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Abstract 
Modern day processes depend heavily on data-

driven techniques that use large datasets clustered into 

relevant groups help them achieve higher efficiency, 

better utilization of the operation, and improved 

decision making. However, building these datasets and 

clustering by similar products is challenging in research 

environments that produce many novel and highly 

complex low-volume technologies. In this work, the 

author develops an algorithm that calculates the 

similarity between multiple low-volume products from a 

research environment using a real-world data set. The 

algorithm is applied to pulse power operations data, 

which routinely performs novel experiments for inertial 

confinement fusion, radiation effects, and nuclear 

stockpile stewardship. The author shows that the 

algorithm is successful in calculating similarity between 

experiments of varying complexity such that 

comparable shots can be used for further analysis. 

Furthermore, it has been able to identify experiments 

not traditionally seen as identical. 

1. Introduction  

Forecasting schedule, resource, and quality of work 

are crucial in operational settings. Modern day 

processes depend heavily on data-driven techniques to 

help them achieve higher efficiency, better utilization of 

the operation, and improved decision making regarding 

sequence of production and supporting processes (e.g. 

procurement, maintenance, etc.) [1]. These techniques 

often require large datasets clustered into relevant 

groups to confidently drive decision; in manufacturing 

environments, datasets are gathered over many cycles 

and grouped by similar products to model expected 

performance [2]. However, building these datasets is 

challenging in environments where complex, low-

volume technologies produce less or even erroneous 

data (e.g. research operations) [3]. Furthermore, both 

small and imperfect groupings can impact the efficacy 

[4] and accuracy [5] of advanced analytical methods, 

like machine learning, inhibiting the use of state-of-the-

art approaches to analyze these environments. 

Research operations are an example of an 

environment that produces fewer overall data. There is 

a need for new approaches to improve operations and 

achieve higher efficiency to meet research mission 

needs. Employing analytic techniques inspired by both 

image processing and systems engineering techniques is 

one such approach that will be described in this paper as 

a practice-based contribution that can be considered in 

similarly data-constrained settings. This study shows 

how using analytics in research environments can 

improve understanding of complex, data-constrained 

operations. A feature vector for a pulsed power facility 

was developed and found similarities in scientifically 

novel fusion experiments. 

2. Background  

The contextual setting for this study is a nuclear 

fusion research facility. The U.S. Department of 

Energy’s National Nuclear Security Administration has 

a relevant application of a data-constrained operation 

that often struggles to gather more or comprehensive 

datasets. The Z Facility (hereafter “Z”) is the world’s 

largest pulsed power facility that routinely supports 

research in inertial confinement fusion, radiation 

effects, and nuclear stockpile stewardship through the 

execution of experimental pulse power operations [6]. Z 

undergoes 140-160 operational cycles (hereby “shots”) 

per year [7] with some shots containing multiple 

experiments and requiring multiple days to execute. 

Thus, compiling data from shots across one year only 

results in a relatively small dataset. 

2.1 Anatomy of a Z Shot 

Although each shot is unique and nuanced, most 

depend on 4 key components: (1) the Z facility itself, (2) 

an experiment target, (3) subsystems, and (4) 

diagnostics. The facility contains various components 

and systems that ensure electrical energy (pulsed power) 

is delivered to the target and protect the facility. The 

target is an assembly comprised of materials, 

geometries, and systems used for scientific inquiry. 

After the facility delivers power, the target will either 
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produce x-rays or neutrons. Subsystems can be fielded 

to modify targets (e.g. heating or cooling) before and 

during execution such that different behaviors are 

exhibited for study. Diagnostic systems measure the 

environments created and their effects, but various 

factors (e.g. radiation type, diagnostic survivability, 

etc.) limit which systems are fielded and what data can 

be captured. This has led to the proliferation of many 

heterogenous diagnostic systems with varying degrees 

of operational complexity, often fielded in different 

permutations and combinations [8]. To put this in 

perspective, a single Z shot routinely fields over 20 

diagnostic and subsystems.  

2.2 Data Collection Challenges at Z 

Gathering data at Z is imperfect and challenging. 

Each data point (e.g. shot) is novel, sometimes requiring 

specialized planning, design work, hardware 

fabrication, and preparation of data collection 

equipment (diagnostics). Shots are also destructive in 

nature, with parts of the shot either vaporized or 

scattered throughout the test chamber. Coupled with the 

radiological and airborne hazardous, gathering 

postmortem data can be difficult. Such highly variable, 

limited, and imperfect datasets affect whether 

operational organizations can properly group similar 

shots and learn from previous shots. Failure to 

understand historical performance and potential 

correlation with future shots has led to operational errors 

being repeated. These errors affect quality of execution 

and associated delays cause a lower rate of shots. Z 

operational organizations have historically relied on 

non-analytic strategies to analyze and group similar 

shots; sources typically include tribal knowledge from 

subject matter experts, amongst others. The subjectively 

determined metric of similarity has resulted in grouping 

shots by 8 scientific programs [9] [10].  

While this approach has been somewhat successful 

in grouping shots that require minimal coordination or 

resources, it fails to account for more complex, nuanced 

shots [11]. In the last 6 years, 503 out of 883 (57%) shots 

were classified as “complex” for Z operations. 

Moreover, the percentage of complex shots is expected 

to increase year over year [12]. Thus, there is pressure 

to develop an analytical approach in finding similar 

shots, including an analytically based definition for 

degree of similarity. 

The author proposes the use of Shot boundary 

detection (SBD) [13] to find similar shots over a variety 

of complexities in data-constrained environments like Z 

operations. This technique, borrowed from image 

processing and systems engineering [14], would enable 

stakeholders to acquire larger and more appropriate 

datasets for analysis and find similarity in areas not 

previous under consideration. 

3. Method 

As described above, the majority of shots executed 

at the facility are complex and expected to increase in 

quantity. In order to determine analytical approaches to 

similarity, the author considered the anatomy of a given 

shot and determined common component categories. 

These categories were used to develop a feature vector, 

to serve as the basis to calculate a similarity metric, and 

to organize into clusters.  Due to challenges in obtaining 

facility configuration and target data, only diagnostic 

and subsystems will serve as part of the feature vector. 

The feature vector composed of diagnostics and 

subsystems can be used to calculate similarity between 

shots. The author developed an algorithm inspired by 

Euclidean distance to calculate the similarity index (SI) 

from the features. The SI is calculated for all shots to 

find the highest SI for further analysis.  
The algorithm is divided into three parts that are 

repeated across multiple shots. Assume we want to 

know the similarity 𝑆𝐼 between our shot of interest 𝐻𝑖  to 

historical shot 𝐻ℎ𝑖𝑠𝑡 . First, we calculate ∆𝑥𝑖 by counting 

the number of similar features 𝐷𝑗  shared between 𝐻𝑖  and 

𝐻ℎ𝑖𝑠𝑡. Next, we calculate ∆𝑦𝑖  by counting the total 

number of features in 𝐻𝑖  minus ∆𝑥𝑖. Finally, square ∆𝑥𝑖  

and ∆𝑦𝑖  before dividing and finding the square root. 

These steps are repeated for all 𝐻ℎ𝑖𝑠𝑡 and sorted to find 

the highest value SI.  

 

∆𝑥𝑖 = ∑(𝐷𝑗|𝐻𝑖 ∩ 𝐷𝑗|𝐻ℎ𝑖𝑠𝑡)

𝑛

𝑗

 

∆𝑦𝑖 = ∑(𝐷𝑗|𝐻𝑖) −

𝑛

𝑗

∆𝑥𝑖 

 

𝑆𝐼 = √
∆𝑥𝑖

2

∆𝑦𝑖
2 

 

All SI can be calculated such that a symmetric 

matrix 𝑆𝐼𝑙𝑜𝑜𝑘𝑢𝑝 can be created to lookup any given shot 

𝐻𝑚 to any shot 𝐻𝑛. 

 

𝑆𝐼𝑙𝑜𝑜𝑘𝑢𝑝 = [

𝑆𝐼11 𝑆12

𝑆𝐼21 𝑆𝐼22

⋯ 𝑆1𝑛

⋯ 𝑆2𝑛

⋮ ⋮
𝑆𝑚1 𝑆𝑚2

⋱ ⋮
… 𝑆𝑚𝑛

] 

 

The author notes that acquiring the requisite data to 

feed into the algorithm in this setting was a nontrivial 
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problem, but not discussed within the scope of this 

paper. 

4. Results and Discussion 

Figure 1 depicts a symmetric heatmap of the 

𝑆𝐼𝑙𝑜𝑜𝑘𝑢𝑝 for Z shots created in MATLAB. A heatmap 

was used such that  the matrix can visually interpreted 

and shared with groups within Z Operations. Given that 

shots are executed based on facility needs and schedule 

rather than similarity, the shots were reordered based on 

values from 𝑆𝐼𝑙𝑜𝑜𝑘𝑢𝑝 to improve clustering. The reverse 

Cuthill Mckee algorithm was used based on ease and 

availability rather than efficacy. Each cell represents a 

similarity comparison of two shots, with 𝐻𝑖  along the x-

axis and 𝐻ℎ𝑖𝑠𝑡, a transpose of 𝐻𝑖 , along the y-axis. 

Similarity values are represented by a spectrum from 

blue at 0%, green 50%, and yellow 100%. The diagonal 

is 100% similar, which is expected in a symmetrical 

matrix where the diagonal is a shot compared against 

itself. Clusters of yellow and green indicate shots that 

have a higher similarity with each other (shot 10 has 

little to no similarity with others while shot 43-50 have 

very high similarity with each other). The matrix is 

23.4% sparse (e.g. no similarity based on represented 

feature vector) as indicated by the clusters of blue.  

 

   
Figure 1: SIlookup for 50 Z Shots 

4.1 Insights from SIlookup 

The algorithm was able to identify similar shots not 

previously considered related. Despite the high number 

of combinations, useful and surprising patterns emerged 

using a clustering technique in our small dataset. 

Multiple (yellow) clusters in Figure 1 indicate that some 

shots reuse the same, or similar, sets of features. This is 

unexpected given the small number (883) of shots 

compared to the million potential combinations. Further 

analysis of these findings determined that those shots 

were not considered part of the same grouping using the 

historical methods described in Section 2. 

A more important finding from this analysis is 

identifying critical overlap between different shots, 

represented by green clusters. These clusters suggest 

that many combinations are subsets or mixtures of other 

shots, which recharacterizes a complex and unique shot 

as a combination of several simple ones. This is 

consistent with operational practices of combining 

multiple experiments into one shot. The ability to 

separate these amalgamations is valuable in a data 

constrained environment where grouping similar 

products is not readily apparent. For reference, nearly 

33.8% of the matrix has a SI between 25%-75%. 

Additionally, stakeholders can adjust tolerances for 

acceptable similarity values to determine their 

sensitivity on statistical or machine learning tools to 

influence their goodness of fit.  This type of sensitivity 

analysis can be used to refine acceptable values of 

similarity for different conditions/complexity levels. 

4.2 Limitations and future work 

Although some degree of sparsity was expected 

based on the type of shots executed, it has never been 

documented at Z. A sparsity of 23.4% is surprisingly 

low given the number of discoveries made at Z. This 

could be the result of a limited feature vector using only 

diagnostics and subsystems. Although the results show 

some similarity between shots, it does not account for 

target designs, facility configurations, or other potential 

variables that could increase the goodness of clustering.  

Additionally, this paper only explores one 

clustering algorithm. There are other schemes that could 

improve clustering by taking advantage of the sparsity 

or additional interesting findings regarding similarity. 

Additional work is needed to compare the results across 

different clustering algorithms.  
Future research can further the contributions of this 

study by exploring generalizability and goodness of 

small datasets like those collected from Z. Traditionally, 

imperfect datasets and outliers are excluded from 

analysis. However, the approach presented in this paper 

acknowledges that, despite initial impressions of 

dissimilarity, some datasets are actually identical to one 

another when viewed as combinations of smaller 

datasets. Research in selecting acceptable similarity 

values as a function of complexity, variability, and risk 

could help reduce over and/or underfitting of tools such 

as machine learning. 

5. Conclusions 

This paper presents a novel approach to analyzing 

fusion research operations through quantification of 
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similarity for pulsed power shots. The approach consists 

of creating a feature vector of diagnostics and 

subsystems, developing a similarity metric, and 

clustering for similar shots. The similarity algorithm has 

been successful in calculating similarity between shots 

of varying complexity such that comparable shots can 

be used for further analysis.  

Not only can it identify identical shots formerly 

seen as dissimilar, but the timescale to perform this 

activity can also be compressed from several weeks to 

seconds. Furthermore, the outputs of this study were 

used to develop other analytical tools that ingest this 

information and estimate operational needs and risks for 

both future and hypothetical shots. A similar activity 

performed at Z that used to take several months of close 

coordination can now be executed within minutes. Other 

sectors (healthcare, space, and defense) that face similar 

financial, operational, political, and/or resource 

challenges in acquiring data could benefit from this 

approach.   
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