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Abstract 
Motivated by a paucity of knowledge on the meas-

urement of robotic service (r-service) quality, the cur-

rent study strives to review the existing literature on r-

service quality, with a focus on the potential methodo-

logical issues of developing measurement instruments 

and identifying the dimensionality of r-service quality. 

With a content analysis of 55 articles, this study iden-

tifies several methodological limitations of existing 

studies in developing measurement scales of r-service 

quality. This review reveals that dimensions of r-ser-

vice quality are prone to be contingent on specific con-

texts of service industry and service type. Several com-

mon dimensions regarding evaluating r-service are 

identified, including tangibility, responsiveness, relia-

bility, empathy, assurance, ease of use/usability, use-

fulness, anthropomorphism, perceived intelligence, 

and social presence. This study is the first systematic 

literature review on r-service quality dimensionality. 

1. Introduction 

Robotics and artificial intelligence (AI) have 

emerged in service sectors in recent years, resulting in 

a rapid rise of r-service. R-service refers to the service 

delivered by a robot [1]. Service robots are defined as 

“system-based autonomous and adaptable interfaces 

that interact, communicate and deliver service to an 

organization’s customers” [2, p. 909]. Service robots 

can be virtual or with a physical presence [3]. Gener-

ally, virtual robots, e.g., chatbots, are used in e-service, 

whereas robots with a physical presence are deployed 

in offline service contexts. The service robot market is 

snowballing and projected to grow at a compound an-

nual growth rate of approximately a quarter and reach 

102.5 billion USD by 2025 [4]. Such service industries 

as hotel [5], [6], tourism [7], [8], education [9], and 

restaurant [10], [11] are the early adopters of service 

robots. In particular, the Covid-19 pandemic has made 

robotics unprecedentedly relevant to service sectors, 

particularly hospitality, for deploying robots can keep 

social distance and decrease human touch [12], [13]. 

Robotics is predicted to profoundly change ser-

vice sectors and add to an essential and integral part of 

future consumer experience [14], [15]. The majority of 

the existing literature focuses on the antecedents that 

contribute to consumer satisfaction and intention to 

use r-service based on the theories like SERVQUAL 

[11], [13], Technology Acceptance Model (TAM) 

[16], [17], or Social Presence Theory [18], [19]. Ser-

vice robots are embedded with AI, allowing them to 

enter humans-preserving domains, such as contextual 

and bilateral interactions between robots (as regular 

staff) and consumers [20], [21]. Compared to conven-

tional digital services (e.g., self-service technology), 

humanlike interaction and emotional elements may af-

fect consumer responses to r-services, resulting in dif-

ferentiated facilitators and barriers to tackle r-services 

[3]. The importance is being further emphasized to de-

velop systematic scales concerning dimensions affect-

ing consumers to adopt and evaluate r-services. Un-

fortunately, there is a lack of consensus on the factors 

affecting r-service quality. By instrumenting r-service 

quality, this study strives to bridge this gap. 

R-service quality can be conceptualized as the ex-

tent to which a service robot facilitates efficient and 

effective service delivery, involving from pre- to post-

delivery of r-service [22]. R-service quality plays a vi-

tal role in numerous aspects of service commerce, e.g., 

consumer attitudes towards the r-service[6], [9], [23], 

consumer satisfaction and loyalty [24], [25], willing-

ness to use [3], [26], [27], intention to (re)use r-service 

[5], [7], [28], [29], recommendation intention [11], etc. 

In light of the apparent importance of r-service quality 

in service encounters, the achievement of superior r-

service quality has been identified as a crucial strategy 

for service practitioners [13], [30]. With the advent of 

the AI era, r-service quality has been increasingly im-

portant for service success, helping service organiza-

tions sustain competitive advantage in volatile envi-

ronments [13], [31]. However, the conceptualization 

and measurement development of r-service quality is 

at its embryonic stage [11], [30], [31]. 

Against this backdrop, the current study conducts 

a content analysis of the existing literature to examine 

determinants of r-service quality. To this end, this 

work reviews the existing studies on measurement 

models of r-service quality in the hope of discussing 

the dimensionality residing in a diversity of measure-

ment factors. This study aims to offer insightful impli-

cations for developing instruments of r-service quality 

and for its application in commercial practice.
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Table 1. Critical Studies on Instrument Development for r-Service Quality 

Reference Research context Sampling Type of Service robot Data analysis procedure Dependent variable Dimensionality 

Lin et al. [25] Tourism guide cloud service qual-

ity 

Survey (N = 336); Adult users (over 16 years 

old) of tourism guide cloud service 

Tourism cloud services SEM Overall satisfaction;  

Loyalty 

5 dimensions: Information Quality (6); Function quality (6); 

Real feedback (3); Multiple visual aids (2); Enjoyment (3) 

Van et al. [27] Service quality by human-machine 

interactive devices (HMI) 

Open-ended interview (N = 5), senior man-

agers or expert officials of the establish-

ments.  

Survey (N = 783), tourists with chatbot-like 

devices experiences 

AI-enabled voice assistant ro-

bots 

SEM Value for Money Enhancers by 

use of HMI devices; 

Willingness to Use HMI  

6 dimensions: Perceived Hygienic Usability (3); Perceived 

Safety for Usability (3); Assurance of Secure Service (2); In-

dividualistic Involvement (3); Tangibility Associated with the 

Hygienic Service (3); Empathetic Secure Service and Update 

Information Sharing (3) 

Chiang and Trimi 

[13] 

Service quality provided by robots 

in hotel setting 

Survey (N = 201); guests of Chase Walker 

Hotel who used the robotic service 

Hotel service robots Importance performance 

analysis 

Service quality 5 dimensions: Tangibles; Reliability; Responsiveness; As-

surance; Empathy 

de Kervenoael et 

al. [5] 

Service quality provided by social 

robots in hospitality services 

Semi-structure interview (N = 5), hospitality 

managers.  

Survey (N = 443), consumers with robots us-

ing experience  

Social robots in hospitality 

services 

SEM Intention to use social robot 

 

7 dimensions: Empathy (3); Information Sharing (2); Per-

ceived Usefulness (3); Perceived Ease of Use (3); Service 

Assurance (2); Personal Engagement (3); Tangibles (4) 

Morita et al. [11] Robotic service quality of a multi-

robot cafe 

Survey (N = 95), guests of the multi-robot 

cafe at the 18th Yagami Festival of Keio 

University 

Service robots in cafe Bayesian network Intention to revisit/recommend 

the robot café;  

Customer satisfaction 

7 dimensions: Tangibles (3); Reliability (2); Responsiveness 

(1); Assurance (4); Empathy (1); Interactivity (2); Entertain-

ment factor (8) 

Choi et al. [31] The service quality perceptions of 

human-robot interaction 

Focus-group interview (N = 16), hotel man-

agers.  

Experiment (N = 339), hotel guests 

Service robots in hotel EFA; one-way ANOVA Perceived service quality  

 

3 dimensions: Interaction quality (7);  

Outcome quality (6); Physical service environment (2) 

Yu [32] Service quality of hotel r-service Experiment and survey (N = 233), hotel 

guests 

Humanlike service robot Three-way ANOVAs Service quality 4 dimensions: Responsiveness; Reliability; Assurance; Em-

pathy 

Park and Kwon [9] Service quality provided by educa-

tional service robots 

Survey (N = 609), Teachers in kindergartens 

and elementary schools, Parents, Researchers 

in the education field and robotic field, etc. 

Teaching assistant (TA) ro-

bots 

SEM; CFA Intention to use  

 

5 dimensions: Perceived enjoyment (4); Service quality (3); 

Perceived usefulness (4); Perceived ease of use (4); Attitudes 

(3) 

Sohn and Kim [33] Robot Utilization Expectation In-

dex 

Survey (N = 102); majority are students with 

potential roles in robot utilization 

Intelligent robot  CFA; SEM Robot utilization expectation 6 dimensions: Robot reliability (4); Robot necessity (4); 

Function (5); Robot environment (4); Government policy (5) 

Zhong wt al. [6] Service quality of robot hotel ser-

vice 

Scenario-based experiment (N = 214), online 

respondents 

Service robots in hotel t-test Purchase intention 

 

2 dimensions: Hotel service type (traditional vs. robot hotel 

service); Attitudes (6) 

Wang et al. [16] Artificial intelligence (AI) applica-

tion service quality 

Survey (N = 237), random respondents Smart speaker CFA; SEM Behavior intention 5 dimensions: Perceived usefulness (3); Perceived ease-of-

use (3); Perceived behavioral control (3); Subjective norm 

(3); Attitude (3) 

Zhang and Qi [34] Service quality of AI robotic hotel Survey (N = 102), adult residents living in 

Beijing city for more than one year 

AI-based service robots t-test; one-way ANOVA; 

Regression analysis 

Robotic service expectation 5 dimensions: Tangibles; Reliability; Responsiveness; As-

surance; Empathy  

Dou et al. [35] Perceived Robot Personalities Experiment (N = 15), university students Humanoid robot (Pepper) Factor Analysis; Multivari-

ate Statistical Analysis 

Perceived robot personalities 2 dimensions (experimental manipulation): Robot voice 

types; Robot gesture types 

Kim et al. [36] Service quality of the robot mu-

seum  

Survey (N = 57), robot museum visitors Museum robots 

(Genibo and Aibo) 

Paired t-test Service quality  4 dimensions: Reliability (2); Empathy (2); Tangibility (2); 

Responsiveness (2). 

Other factors: Sociability (3); Social attraction (intimacy, 10); 

Interaction (6); Social influence (5); Emotions (3); Customer 

loyalty (2); Customer satisfaction (3) 

Kim and Lee [37] Service quality on ubiquitous robot 

companion (URC) personal robot 

service 

Survey (N = 490), Korean users who used 

the personal robot in their home for 4  

Months 

URC personal robot EFA; CFA Intention to use 5 dimensions: Tangible quality (tangibles, 7); Motion quality 

(responsiveness + assurance, 4); System quality (4); Per-

ceived usefulness (7) 

Blut et al. [38] Branding effects of social robots Experiment (N = 530), a random sample Social robots SEM Brand Trust; 

Brand experience 

5 dimensions: Anthropomorphism; Animacy; Likeability; 

Perceived Intelligence; Perceived Safety 

Merkle [39] Customer Responses to Service 

Robots 

Experiment (N = 120), random participants Humanoid service robot 

(Pepper) 

ANOVA; Scheffé’s Post 

Hoc Test 

Customer satisfaction 2 dimensions (experimental manipulations): Service provider 

(Service robots vs. Frontline employees); Service situation 

(appropriate service vs. service failure) 

Stock and Merkle 

[40] 

Customer responses to robotic in-

novative behavior 

Experiment (N = 132); university students Humanoid service robot 

(Pepper) 

MANOVA; Bonferroni post 

hoc test; Polynomial regres-

sion analysis 

Customer satisfaction; 

Customer delight 

 

3 dimensions: Perceived robotic innovative service behavior  

(ISB); Expectations; Confirmation between expected and per-

ceived robotic ISB 

Moussawi and 

Koufaris [28] 

Service quality provided Personal 

Intelligent Agents 

Survey (N = 232), undergraduate college stu-

dents at a Northeastern university US. 

Personalized intelligent soft-

ware systems 

CFA; SEM Continuance of use intention 6 dimensions: Perceived intelligence (5); Perceived anthro-

pomorphism (6); Perceived usefulness; Disconfirmation of 

expectation; Satisfaction with use; Subjective norms 

Sohn et al. [41] Massaging service quality Experiments (N1 = 74, N2 = 64), participants 

recruited from MTurk 

Conversational user inter-

faces 

One-way ANOVA; PLS-

SEM 

Privacy concerns 3 dimensions (experimental manipulations): The presence of 

CUI; Perceived social presence; Perception of being watched  

Li et al. [8] Intelligent Advisory Service qual-

ity 

Survey (N = 83), respondents recruited via 

emails and instant online messages on per-

sonal contact lists 

Virtual Advisory Service - Service reuse intentions 6 dimensions: Communication style similarity; Perceived 

clarity; Perceived engagement; Perceived enjoyment; Per-

ceived credibility; Social presence 

Schuetzler et al. 

[18] 

Responses to online conversational 

agents 

Experiment (N = 103), students a MIS course 

at a public university in U.S.  

Conversational agents SEM Perceived humanness; 

Partner engagement  

2 dimensions (experimental manipulation): Conversational 

relevance; Social presence 

Bruckes et al. [42] Robo-advisors service quality in 

bank 

Survey (N = 246), participants familiarized 

with the concept of robo-advisory. 

Bank Robo-advisors PLS-SEM Intention to use 4 dimensions: Structural assurances; Trust in Banks; Per-

ceived Risk; Initial Trust 
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Tussyadiaha and 

Parkb [14] 

Hotel robotic service quality Online survey (N = 841), random sample. 

Laboratory experiment (N = 32), respondents 

invited through personal communication in a 

professional network setting 

Hotel service robots  PLS-SEM Adoption intention 6 dimensions: Anthropomorphism; Animacy; Likeability; 

Perceived intelligence; Perceived security; Importance of op-

erations 

Lu et al. [3] Service robot integration willing-

ness (SRIW) scale 

Survey (N = 1348), consumer samples in the 

United States 

Service robots in four service 

industries (e.g., hotels, restau-

rants, airlines, and retail 

stores) 

Hermeneutical approach; 

EFA; CFA; SEM; Invari-

ance analysis 

Willingness to use service robots 6 dimensions: Performance efficacy (7); Intrinsic motivation 

(6); Anthropomorphism (7); Social influence (7); Facilitating 

conditions (4); Emotions (5) 

Ivanov and Web-

ster [7] 

Tourism service quality Survey (N = 1003), respondents recruited via 

email and social media 

Service robots in tourism EFA Use intention 8 dimensions: Information provision; Housekeeping; Food, 

beverages and guidance; Robot autonomy; Personal services; 

Entertainment; Bookings, payments and documentation; First 

and last impression 

Stock and Merkle 

[43] 

Robotic service quality Experiment (N = 82), undergraduate and 

graduate students from a medium-sized uni-

versity 

Service frontline robots in 

hotel settings 

t-test Robot acceptance 3 dimensions: Functional component (ease of use, useful-

ness); Informational component (informativeness of interac-

tion); Relational component (benevolence, user satisfaction, 

understanding) 

Lu et al. [10] Hotel robotic service quality Experiment (N = 587), Consumer partici-

pants were recruited from Amazon Mechani-

cal Turk 

Service robots in a casual 

dining restaurant 

Three-way ANCOVA Service encounter evaluation; 

Revisit intentions; 

WOM intentions  

3 dimensions (experimental manipulation): Physical appear-

ance; Humanlike voice; Humanlike language style 

Chan and Tung 

[44] 

Hotel robotic service quality Experiment 1 (N = 60), university students; 

Experiment 2 (N =180), participants re-

cruited at the entrance of Tsim Sha Tsui Star 

Ferry Pier in Hong Kong 

Hotel service robot MANOVA Ratings of brand experience 4 dimensions: Sensory (3); Affective (3); Behavioral (3); In-

tellectual (3) 

Lee et al.[45] Robotic service quality (the situa-

tion of service breakdown) 

Scenario-based survey (N = 317), partici-

pants recruited from Amazon mTurk 

Service robots One-way analyses of vari-

ance 

- 5 dimensions: Politeness, Competence, Trust robot, Like ro-

bots, Feel close to robots 

Fuentes-Moraleda 

et al.[46] 

Hotel robotic service quality 7994 online TripAdvisor reviews of 74 hotels Hotel service robots Sentiment analysis Customer acceptance of service 

robots in hotel  

3 dimensions: Functional dimension; Relational dimension; 

Social-emotional dimension 

Lin et al. [47] Hotel service quality Survey (N = 605), participants recruited from 

Amazon mTurk 

Artificially intelligent robotic 

device in hotel settings 

CB-SEM Willingness to Use AI Devices; 

Objection of Using AI Devices 

6 dimensions: Social Influence (5); Hedonic Motivation (4); 

Anthropomorphism (4); Performance Expectancy (3); Effort 

expectancy (3); Emotion (5) 

Gursoy et al. [26] Hotel service quality Survey (N = 439), participants recruited from 

Amazon mTurk 

AI devices in hotel settings CB-SEM Willingness to Use AI Devices; 

Objection of Using AI Devices 

6 dimensions: Social Influence (6); Hedonic Motivation (5); 

Anthropomorphism (4); Performance Expectancy (4); Effort 

expectancy (3); Positive emotion (5) 

Choi et al. [48] Robotic service quality Experiment (N = 173), US adult consumers 

recruited via Amazon mTurk, 

Service robot ANOVA Service encounter evaluation 2 dimensions (experimental manipulation): Language style 

(literal vs. figurative); Perceived credibility 

Lin and Mattila  

[23] 

Hotel robotic service quality Interview (N = 30), participants recruited in 

tourist spots and online; 

Survey (N = 215), individuals over the age of 

18, recruited from Qualtrics 

Hotel service robot CFA; SEM Acceptance of service robots 6 dimensions: Privacy (3); Functional benefits (6); Novelty 

value (3); The appearance of service robot illustrations (5); 

Attitude (3); Anticipated overall hotel experience (4) 

Lee et al. [49] Hotel service quality Survey (N = 494), random consumers Hotel assistant robots EFA; Cluster analysis; Dis-

criminant analysis 

Intention to use robot assistant 

hotel 

6 dimensions: Facilitating conditions (3); Performance ex-

pectancy (4); Innovativeness (4); Social presence (5); He-

donic motivation (4); Perceived importance (5) 

Tuomi et al.[50]  Hospitality service quality Exploratory service experimentation (N = 30, 

prototype1; N =18, prototype 2), participants 

from an academic conference focused on 

technology and tourism in the UK 

Humanoid service robots Qualitative multi-method 

approach, including explor-

atory service experimenta-

tion, accompanied with ob-

servation, questionnaire, in-

terview and photo-elicita-

tion 

Humanoid robot adoption in hos-

pitality service encounters 

6 dimensions: Contextual layer (concept and task fit); Social 

layer (degree of agency, locus of control); Interaction layer 

(tone of voice, gestures, mobility); Psychological layer (so-

cial pressure, social judgment, peer recognition); Extrinsic 

driver (technological progress, convenience, novelty); Intrin-

sic driver (more fulfilling jobs, more efficient processes, 

greater degree of control) 

Zhong et al.[17]  Hotel service quality Survey (N = 217), hotel guests who stayed in 

the rooms with service robots as the work-

force. 

Hotel service robots EFA; CFA; Grouped re-

gression analysis; SEM 

Behavioral Intention 7 dimensions: Usefulness (4); Ease of use (2); Sentimental 

value (4); Self-efficiency (4); Attitude (2); Perceived value 

(3); Perceive behavioral control (2) 

Blut et al. [51] Robotic service quality Literature retrieval (N = 71) Physical robots, chatbots, and 

other AI 

Meta-analysis Intention to use 8 dimensions: Anthropomorphism; Animacy; Intelligence 

Safety; Ease of use; Usefulness; Rapport; Satisfaction 

Chi et al. [52] Social Service Robot Interaction 

Trust (SSRIT) Scale 

Survey (N = 316), a customer panel was re-

cruited through Amazon MTurk. 

Social service robot EFA Social service robot interaction 

trust 

3 dimensions (11 subdimensions): Trustworthy robot func-

tion and design (anthropomorphism (7), robot performance 

(9), effort expectancy (4)); Propensity to trust robot (famili-

arity (4), robot use self-efficacy (5), social influence (4), 

technology attachment (3), trust stance in technology (3)); 

Trustworthy service task and context (perceived service risk 

(5), robot-service fit (3), facilitating robot-use condition (3)) 

Notes: SEM means Structural Equation Modeling; EFA means Exploratory Factor Analysis; CFA means Confirmatory Factor Analysis; CB-SEM means Covariance-based Structural Equation Modeling; 

(M)ANOVA means (Multivariate) Analysis of Variance; The numbers with brackets mean the number of items of the respective construct (that can be found in the reviewed papers). 
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2. Literature Review 

The literature retrieval was carried out in January 

2021 through three databases of AIS Library, Scopus, 

and Web of Science. In addition, Google Scholar was 

used as a supplementary source of literature. These da-

tabases cover most of the current literature and are, in 

turn, the most consulted by academic staff from various 

fields of knowledge [53]. After gathering all the retrieval 

records, removing duplicates, and screening out unqual-

ified papers, the final sample consists of 55 articles (see 

Figure 1). These studies either focus on developing an 

instrument for measuring r-service or aim at consumer 

responses to r-service. They are subjected to a compre-

hensive, in-depth content analysis of the key methodo-

logical aspects of developing various r-service quality 

scales and their proposed dimensions. Table 1 lists the 

key studies reviewed in this study. 

 
Figure 1. Flow Diagram of Literature Selection 

2.1. Adequacy of dimensions 

There is a lack of a widely accepted measure of r-

service quality in the current literature. Existing r-ser-

vice quality measures typically concerns the design of 

service robots and quality of service delivery, including 

factors triggering consumer willingness [3], [19], [47], 

consumer satisfaction [11], [40], [54], and/or intention 

to (re)use [14], [49], [51]. In this regard, Lu et al. [3] 

develop a six-dimensional SRIW scale: performance ef-

ficacy, intrinsic motivation, social influence, anthropo-

morphism, emotions, and facilitating conditions. Stock 

and Merkle [40] identify three constructs dominating 

consumer evaluation of satisfaction, i.e., perceived ro-

botic innovative service behavior (ISB), expectations, 

and confirmation between expected and perceived ro-

botic ISB. Tussyadiaha and Parkb [14] verify the deter-

minants of consumer intention to adopt hotel service ro-

bots: anthropomorphism, perceived intelligence, and se-

curity. 

In addition to the humanlike characteristics of ser-

vice robots, some other scholars bend their efforts to de-

velop more direct measures of the instruments of r-ser-

vice quality. This research stream typically concentrates 

on two views: i) replicating or modifying the renowned 

scale dubbed SERVQUAL [55], [56]; ii) adopting tech-

nology acceptance theories, such as TAM, to develop 

robot-contextualized constructs [9], [16], [17]. 

“SERVQUAL is a generic instrument with good re-

liability and validity and broad applicability” [56, p. 

445], which endorses five dominant dimensions: tangi-

bility, responsiveness, reliability, empathy, and assur-

ance [55]. Its principle is to assess service quality 

through the gap between delivered service performance 

and service expectations [55], [56]. A wealth of evi-

dence shows that SERVQUAL has been verified and ex-

tensively applied in human-delivered services, e.g., hos-

pitality and bank service [57], as well as e-service [58]. 

However, problems with SERVQUAL still arise con-

cerning conceptualization and operationalization [57]. 

As proof, challenges occur to the applicable generaliza-

tion of the five dimensions in different service industries 

because of the context-bounded attribute of service qual-

ity [57]. In respect of this, Zhang and Qi [59] apply 

SERVQUAL to r-service in hotels, and their results col-

lapsed the five dimensions into two dimensions of tan-

gibles and responsiveness. To evaluate service quality in 

the context of multi-robot café, Morita et al. [11] extend 

SERVQUAL dimensions from five to seven dimensions 

by including interactivity and entertainment factor. 

A string of literature regarding r-service quality is 

established based on a consumer version of technology 

acceptance. According to the earliest TAM [60], per-

ceived usefulness and ease of use are the two dominants 

affecting personal attitudes, thereby intention and actual 

behavior to use the technology. Nevertheless, the AI at-

tributes allow service robots to gain several characteris-

tics, such as bilateral interaction and anthropomorphism, 

differentiated from regular technologies (e.g., infor-

mation systems) [21], [61]. This gives rise to difficulties 

in the applicability of the core factors from TAM or its 

extended theories. To address this issue, previous stud-

ies normally adopt other elements involving robot de-

sign, interactional components, and consumer emotional 

constructs. To illustrate, Zhong et al. [17] build an ac-

ceptance model of hotel service robots, and besides con-

firming the factors of usefulness, ease of use, and atti-

tude, they also verify the significant roles of perceived 

value, self-efficacy, and perceived behavioral control. 

Stock and Merkle [43] combine TAM and role theory 

and developed a humanoid robot acceptance model with 

three dimensions: functional components (ease of use 

and usefulness), informational component (informative-

ness of interaction), and relational component (benevo-

lence, user satisfaction, and understanding). Wang et al. 

[16] develop a consumer acceptance model for AI ser-

vice with usefulness, ease of use, attitude, perceived be-

havioral control, and subjective norm. 

To sum, both views mentioned above warrant fur-

ther consideration. SERVQUAL is initially developed 

for evaluating personal-interactional services. As the 

saying goes, “the definitions and relative importance of 
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the five service quality dimensions change when custom-

ers interact with technology rather than with service 

personnel” [62, p. 171], its dimensions might not di-

rectly transpose to r-service. On the other hand, a service 

robot is not just a regular technology but goes beyond 

standard technologies to enter the field preserved for hu-

man beings. This may lead to the general technology ac-

ceptance theories being inapplicable in the r-service 

context. As a result, neither SERVQUAL nor technol-

ogy acceptance theories constitute a comprehensive in-

strument for assessing r-service quality. Several studies 

attempt to develop specific measurement scales for r-

service quality, but without considering the overall pic-

ture of the factors introduced by different studies, which 

motivates and shapes the substance of this study. 

2.2. Dimensionality of the r-service quality 

Based on the content analysis of the reviewed stud-

ies, several assertions about the dimensionality of r-ser-

vice quality can be concluded. First, there is a lack of a 

consensus in the construct of r-service quality regarding 

its dimensions. However, some dimensions are often 

considered, such as SERVQUAL five dimensions, di-

mensions related to technology acceptance, and robot-

design characteristics. Second, several dimensions of r-

service quality in the reviewed papers are similar with 

or recur from conventional service quality. 

2.2.1. R-service quality constructs. Except for a few 

studies that use experimental manipulation to verify a 

specific single dimension [19], [63]–[65], most studies 

have multiple dimensional constructs for r-service qual-

ity, ranging from 2 [16], [48] to 11 dimensions [52]. Due 

to the lack of consensus regarding constructs of r-ser-

vice quality on its dimensions, many dimensions merely 

appear in specific studies or research contexts. The de-

terminants of r-service quality depend on involving ser-

vice industries and particular service types. For exam-

ple, anthropomorphism plays an essential role in service 

robots with physical attendance [14], [38], which is not 

the case for virtual robots that care more about commu-

nication patterns and language cues [63], [65]. However, 

some constructs, such as reliability [11], [13], [33], [59] 

and anthropomorphism [3], [14], [28], [38], have been 

frequently identified in previous studies. It is conceiva-

ble that there are several common dimensions consid-

ered by consumers when evaluating r-services. Ten di-

mensions are identified: 

Reliability. As one of the five prominent dimen-

sions of SERVQUAL, reliability is conceptualized as 

the capability to perform a promised service dependa-

bly, accurately, and timely [55]. Among the reviewed 

studies, reliability plays a significant role in general ser-

vice quality [13], [32], [36], service expectation [33], 

and behavioral intention [11]. 

Assurance. In the r-service context, assurance refers 

to knowledge and courtesy of service robots and their 

abilities to inspire consumers’ trust and confidence in 

receiving service cf. [55]. By reflecting service experi-

ence, assurance indicates that qualified r-services not 

only cater to particular consumer requirements but also 

represent safe and dependable services that are trustwor-

thy in long-term use [5], [56]. Assurance constitutes an 

essential component towards customer satisfaction [11], 

willingness [27] or intention to use [5], [37], [42], and 

overall r-service quality [13]. 

Tangibility. Tangibility refers to physical facilities, 

equipment, and appearance of robots in r-services cf. 

[55], as one of the most common factors of r-service 

quality [66]. In the reviewed studies, tangibility is a sig-

nificant dimension that determines overall service qual-

ity [13], [36], service expectations [59], and willingness 

[27] and intention to use robots [5], [11], [37]. 

Responsiveness. It refers to the willingness to help 

customers and offer prompt service [55]. With increas-

ing service robots deployed to replace human personnel 

to delivery services, this dimension also matters in r-ser-

vices, affecting consumer satisfaction and loyalty [24], 

service expectations [59], overall service quality [13], 

[32], [36], and intention to use [11], [37]. 

Empathy. Empathy can be viewed as caring and in-

dividualized attention the robotics offers for customers 

[55]. This dimension is relevant since service robots can 

mimic humans and pay attention to consumers when in-

teracting with them [11]. In this regard, researchers re-

port that empathy affects consumer satisfaction and loy-

alty [24], intention to use robots [5], [11], [37], and over-

all service quality [32]. 

Functional component. This dimension derives 

from a technology acceptance perspective. It is covered 

for that, albeit robots act as a replacement for human 

staff, it is essentially a novel technology that can be in-

timidating and complex for many individuals. Ease of 

use/usability is a reflection of consumer friendliness, 

whereas usefulness manifests ones’ perception regard-

ing the outcome of the service experience. Both play an 

integral part in consumers’ behavioral intention [5], [9], 

[16], [17], [43], [51]. 

Anthropomorphism. It refers to that a robot is hu-

manlike regarding either physical appearance or psycho-

logical features, such as emotions and gestures [3]. An-

thropomorphism plays an essential role in affecting hu-

man-robot interaction [1] and acts as a determinant in 

consumer trust [38], [52], willingness to use [3], [26], 

[47], and intention to (re)use [14], [28], [51]. Many stud-

ies exploring the impact of anthropomorphism draw 

upon Uncanny Valley Theory (UVT). Some similar con-

structs, such as perceived humanness [18], [63], [64], 

physical appearance [10], [67], and uncanniness [63] 

can also be seen in the reviewed studies. Note, however, 

that the level of anthropomorphism is not necessarily 

linearly associated with r-service quality, according to 

UVT.   
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Perceived intelligence. It means consumers’ per-

ception that robots can learn, reason, and solve problems 

[51], [68]. Perceived intelligence concerning interacting 

with a service robot has been endorsed as a critical factor 

for accepting the robot [68], [69]. This dimension deter-

mines consumer trust [38], service robot adoption inten-

tion [14], and intention to (re)use [51]. 

Social presence. This dimension manifests how 

people react socially to robotics through psychological 

simulations of non-human intelligence as a real creature 

[15], [49]. Social presence is vital in determining behav-

ioral intention to use service robots in hotel settings [37] 

and advisory services [8]. 

Despite that these dimensions are relatively fre-

quently identified, they are neither necessarily generic 

nor exhaustive. Instruments for r-service quality meas-

urement have to vary and are contingent on specific ser-

vice industries and service types. In general, dimensions 

of r-service quality in the reviewed studies, except for 

the common dimensions mentioned above, can be sub-

divided into three categories: i) robot-related compo-

nent, such as sociability [36], social attraction [36], au-

tonomy [70], safety [70], animacy [69], likability [69], 

imitation [70], and benevolence [43]; ii) functional com-

ponent, such as understanding [43], performance effi-

cacy [3], interactivity [11][31], and scalability [70]; iii) 

consumer-related component, such as perceived safety 

[69], entertainment [11], and enjoyment [25]. Note that 

the common dimensions could be utilized as a starting 

point for instrument development of r-service quality. 

2.2.2. Comparison with conventional service quality. 

While some new dimensions of r-service quality have 

been extracted, several dimensions are similar to or re-

cur from conventional human service and e-service. 

Concretely, reliability and assurance, both prominent in 

the offline context of human service, are reported as top 

priorities of r-service quality [13]. The other three 

SERVQUAL dimensions — tangibility, responsiveness, 

and empathy — are also reported in several studies of r-

service quality, e.g., [11], [13], [36]. However, mixed 

results exist in the reviewed literature. For instance, 

Zhang and Qi [59] show that tangibility and responsive-

ness significantly increase consumer expectations of ro-

botic hotels, whereas the effects of reliability, assurance, 

and empathy are insignificant. Morita et al. [11] report 

the high importance of reliability and tangibility when 

evaluating r-services, while the responsiveness dimen-

sion is subscribed as low importance. The dispute may 

result from differentiated interpretations of these dimen-

sions when service robots are deployed to replace hu-

man personnel. More specifically, assurance and empa-

thy are different in the r-service context from its conno-

tations in human service, since robots can always be po-

lite and work consistently within rules to fulfill con-

sumer needs while human staff may show extra caring 

attitude and go beyond rules to solve problems. 

Furthermore, ease of use/usability and usefulness, 

which are widely used in e-service quality, have been 

adapted to r-service quality [5], [9], [16]. Such dimen-

sions play important roles in evaluating r-service since 

robots can be novel technologies for many individuals, 

and induced unfamiliarity can intimidate them and make 

them feel complex to be involved in r-services. One is-

sue requiring more attention is that some overlaps exist 

concerning connotations of SERVQUAL dimensions 

and ease of use/usability. Specifically, there is an inter-

sectional area between tangibility and ease of use when 

considering the robot design and aesthetics. 

Notably, several dimensions that are tailored for ro-

botics, particularly humanoid robots, take essential parts 

in r-service quality. These dimensions include anthropo-

morphism [1], [3], [14], [26], [28], [38], [47], [51], [52], 

perceived intelligence [14], [28], [38], [51], social pres-

ence [8], [49], autonomy [70], animacy [69], imitation 

[70], etc. Past studies usually allude that human appear-

ance tends to trigger positive perceptions and attitudes 

towards robots [14], [23]. 

2.3. Methodological issues 

Studies concerning r-service quality utilize various 

methodologies, e.g., qualitative, quantitative, and hybrid 

methods. The first stage of establishing a measurement 

scale is to conduct qualitative research to identify multi-

ple dimensions, which can be fulfilled with different 

qualitative approaches, e.g., the critical incident tech-

nique (CIT). CIT helps recall impressive events and 

identify important factors for the subject through quali-

tative interviews, which has proved valuable in develop-

ing service quality scales [71], [72]. Whereas some of 

the reviewed works use interviews to identify constructs 

of r-service quality, the application of CIT, as well as 

other qualitative methods, e.g., focus-group study and 

Delphi method, are recommended in future studies at the 

early stage of identifying r-service quality dimensions. 

2.3.1. Sampling. The reviewed studies collected sam-

ples on r-service quality from various populations. Con-

venience sampling [7], [31], [44], [63] has been fre-

quently used, whereas random sampling appear in some 

studies [14], [16], [38], [39]. A few studies utilize sam-

pling of guests in real service settings, such as hospital-

ity [13], [31], [32] and restaurants [11], [29]. Many stud-

ies recruit students in their surveys [18], [28], [40], [43].  

Several research limitations exist. First, several 

studies obtain mainly their respondents through personal 

networks. Albeit recruiting respondents merely from 

personal networks can be more time-/effort-saving than 

other sampling methods, which need to fulfill specific 

requirements, sampling bias would be inevitable due to 

constraints derived from, e.g., geographical and social 

milieus, in particular when a representative sample is re-

quested [73]. Second, a major limitation in the reviewed 

studies is that most samples are not actual consumers of 
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r-services. Many respondents in the reviewed studies are 

recruited online. They are generally asked to self-report 

their perceptions of r-services based on reading research 

descriptions instead of experiencing r-service delivery. 

Respondents’ perceptions of service quality with sce-

nario descriptions may differ from experiencing r-ser-

vice in real settings. Furthermore, pre-delivery percep-

tions of r-services, e.g., comfort with robots, might be 

more significant in physical service delivery, thus caus-

ing differences in individual perceptions for r-service 

quality [31]. By having respondents reflect their percep-

tions of r-services that they were not familiar with or 

even had not experienced, deliverables might have suf-

fered limitations in the accuracy of findings. In this vein, 

the recruitment of respondents should carefully consider 

sample qualification to safeguard reliability in future 

studies. Third, many reviewed studies are based on rel-

atively small-scale samples, which may challenge the 

robustness and generalization of results. In this light, 

samples with larger scales and more diversities should 

be considered in future studies. 

2.3.2. Considered service industries. A vast body of 

the reviewed studies collects consumer data within a 

specific (or a type of) service sector [9], [10], [13], [36], 

whereas only minimal studies are across several service 

industries [3]. Among them, studies based on the hotel 

industry dominate this research stream, e.g., [13], [31]. 

Other specific sectors considered include, e.g., restau-

rant [11], [29], education [9], museum [36], household 

[37], tourism [8], and bank [7], [42]. Notably, Lu et al. 

[3] verify their instruments across four service indus-

tries: hotels, restaurants, airlines, and retails. 

2.3.3. Survey administration. Both online and on-site 

approaches are used for data collection. Concerning 

qualitative research, online [23] and offline interviews 

have mainly been used, the latter of which includes 

open-ended interviews [27], semi-structured interviews 

[5], [24], and focus-group interviews [31]. A few studies 

also use literature analysis [51], [66] to identify factors 

impacting r-service quality. Regarding quantitative 

studies, online surveys are the most widely used by re-

searchers. The online distribution platforms include 

Amazon Mechanical Turk [26], [47], [48], [52] and per-

sonal networks [8], [14], [63], [64], whereas in-person 

surveys are among guests in hotels [5], [13], café or res-

taurant [11], [29], etc. Given the importance of survey 

administration, the administration mode needs to be 

clarified in more detail. Future studies are expected to 

squint towards in-person surveys, particularly respond-

ents with real experiences of r-service. 

2.3.4. Measurement items generation. Both inductive 

(e.g., literature reviews) and deductive methods (e.g., 

exploratory research) are utilized to study r-service 

quality. Many studies strive to establish a research 

model to verify factors that affect behavioral intention 

[16], [42], [49], [51]. A few studies devote themselves 

to systematically developing related scales [3], [52]. 

Specifically, through a systematic literature review, in-

terviews, and focus-group study, Chi et al. [52] launched 

a scale that measures consumer trust toward interaction 

with service robots. With rigorous quantitative studies, 

the SSRIT scale with 50 items is validated [52]. Based 

on a literature review and qualitative interviews, Lu et 

al. [3] established the SRIW scale consisting of 36 items. 

Moreover, in several studies, interviews are conducted 

among employees or managers for constructs and items 

generation [5], [24], [31], [74]. 

No consensus has been reached yet regarding the 

conceptualization and dimensions of r-service quality. 

Taking the dimensions of robot design as an example, 

some studies include communication pattern [8], [63] 

into robot-design constructs; others consider more the 

visual presence of robots, e.g., anthropomorphism [3], 

[14], [26], [47], [51]. The diversity of constructs in dif-

ferent studies underlines the lack of a consensus regard-

ing the components of r-service quality. This may result 

from two main reasons. First, the conceptualization of 

the definition, scope, and dimensions of r-service leaves 

to be framed. Second, while some qualitative research 

relies on literature analysis and/or interview to generate 

constructs, a high proportion of studies directly develop 

research models and use data-driven approaches, e.g., 

EFA, to validate measurement items. In this light, future 

research is expected to develop a conceptual framework 

more specifically, comprehensively accounting for liter-

ature, expert panels, consumers, and operators. Thereby, 

the components of r-service quality, its dimensions, and 

scale-items can be identified and validated. 

2.3.5. Dimensionality analysis. Given that many of the 

observed studies investigate the impact of antecedents 

on related dependent variables, such as behavioral inten-

tion and consumer satisfaction, a number of studies uti-

lize SEM to test research models [5], [14], [38]. Besides, 

the dimensionality of the measures is examined primar-

ily with EFA [3], [7], [17], [23], [37], [49] and/or CFA 

[3], [16], [17], [24], [28], [33], [37], [52], [74]. 

Whereas the purpose of EFA is “to identify the fac-

tor structure or model for a set of variables” [75, p. 10] 

via dropping underqualified items, its use has been chal-

lenged with its demerits, such as the nonuniqueness of 

the estimates accounted for factor loadings and the lack 

of indicators of goodness-of-fit as the case of CFA does 

[72]. Furthermore, the possibility in EFA that items load 

on more than one factor may impact the distinctiveness 

and interpretation of items [76]. Taking together the 

merits of CFA, such as allowing a comparison of differ-

ent model specifications, a combination of EFA and 

CFA is expected in future studies. 

3. Conclusion and Implications 

 The present study reviews the current knowledge 

on the instruments of r-service quality and contributes 
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to i) identifying common dimensions for r-service qual-

ity; ii) outlining the methodology of instrument devel-

opment for r-service quality. 

This study detects heterogeneity in dimensions in 

the reviewed studies concerning r-service quality. How-

ever, several critical dimensions are identified in previ-

ous studies, including SERVQUAL five dimensions, 

ease of use/usability, usefulness, and three robot-related 

dimensions. This study demonstrates that the measure-

ment of r-service quality shares several dimensions with 

traditional human service and e-service. Meanwhile, 

some dimensions of r-service quality are distinctive 

from conventional service settings. These distinctive di-

mensions focus upon social-emotional factors induced 

mainly by robot characteristics. 

3.1. Research implications 

This study offers several research implications. 

First, merely a few studies specifically develop and val-

idate related measurement scales, i.e., the SRIW [3] and 

SSRIT scale [52]. Given a scarcity of knowledge on r-

service quality, it calls for more studies to develop meas-

urement scales for r-service quality. 

Second, most of the identified common dimensions 

are function-oriented dimensions that reflect the service 

delivery process, including SERVQUAL five dimen-

sions and ease of use/usability. However, the high de-

pendence on these dimensions has been criticized by 

scholars for constituting the misspecification of service 

quality in both human service and e-service. Thus, fu-

ture studies are expected to integrate other views from 

pre/post-delivery and reexamine the conceptualization 

of r-service quality. 

Third, this study shows that more specific dimen-

sions are contingent on particular service industries and 

service types. It is reasonable since different service 

contexts have different determinants to foster better ser-

vice quality. There is no utterly generic measurement in-

strument of service quality, and even the widely-utilized 

SERVQUAL do not apply universally. Thus, a valid 

measurement scale of r-service quality for specific con-

texts should include service industry/type-specific di-

mensions as supplements for the generic dimensions. It 

would also be interesting to assess the weights of differ-

ent dimensions across different robots in future studies. 

Finally, more attention should be paid to methodo-

logical issues. Future studies should make more efforts 

in the methodological approaches to identifying dimen-

sions and generating measurement items of r-service 

quality, as well as the sampling methods and size. Ran-

dom and relatively bigger sample sizes across multiple 

service industries are warranted in future studies. 

3.2 Managerial implications 

These findings allow us to propose several sugges-

tions for business practitioners designing/manufactur-

ing/adopting r-services. First, considering the identifica-

tion of SERVQUAL five dimensions in r-service qual-

ity, r-service managers should fully understand the keys 

to effective deployment of service robots: i) ensuring the 

delivery of promised services occur in a reliable, accu-

rate, and timely manner; ii) having a suitable appearance 

(it is important to take UVT into account), equipment, 

and interacting skills for the specific service; iii) helping 

consumers actively solve problems and providing 

prompt service; iv) performing reliable services consist-

ently and politely; v) paying caring and individualized 

attention to customers. Since r-services are still in an in-

fant stage, service failures are inevitable. Under this cir-

cumstance, assistance from human staff is necessary for 

r-service delivery, particularly when consumers encoun-

ter interaction difficulties. In this vein, the possible neg-

ative perceptions induced by service failures could be 

alleviated. 

Second, considering that several reviewed studies 

emphasize the importance of ease of use/usability, robot 

manufacturers should pay more attention to the function 

design of service robots to make them easier to navigate 

and interact with. Third, as a replacement for human per-

sonnel, robot characteristics are of significance for con-

sumer perceptions. Consumers need to feel emotionally 

positive during service transactions. Thus, robot manu-

facturers should focus on the psychological evaluation 

of robots as social entities and account for social-emo-

tional elements in robot design. 
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