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Abstract

The COVID-19 pandemic has cast a substantial
impact on the tourism and hospitality sector. Public
policies such as travel restrictions and stay-at-home
orders had significantly affected tourist activities
and service businesses’ operations and profitability.
It is essential to develop interpretable forecasting
models to support managerial and organizational
decision-making. We developed DemandNet, a novel
deep learning framework for predicting time series
data under the influence of the COVID-19 pandemic.
The DemandNet framework has the following unique
characteristics. First, it selects the top static and
dynamic features embedded in the time series data.
Second, it includes a nonlinear model which can
provide interpretable insight into the previously seen
data. Third, a novel prediction model is developed
to leverage the above characteristics to make robust
long-term forecasts. We evaluated DemandNet using
daily hotel demand and revenue data from eight cities in
the US between 2013 and 2020. Our findings reveal that
DemandNet outperforms the state-of-art models and can
accurately predict the effect of the COVID-19 pandemic
on hotel demand and revenue.

1. Introduction

The COVID-19 pandemic has substantially
disrupted global economic activities. The stay-at-home
order and business closure policy intended to curb the
COVID-19 transmission have taken an unintended toll
on the economy [1]. As large volumes of business
data become available, it is critical to develop machine
learning models and tools to shed light on the impact
of COVID-19 and policies on demand and revenue
and unpack the future trends [2, 3]. Such machine
learning models should offer both high accuracy and
interpretability to assist managers in making informed
decisions about new business strategies and market
recovery. [4] The fine-grained business data amid crises

are high-dimensional time series observations with
great complexity. They are difficult to be sufficiently
modeled using traditional time series models due to their
dynamic nature and not frequently seen uncertainties
[1, 5, 6]. Furthermore, current deep learning models
contain complex and nonlinear parameters that are often
uninterpretable [7]. In addition, they rarely provide
uncertainty measurement in their predictions, which
becomes a challenge when the data are influenced by
external shocks such as the COVID-19 pandemic [8].

Given that the COVID-19 pandemic has caused a
sudden change in the data trend and seasonality, it
is vital to develop a new deep learning approach for
modeling real-time data under the influence of external
shocks. The new approach should be interpretable and
reliable and would uncover the effects (e.g., correlation
and strengths) of exogenous variables on the interested
variables.

To this end, we propose DemandNet, a novel
deep learning framework that can capture the essential
features in time series data and achieve interpretability.
Specifically, a carefully designed feature selection
mechanism is proposed to filter appropriate information
from the prior pandemic data. Furthermore, we develop
a multilayer neural network to derive the nonlinear
relation of the selected features to specific economic
responses (business and individuals). The new approach
is tested on daily hotel demand and revenue data in eight
major cities in the US between 2013 and 2020. The
results show that the model is able to learn the impact
of COVID-19 from the training set and make accurate
predictions of hotel demand and revenue on unseen (not
trained) time series data.

Contributions. This study includes the following
contributions:

• We design a feature selection mechanism to
select the top static and dynamic features of a
time series. Such capability also enhances the
DemandNet’s ability to capture complex critical
features.
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• We design a multilayer neural network to derive
the nonlinear relation of the selected features to
the predictor. Such nonlinear relation can then
provide interpretable insights about the past and
be an aid in future prediction.

• We developed a novel multi-step time series
prediction model that leverages a dynamic
dropout optimization mechanism to minimize the
prediction uncertainties and provide an optimal
level of confidence in forecasts.

• The framework is capable of predicting newly
added time series data without any previous
training. Such abilities are verified with extensive
experiments.

Organization. The rest of the paper is organized as
follows. Section 2 formulates the demand prediction
problem. Section 3 proposes DemandNet as a prediction
method with dropout optimization for ensuring reliable
uncertainty. Section 4 presents the datasets and metrics,
discusses the experimental results, and conducts an
ablation study. Section 5 summarizes the related works
and Section 6 concludes this paper.

2. Problem Formulation

In this work, we are interested in the task of
time series prediction under the presence of COVID-19
pandemic. Mathematically, given a dataset with K
univariate time series D = {X(1),X(2), . . . ,X(K)}, we

use X(k) = {x(k)
1 ,x

(k)
2 , . . . ,x

(k)
T } to denote a period of

data with length T where X(k) ∈ RT .
For every observation in X(k), the

corresponding covariates are denoted as V(k) =

{v(k)
1 ,v

(k)
2 , . . . ,v

(k)
T }. The covariates include up to M

exogenous variables (e.g., COVID-19 cases, mobility),

where v
(k)
t ∈ RM . As an example, the level of state

policy at time t, can be shown as v
(k)
t ∈ R; otherwise,

v
(k)
t = 0 indicates that there are no state policy at time

t. Hence, given the previous τ observations X̂
(k)
t−τ+1:t =

{(x(k)
t−τ+1,v

(k)
t−τ+1), (x

(k)
t−τ+2,v

(k)
t−τ+2), . . . , (x

(k)
t ,v

(k)
t )},

the objective is predict till the H-th horizon time step

Y = x
(k)
t+1:t+H . To this end, the optimization problem

of DemandNet is defined as below:

Φ∗ = argminΦ L
(
FΦ(X̂),Y

)
(1)

where Φ are the parameters of the non-linear function
F(X) and L is the loss function.

3. DemandNet Framework

We propose the DemandNet framework to model
and predict the effect of the COVID-19 pandemic on the
target times series as shown in Figure 1. There are three
main components in DemandNet: First, DemandNet
uses a feature selection mechanism to select the top
correlated features (see Section 3.1). Second, the
nonlinear modeling of hotel sales is derived based on
anti-contagion policy (see Section 3.2). Third, the
prediction model uses the selected features and the
derived nonlinear model to provide robust and reliable
multi-step predictions (see Section 3.3).

3.1. Feature Selection

Many frameworks designed for pandemic time series
data do not incorporate top important features about
their subjects [9]. Research shows that a set of important
features can improve the learning process [10, 11].
However, a great number of features can lead to the
curse of dimensionality, which limits the model’s ability
to incorporate essential features. To resolve this issue,
we develop a feature selection mechanism that retains
the important features.

With the current advances in feature extraction
strategies, deriving a complete set of information from a
pandemic and its impact on hotel demand and revenue is
challenging. Often the relationship between the targeted
variable and exogenous variables is unknown. It also
is difficult to assume that all information is essential
and relevant [7]. Therefore, we need a specific design
for feature selection that filters the appropriate related
information. To achieve this objective, we develop a
two-step feature selection mechanism to select each time
series’s top static and dynamic features. The detailed
procedure includes two steps:

First, our feature selection mechanism adopts
Spearman rank correlation to filter the non-monotonic
static features. Compared with Pearson correlation that
evaluates the linear relationship of features, Spearman
rank correlation provides the monotonic relation of
features that tend to change together but not at a constant
(i.e., linear) rate.

We start by deriving the correlation between every
two sets of static features a1:n and b1:n, each with n
number of observations. Both pairs of features will
then be ranked in ascending order based on their raw
value. For identical values, we assign a rank equal to
the average of their positions in the ascending order. To
this end, the correlation coefficient rS of each pair can
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Figure 1. DemandNet consists of three main components: (1) the feature selection mechanism which provides

the top static and dynamic features; (2) a nonlinear model which provides interpretability and captures the effect

of the selected features; (3) a prediction model which reports the estimated forecast.

be calculated as:

rS =

∑n
i=1

{
(ai − ā) ·

(
bi − b̄

)}√∑n
i=1 (ai − ā)

2 ·
√∑n

i=1

(
bi − b̄

)2 , (2)

where both ā and b̄ are the average ranks. The coefficient
can yield a value−1 ≤ rS ≤ 1, which can be interpreted
as having a minimum association (rS = 0) or as a perfect
monotonic relationship (rS = ±1).Then, the feature
selection mechanism removes the weak to moderate
correlated features based on a region suggested by [12]
(i.e., −0.3 < rS < 0.3).

The exemplary Spearman Rank Correlations are
shown in Figure 2, where it illustrates a heatmap of
correlations from a set of static state-specific data.
Such a correlational heatmap can be used to develop
a profile for each time series and further improve
the prediction accuracy as the model has access to
important state-level economic, social, and health data
[7]. Moreover, such correlations enable DemandNet to
use highly correlated features for developing profiles for
location-specific time series data. To provide statistical
inference, entropy-based correlations can also be a good
candidate if there we are given greater sample size.

Second, complex time series data often contain
critical features during the presence of external shocks
that are hidden even by the most advanced methods. To
resolve this issue, we stack Long-Short Term Memory
(LSTM) layers to form serve as a Stacked Autoencoder.

Specifically, the LSTM layers encode the time series
into its top essential dynamic features (See Figure
1). The input signal is reconstructed at the output
through an intermediate layer with a reduced amount
of neurons. The middle (smallest) layer is chosen as
a dense layer to hold the essential features needed for
a proper reconstruction. Intuitively, the model retains

the deep and abstract features in the dense layer so that
the reconstruction would be as close as possible to the
original input. Note that we stack LSTMs layers to
capture complex abstract information that are difficult
to gather by shallower layers.

The encoder maps the input x̂ ∈ Rd to the encoded
features u ∈ Rh in the encoding step where h is the
number of neurons in the encoded features layer. Ideally,
the number of neurons in the encoded feature (u) should
be chosen smaller than the stacked LSTM layers, so the
network is compelled to keep only the top important
abstract information. To this end, the decoder maps
the encoded features to a reconstructed z ∈ Rd in the
decoding step.

We initialize the weights of the encoder and decoder
randomly. Mathematically, the encoder B and decoder
D are defined as:

U = B
(
wuX̂ + bu

)
(3)

Z = D (wzU + bZ) (4)

where wu and wz denote the encoder and decoder
weights. Coupled with bu, and bz that denote the bias
of hidden and output units.

Then, we train the encoder-decoder network to
derive the optimized parameters so that the error
between x̂ and z gets minimized, i.e.,

argmin
wx,wz,bx,bz

error(X̂,Z). (5)

The training process is an iterative update of the
parameters w and b, an update by which the error
between the input e series and the reconstructed one at
the network’s output is steadily reduced until it is below
a preset threshold. An effective training results in a
decreased error, as displayed in Eq. (5), which ensures
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Figure 2. Heatmap of Spearman rank correlation for

state-level static features. The feature selection

mechanism removes the weakly correlated features.

the proper internal features are present as the encoded
features u.

Thus, the two-step feature selection procedure
provides DemandNet with top features that can be
used in the nonlinear model and multi-step time series
prediction methods discussed in the next sections.

3.2. Nonlinear Modeling

Based on the top features selected in the previous
section, we can now develop nonlinear models to
discover the correlation of these features to the target
data. Specifically, we are using a multilayer neural
network to serve as a nonlinear model. Other than the
interpretability, the nonlinear model can then be used
as a control mechanism to improve the robustness of
multi-step forecasts.

The multilayer NN is composed of an input layer
(), hidden layer (h), and an output layer (y), where the
hidden layer j can be represented as follows:

hj = G(wjx̂ + bj), (6)

where wj , bj , uj denote the weight, bias, and output of
the jth hidden layer respectfully. Moreover, G denotes a
nonlinear function (e.g., sigmoid).

The modeling process starts by assigning random
weights and biases for the hidden layers. Next, we feed
the network our normalized data through the input layer,
which then gets delivered to the hidden layers. Note that
the network should be designed to avoid extreme values
of weights to optimize the fit. Failure to do so will result

in predictions that will be unstable for extrapolation.
Hence, we use a penalty function to obtain a more stable
and smooth fit. To this end, the weights and biases of the
hidden layers are chosen to minimize the following loss
function:

L(y, y∗, w) =
1

n

n∑
i=1

(yi − ŷi)2 + λ

m∑
j=1

w2
j , (7)

where y is the predicted output, y∗ is the original output,
and λ is used as the weight decay so that the weights
would not hold extreme values. Consequently, the
weights of the network are updated at every e iteration
by the following:

wj,e ←− wj,e−1 − η
∂L(y, y∗, w)

∂wj
, (8)

where η is the network’s learning rate and is used to
control the rate of changes to weights. Note that the
updated network weights are hard to be interpretable
just by their raw values. However, we can provide
interpretability by observing the effect of the features
on the target. This can be done by capturing the
estimated target based on the marginal changes on one
or more features as other features are held fixed. Upon
construction of the nonlinear model, we can estimate
the parameters of such model through the estimation
of polynomial coefficients. We advise the use of
such estimation to further reduce the computation time.
Consequently, such nonlinear relation between target
and features provides interpretability on the role of
features which can then be leveraged in the forecast
model.

As an example, we show the effect of each feature
individually while keeping the other predictors fixed at
their mean values. As seen in Figure 3, the effect of
features is reported by keeping the other features at
their mean value while slightly changing the predictor
of the nonlinear model. What stands out in Figure 3
is the nonlinear model’s ability to derive the nonlinear
relation of multiple features to the target (e.g., hotel
revenue). Moreover, one of the key nonlinear relations
is the state’s closure and opening policies over time for
individuals and businesses. Such nonlinear relation of
policy holds great importance in multi-step forecasts
where the DemandNet needs to apply the policies in a
dynamic manner for the task of multi-step prediction.
To this end, DemandNet is able to store such nonlinear
relations and leverage them for future predictions.
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Figure 3. Nonlinear model of hotel revenue by the

natural log of daily new cases and closure policy for

the state of Florida. The closure policy changes from

open (0) to the closure of all counties in a state (1).

3.3. Prediction Model

The two main outcomes of the previous components
are the top correlated features of data and the nonlinear
relation of policies with respect to the prediction
targets. Thus, such information can be leveraged
for the task of multi-step time series prediction.
Particularly, DemandNet feeds the selected features
into its prediction model and uses the state’s nonlinear
relation with the prediction target in its control
cell, namely, DemandCell. As shown in Figure 4,
DemandCell is employed on top of well-known
recurrent cells like LSTM. Specifically, it is designed to
control the effect of state anti-contagion policies for the
task of multi-step prediction, where the impact of such
policies could have a long-lasting effect on consumer
spending. The detailed procedure for the multi-step time
series prediction is described below:

Given the input x̂, the multi-step time series

prediction model is denoted as y = Fw(x), where x,
y, and w stand for input data, output prediction, and
model weights. As shown in Figure 4, the modelFw can
consists of any RNNs that deals with vanishing gradient
problem such as LSTMs [13] or Gated Recurrent
Networks (GRUs) [14]. GRUs are similar to LSTMs
in a manner that the forget and input gates of LSTM
get combined into a single “update” of GRUs gate.
Additionally, the cell and hidden state are combined into
the “reset” gate, which makes GRUs more efficient than
LSTMs in terms of complexity.

We then employ DemandCell on top of the
mentioned RNNs to control the dynamic anti-contagion
policies over time. As shown in 4, there is a skip
connection between the input and DemandCell, where
the information of the state’s policy is used to control
the output of the network. At the time step t where
the prediction is required, the framework uses a skip
connection to feed DemandCell with Pt:t+H , which
includes a vector of variables containing information
about policies for H days ahead. Note that DemandCell
leverages the nonlinear model derived from the previous
section to estimate the output accordingly based on the
newly fed policies. Among the anti-contagion policies,
we leverage the derived nonlinear relation of closure or
reopening policy. Note that for predicting an unseen
time series with unknown policies, such policies can be
applied as a dummy variable to leverage the previously
derived effects from every other state.

Next, it is important to equip the model to report
the level of uncertainty so that the performance can
be evaluated with trust for multi-step prediction. To
this end, DemandNet uses the Monte Carlo Dropout
mechanism to provide uncertainty in each of its
predictions. The Monte Carlo Dropout is implemented
after every recurrent (LSTM or GRU) layer, i.e.,
randomly dropping out each hidden unit with a certain
probability of p. The probability of dropout varies
from zero to one and determines the likelihood of
connection from the hidden layer between RNN layers.
The probability of this dropout is dynamically optimized
for each prediction, and as the dropout is applied
at random, each predicted value would differ from
each other. Specifically, the prediction of the original
target data y∗ is done with the previously trained
F̂w, it generates K outputs y to obtain the prediction
distribution

{
y(1), . . . ,y(K)

}
. By taking the mean of

the derived distribution, we have:

ȳ =
1

K

K∑
k=1

y(k) (9)

Then, the variance of the prediction distribution
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Figure 4. Multi-step time series prediction model.

DemandCell is developed on top of existing RNNs

(LSTMs or GRUs) to control the vector of dynamic

state policies Pt and provide confidence in its final

prediction (ȳt).

quantifies the prediction confidence:

Var (ŷ) =
1

K

K∑
k=1

(
y(k) − y∗)2 (10)

To that end, we can use the mean of the distribution
as a point prediction and its variance to report such
prediction’s confidence.

4. Experiments

This section reports the conducted experiments on
DemandNet. Specifically, we provide a summary of
the datasets in Section 4.1. Then, the baseline methods
and evaluation metrics are reported in Sections 4.2 and
4.3 respectfully. We then specify experimental settings
in Section 4.4. Finally, we report the results of the
experiments and discuss their interpretation in Section
4.5.

4.1. Datasets

In this experiment, we are selecting four real-world
time series datasets. Our main dataset contains the hotel
demand and revenue of 8 major tourist destinations in
the US (e.g., Orlando, Los Angeles, ...). The dataset is
provided by [15] and contains daily occupancy, demand,
and revenue of the upper-middle class hotels.

The second dataset contains the daily report of new
COVID-19 cases, deaths gathered by John Hopkins
University [16].

The third dataset contains the mobility dataset

gathered by Google [17], which provides the relative
changes of the resident’s mobility prior to the pandemic
(January 2020) in high-risk environments such as public
transport and workplaces.

To enrich the datasets, we gathered dynamic
exogenous variables such as the state’s closure/open
policy. We also gathered various static features such as
the number of hospitals, GPD, and population, which
were previously shown in Figure 2.

4.2. Methods for Comparison

The baseline methods for comparison include:

• Exponential Smoothing [18]: A traditional time
series prediction method that uses an exponential
window function to provide a smooth prediction.

• ARIMA [6]: A classical autoregressive integrated
moving average method for time series prediction
and is often used as a baseline.

• AE-LSTM [19]: An LSTM network that uses
autoencoder for deep feature extraction and
provides a deterministic prediction.

• Extreme-Event Forecasting [20]: A time series
prediction model that uses Monte Carlo Dropout
to extract the deep features of time series and
provides uncertainty prediction.

• MQ-Transformer [21]: A transformer-based deep
learning model that benefits from static features
and future predefined labels. It also provides a
state-of-art prediction in multiple datasets.

4.3. Metrics

For providing a comprehensive evaluation, we
adopt three different evaluation metrics. The first
two evaluation metrics are mean absolute error
(MAE) and root mean square error (RMSE) that are
scale-dependant measures. MAE is denoted as MAE =
1
N

∑N
i=1 |yi − ŷ∗i | , and RMSE is defined as RMSE =√

1
N

∑N
i=1 (yi − y∗t )

2 where yi is the predicted value

and y∗i is the original value. The third evaluation
metric is the standard deviation (SD) that is correlated
to the confidence of prediction and is denoted as

SD =
√

1
N

∑N
i=1 (yi − ȳ)

2 where ȳ is the mean of the

predicted distribution.
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Table 1. Description of Datasets Used in Experiments.

Dataset Observations Min Max Mean SD

Hotel Revenue 25803 (Daily) 88.9K $ 4.34M $ 1.86M $ 691K $
Hotel Demand 25803 (Daily) 1174 26927 5156 18799

Hotel Occupancy 25803 (Daily) 7.57% 99.09% 18.44% 74.01%

Table 2. Hyperparameters of DemandNet.

Parameter Values

Batch Size 128
Learning Rate 1× 10−5

Weight Decay 1× 10−6

Multilayer NN Layers 2
RNN Hidden Units 128
RNN layers 2
Epochs 100
Training Time 10m

4.4. Experimental Settings

The models are implemented using Python 3.7 and
tested on a cloud workstation that contains four Intel
Xeon 2.3GHz CPUs, 32GB RAM, and one Nvidia P100
GPU. We conducted a grid search over all tunable
hyperparameters on the held-out validation set for
baseline methods and our proposed method and reported
the results (Table 2).

From the baseline methods, we applied the
widely used Exponential Smoothing and ARIMA
by using Statsmodels library [24]. The nonlinear
model and the prediction model are implemented by
the TensorFlow [25] library. The hyperparameters
of all models are tuned properly to provide the
least amount of error in their prediction accuracy.
Specifically, we conducted a grid search over all tunable
hyperparameters on a 10% held-out validation set for
the baseline methods and our framework. For both
variations of DemandNet, the input window’s search
ranges are chosen from {4, 8, 16, 32}. Note that
enlarging the time window for more than 32-time steps
will result in a marginal improvement in accuracy but
substantially increase the training time for a dataset with
a high dimension of features. The dimensions of the
multilayer NN and RNN hidden layers are chosen from
{32, 64, 128, 256}, and the number of layers is chosen
from {1, 2, 4, 8}. Note that enlarging such numbers
would increase the computation time.

Among NN models, the batch size and training
epoch are set to be 128 and 200, respectively. We
used the same set of essential features extracted

from the proposed feature selection mechanism for
all baseline methods except for the ARIMA and
Exponential Smoothing models, where they are not
able to benefit from multidimensional features. Both
variations of DemandNet can change the dropout
probability dynamically for each prediction, and the SD
is calculated based on K = 100 predictions.

In this study, we propose two sets of experiments.
The first experiment is a standard 80 − 20 multi-step
time series prediction evaluation method and is designed
to evaluate the performance of DemandNet and baseline
models. To this end, our dataset is divided into three
subsets: training set (80%), validation set (10%), and the
testing set (10%). The second experiment is designed
to test the performance of DemandNet exclusively on
completely untrained time series data. This experiment
is applicable to evaluate the framework’s performance
when a newly added set of time series data contains
unknown features, or we need to abstain from the
computational cost of training.

For both experiments, the performances of all
models are not limited to one state or category, but
the average observed losses for all test states and all
six prediction categories. In this manner, our report is
sufficient to justify the model’s performance for the total
US consumers.

All architecture hyperparameters are set in a
fairground. We used the same input features for the
baseline methods except for the ARIMA model, which
does not benefit from the multidimensional features.

4.5. Experimental Results and Discussions

To demonstrate DemandNet performance’s
consistency, we provide two comprehensive evaluations:
the aforementioned 80 − 20 testing (i.e., 80% trained)
and the testing on a set of entirely untrained data. In
both cases, we calculated the MAE, RMSE, and SD and
discussed their interpretation.

Table 3 showcases the performance of DemandNet
to compare with baseline in 80-20 testing phases.
Compare to the baseline model, DemandNet-GRU
achieved the highest accuracy for all horizon windows.
However, the difference in its accuracy increases when
the horizon forecast window increases.

Note that ARIMA and Exponential Smoothing
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Table 3. Performance comparison of time series prediction methods.
Forecast Horizon (Days)

Methods Metrics 10 20 40 80
Exponential Smoothing MAE 0.09423 0.12412 0.23631 0.53242
[22] RMSE 0.12324 0.15634 0.25341 0.55634
ARIMA MAE 0.05853 0.11487 0.23873 0.45387
[23] RMSE 0.07103 0.13268 0.25585 0.48695
EE-Forecasting MAE 0.04548 0.04695 0.05987 0.06122
[20] RMSE 0.04878 0.04921 0.06548 0.06587

SD 0.00439 0.00527 0.00648 0.00631
MQ-Transformer MAE 0.02210 0.02261 0.03352 0.03731
[21] RMSE 0.02831 0.03724 0.04112 0.04312

SD 0.00450 0.00551 0.00553 0.00605
DemandNet-LSTM MAE 0.01257 0.01655 0.01852 0.02263
(Ours) RMSE 0.01442 0.01831 0.02178 0.02434

SD 0.00356 0.00351 0.00461 0.00612
DemandNet-GRU MAE 0.01302 0.01357 0.01424 0.02048
(Ours) RMSE 0.01504 0.01512 0.01734 0.02343

SD 0.00398 0.00348 0.00451 0.00568

models are designed to provide deterministic results
[10]. In contrast, EE-Forecasting and MQ-Transformer
can provide the multi-step forecast with a level of
confidence for each day. Among the baseline methods,
the Exponential Smoothing and the ARIMA model’s
error increase significantly as the forecast horizon
increases. This is because both models are not able
to leverage the essential features and adapt properly
to sudden changes during the pandemic. Moreover,
both methods cannot employ the essential features
provided by DemandNet because they can only employ
the target time series. Among NN-based models,
only DemandNet and EE-Forecasting [20] benefit from
the Monte Carlo Dropout mechanism. However, the
EE-Forecasting is designed to use a static value of
dropout probability through each experiment, while
DemandNet adjusts this value dynamically for every
forecast at each time step. Considering the selected
features are the same for all these methods, we believe
the lower SD is due to the dynamic dropout probability
mechanism in DemandNet’s prediction model. Overall,
the two proposed models, DemandNet-LSTM and
DemandNet-GRU, consistently outperform the baseline
NN models [21, 20], especially under longer horizon
windows (40 and 80 days) due to their ability
to incorporate state closure/open policy in their
prediction. Considering all three evaluation metrics,
DemandNet-GRU is best suited for the US consumer
spending dataset due to reported higher confidence and
accuracy.

The second experiment is designed to evaluate the
performance of DemandNet on unseen and untrained

Figure 5. A sample forecast of DemandNet. Hotel

sales of Orlando is the target. DemandCell aids in

prediction of sudden drop during the COVID-19

pandemic.

data exclusively. Testing on untrained data, as shown
in Table 4, holds importance when a new dataset
is introduced to the network and might often hold
unknown features. To this end, we kept away the
complete data of four randomly chosen states in all three
categories from the networks during the training phase
and tested the performance of DemandNet on them. We
believe that compared to 80-20 testing, such a testing
procedure provides more significant insights into the
model’s robustness.

Compared to 80-20 testing in Table 3, the reported
error for unseen data is higher and has less confidence
in the forecasts for all forecast horizons. This is due to
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the model’s inability to train on the kept away time series
and not being able to follow the trend properly. Between
the two variations of DemandNet, DemandNet-LSTM
provides higher accuracy at smaller horizons (10 days)
but falls behind DemandNet-GRU in longer horizons.
However, we believe that overall, DemandNet-GRU is
a more robust model as it handles longer horizons with
greater accuracy and less uncertainty.

Table 4. Performance of DemandNet-LSTM and

DemandNet-GRU on completely unseen data.
Forecast Day Horizon

Method Metrics 10 20 40 80
LSTM MAE 0.03464 0.03645 0.04341 0.05653

RMSE 0.03754 0.03883 0.04524 0.05836
SD 0.00531 0.00643 0.00736 0.00833

GRU MAE 0.03645 0.03345 0.04234 0.05533
RMSE 0.03853 0.03953 0.04475 0.05765
SD 0.00544 0.00653 0.00733 0.00856

Figure 5 demonstrates the prediction error of a
typical case of a completely untrained time series dataset
from one state (Florida). Both DemandNet-LSTM
and DemandNet-GRU predictions follow the observed
time series with great accuracy in the first days of
the forecast horizon. However, the predictions’ errors
increase as the horizon windows increase comparably to
the early days of the predictions. As shown in Figure
5, the majority of loss occurs during the far horizon
and is due to the framework’s inability to predict the
trend accurately. Compared to the 80-20 experiments,
using the second procedure (unseen testing) can be an
acceptable tradeoff when a newly added time series
requires punctual prediction or exogenous features are
unavailable.

5. Related Works

There have been a surge in the development
of general neural network (NN) frameworks for
investigating the impact of COVID-19 on time series
business data [26, 27, 28, 29]. The majority of these
studies leverage NN prediction models to handle the
large-scale nature of pandemic data. To derive the
nonlinear properties of such data, various nonlinear
functions need to be fitted [5]. Such a process requires
a great amount of effort and is typically avoided for
large-scale time series data with dynamic properties.

The authors in [7] proposed a transformer framework
that achieves a state-of-art model for multi-horizon
prediction for various complex time series datasets.
Their method leverages static covariates and known
inputs to improve its performance. Furthermore, they
employ a gating mechanism that allows their framework
to handle large-scale datasets. Additionally, they

leverage a temporal processing procedure where it
enables the network to capture the long-and short-term
relationships of both observed and known inputs (e.g.,
days of a week). Moreover, their model employs a
seq-seq layer for short-term and attention mechanisms
for long-term dependencies. However, our work
is different from [7] due to the feature selection
mechanism to derive highly correlated static features
so that the network is able to provide greater accuracy
and confidence in the predictions. Another practical
advantage of DemandNet is that it provides a more
interpretable and simpler nonlinear prediction model,
which is far less computationally expensive than the
transformers.

6. Conclusion

We propose a novel deep learning framework,
DemandNet, to provide a robust multi-step time
series forecast amid the COVID-19 pandemic. A
feature selection mechanism is proposed to estimate
the correlation between the COVID-19 pandemic
and time series input data. This deep learning
framework provides valuable insight into the social,
health, and economic static features that affect the
market demand, business operations, and COVID-19
cases. A multilayer neural network is then designed
to derive the nonlinear relation of the key features to
the observed input. Our results from the nonlinear
model show that the negative impact of business closure
policy on hotel demand and revenue to be higher
than other location-specific exogenous variables (e.g.,
google mobility and COVID-19 daily new cases).
Consequently, a novel RNN is developed to leverage
the selected features and nonlinear model to provide
a robust prediction with a high level of confidence.
We evaluate the performance of DemandNet based on
hotel sales revenue, demand, and occupancy. Compared
with the state-of-the-art baseline methods, DemandNet
provides superior prediction accuracy with a higher
level of confidence. Our model can be expanded to
model other business time series data under the influence
of external shocks. Regarding future work, we plan
to apply the DemandNet framework to understand the
effect of various intervention policies on the COVID-19
transmissions in worldwide cities.

Acknowledgment

This work is supported by the US National Science
Foundation under grants No. 1937833 and 2028481.

Page 1757



References

[1] A. Brodeur, D. M. Gray, A. Islam, and S. Bhuiyan, “A
literature review of the economics of covid-19,” 2020.

[2] S. Hsiang, D. Allen, S. Annan-Phan, K. Bell, I. Bolliger,
T. Chong, H. Druckenmiller, L. Y. Huang, A. Hultgren,
E. Krasovich, et al., “The effect of large-scale
anti-contagion policies on the covid-19 pandemic,”
Nature, vol. 584, no. 7820, pp. 262–267, 2020.

[3] S. R. Baker, R. A. Farrokhnia, S. Meyer, M. Pagel, and
C. Yannelis, “How does household spending respond to
an epidemic? consumption during the 2020 covid-19
pandemic,” tech. rep., National Bureau of Economic
Research, 2020.

[4] A. Kurmann, E. Lale, and L. Ta, “The impact of covid-19
on us employment and hours: Real-time estimates
with homebase data,” May). http://www. andrekurmann.
com/hb covid, 2020.

[5] M. Längkvist, L. Karlsson, and A. Loutfi, “A review
of unsupervised feature learning and deep learning
for time-series modeling,” Pattern Recognition Letters,
vol. 42, pp. 11–24, 2014.

[6] G. E. Box and D. A. Pierce, “Distribution of residual
autocorrelations in autoregressive-integrated moving
average time series models,” Journal of the American
statistical Association, vol. 65, no. 332, pp. 1509–1526,
1970.

[7] B. Lim, S. O. Arik, N. Loeff, and T. Pfister, “Temporal
fusion transformers for interpretable multi-horizon time
series forecasting,” arXiv preprint arXiv:1912.09363,
2019.

[8] S. Makridakis, R. J. Hyndman, and F. Petropoulos,
“Forecasting in social settings: The state of the art,”
International Journal of Forecasting, vol. 36, no. 1,
pp. 15–28, 2020.

[9] F. Petropoulos and S. Makridakis, “Forecasting the
novel coronavirus covid-19,” PloS one, vol. 15, no. 3,
p. e0231236, 2020.

[10] I. Chung, S. Kim, J. Lee, K. J. Kim, S. J. Hwang,
and E. Yang, “Deep mixed effect model using gaussian
processes: A personalized and reliable prediction for
healthcare,” arXiv preprint arXiv:1806.01551, 2018.

[11] D. Zimbra, A. Abbasi, D. Zeng, and H. Chen, “The
state-of-the-art in twitter sentiment analysis: A review
and benchmark evaluation,” ACM Transactions on
Management Information Systems (TMIS), vol. 9, no. 2,
pp. 1–29, 2018.

[12] H. Akoglu, “User’s guide to correlation coefficients,”
Turkish journal of emergency medicine, vol. 18, no. 3,
pp. 91–93, 2018.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8,
pp. 1735–1780, 1997.

[14] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio,
“Empirical evaluation of gated recurrent neural networks
on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[15] “Data-driven solutions empowering the hospitality
industry.”

[16] E. Dong, H. Du, and L. Gardner, “An interactive
web-based dashboard to track covid-19 in real time,” The
Lancet infectious diseases, vol. 20, no. 5, pp. 533–534,
2020.

[17] A. Aktay, S. Bavadekar, G. Cossoul, J. Davis,
D. Desfontaines, A. Fabrikant, E. Gabrilovich,
K. Gadepalli, B. Gipson, M. Guevara, et al., “Google
covid-19 community mobility reports: Anonymization
process description (version 1.0),” arXiv preprint
arXiv:2004.04145, 2020.

[18] C. Bergmeir, R. J. Hyndman, and J. M. Benı́tez,
“Bagging exponential smoothing methods using
stl decomposition and box–cox transformation,”
International journal of forecasting, vol. 32, no. 2,
pp. 303–312, 2016.

[19] A. Sagheer and M. Kotb, “Unsupervised pre-training of
a deep lstm-based stacked autoencoder for multivariate
time series forecasting problems,” Scientific Reports,
vol. 9, no. 1, pp. 1–16, 2019.

[20] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl,
“Time-series extreme event forecasting with neural
networks at uber,” in International Conference on
Machine Learning, vol. 34, pp. 1–5, 2017.

[21] C. Eisenach, Y. Patel, and D. Madeka, “Mqtransformer:
Multi-horizon forecasts with context dependent
and feedback-aware attention,” arXiv preprint
arXiv:2009.14799, 2020.

[22] A. M. De Livera, R. J. Hyndman, and R. D. Snyder,
“Forecasting time series with complex seasonal patterns
using exponential smoothing,” Journal of the American
statistical association, vol. 106, no. 496, pp. 1513–1527,
2011.

[23] R. J. Hyndman, H. Booth, and F. Yasmeen, “Coherent
mortality forecasting: the product-ratio method with
functional time series models,” Demography, vol. 50,
no. 1, pp. 261–283, 2013.

[24] S. Seabold and J. Perktold, “Statsmodels: Econometric
and statistical modeling with python,” in Proceedings of
the 9th Python in Science Conference, vol. 57, p. 61,
Austin, TX, 2010.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16),
pp. 265–283, 2016.

[26] M. Fathi, M. Nemati, S. M. Mohammadi, and
R. Abbasi-Kesbi, “A machine learning approach based
on svm for classification of liver diseases,” Biomedical
Engineering: Applications, Basis and Communications,
vol. 32, no. 03, p. 2050018, 2020.

[27] M. Nemati, J. Ansary, and N. Nemati, “Machine-learning
approaches in covid-19 survival analysis and
discharge-time likelihood prediction using clinical
data,” Patterns, vol. 1, no. 5, p. 100074, 2020.

[28] S. Lalmuanawma, J. Hussain, and L. Chhakchhuak,
“Applications of machine learning and artificial
intelligence for covid-19 (sars-cov-2) pandemic: A
review,” Chaos, Solitons & Fractals, p. 110059, 2020.

[29] M. Nemati, J. Ansary, and N. Nemati, “Covid-19
machine learning based survival analysis and discharge
time likelihood prediction using clinical data,” Available
at SSRN 3584518, 2020.

Page 1758


