provided initially by the decision-makers in
the case study and being α = 0.4 and β = 0.75).
As this parameter determines a trade-off between the
consistency and the consensus, we focus on the values
reached by f1 and f2. On one hand, whether γ
is equal to 1, the PSO focuses on the maximization
of the consistency associated with the individual
decision-makers. As a result, higher values of f1 are
reached. On the other, whether γ is set to values lower
than 1, the PSO focuses on both the consistency and
the consensus and, therefore, f1 achieves lower values,
which is expected. Particularly, whether γ is equal to 0,
the PSO focuses on only the consensus achieved among
the decision-makers. It means that higher values of f2
are obtained.
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Table 3. 0.5 · f1 +0.5 · f2 and f3 for given values of β.

0.5 · f1 + 0.5 · f2 f3
β = 0.00 0.815 0.994
β = 0.25 0.821 0.992
β = 0.50 0.841 0.978
β = 0.75 0.917 0.868
β = 1.00 0.921 0.830

5.3. Parameter β

Table 3 shows the impact of the parameter β, which
also stands in the composite fitness function f (these
values are obtained by using the same fuzzy preference
relations provided initially by the decision-makers in
the case study and being α = 0.4 and γ = 0.5).
As this parameter determines a trade-off between the
combination of the consistency and the consensus (γ ·
f1 + (1 − γ) · f2) and the similarity f3, we focus
on these values. On one hand, whether β is equal
to 0, the PSO focuses on the maximization of the
similarity. As a result, a higher value of f3 is achieved
(0.994 in this case). On the other, whether β is set
to values higher than 0, the PSO focuses on both the
combination of the consistency and the consensus and
the similarity. Therefore, as it is expected, f3 reaches
lower values. Notably, whether β is equal to 1, the
PSO focuses on only the combination of the consistency
and the consensus. It means that higher values of this
combination are obtained (0.921 in this case) whereas
f3 achieves its lower value (0.830 in this case).

6. Concluding remarks

In this study, a new granular computing-based
model for group decision-making has been introduced.
Similar to the existing models based on the GrC
paradigm, it yields information granules in the
form of intervals by allocating a given information
granularity level through the assessments given by
the decision-makers in the form of fuzzy preference
relations. Unlike the existing granular models, it allows
to reach a sound balance between the generation of
assessments as close as possible to the initial ones
given by the decision-makers and the improvement
of both the consistency associated with individual
decision-makers and the consensus related to the group
in decision-making processes defined in multi-criteria
and heterogeneous environments.

This research may be continued in the following
ways. First, here, we have used a uniform distribution of
information granularity. i.e, the information granularity
level α distributed across the assessments has been equal

for all the decision-makers. Nevertheless, we could
consider a non-uniform distribution of the information
granularity. In addition to it, the information granularity
levels could be optimized so that a particular value
of α could become available to every decision-maker.
Second, it would be interesting to analyze how the
computation time increases with a larger number of
criteria, alternatives and decision-makers, and what
number of components can still be handled in a
reasonable time.
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