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Abstract

Industrial systems such as power networks are
continuously monitored by human experts who quickly
identify potentially dangerous situations by their
experience. As current energy trends increase the
complexity of day-to-day grid operations, it becomes
necessary to assist experts in their monitoring tasks.
This paper proposes an interactive approach to
create human-readable analytical expressions that
describe physical phenomena by their most impacting
quantities. We present an interactive platform that
brings experts in the training loop to guide the
expression search using their expertise. It uses an
evolutionary approach based on Probabilistic Grammar
Guided Genetic Programming with expertly created and
updated grammars. Interactivity is multi-level: users
can distill their knowledge both within and between
evolutionary runs. We proposed two usage scenarios
on a real-world dataset where the non-interactive
algorithm either provides (case 1) or not (case 2)
satisfactory solutions. We show improvements regarding
the solution’s precision (case 1) and complexity (case 2).

1. Introduction and motivations

Inferring a symbolic representation from a set of
observations is one of the human brain’s fascinating
abilities. It makes it possible to represent data
information in a condensed way and provides a better
understanding of complex phenomena, especially in
physical sciences. Today, the problems tackled in
science are even more challenging and often require an
advanced level of specialization. Due to this increasing
complexity, finding a direct mathematical formulation to
obtain data insights is not straightforward, even with the
large amount of data generated in modern experiments.
The use of interactive Human-in-The-Loop (HiTL)
approaches could then leverage the power of the
machine and human intelligence to create these
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condensed representations.

Like in scientific discovery, industrial processes
control and supervision face similar issues regarding
implicit knowledge formalization. As these processes
are intrinsically complex systems, they are heavily
monitored by sensor networks to prevent them from
going beyond their operating limits [1]. From these
measurements, many complex simulation tools have
been set up to assist operators’ workload carrying out
this monitoring. However, in cases such as one of
the power systems we are focusing on in this paper,
human expertise is still required, and heavily-trained
operators inevitably perform in-depth analyses of the
situations measured by these sensors. Consequently,
a large proportion of domain knowledge is implicitly
held by humans. In addition to that, electric power
systems operation is also facing many challenges today.
From the increase in renewable resources connected to
the grid to the change of users’ consumption habits
and the development of European interconnections,
Transmission System Operators (TSOs) have noticed
an increase in real-time operations’ difficulty [2]. For
example, electrical power lines conducting electricity
from production to consumers are operated closer
to their physical limit, and thus, operators have
to go through the network measurements analysis
faster to keep time to handle more critical situations.
Consequently, TSO companies need to develop new
technical solutions to tackle the operators’ new peak
activities. As done today, the information synthesis
from the sensor’s measurements is computer-assisted
by some hand-crafted aggregation indicators and
computationally massive simulations. However, these
simulations are quite long to compute and cannot
cover all possible future forecasts. Operators, in
addition, historically created indicators using their
expert knowledge, but as is, indicators are not exhaustive
and can not confirm the safety of all situations. Thus,
automatically finding analytical solutions from grid
measurements would help operators to perform this
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information synthesis in the future.  Here again,
HiTL approaches would allow condensing complex
dependencies between huge amounts of variables into
easily interpretable expressions. Domain experts could
then complete and improve the proposed interpretation
of the phenomenon in light of their knowledge.

The artificial intelligence research community has
long been working on automatic methods to solve the
problem of explicit formulas extractions, also known
as symbolic regression (SR)[3]. More precisely, SR is
a type of regression analysis that searches a space of
mathematical expressions to find a closed-form equation
that best fits a given set of observations. Nowadays, SR
is still mainly performed using Genetic Programming
(GP) [4], a type of Genetic Algorithms (GA) which
outputs symbolic expressions. However, standard GP
algorithms tend to be slow to converge because of
the large search space they have to explore. To avoid
this drawback and tackle the challenges mentioned
above, we designed a solution based on Probabilistic
Grammar-Guided Genetic Programming (PG3P), an
extension of Grammar-Guided Genetic Programming
(G3P) which wuses a Probabilistic Context-Free
Grammar [5]. Grammatical rules are weighted in order
to constrain the search and improve the convergence
time. As PG3P provides human-readable solutions, we
propose an interactive platform where human experts
can directly analyze intermediary results, propose
expertly created solutions, and provide feedback if
necessary. Grammar is also constructed and updated
interactively, which allows the user to describe his
expertise in a notation the algorithm can handle.
Interactivity here allows the domain experts to guide
the search towards what is regarded as the most relevant
region of the search space, reducing the computational
effort required to infer highly relevant solutions.

Our contributions are the following :

* We propose an interactive process based on PG3P,
which brings the expert into the learning loop
twice to update the grammar both inside the
learning loop and in-between evolutionary runs.

* We propose a web-based platform to extract
domain knowledge through various direct
interactions between experts and symbolic
expressions.

e We propose two interactive scenarios on a
real-world dataset and show that our expert HiTL
approach improves the solution and reduces the
complexity compared with non-interactive runs.

The rest of this paper is organized as follows. First,
Section 2 summarize related state-of-the-art works.

Section 3 gives a global data description. In Sections
4 and 5, we describe the proposed method by detailing
both the algorithm methodology and the user interface.
Section 6 provides two interactive scenarios, and some
results obtained using this framework, and finally,
Section 7 offers concluding remarks and perspectives.

2. Related Works
2.1. Feature extraction

In real-world applications, data we want to extract
knowledge from are often initially measured in a high
dimensional space, which redundant sparse information
tends to lie on low dimensional manifolds and as such
can be synthesized into a representation with fewer
dimensions. We refer to the task of finding this manifold
as Dimensionality Reduction (DR). More formally,
given a set of observations with a high dimensionality
D, DR finds a new representation with d dimensions,
such that d << D. DR techniques are generally divided
into feature selection (FS) and feature extraction (FE).

While FS aims at selecting a subset of the most
relevant fetures [6], FE focus on forming a new feature
space from a combination of some initial features.
FE methods can either be linear or non-linear (NL).
Linear methods like PCA[7] are often seen as more
interpretable, but they also lack expressivity, which in
many cases prevents them from capturing the underlying
data structure. On the contrary, when expressiveness
is favored, NL methods can offer more detailed
representation. They offer diverse purpose, such as
extending linear FE to NL-FE[8], visualizing data [9]
or encoding data as distributions [10].

NL methods also have some drawbacks: mainly the
difficulty of interpreting them and the complexity of
adding user knowledge. Thus, we will describe in more
detail Grammar-Based methods in Sections 2.2 and 2.3,
which propose an interesting alternative to performing
interpretable NL-FE with prior knowledge.

2.2. Symbolic Regression

When creating one feature (¢ = 1), NL-FE with
interpretable combinations can be done by Symbolic
Regression (SR). SR is defined as the task of finding
a symbolic equation that best matches a set of inputs.
It was initially implemented using GP methods [11] and
found a wide range of applications [12, 13]. Today in the
Deep Learning community, new approaches propose,
for example, to encode the equation in the neural
network structure and activation functions [14, 15],
to use Recurrent Neural Networks to predict a string
equation [16] or use Deep Reinforcement Learning (RL)
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as a search engine [17]. However, those methods are
often data-hungry, and few of them manage to include
prior knowledge through sophisticated constraints, such
as those included by context-free grammars [18].
Regarding RL approaches, SR tasks use sparse delayed
rewards, as the metric is only evaluated at the end of an
episode [17]. Itisn’t an ideal RL setup and could lead to
convergence issues with complex real-world data.

2.3. Domain-knowledge in Genetic
Programming

As stated above, Genetic programming (GP) was,
until recently, one of the most common methods to
perform SR. Koza [4] initially proposed GP as an
extension of Genetic Algorithms (GA) for computer
program induction: while a GA has a population of
fixed-length binary vectors, GP evolves a population of
programs represented as a tree. Due to the large search
space, vanilla-GP has a slow convergence. Thus, various
extensions propose to reduce this space with constraints.
These constraints can both improve convergence [19]
and impose a prior knowledge of the domain in the
learning, to promote more coherent solutions.

Early on, Koza [4] sensed that syntactic constraints
were an interesting solution to restrict the search space.
Also, in the early days of GP, Montana proposed a
Strongly Typed Genetic Programming approach [20],
where variables, function arguments, and return value
are given a specific data type. It was a first solution
to enforce knowledge about the programming language
structure. Another approach [21] took into account the
physical dimensions of each individual and evaluating
its distance to a correct dimension in the fitness function.
However, forcing dimensional consistency as a distance
does not prevent the final individuals from having
incorrect dimensions. Alternatively, another recent work
proposes to use ontologies [22] to elicit prior knowledge
by adding new features to the initial feature-set.

Domain knowledge can also take the form of
grammatical rules written in a Backus-Naur form (BNF)
[23], as in Grammar-Guided Genetic Programming
(G3P). A BNF grammar is composed of :

* aset of terminal symbols (the input features)

* a set of non-terminal symbols (the operators to
combine features e.g. X, +, ...)

¢ aset of production rules in the form symbol :=
rulel | rule2 |... (how to perform
operations on terminals)

On the left side of a production rule, separated by
=, is the symbol produced by the application of a

rule. On the right side, with | separator, are represented
the alternative rules which can replace the symbol.

Early on, G3P was used for equation discovery (or
re-discovery) [24] and since grammar-based evolution
has been heavily exploited in real-world applications
because of its great representational capacity: from
seismic underground prospection [25] to glucose
prediction in diabetic patients [26], and feature
construction in High-Energy Physics [27].

2.4. Interactivity

As defined in [28], interactive Machine Learning
(iML) is an interaction paradigm in which a user or
user group iteratively builds and refines a mathematical
model to describe a concept through cycles of input
and review. Model refinement takes the user’s insights
as input through objects with many different forms.
The model is then built in an Informed Machine
Learning paradigm [29], where knowledge is given
to the algorithm in a different form than the learning
data such as algebraic equations, logic rules, or human
feedback. In iML, iterations are more rapid, focused,
and incremental than in traditional machine learning.
Interactivity here enables a better understanding of
the algorithm’s results as the user has access to more
information, which eventually improves trust in the
proposed result. However, to be performing, several
common user characteristics have to be taken into
account, according to Amershi et al. [30]. First, users
are humans, not oracles, and performing repetitive tasks
like telling what is right and wrong to the computer
could be perceived as annoying. Users also want to
demonstrate how the algorithm should behave, which
could be advantageous in our application. In addition,
end-users naturally want to provide more than labels and
could make suggestions in a variety of manners (e.g.,
suggesting new features or adjusting their importance).
Therefore, users should have as many interaction types
as possible. These fundamental elements are only
possible if the users have at hand a carefully designed
interface. Thus, we have tried to keep these elements in
mind when developing the interactive platform.

In the GA community, interactive evolution (IE)
models are mainly Interactive Genetic Algorithms
(IGAs) or Human-Based Genetic Algorithms
(HBGASs)[31]. First, IGA allows the user to assign
a fitness score to individuals in the population. In
HBGA [31], in addition to evaluating the fitness
value, the user also performs all operations from
initialization, mutation, crossover, to selection. IGAs
are heavily exploited today in artistic or industrial
creation [32, 33], where there is a need to draw out

Page 1718



the perception and subjective evaluation of the user
regarding potential solutions. As the considered outputs
are often impossible to compare with classical fitness
functions, the user gives here a judgment-based fitness
score. Eventually, regarding the use of interactivity for
SR, Kim et al. proposed [34], an interactive platform
where users can either approve or reject expressions
found by a Deep Symbolic Regression mechanism.
However, they do not ensure dimensional consistency.

One major issue in IE is the user fatigue induced by
the repeated queries made by the algorithm. Strategies
have been proposed to reduce it, such as using a
relative evaluation of individuals [35] or training a deep
learning model to map the user’s fitness predictions
[32]. Another solution is also to perform automated
evaluation and occasionally ask for human evaluation
every n'" — generation [36]. As it is convenient not
to overload the expert, we’ll favor this last approach.

3. Data description

We built our platform as a SR-based interactive
process to explain various phenomena on power grids.
Our approach doesn’t aim at replacing power flow (PF)
or state estimation (SE) methods but rather proposes
an alternative solution to create regularly updated
indicators used for hazard pre-screening when PF and
SE are too long to compute. It would be of particular
interest in the so-called “N-1" studies, which simulate
the disconnection of all electrical lines independently on
a fixed time step. Thus, in a large network, an evaluation
of areduced set of indicators would be a much faster risk
assessment solution.

An electrical power grid can be represented as a
graph connecting a set of nodes by electrical lines. We
especially focus on explaining power flows on several
intricate power lines using sensors measurements and
power network simulations. Let us denote by y the
target features (flows) and X the set of input features
(measurements and simulation results). Even if the
power grid is hard to analyze as a whole, it can be
divided into smaller, almost electrically independent
regions to study the characteristics of each geographical
zones [37]. In this paper, we restrict the study perimeter
to a hilly mountain region in the French Alps made of 69
nodes and 92 lines. Only 9 lines connect the zone with
other parts of the network. In this area, 24 y target power
lines (or variables) were selected for analysis because of
their operational difficulty. 13 are already well analyzed
without interactivity (with a Pearson correlation score
above 0.85). Ten others are harder to process without
interactivity (score in [0.65, 0.8]).

We use 828 input features divided into 644 different
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Figure 1. A high-level overview of the proposed
platform with on the left, the GP evolution, and on
the right, the multi-level interaction details. “start
training” is the entry point of the process diagram.

training

Final solution
inspection

types of measurements and 184 simulated features.
Inputs contain various types of measurements (physical
data: active power P, reactive power (), voltage V/
at line extremities) as well as time-varying topological
information relative to lines and bus nodes connectivity.
Collected measurements ranged from January 2014 to
December 2018 and resulted in a dataset made of
365,165 timesteps. Underlying in this work, we want to
find simplified relationships between input and output
variables of simulations performed independently on
each time step. Thus, two consecutive time steps
are considered independent as the values of the target
variable y for two consecutive timesteps result from
two static simulations computed independently using
measurements from two different time steps.

The dataset is eventually separated into train and test
sets where the PG3P algorithm uses the train set, and the
test set is displayed in the visualization interface.

4. System implementation

In Figure 1, we first give a high-level overview of the
interactive platform. The training procedure is divided
into two components: the PG3P algorithm based on IE
on the left (detailed in Section 4.1), and the interactive
knowledge elicitation on the right. In-between lies the
interaction interface (see Section 5).

Our approach’s specificity is the multi-level
interactivity, which allows the user to distill his
knowledge at various stages. The user interacts with the
GP algorithm both during the run (through parameters
update, individuals inspections, and insertion) and
in-between two successive runs (mainly by updating
the grammar). More precisely, during the evolutionary
run, the user is queried for population initialization and
population update. Successive runs are performed until
the user is satisfied with the proposed solution.
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<expr> ::= <p> | <s> || probs [0.5,0.5]
<p> = <p>—<p> | <p>+<p> | abs(<p>) | <p_var>

|| probs [0.1, 0.3, 0.1, 0.5]
<qg> = <g>—<qg> | <g>+<p> | abs(<g>) | <g_var>

|| probs [0.1, 0.3, 0.1, 0.5]
<p2> = <p>x<p> | square(<p>) || probs [0.2, 0.8]
<g2> = <g>x<g> | square(<g>) || probs[0.2, 0.8]
<s> = sqgrt (<p2> + <g2>) | <s>+<s> || probs [0.8,

Figure 2. Probabilistic Grammar example with
<p-var> and <g_.var> as terminals.

4.1. Probabilistic Grammar

As detailed in the introduction, we are interested
in interactively finding a non-linear mapping m
between inputs observations X and a target variable
y, which provides meaningful explanations about the
relationships between variables to an expert user. Our
approach uses PG3P as the core algorithm to learn
this mapping. The main advantage we want to exploit
from PG3P is the capacity of the grammar to hold
information and structure about the problem because the
resulting individuals will contain part of this structured
knowledge. The restraining ability of the grammar is
also very useful to speed up the search time.

We use Probabilistic Context-Free Grammars as
an alternative to standard CFG (previously detailed in
Section 2.3). In PG3P, a weight is associated with each
rule of each production. The weight corresponds to
the probability of the rule being sampled to replace its
corresponding symbol. The probabilities are listed at
the end of each line and separated from rules options by
“||”. For each production rule, the sum of probabilities
over all alternative rules adds up to 1. This rule
occurrence frequency restriction has the overall effect of
reducing, even more, the search space and contributes to
the reduction of the bloating phenomenon [38] where
individuals’ size explodes after a few iterations.

A simplistic version of a G3P grammar is provided in
Figure 2, with only two terminals <p_var> <g_var>.
The corresponding dimensions allowed to return are
<p> or <s> with equal probabilities. The next two
grammar lines describe how to obtain an individual of
type <p> or <g>. The terminals are inserted there. Here
a higher weight has been given to terminals so as to
reduce recursivity and obtain shallower individuals.

The physical properties of the problem can also be
described in grammar. First, we can define the physical
units that are used in the algorithm. For example in
the grammar from Figure 2, we define active power
with symbol <p>, reactive power with symbol <g> and
apparent power with symbol <s>. The grammar also
details legal operations that can be carried out on each
of the physical units. It is therefore not possible to add a

0.

2]

power with a reactive power, but only two identical units
: <p> + <p> or <g> + <g>. We can eventually add
rules to explain how to go from one unit to another. For
example, still in Figure 2, symbol <p2> (resp. <g2>)
represents the square of an active (resp. reactive) power.

4.2. Individual representation

In PG3P and G3P, in general, an individual
or program can be visualized as a tree where
nodes are operations and leaves are terminals. To
make the implementation more efficient, we use the
representation of Canonical Grammatical Evolution,
which encodes an individual as a list of integers
representing a linear genome (also called chromosomes)
[39]. Each integer in the genotype list matches the rule
id in the current production. The phenotype (syntax tree)
is then built from it by depth-first traversal, each rule id
assigned to a tree node or leaf.

4.3. Fitness function

We want individuals to match as closely as
possible the behavior of a target y. To handle all
these requirements, we propose using correlation-based
metrics able to identify different types of relationships
between data. They have long been identified as an
adequate fitness metric in SR applications related to data
modeling [40]. Regarding knowledge discovery, we
selected various metrics with interesting characteristics:
Pearson correlation which can be used to tackle linear
relationships between variables; Spearman correlation
which has the ability to uncover non-linear relationships.
From these two metrics, some new fitnesses have
been declined. For instance, we tried to restrict
the population to positively correlated individuals by
setting down to zeros all individuals with negative
fitness. The modified correlation score Sc is then
defined as Sc(y, yhat) = max(0, corr(y, yhat)) with
corr the chosen correlation metric. This new score
won’t actually restrict the search space as we took care
of inserting a subtraction operator in the grammar to
transform negative correlations into positive ones easily.
Nevertheless, it prevents the algorithm from evolving
two distinct populations alongside respectively made of
anti-correlated and positively-correlated individuals.

To further prevent the bloating phenomenon, we
adjusted the fitness function by adding a penalty term,
similarly to what is done in [41]. In this study, they
define a penalty term also called “Simplicity score”
Sy = ma"”*”O‘fflfl;?fo’i;iffdesfo"g where max_nodes
is the maximum number of nodes allowed in an
individual and nb_node the actual number of nodes in
the individual. This score ranges between and 0.5 and 1.
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A score of 1 means that the expression has the smallest
possible size and only contains one node, while a score
of 0.5 is obtained if the individual’s size reaches the
maximum number of allowed nodes. They decided to set
the lower limit to 0.5 to penalize large-sized individuals
without forcing them to disappear as they can carry
partially good genetic material. max_nodes is then a
critical parameter to calibrate as a too-large value tends
to create large individuals while a too-small one would
restrict too much the search space.

In order to have a stronger penalty for
individuals with a large number of nodes, without
penalizing too much the small individuals, we
chose to adjust the proposed score as follows

1 _ maz_nodesP°" —0.5%(nb_nodes?°"41)
Sy - max_nodesPow —1 ypow € N.

The parameter pow is initialized with a low value of 3
but could be modified by the user (as in Figure 4 zone D)
to constraint the complexity of the solution. Eventually,
the fitness then becomes : fitness = Sc* Sy'.

4.4. Implementation

As backbone code, we upgraded the open-source
implementation of GP in Python PonyGE2 [42]. This
framework provides an efficient parallel implementation
useful on large datasets such as those we use in our
experiments. To propose up-to-date technical solutions,
we improved many elements from initialization
functions to the search engine. Especially, we inserted
correlation-based error-metrics, an evolutionary step
with population filtering, and we also extended the
handling of grammar to probabilistic grammars.

5. Interactive platform

In this work, we want to take advantage of expert
knowledge by interacting with an expert as the final user.
To achieve this goal, we propose a web-based platform
built using Plotly and Dash frameworks in Python. The
platform has two elements: first, the web interface
on the client-side where the user interacts with the
algorithm directly in the browser, then, the core training
performed on the server-side using the algorithm design
we described earlier in Section 4. The user is solicited
at four key stages of the algorithm :

¢ before launching the training, for hyperparameter
calibration

e at initialization, to include user-defined

individuals

e in between specific iterations to propose new
individuals based on the analysis of top-ranked
individuals from the previous generation

Parameters definition

Inputs selection

Figure 3. Parameters control tab. Mandatory target
selection is in zone A. Zones B and C are dedicated
to the definition (optional) of a custom grammar and
data set. Other learning parameters of the PG3P
algorithm can also be changed in zone D.

¢ at the end of each run, to draw some conclusions
from the experiments regarding both the quality
of the solutions and the relevance of selected
hyperparameters.

To give multiple degrees of freedom to the users
in the way they interact with the algorithm, we
propose a web interface separated into three tabs: first,
a parameters control tab to specify hyperparameters
before launching the training; then, an inspection tab
where the user can analyze the current population and
provide feedback used in the next generations; and
eventually a supervision tab that allows following the
evolution of specific learning-related parameters from
one generation to the next.

5.1. Parameters control tab

The first action the user performs is hyperparameters
calibration, performed in the interface presented in
Figure 3. For domain experts, it consists of at least
defining the target y we focus on (zone A). Dataset and
grammar can either be loaded or set a predefined default
file (zone B). In zone C, the user can also view the
default grammar. He can then modify and improve it
in a new file, which is to be downloaded in zone B. ML
experts can additionally set up GP parameters such as
mutation and crossover rates, population size, number
of generations, the fitness function, and the maximum
number of nodes an individual can have (zone D).

5.2. Inspection and feedback tab
Interactivity definition Once the learning starts, the

user is inquired to propose custom individuals as starting
points before the first crossover and mutation operations.
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Manual modification of individual 0

imumi({p-bus.or 21, {p-bus.or 1 {p_bus. e 11, lp bus.x51)

Manual modification of individual 1

Figure 4. Inspection tab (top section) for individuals
analysis. User can inspect, update, test and visualize
individuals in zone A. Buttons in zone B allows the

expert to increase or decrease the expressions
maximal complexity in the next generations.

The corresponding interactive visualization is displayed
in Figures 4 and 5. Figure 5 should be contiguous and
placed below Figure 4. This step is quite important as
GP algorithms are known to be sensitive to initialization.
This inspection-feedback step is also proposed similarly
after a fixed number of iterations and performed using
the same tab. This visualization shows the individuals
from the current generation (or individuals created using
PI_grow strategy if still at the initialization stage),
ranked by their fitness value.

At the top (zone A in Figure 4), users can visualize
the best individuals selected in the bottom-array
(zone D in Figure 5). On the right, a temporal
visualization provides a qualitative result regarding the
quality of the solution. On the left, the individual
is represented in a human-readable fashion using a
tree-based representation with functions as nodes and
terminal variables as leaves. Under this representation,
the user can type in custom solutions as text to compare
them to the current individual. The corresponding scores
are evaluated and computed below. Once the user is
satisfied with this new individual, he can insert it into the
current population so that it will be used to generate the
next generation. In zone C (Figure 5), another temporal
graph compares all selected individuals’ global behavior
to the target variable. After inspection, and only if
necessary, the user can either increase or decrease the
complexity parameter and then proceed with the next
generation (zone B in Figure 4)

Figure 5. Inspection tab (bottom section) for further
analysis. Zone C compares several expressions over
time against the target. In zone D, the user can
select other expressions to analyze, using their scores,
among top-10 + 10-randomly-selected individuals.

At the bottom of the page (zone D), a summary
of the generation shows the individuals’ expression
ranked by fitness and several other metrics such as
R2, Mean Square Error, Mean Absolute Error. The
expressions are shifted and rescaled using least-squared
regression before evaluating the metric to have a relevant
comparison between individuals. By default, only the
two best individuals are selected for manual inspection,
but the user can manually select any other individual.

At the end of the training, the final population is
displayed similarly. From these interactions, the user
can draw some conclusions about how the training went
in order to upgrade the grammar rules and probabilities
or change the selected fitness in the next experiments.

Regarding users’ fatigue One of the issues to tackle
in IE is the limitation of user fatigue. In our platform,
we propose to select in the overall population the top-10
individuals and add ten additional individuals taken
at random in the rest of the population for diversity
purposes. Another strategy we proposed to minimize
the users’ fatigue is to perform manual inspection
only at specific generations (by default, one in ten).
This approach also seems to be relevant for real-world
experiments because an expert’s time is expensive, and
the less interaction is required, the more likely it is that
the experts will have enough time to test our approach.

5.3. Supervision tab

This last tab (Figure 6) displays general statistics
about the training. On the top part (A), two line-charts
give information about the fitness’ evolution throughout
the training while at the bottom (B), four charts provide
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Supervise training success

Figure 6. Training supervision tab. Zone A describes
the scores evolutions while zone B give insights on
the evolution of the population complexity.

information about the complexity of individuals in
the population. On each graph, the statistics of the
current run are statically superimposed on that of
non-interactive training. Non-interactive statistics were
obtained beforehand on 40 evolutionary runs.

These graphs allow for in-depth critics of the training
procedure. It can be used to update the training
parameters in the next runs, such as calibrating the
complexity-constrain in the fitness or performing early
stopping to prevent too complex individuals.

6. Usage scenarios

This section describes two scenarios for using our
platform: the first one, where we do not get good results
in the non-interactive case, and the second, where we
want to refine a solution that already has a high fitness
score. Rather than describing the detailed scores on the
real-world dataset we embed, we focus on a description
of high-level tasks to improve feature search.

6.1. Knowledge distillation on bad performing
power lines

We first focus on the case where the PG3P alone is
not sufficient to build up a robust solution. To exemplify
how the user can take advantage of the platform, we
compare in Figure 7 interactive and non-interactive
setups on a line where the best fitness was under
0.8 without interactivity. The blue box plot depicts
the evolution of the fitness at each generation on 40
non-interactive runs, and the red line-plot shows the best

best non-interactive

il

0 20 40 60 80 100

Fitness
o
@
&

Iteration number

Figure 7. Comparison between interactive and 40
non-interactive runs on a challenging target variable.
Non-interactive runs are represented by a blue box
plot and the interactive run by a red line-chart.

fitness during an interactive run with an expert user.

While several standard (non-interactive) runs tend to
reach a plateau and a local optimum after a few iterations
and improve very little after the 50" generation, the
interactive run is still refining the model after the 70*"
run. These elements advocate the benefit of interactivity
to avoid local optima. Here, it might also be beneficial
to increase the number of generations for the algorithm
to converge. Moreover, the interactive version achieves
the best results from the 60" generation onwards.
Because the expert instilled knowledge from the early
generations, the algorithm can reach the same fitness
score earlier. However, because the interactive-run
does not outperform the non-interactive one in the first
generations, we can infer that the expert can’t distill his
knowledge in the too-simple individuals (exhibited at
the beginning) or that the user and the algorithm need
some iterations to calibrate.

Eventually, we foresee that custom in-run
complexity calibrations, e.g., increasing the maximally
allowed complexity of individuals progressively,
can also improve the search’s overall performance.
However, further experiments are necessary to show it.

6.2. Improving sparsity on already successful
solutions

The second situation we address is one where a
standard non-interactive evolution already gives good
results with respect to the fitness score. In this case,
non-interactive runs converge in a few iterations to a
solution close to the optimal solution, and the algorithm
proposes solutions with very similar scores but various
complexities. Expert’s knowledge would be useful here
to identify the most relevant fitness-sparsity trade-off.

Figure 8 shows a example of such a situation. In this
case, two similarly good solutions are displayed where
they almost perfectly match the target visually. The
first one, in red, is the most complex but most accurate,
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Figure 8. Temporal view of individuals with varying
complexity, on a simplistic case. Both solutions (red
and green lines) visually match the target variable (in
blue) and have a similar score. Domain expertise is
required to identify the most relevant solution.

while the green solution is a simplification. The question
asked here is: Is the simplest solution sufficient or too
extreme? In this situation, only an expert could tell
which solution to prefer by referring to its historical
knowledge. A strategy we propose to identify the most
simple but accurate solution is to progressively increase
or reduce the allowed complexity during the training to
obtain both the simplified solution and the most precise
one in the same population. The same strategy could
also be used to prevent overfitting by manually removing
all non-informative parameters in the expression.

7. Conclusion and perspectives

In this paper, we propose a HiTL approach for the
understanding of physical phenomena. We describe
a multi-level interactive platform designed for expert
knowledge elicitation. It is a system designed for
real-life application - in this case, power network
monitoring - where experts can provide insights about
their understanding of the problem at various stages
of the process, both within each run and between
two runs. We also propose two interaction scenarios
corresponding to both sides of the spectrum, and we
show how an expert can improve the search results.

This work opens to numerous perspectives. First,
the interaction types we describe here are prototypical
and could be enhanced, for example, by adding
a user-centered metric filled in by the expert to
take into account its knowledge and judgment even
further. This new metric could then be either handled
using a multi-objective strategy or integrated into
fitness formulation. We also envision improving the
probabilities update at each step according to the
representativeness of productions at each iteration [43].

In addition, given that an expert’s time is expensive,

we were not able until then to make extensive user
studies. Our very next step will then be to build an
experience with a panel of junior expert users in training.
Finally, even if the proposed platform only handles
PG3P on the server-side for now, we foresee that our
framework could also be helpful to interact with other
types of algorithms as a core computation scheme.
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