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Abstract

Decision-making in supply chain management is
complex because of the relations between planning tasks
from different stages and planning levels. Uncertainties
such as unpredictable supplier lead times and supply
chain disruptions further complicate decision-making.
Considering the case study of a company in printed
circuit board assembly, a three-level concept is proposed
that includes a decision support system. The global
single-source supply network is characterized by highly
variable lead times. Hence, the company maintains
high inventory levels to prevent running out of stock.
The decision support system considers the purchasing
and scheduling decision problems in an integrated
way. The prototypical implementation of the purchasing
algorithm uses a genetic algorithm that recommends
reorder days and order quantities using a simulation
model. In addition, it evaluates the risks of the
recommended solution by calculating the probability of
stockouts for each order cycle.

1. Introduction

Supply chain planning involves complex decision
situations with several decision alternatives that
are often difficult to define, and those impacts are
partly unknown [1]. Planning problems in supply
chain planning are not isolated but rather highly
interconnected [2]. Therefore, it is often hard for
decision-makers to assess the situation and choose the
correct actions. Especially in small and medium-sized
enterprises the availability of data is rather low.
Although they can have strong impacts on the supply
chain performance, decision-makers often rely on
their domain knowledge when making decisions. In
addition, uncertainties impact the decision-making in
real supply networks. The company in the considered
case study has a global single-source supply network
for each material and experiences highly varying lead
times. The variable lead times result in high inventory

levels in order to secure the raw material availability for
scheduling. Therefore, the company needs a decision
support system (DSS) that recommends actions
regarding purchasing decision-making and should also
be aware of risks and transparency.
In the following sections, we first review relevant
literature on multi-stage planning problems and
uncertainties on the procurement stage. Then, we define
the purchasing and scheduling problems as well as their
interface in section 3. Section 4 presents a conceptual
modular DSS that is based on a cyber-physical system
(CPS) architecture. The purchasing algorithm which
optimizes the purchasing problem is described and
implemented in sections 5 and 6. Last, we draw a
conclusion and state future research directions.

2. Literature Review

Supply chain planning under uncertainty has
received increasing attention in literature in the past
years. Chopra and Sodhi [3] investigated different
categories of supply chain risks, their drivers and
mitigation strategies. Risks occur on all stages and
planning levels of supply chains, and they often
depend on each other. Hence, effective planning and
risk mitigation require to consider the procurement,
production and distribution stages of the supply chain
in an integrated way.
Several authors formulated and solved integrated
production-distribution planning problems. Ben Abid
et al. [4] considered the integrated optimization of
production and distribution with uncertain production
capacities and customer demands. The production
network consists of four stages and represents the
system of a company in Tunisia. Karimi et al. [5]
formulate an optimization problem considering the
production and distribution stages with manufacturers,
distributors and retailers. They also include the routing
problem and consider transportation cost discounts.
Khalili and Farib [6] focus on resilience and uncertainty
in production and distribution and also consider strategic
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decisions to decrease the impact of supply chain
disruptions.
Some authors also considered the three-stage problem
including procurement, production and distribution.
Wang [7] used particle swarm optimization to solve
a deterministic three-stage supply chain optimization
problem with randomly created test instances. Park et
al. [8] apply a genetic algorithm to solve a deterministic
three-stage problem with known demands and lead
times. Torabi and Hassini [9] present an optimization
model for procurement, production and distribution
planning considering the case study of an automobile
company. Kanyalkar and Adil [10] consider the case
study of a consumer goods company.
However, the presented papers address deterministic
problems and therefore neglect uncertainties in the
procurement stage. Su and Liu study the supplier
selection under uncertainty in a dual-sourcing problem
with a local and a global supplier. Ramasesh [11]
emphasizes that uncertain lead times result in higher
inventory costs and proposes a dual-sourcing technique
for supply networks with uncertain lead times. Ammar
et al. [12] provide a literature review on supply
planning under lead time and demand uncertainty. Saleh
Sadghiani et al. [13] consider the strategic supply chain
network design with the goal of minimizing the impact
of supply chain disruptions on the procurement stage.
Optimization Models that consider the integrated
optimization of procurement and production with
uncertain lead times are rare. Fallah-Jamshidi et al. [14]
and Hnaien et al. [15] investigate a two-stage assembly
system with lead times that are sampled from probability
distributions. They implemented a genetic algorithm
that aims to minimize inventory costs and to maximize
the customer service level. Especially the influence
of purchasing decisions in global supply chains with
a single source on machine scheduling requires further
research.

3. Problem Definition

The case study of this paper considers the supply
network and the production system of a medium-sized
company that manufactures printed circuit boards in
a single production site in Germany (see Figure 1).
Both, suppliers and customers, are big players with
strong market positions which leads to a difficult
position in the value chain for the company resulting
in delayed deliveries on the supplier side as well as
impending contractual penalties on the customer side.
Decision-making in this context requires a scope that is
beyond a single domain but rather considers multiple
planning problems. Contrary to similar case studies

in literature, this problem includes both, a multi-stage
scope and stochastic demands and especially lead times.
Decisions in both domains, purchasing and scheduling,
influence each other and require integrated planning.
However, integrated planning does not necessarily
require merging both domains into a single decision
problem but rather synchronizing the inputs and outputs.
Hence, we first formulate the static decision problems
of both domains and then present a DSS framework in
section 4 that adapts them to the dynamic real-world
environment.

3.1. Purchasing Problem

Considering the purchasing domain, the
decision-makers have to determine a set of orders
for each material m. An order consists of exactly one
reorder date Rm which determines the day on which
the order is placed and exactly one order quantity
Qm. Currently, an enterprise resource planning system
provides the information for purchasing planning. The
system uses fixed lead times that the decision-makers
have to update manually. However, representing
the orders with fixed lead times is inadequate in
this case study because the lead times are highly
varying according to the empirical knowledge of
the decision-makers. In addition, the demands vary
from day to day. Therefore, we define the following
characteristics for each material:

• The lead time LT describes the required time
from order until arrival in the warehouse. The lead
times are subject to a stochastic distribution.

• The demand DEd on day d describes the daily
demand on a specific day in the planning horizon.
The daily demands are subject to a stochastic
distribution.

With an arbitrary set of orders and the material
characteristics it is possible to calculate the daily
inventory levels of the materials. The inventory level
ILd on day d defines the amount of materials in
the warehouse on the specific day. It is assumed
that inventory changes are not staggered within a day.
Hence, it is sufficient to capture the inventory level
once a day. Furthermore, negative inventory levels are
permitted in order to represent unmet demand. The
array of daily inventory levels then yields the inventory
development in the planning horizon and serves as the
basis for calculating objective values.
The purchasing strategy of the company focuses on the
major objective of maximizing the material availability
and the minor objective of minimizing the inventory
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Figure 1. Delimitation of the purchasing and scheduling domains considering the supply network and production

system of the company.

costs. Both objectives are in general highly contrary
because low inventory levels result in low material
availability considering stochastic systems and vice
versa. Optimizing both objectives requires a weighted
multi-criteria objective function. Therefore, we propose
an objective function that uses three cost rates to rate the
inventory levels of each day in the planning horizon:

• The cost rate cinv applies to inventory levels that
are above the safety stock of the target material.

• The cost rate csaf applies to inventory levels that
are below the safety stock target but still positive.

• The cost rate ctar applies to negative inventory
levels, respectively unmet demand.

Multiplying the respective cost rate with the
inventory level of the specific day yields the daily
inventory costs ICd for day d:

ICd =


cinv ∗ ILd ILd ≥ SS

csaf ∗ ILd SS > ILd ≥ 0

ctar ∗ ILd < 0

Accumulating the daily inventory costs for the entire
planning horizon (t = [ts, te]) results in the objective
function for the minimization problem. The objective
function yields an objective function value for each
solution s:

min f(s) =

te∑
d=ts

ICd

3.2. Scheduling Problem

Considering the scheduling domain, the
decision-makers have to determine a machine schedule.
The production system consists of nine machines that
are arranged on two consecutive stage. The first stage
consists of four identical parallel surface mounting
devices (SMD) and the second stage consists of five
identical parallel automatic optical inspection devices
(AOI). Each job has to pass through both stages in
the same sequence. Hence, the production system is a
two-stage hybrid flow shop. Each job j has a release
date rj , a due date dj , processing times p1j and p2j and
a product family fj .
The company clustered similar variants in product
families in order to simplify the setup process on the
SMD stage. As each setup cart configuration is able to
produce all variants of a product family, the changeover
process is only required when switching the processed
product family. Therefore, the duration of a setup
depends on the fact whether the next job is from a
different product family than the previous job. The
setup times are therefore family-dependent:

sj,k =

{
20(min) fj = fk

65(min) fj 6= fk

The setup times on the AOI stage are
sequence-independent:

uj,k = 25(min)∀j, k

When evaluating the quality of a schedule, the
company attempts to achieve two objectives, namely
minimizing the total tardiness and minimizing the
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makespan. A machine schedule should optimally not
include tardy jobs at all because the contractual penalties
for late delivery are high. The makespan in a hybrid
flow shop with family-dependent setup times depends
on the total processing times, minor setup times and
major setup times. Minimizing the makespan implicitly
comprises two subobjectives which are achieving an
even utilization on all machines and minimizing the
sum of setup times [16]. The current family production
strategy solely focuses on the minimization of setup
times. Therefore, it neglects balancing the utilization
leading to suboptimal machine schedules. We define
the sum of makespan and total tardiness as the objective
function for the minimization problem:

min g(s) = Cmax + Ts

3.3. Interface

Purchasing and scheduling problems have been
studied extensively in the past years, but the interface
between both has not received a lot of attention yet.
However, broadening the scope can possibly improve
the coordination of actions in both domains in order to
support the decision-making.
The production principle of a company, either
make-to-stock (MTS) or make-to-order (MTO), has a
major impact on the interface because it determines
the temporal sequence of planning. If a company
produces according to the MTS principle, the planning
process depends on the supplier side. Whenever
the company receives incoming goods, it can trigger
production which in turn triggers distribution and sales
after finishing. The release date of a job then depends
on the inventory levels of the materials, and it is equal
to the latest availability of all required materials. If a
company applies the MTO principle, each job belongs
to a specific customer order with a due date, and
the planning process depends on the customer side.
The sales stage first provides job information to the
production stage that generates a machine schedule and
then the procurement stage has to ensure the in-time
supply of materials. In this case, the job starting times
determine the demand dates for purchasing which are
the latest possible delivery dates. If a company applies
the MTS principle, it determines the purchasing plan
first and afterwards schedules the jobs. The delivery
dates determine the release dates of the jobs.
Synchronizing release dates and delivery dates in
MTS, respectively job starting times and demand
dates in MTO, has a significant impact on inventory
management. The closer the two dates are together,
the lower is the inventory level in the warehouse
which results in lower inventory costs. However,

in a real-world environment with variable lead times
and demands like in this case study, it also results
in higher risks of running out of stock because low
inventory levels cannot buffer uncertainties in the supply
chain. This trade-off is the central factor for successful
operations considering the interface of the purchasing
and scheduling domains. In the next section we propose
a concept that is tailored to the MTO production of the
considered company.

4. Conceptual Decision Support System

The company requires a tool that supports the
decision-making in the purchasing and scheduling
domains. The ever-changing data basis in these dynamic
domains results in quickly outdated information.
Therefore, static optimization models are not sufficient
for deployment in real manufacturing environments.
As the considered production system still operates
manually, we propose a comprehensive concept that
does not only include the DSS but also a potential CPS
architecture. The concept is based on a three-level
architecture with the physical level, the information
level and the analytics level (see Figure 2). Focusing
on the analytics level which contains the core DSS,
the roles of each level are described in the following
subsections.

4.1. Physical Level

The physical level includes all machines, devices
and structures that are concerned with the material flow
such as the supply network, the warehouse and the
production system. It especially requires considerations
on hardware that is capable of establishing a connection
between the physical production system and the digital
shadow. A digital shadow implements an automated
one-way data flow between physical system and digital
system [17]. Therefore, the concept proposes potential
locations for sensors that keep track of state changes
in the CPS in order to associate physical objects with
their digital representations. The sensors have to acquire
data on the job that each machine currently processes
and its remaining processing time, the current setup of
each setup cart and its position and the state changes of
machines and their tools. Identification and localisation
require to assign each job a unique identifier, for
example by means of a barcode. However, jobs are not
physical objects, therefore they can only be represented
by the setup cart that is currently setup with the specific
raw material. Equipping the machines and buffers of
the SMD and AOI stages with vision-based sensors
could then enable the identification of a job when the
corresponding setup cart enters the detection zone.
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make-to-order environment.

4.2. Information Level

The information level handles the information flow
and includes all software tools that store and provide
data such as the digital shadow and the ERP system.
It provides a structured data basis with standardized
interfaces for external tools such as the DSS. In addition,
the concept depicts the human decision-maker on the
information level because he significantly contributes to
the information basis with his domain knowledge, and
he has to make the final decision. Considering the DSS
that should support but not automate decision-making,
the concept explicitly includes a digital shadow whose
data flow is automated in the direction of data
acquisition but not vice versa. The power to utilize the
outputs of the DSS and implement decisions remains
completely at the decision-maker.

4.3. Analytics Level

The analytics level includes all data analytics
applications that process data from the information
level. It contains the DSS which processes data
from multiple sources and gives feedback to the
decision-maker in form of recommendations. The DSS

has to fulfill the following requirements of the company:

1. It should output concrete recommendations
on how to proceed regarding purchasing and
scheduling originating from the current status of
the supply network and the production system.
These recommendations should include concrete
values for the decision variables of the purchasing
and scheduling problems.

2. Due to the high importance of those decisions, it
should make the recommendations as transparent
as possible to make the decision-maker aware of
risks and create a basis of trust.

The DSS consists of the data preprocessing module,
the optimization cycle and the visualization module.
The goal of the data preprocessing module is to split
all currently known jobs in a detail planning set and
a draft planning set. The detail planning set should
contain jobs for which all materials are available in
the warehouse or for which the risk of late delivery is
low, whereas the draft planning set should contain the
remaining jobs. To split the jobs, the algorithm checks
the material availability and the risk score of each job.
The risk score has to be determined for each material
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and could for example depend on the supplier reliability
or the expected lead time. The optimization cycle then
takes both sets as separate inputs.
The optimization cycle is in charge of creating solutions
for the decision problems and synchronizing them. Its
design is modular because it should include arbitrary
algorithms for both domains as long as they can deal
with the stated inputs and outputs. As the company uses
the MTO principle, the optimization cycle first starts
the scheduling optimization and generates a schedule.
The scheduling algorithm then uses the jobs in the detail
planning set to create a concrete schedule, whereas
the other jobs are only considered to block sufficient
capacity at the end of the schedule. After the scheduling
is done, the purchasing optimization begins using the
starting times of the jobs in the schedule as demand
dates. The purchasing optimization in turn generates a
purchasing plan with expected delivery dates that either
suit the job starting times in the schedule or not. The
termination criterion then checks whether a solution is
suitable or not. If the solution is suitable, the planning
cycle terminates, if not it is repeated until it does. After
finishing the optimization, the visualization module
visualizes the solution, for example in a graphical user
interface that is presented to the decision-maker.
As the mathematical problem formulations do not
directly represent the reality, the DSS architecture has
to face two difficulties: The mathematical problem
definitions consider static problems, but in reality the
data basis for these problems is continuously changing.
Supply chain management in general is a rolling process
and the company exists for several years. Hence, the
problems are currently not in an idle state but rather
in a steady state with existing schedules and pending
orders that are continuously updated. However, the
static problems are only suitable for the real-world
environment if the optimization is repeated whenever
an unexpected event occurs. Fleischmann et al. [2]
refer to this as event-driven planning. In this case,
every unexpected event causes the full computational
effort of optimizing both problems again. Therefore,
this procedure is only suitable if unexpected events only
occur occasionally, and fast optimization algorithms are
available. Uncertain events in this case study are either
late deliveries or newly released jobs. Both events
trigger the optimization cycle but happen no more than
a few times a day.
The solutions of the purchasing and scheduling
problems are highly dependent and require an integrated
view. But instead of integrating the optimization of
both problems, the optimization cycle aims to rather
synchronize it. When synchronizing the problems,
the optimization cycle can either start by generating

a schedule and then determining a purchasing plan
depending on the schedule or vice versa. Both ways are
viable in general, but due to the MTO production of the
company, the operational planning traditionally starts
from the customer demand side. The customer demands
and due dates are fixed first. Next, the scheduling is
done based on the fixed demands, and in the end the
procurement stage determines a purchasing plan to meet
the fixed schedule.

5. Purchasing Algorithm

Multiple static scheduling algorithms have been
proposed in the past years for this production system that
the optimization cycle can possibly use. These include
reinforcement learning [18], problem-specific heuristics
[19] and a dispatching-rule-based genetic algorithm
[20]. As the purchasing domain was not considered in
the past, we propose a novel purchasing algorithm that
can be integrated in the optimization cycle.
The algorithm has to fulfil two requirements: It has
to be fast to fit in the optimization cycle, and it has
to be capable of dealing with small and heterogeneous
datasets. The performance of algorithms is highly
dependent on the specific application domain and
therefore the selection of an algorithm is an important
part of the concept. In this case, finding an algorithm
that suits the requirements was a trial-and-error process.
Initially we planned to implement a data-driven
algorithm such as a neural network or support vector
machine but they require more data than available in this
environment. Hence, they turned out to be unsuitable
for this problem. Metaheuristics seemed to be more
promising because they do not require historical data
but rather run a specific optimization for each new
problem instance. This is an advantage regarding
the necessary data but a disadvantage considering the
computation time. Out of the metaheuristics domain,
evolutionary algorithms provide the best capabilities
to adapt them to specific problems, therefore the
purchasing algorithm is based on a genetic algorithm.
A discrete-event simulation model and a risk evaluation
module complete the architecture (see Figure 3). The
purchasing algorithm optimizes only one material at a
time and therefore has to be run once for each material.

5.1. Lead Time Simulation Model

The discrete-event lead time simulation model
consists of a probability density function that generates
random lead times for each order, and it calculates
the expected inventory development from the orders
and demands. We used a kernel density estimation to
create the probability density function. The simulation
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model is automatically created whenever new historic
data becomes available. The extremely variable lead
times can result in different objective function values
for each random state. Therefore, the user can define
the number of observations for each solution candidate.
The solution candidate then takes the mean inventory
costs of all simulation runs as the fitness value.

5.2. Genetic Algorithm

The superordinate genetic algorithm uses the
objective function of the purchasing problem as the
fitness function and aims to minimize it. The
representation has to represent solution candidates in a
way that it can cover the entire solution space and that
the operators are applicable without creating infeasible
solutions. Regarding the purchasing problem, it is
most suitable to include the decision variables in the
representation as they have been defined in subsection
3.1. Each order consists of two genes, the reorder day
and the order quantity. The reorder days can take integer
values from within the planning horizon, whereas the
order quantities can in theory take all positive integer
values. The number of orders in the chromosome is
unlimited. It is important that the two genes of one order

are never split. Hence, they form one coherent entity
and behave like a single gene. The order of genes in
the chromosome is irrelevant because each order has a
defined time stamp respectively reorder day anyway.
The selection operator uses a tournament selection
that runs multiple tournaments with subsets of the
population. The tournament size determines the number
of individuals in each tournament. The number of
tournaments is equal to the generation size and each
tournament selects the individual with the highest fitness
which advances to the next generation.
The crossover operator uses a simple single-point
crossover which determines a random uniformly
distributed value and splits both parent chromosomes
at that specific order index. Then, it recombines the
chromosome pieces crosswise. Individuals are chosen
for crossover with a certain crossover probability.
Hence, it is possible that unmodified solution candidates
advance to the next generation. When choosing two
parent chromosomes with different lengths, it may
happen that the crossover point is beyond the length
of one of the chromosomes. The recombination
works nevertheless, but the lengths of the offspring
chromosomes will differ from the parents which adds
additional flexibility to the genetic algorithm because it
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is able to increase or decrease the number of orders.
After performing the crossover, the genes of the
recombined solution candidates can mutate with a
certain probability. The mutation operator has two
stages, first it drops orders with a mutation drop
probability and then adds new orders with a mutation
add probability. Contrary to the crossover probability,
the mutation probabilities apply to each gene and
not to the entire chromosome. Hence, it is possible
that the number of orders increases or decreases over
time. Consequently, it is likely that the length of large
solutions decreases, and the length of small solutions
increases. However, it is recommended to set the same
probability for both parameters to avoid drifting towards
exceptionally large or small numbers of orders.

5.3. Risk Evaluation

After the optimization of the genetic algorithm
terminates, it outputs the individual with the best fitness.
Due to the multiple observations in different random
states of each solution, the quality of the solution is
validated to a certain extent, but the uncertainty is
still high because the lead times remain variable and
unpredictable. The risks of the recommended solution
are not transparent to the decision-maker. Therefore,
the risk evaluation module aims to counter the lack of
transparency of metaheuristics.
The decision-makers of the company are especially
concerned about possible stockouts in the case of late
delivery. Therefore, a metric is required that determines
the risk of stockouts in a transparent manner. The
metric uses the lead time simulation model and the
daily demands. The daily demands are known and fixed
due to the scheduling algorithm that is always executed
first in the optimization cycle. The lead time probability
density function of each material is also known from
the historic data and the same applies to the expected
value of the probability density function. With these
daily demands and the mean lead time, it is possible
to compute the expected inventory development.
Regarding the expected inventory development, there is
still a certain inventory left in the warehouse for each
order on the expected delivery day. If the order arrives
late, the remaining inventory can still satisfy the daily
demands until the warehouse is empty. We refer to this
period as “buffer days”. The higher the buffer days, the
more likely is it to compensate a late delivery without
running out of stock. If the warehouse runs out of
stock within an order cycle in the expected inventory
development, the buffer days can also be negative. The
risk evaluation module first calculates the buffer days
for each order cycle.

To evaluate the risk of an order cycle, the metric
additionally requires the cumulative distribution
function of the kernel density estimation. When
equating the cumulative distribution function with a
specific value, it can determine the probability of a
random value from the distribution being higher or
lower than the initial value. This characteristic can be
used to calculate the probability for delivery within the
buffer days. The complementary probability is therefore
the probability of running out of stock. Random values
from the distribution always have a chance of 50% to
be above or below the mean lead time. The buffer days
shift the probability into one direction depending on
their algebraic signs. If the buffer days are positive,
the probability of stockout drops below 50% and vice
versa if the buffer days are negative, the probability
rises above 50%. In the end, the calculated probability
indicates the risk for each order to cause an out-of-stock
situation which is transparent for the decision-maker.
With this information the decision-maker can identify
critical orders and possibly adjust the recommended
solution of the genetic algorithm.

6. Prototypical Implementation

The modules of the purchasing algorithm were
implemented in the programming language Python
using the latest version 3.9. As the architecture of
the physical and information levels is not implemented
yet, substitution modules are needed that create realistic
input data for the purchasing algorithm. Therefore,
we use a demand simulation model that generates a
sequence of daily demands for the entire planning
horizon. In addition, the prototypical implementation
includes a ”time to steady state” because the real supply
network is in a steady state with several pending orders
but the test environment has no information on pending
orders. It rather starts in an idle state. The time to steady
state describes the days at the beginning of the planning
horizon which are excluded from the fitness calculation.

6.1. Purchasing Dataset

Creating the lead time and demand simulation
models requires historic data. Therefore, the company
provided a purchasing dataset which contains all the
historic orders of one product from 2011 to 2020. The
product is a printed circuit board for centrifuges in
the medical sector that requires 17 different materials.
Each material has exactly one supplier that always
delivers from the same supplier site using the same
transportation mode. The company orders rather high
quantities but infrequently. Hence, there are only a
few data points for each material. The dataset includes
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in total 176 orders with order quantities, order dates,
confirmed delivery dates and actual delivery dates. The
lead times reach from 3 days to 315 days with the most
data points between 10 and 70 days making the lead
times extremely variable.

6.2. Results and Discussion

We only discuss the results of one exemplary
material from the purchasing dataset. The planning
horizon accounts for 500 days starting from the
current day which is a typical duration for purchasing
planning at the company. The time to steady state
takes 50 days because the historic mean lead time
of the associated supplier is 37 days. Therefore, it
should be possible to reach a steady state within the
period. The optimization run for the material on
a standard PC requires 1:10 minutes and yields the
recommended solution presented in Table 1. The
first three order cycles have a high probability of
stockout because the steady state is not reached yet,
but however the first 50 days are not considered in
the objective function. All the other order cycles have
lower probabilities because of high inventory levels.
With this transparent visualization of recommendations
the decision-maker can quickly identify potential risks
and adapt the suggested solution with his domain
knowledge. Usually, the decision-maker has a much
better information basis than the algorithm because the
purchasing algorithm completely relies on historic data
and statistical computation, whereas the decision-maker
knows the circumstances. As the suppliers are often
not able to supply materials, the decision-makers tend
to order large amounts of material whenever it becomes
available. Because of this behavior inventory levels are
often higher than required. Decision-makers that are not
accustomed to automatically created recommendations
often distrust the outputs. Therefore, they still make
decisions mainly based on their domain knowledge but
can use the prototype as an additional resource for risk
evaluation. After the remaining modules have been
integrated in the production system, the tool will be
ready for actual deployment and the decision-makers
will be accustomed to the new process.

The tool also visualizes the inventory development
chart for the recommended solution (see Figure 4).
While the recommendations data frame considers the
expected inventory development, the graph shows the
inventory development of an arbitrary random state.
Therefore, it can differ from the expected behaviour, but
still it shows a possible future scenario. In this case,
the graph does not include any stockouts, however the
recommended solution anticipated low risks.

Figure 4. Expected inventory development of one

exemplary material.

7. Conclusion and Future Research

The paper proposed a three-level concept for a
DSS that automatically acquires data from a production
system. In addition, we implemented a novel purchasing
algorithm that can handle uncertain lead times and
provides transparent and risk-aware recommendations.
The lack of purchasing data is a significant issue in this
supply chain planning problem which makes forecasting
impossible. The only way to ensure permanent material
availability in this environment is covering all possible
outcomes from the probability density function of the
lead time simulation model, and therefore maintaining
high inventory levels. Improving the solution quality
requires to reduce the lead time variability, for example
by forecasting lead times or improving the collaboration
with suppliers. The next step is fully implementing the
conceptual DSS, and testing it in the real environment
of the company. If the automatic data acquisition was
implemented, the system could also generate more data
for the algorithm development. Data-driven algorithms
from the domain of machine learning seem to be
especially suitable for the optimization cycle in terms
of computation time.
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