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Abstract

Taking dependencies between components seriously
and considering the multi-component perspective
instead of the single-system perspective could help
to improve the results of predictive maintenance
(PdM). However, modeling and identifying the
interdependencies in complex industrial systems is
challenging. A way to tackle this challenge and to
identify interdependencies is using visualization. To the
best of our knowledge, existing research on visualizing
interdependencies is not applied to multi-component
systems (MCS) so far. Further, it is not clear how
visualization approaches can provide suitable decision
support to identify interdependencies in PdM tasks. We
evaluate three key visualization approaches to represent
interdependencies in the context of PdM for MCS using
a crowd-sourced design study in a questionnaire survey
involving 530 participants. Based on our study, we were
able to rank these approaches based on performance
and usability for our given PdM task. The multi-line
approach outperformed other approaches with respect
to performance.

1. Introduction

Predictive Analytics, and especially PdM has gained
vast attention in recent years in both research and
digitized industry. PdM provides many advantages on
increasing productivity and reliability and is the most
known use case for data-driven decision support in
industrial settings [1]. In recent years, huge advances
were made in the development of predictive models,
thus improving decision support. However, current
studies reveal that the industry is not yet satisfied with
PdM-solutions [2, 3]. This is mainly as a result of mass
customization, more complex production processes, and
shorter product life cycles in digitized manufacturing

[2]. Traditional PdM approaches consider even very
complex industrial systems on a single component
level (e.g., system-level or a component) without
paying enough attention to the interdependencies of
components [4]. MCS seem promising in this regard
as they explicitly consider interdependencies between
system components and thus promise more accurate
and understandable models [5, 4]. For instance,
an old worn-out component that interacts with new
components will potentially accelerate the wear rate of
a new one. This potential information will improve
the prediction results and maintenance scheduling.
However, identifying and modeling interdependencies
in complex industrial systems is not a trivial task and
currently, the major barrier of introducing MCS in the
industry [6].

MCS is defined as a system that consists of
multiple components and these components strongly
interact with each other. In this case, a type of
interdependencies (i.e., interactions) is deterioration
effect between components. Modeling and interpreting
interdependencies provide many advantages, such as
more accurate results, higher interpretability, higher
acceptance rate of these models, and finally improved
maintenance scheduling strategies [5, 7, 4]. Until
now some initial research attempting to improve the
decision-making process for PdM in the context of
MCSs is conducted [7, 5]. In these works, the
main focus is to provide decision support to shop
floor workers by providing the most suitable predictive
maintenance policy. Mostly the interdependencies are
defined based on domain expert knowledge due to the
lack of amount of data required to represent an MCS.

One important aspect of decision support in
context of MCS, however, is the presentation of
interdependencies to end-users. One way to present the
interdependencies in an appropriate and user-friendly
way are visualization approaches [8]. In literature, some
studies have used different visualizations to present
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the results in the context of MCS, even though the
visualization of interdependencies was not the focus of
these studies [9, 10, 11, 12, 13]. To the best of our
knowledge, we did not find any approach tackling this
particular challenge of visualizing interdependencies
for MCSs. Although, the potential to understand and
identify interdependencies will provide a basis to build
a vision for a predictive model, which we lack because
of the missing interdependencies.

In this paper, we aim to explore how do
visualizations help the users to identify the
interdependencies within an MCS. Moreover, we
aim to identify cost-optimized oriented approaches. We
also aim to rank visualizations in terms of usability.
We conducted a crowd-sourced study involving 530
participants, where we were able to identify the best
approach regarding the performance.

2. Theoretical background

2.1. Multi-component systems and
interdependencies

MCS view in the context of PdM helps to
improve predictive results, as well as understanding
and interpretation of the predictions, thus, enhancing
maintenance scheduling and decision support [9, 4].
Current research has shown that interdependencies
between components exist and have a strong impact on
the deterioration process, as well as on the economical
aspect [14, 4, 9].

In the existing literature, interdependencies between
components are grouped into different categories:
stochastic, economic, and structural interdependencies.
First, stochastic interdependencies represent the
deterioration effect between components within a
system. For instance, a worn-out component will
accelerate the wear-out rate of other components that
are interacting within an MCS. Second, economic
interdependencies focus directly on the generated costs,
respectively, reduced costs that can be assured through
performed maintenance of components together,
rather than maintaining separately. Finally, structural
interdependencies describe the effect that components
cause on each other, in case that these components are
structurally coupled with each other. The effect can be
in costs, as well as on the deterioration rate [14]. For
instance, Rasmekomen et al. [14] analyzes the structural
effect based on the deterioration rate. The presence of
various interdependencies within MCSs increases the
complexity further. Therefore, to build human-centric
PdM solutions, decision support to identify and model
these aspects is required.

In practice, decision support is crucial to provide

efficient, faster, and reliable alternatives in the
decision-making process. A number of research
results of decision support for industry-based PdM
have emerged in literature [15, 16, 17, 18, 19, 20].
These tools have enabled decision support providing
reasonable results by incorporating the data-driven
approaches. For example, Yam et al. [17] developed
a PdM decision support system (DSS) based on a
recurrent neural network. Moreover, We et al. [16]
introduced an integrated neural network based on a
decision support system for predictive maintenance of
rotational products. These works aim to assist shop floor
workers in the decision-making process by providing
recommendations regarding the maintenance actions or
selection of the most suitable analytical approach for
PdM solutions. Initially, this works focuses on a single
component system (e.g., system-level or a component)
providing acceptable results. However, the complexity
of systems in digitized manufacturing increases due to
mass customization and shorter product life cycles in
digitized manufacturing [2], or the presence of different
variants and configurations within one machine [4].
This leads to the need for new solutions to handle the
complexity and its challenges properly. MCS view
in context of PdM seems promising in this regard.
However, in the past, the lack of data and the degree
of complexity present within MCSs prevented sufficient
research on the implementation and application of MCS
perspective [4]. Nevertheless, with the increase of the
information basis (growing availability of cheap and
powerful sensor technology [21]) and huge advances
in AI and data processing capabilities [22], research in
MCSs seems feasible. As a result, this could help to
reduce maintenance costs and improve the quality of
products.

2.2. Visualization for decision making

Data visualization is a powerful representation of
the information in decision-making process. It can
accelerate perception, provide awareness and control,
and harness knowledge to gain a competitive advantage
in making valuable decisions [15, 23, 24]. Current
research has shown that data visualization helps to
enhance and provide more effectiveness and control
during the maintenance process [25, 26, 27]. In
particular, it provides a better understanding of the
data and faster knowledge acquiring for shop floor
workers. The main focus of these works has been
towards maintenance actions [27, 25, 26]. In this
regard, the aim is to visually help the shop floor workers
to understand and improve the performance of the
maintenance process.
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In literature, you can find many examples where
visualization for decision support in the context of PdM
has been applied [28, 29, 30, 16]. In general, different
parameters (e.g., sensor data) are visualized, thus,
providing a possibility for visual condition monitoring
from the shop floor workers. This helps to understand
and interpret better the predictive results. Moreover,
visualizations have been applied for PdM in context
of MCSs to enhance decision-making process. In this
case, the aim is not only to show the deterioration of
the component over time, but also the interdependencies
effect between the components. Extensive research
works focusing on PdM in the context of MCSs,
which used visualization to demonstrate the presence
of interdependencies can be found [9, 10, 11, 12,
13]. For instance, Assaf et al. [9] used line charts
to show the presence of interdependencies between
components. As a result, a mathematical model for
multi-component degradation modeling is presented.
Shahraki et al. [10] used multi-line visualizations to
show interdependencies between the components within
an MCS. However, none of these studies has evaluated
the usefulness of visualization aiming to show and
identify the interdependencies.

3. Interdependence’s visualization
approaches

In the literature, we identified potential candidate
approaches suitable for modeling interdependencies
using visualization approaches: line-based approach [9],
matrix-based approach [31, 11], multi-line approach
[32], bar-based approach [13], and stacked area
approach [33]. Next, after multiple iterations of
discussion with domain experts, we defined the
selection rule to drill down to the relevant approaches:
First, we selected visual approaches that highlighted
interdependencies over time. Second, we considered
visual approaches that emphasize the performed
component replacements e.g., maintenance actions.
Finally, space reduction is considered as an important
aspect to select these approaches. For example, the
multi-line approach requires less space compared to the
line chart approach where each component is visualized
in a separate chart. As a result, we narrow down
to three important approaches: The multi-line, the
heatmap (adaption of matrix-based approach), and the
stacked-area approach.

3.1. Multi-line approach

Multi-line approaches are known as important
approaches for robust visualization of multiple
time-based data e.g., time series [32]. The multi-line

approach is appropriate for pattern recognition and
relationship analysis. In our specific case, we are
interested in the visualization of interdependencies
between components which deteriorate over time. In
this context, the multi-line approach meets exactly the
requirements for visualizing MCS interdependencies.
Hence, we consider multi-line (see Figure 1) for further
exploration within our study.

Multi-line approach is composed of two axes:
x-axis representing the distance information in km and
y-axis representing the deterioration time, whereby 1
represents a fully worn-out component, respectively, 0 a
completely new component. Deterioration as a physical
parameter evolves over the distance as shown in Figure
1. Deterioration switches to 0, when a maintenance
activity is performed and the component is replaced.
Moreover, a single line represents the deterioration state
of a specific component.

Figure 1: MCS interdependencies presented using
multi-line visualization approach. X-Axis representing
the distance information in km and y-axis representing
the deterioration time.

3.2. Heatmap approach

The Heatmap approach visualizes data using table
format (matrix) and a variety of colors [31]. In
this case, the possibility to apply different variables
in the rows and columns provides an opportunity
for cross-examining multivariate data. Moreover, the
coloring of the cells within the table represents the
magnitude of the variable at a specific state. This
provides an opportunity for showing variance across
multiple variables. Heatmaps are valuable, when
aiming to recognize patterns or estimating the similarity
within multivariate data. Heatmaps require less space
compared to other visual approaches, thus, are suitable
for visual feature reduction challenge.

A Heatmap approach is a visual representation of
components deterioration data over the distance, where
the individual values within the matrix are represented
as colors. A row contains deterioration state information
for a single component. Whereby, the x-axis of the
heatmap-matrix 2 represents the distance information
in km. The color within a specific row encodes the
corresponding deterioration state of the component. A
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white color reveals a new component, whereby a black
color reveals a fully worn-out component.

Figure 2: MCS interdependencies presented using the
heatmap visualization approach. X-Axis representing
the distance information in km. The color within a
specific row represents the corresponding deterioration
state of the component. A white color reveals a
new component, whereby a black color reveals a fully
worn-out component.

3.3. Stacked-area approach

Stacked-area approaches are visualization
approaches for representing multiple time-series by
stacking filled shapes that represent single time-series
on top of each other [34]. The high of each stream at a
specific time point represents its value. The stacked-area
approach is suitable for pattern recognition, comparison,
and causal analysis. These characteristics fit exactly to
challenge of interdependencies recognition for MCS.

Stacked-area approach (shown in Figure 3) is
composed of two axes: the x-axis representing the
distance information in km and the y-axis representing
the deterioration time. In reality, for a single
component, 1 represents a worn-out component and
0 an unused component. Important is to note, that
the stacked-area, in contrast to the multi-line approach,
accumulates the deterioration state of components (e.g.,
two components). For example, if both components are
fully worn-out, the upper limit will be 2. This could
increase the probability for distortion while reading and
comparing values within the stacked-area [35].

Figure 3: MCS interdependencies presented using
stacked-area visualization approach. X-Axis
representing the distance information in km and
y-axis representing the deterioration time.

4. Evaluation study

In this section, we investigate different visualization
approaches concerning interdependencies where the aim
is to evaluate (i) how do the visualization helps the
users to identify the interdependencies within MCSs, (ii)
which visualization/-s is/are the most appropriate ones
for visualizing and identifying the interdependencies.
To do so, we design a study on a crowd-sourced platform
to elicit preferences and user performance using these
approaches. This section describes in detail the data
sources, the method, and the metrics used within this
study.

4.1. Use case and data description

As industrial machines are very complex and
specific, we needed an MCS use case, which is common
and most people are aware of and understand it. For
this purpose, we decided to select a bicycle as a suitable
example for simple MCS. The bicycle consists of a
small number of components and these components
strongly interact with each other. Moreover, the bicycle
example provides a good basis to demonstrate the results
in an understandable way. Furthermore, the access to
subjects is simpler compared to a real industrial use
case. On the other hand, the knowledge collected
within this use case is theoretically transferable to
a real industrial setting. In this context, we focus
on two specific components: chain and chain-ring.
Domain experts (i.e., bicycle mechanic) defined these
two components, as components which introduce a
strong level of interdependencies.

Algorithm 1: MCS: Generate deterioration
data over distance

Input: rD, intt , dett
Output: intt+1 , dett+1

if d ≤ threshold 1 then
dett+1 = linearDeterioration (rD, intt , dett);
; // deterioration step 0.0001
intt+1 = noInterdependencies();

end
else if threshold 1 < d≤ threshold 2 then

dett+1 = quadraticDeterioration (rD, intt , dett);
; // Comp interdependencies taken into account
intt+1 = updateInterdependeciesState(rD, intt);
; // Quadratic interdependencies

end
else if threshold 2 < d≤ threshold 3 then

dett+1 = exponentialDeterioration (rD, intt , dett));
; // Comp interdependencies taken into account
intt+1 = updateInterdependenciesState(rD, intt);
; // Exponential interdependencies

end
else

Crash()
end

Due to missing condition monitoring data for
specific components (e.g., chain and chain-ring), we
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have resorted synthetic data. Based on the description of
the deterioration time and deterioration effect between
components we generated health description data. The
description of the component aging is provided by
domain experts through multiple interviews. This
helped us to generate data close to reality in a
standardized and simpler way. Based on the interview
results we defined different assumptions: (1) chain
crashes after 4000 km (i.e., threshold 3), (2) chain-ring
crashes after 10 000 km (i.e., threshold 3), (3) if a
chain component has been in use less than 1500 km i.e.,
threshold 1, then no deterioration effect toward other
components is present, (4) if chain-ring has been in
use for less than 4000 km (i.e., threshold 1), then no
deterioration effect toward other components is present.
(5) if chain has been in use more than 3000 km
(i.e., threshold 2), the deterioration rate and effect is
exponential. (6) if chain-ring has been in use more than
8000 km (i.e., threshold 2), the deterioration rate and
effect is exponential.

As a result, a mathematical model taking into
account the corresponding parameters (e.g., chain’s
threshold 1) for every relevant component (i.e., chain
and chain-ring) is designed (see algorithm 1). The
mathematical model is used to generate the deterioration
data concerning interdependencies. This provides two
different advantages: (1) the model help us to generate
synthetic data based on the domain experts, thus leading
to a data-set that describes a system behavior for bikers.
(2) This model will be used to evaluate the results
during a design study, thus increasing the plausibility of
collected data.

Let chXt and chrXt represent the accumulated
deterioration of chain at t distance [km], respectively,
deterioration of chain-ring. In such cases, deterioration
state (e.i., chXt and chrXt) is updated for each
deterioration step (e.i., t). In our case, a deterioration
step represent 1 meter (m) ride of the bike (i.e., rD).
At each deterioration step, the deterioration of the
chain and chain-ring is evaluated using the algorithm 1.
Algorithm 1 takes as input the relative distance (i.e., rD),
current interdependencies effect (i.e., intt), and current
deterioration state of the corresponding component (i.e.,
dett). As a result, the deterioration state of the
component (i.e., dett + 1) and the interdependencies
effect (i.e., intt + 1) for the next step is estimated
and provided as output. In particular, the deterioration
could evolve in three different forms (depending on
the relative distance): linear (LinearDeterioration (...)),
quadratic (QuadraticDeterioration (...)), or exponential
(ExponentialDeterioration (...)) form.

For the design study, two different scenarios are
considered. We use these two data-sets to generate

the scenarios for the visualization approaches. This
is crucial as it helps to compare these approaches and
interpret the results.

• Scenario 1 is a data-set that represents the
deterioration of chain and chain-ring over a
distance. Multiple replacements are performed
randomly for each of the components. In this
data-set, the deterioration effect is considered and
modeled based on the algorithm 1.

• Scenario 2 is a data-set where deterioration
of the components over distance is modeled.
Similar to scenario 1, this data-set models
deterioration of components where randomly
multiple component replacements are performed
on both chain and chain-ring. In particular, this
data-set demonstrates the case which leads to a
crash. On the one hand, the deterioration effect
(interdependencies) is clearly shown. On the
other hand, this data-set is terminated with a
crash, where one of the components is overused,
thus, requiring to replace both components.

4.2. Procedure

This design study aims to understand if users
can identify and interpret interdependencies between
components of an MCS represented with different
visualization approaches. Moreover, we want to identify
which visualization/-s is/are the most appropriate ones
for visualizing and identifying the interdependencies of
an MCS. For this purpose, a crowd-sourced study is
designed to evaluate different visualization approaches.
In the past, crowd-sourced studies showed significant
results when comparing different visualizations [36, 37].
Each participant has to evaluate in detail only one
specific approach. This decision will help to avoid
biased data [38, 39]. In particular, to avoid biased data
(i.e., retrospective bias [39]), we also randomly assigned
the visualization approach to analyze in detail as well
as the order of answers of all the questions within the
design study.

First, a description and purpose of the study,
altogether, with the information about the respect of
confidentiality regarding the data is provided to each
participant. Second, the participant is asked to answer
some demographic questions regarding the expertise on
visualization and education level. Further demographic
data are provided directly from platform, which is used
to conduct the study. Third, the MCS use-case and the
definition of interdependencies is presented through a
video animation.

Next, the participant performed the main task, i.e.,
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he/she evaluated one of the three approaches in detail.
The task was designed as follows: (1) a short description
of the visualizations was shown to the participant, (2)
two different scenarios of components deterioration
over time (e.g., distance) and performed maintenance
actions (e.g., replacements) using the corresponding
visualization approach were shown to the participant.
The participant is asked to analyze these scenarios in
detail and try to identify the interdependencies between
components. (3) Next, the participant is asked to rank
the identified level of interdependencies. Furthermore,
the participant is asked to design a maintenance strategy
(e.g., define component replacements over the distance)
for a distance ride of 10 000 km. Moreover, a limited
budget of 600 e is provided altogether with the cost
information of both components. Chain value was 20
e and chain-ring 200 e. This task is designed based
on the suggestion from Kittur et al. [40] to motivate
the participants to study the visualization in an accurate
way and prevent random answers. Fifth, we performed
a usability evaluation based on the System Usability
Scale (SUS) [41]. Sixth, subjective feedback has been
collected through a post-task questionnaire based on
NASA TLX 1 covering six dimensions of workload:
mental demand, physical demand, temporal demand,
effort, frustration, and perceived performance. Finally,
to each participant, all three approaches are shown, and
we asked them to select the approach that they would
use to identify interdependencies between components.

4.3. Evaluation protocol

We conducted an offline evaluation of the collected
results. First, we analyzed and compared the distribution
of the data using both visualization tools as well as
statistical approaches. As a visualization tool, we used
bar charts with confidence intervals (known as error
bars), providing two crucial pieces of information, the
average of the data distribution and the confidence
interval. This information helps us to estimate visually
if two distributions are significantly different. On the
other hand, the Mann-Whitney U test [42] is used
as a statistical approach to evaluate the difference of
distributions. This approach provides more reliable
results as it is non-parametric and is not dependent on
normally distributed data. In this case, the significant
differences with p < 0.01 are estimated. Second, we
used the mathematical model introduced in 4.1, which
is used to generate the data-sets. The model is used to
evaluate if a provided strategy is suitable to keep the
bicycle in operational state or will crash. A strategy
that led to a crash is considered a failed, otherwise, a

1https://humansystems.arc.nasa.gov/groups/tlx/

successful strategy.

5. Discussion of results

5.1. User study: data elicitation

In this crowd-sourced study, 704 users participated.
Whereby, 530 (M= 435, F=84, N/A=11) participants,
age 18-65 are approved as shown in Table 5a. The
strategies provided by participants are used to evaluate
the quality of the submissions. For example, strategies
that contained only random numbers are rejected, thus,
considering only serious attempts. As a result, 72
submissions are rejected. Moreover, 89 users returned
their submission i.e., results are not submitted. Finally,
13 participation are rejected from the platform, due
to timed out, which was 45 minutes (m) by default.
The participants had experience with visual- and data
analytic tools. Moreover, all participants had experience
in the industry and are well educated (529 participants
with at least a bachelor’s degree). Participants needed
µ = 12 m and 42 seconds (s) to successfully analyze
the heatmap approach. Stacked-area visualization is
successfully analyzed in µ = 13 m and 42 s and the
multi-line approach is successfully analyzed in µ = 12
m and 50 s.

Finally, the participants provided subjective
feedback with regard to the workload. The workload
has been estimated using the results of the NASA
TLX questionnaire. In general, the workload of all the
approaches seems low (mean below 50): (heatmap) µ
= 27.54 σ = 6.21, (stacked-area) µ = 28.48 σ = 5.99,
(multi-line) µ = 26.78 σ = 6.65. Moreover, the results
focusing on performance and frustration showed a
significant difference. In this case, the Mann-Whitney
U test showed that the distribution is significantly
different with p < 0.01. In both cases, it is obvious,
that the participants felt more confident while using
multi-line approach and less frustrated. In contrast, the
participants who evaluated stacked-area approach felt
less confident and more frustrated during the evaluation.

The learning effect based on SUS is estimated,
to evaluate the level of training needed for these
approaches. In general, low learning effect has been
revealed (mean score below 68): (heatmap) µ = 63.92 σ
= 27.82, (stacked-area) µ = 62.34 σ = 25.35, (multi-line)
µ = 65.3 σ = 24.51. In particular, we can find some
significant differences between the approaches shown in
Figures 4a and 4b. The significance of the distribution is
shown using the bar charts with confidence interval and
Mann-Whitney U test approach with p < 0.01.

These results show that participants analyzing
heatmap and multi-line approaches were more
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confident, needed low overall workload, and most
importantly the perception is that less training is
needed to use these approaches. But this was not the
case with stacked-area approach, where participants
thought that this is less intuitive and felt less confident
while analyzing this approach. Interestingly, the
aforementioned results show a similar performance
between the heatmap and multi-line approach. Even
though, stacked-area and multi-line approaches are
primarily designed for multiple time-series [34],
the results indicate that they perform significantly
differently while aiming to identify interdependencies
for MCS. Therefore, a more detailed exploration of
these approaches could help to explain further the
similarity and dissimilarities between these approaches.

(a) Approache’s perception

(b) Evaluation of the confidence level

Figure 4: Usability evaluation: A visual comparison
of confidence and intuition level between the analyzed
approaches.

5.2. Strategy validation and cost optimization

The approved 530 strategies are analyzed in
detail. First, we validated the provided strategies
(i.e., deterioration validation) based on mathematical
model introduced in 4.1. Strategies that generated a
crash, are considered as failed strategies, otherwise,
are considered as a successful strategies (see Figure
5a). Overall, 334 strategies were successful and 197

strategies failed which resulted in a crash. In general,
participants that analyzed multi-line approach provided
a lower rate of failed strategies with only 31%, followed
by heatmap strategy with 37% of failed strategies.
The participants using a stacked-area visualization
returned a higher rate of failed strategies with 44%.
Along deterioration validation process a cost-based
validation of the provided strategies (see Figure 5b) is
conducted. Cost-based validation is applied on top of
the deterioration validation results. In such cases, a
strategy that exceeds the provided cost limit of (600
e) is classified as failed, otherwise, as a successful
strategy. As a result, the multi-line approach showed
the lowest rate of failed strategies with 30%, followed
by heatmap approach with 37 % , respectively, 41 % for
the stacked-area visualization.

Additionally, we estimated the costs for each
visualization approach with respect to the provided
strategies (see Figure 6). The results showed that the
participants analyzing stacked-area approach invested
around 500 e on average. But, participants who
analyzed heatmap and multi-line approach invested less
than 400 e on average. These results were statistically
significant based on the Mann-Whitney U test approach
with p < 0.01.

The results from the strategy validation process
indicate that multi-line approach showed a lower error
rate. This suggests that multi-line could be the
appropriate approach that shows a high degree of
visual perception and recognition. Moreover, perception
results for stacked-area approach were poorer compared
to the other approaches. This could be due to
distortion effects while aiming to read and compare
values within stacked-area [35]. On the one hand,
the cost optimization results suggest that heatmap
and multi-line are suitable approaches. On the
other hand, the stacked-area approach seems to be
the more offensive approach, which could be helpful
in more sensitive settings [43]. Usually, offensive
approaches are appropriate in sensitive settings, where
breakdown should be prevented due to safety or
economic costs. Furthermore, the evaluation in this
work was not exhaustive. In particular, we evaluated
the interdependencies recognition, but we chose not to
include semantic enrichment. Semantics enrichment
allows identifying, extracting, and presenting the
relevant interdependencies [44]. Last but not least,
this is a complex task but is crucial for clear and
precise knowledge understanding, documentation, and
communication.
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(a) Deterioration validation strategy process. A maintenance
strategy that crashes within 10 000 km is classified as failed,
otherwise, successful strategy.

(b) Cost-based validation strategy process. A maintenance
strategy that exceeded the provided limit of costs (600 e) was
classified as failed, otherwise, successful strategy.

Figure 5: Strategy validation process

Figure 6: Average cost estimation: Heatmap and
multi-line approach show significant results while
aiming for cost optimization

5.3. Preference transitions

At the end of the design study, participants were
familiar with one of the approaches. Finally, we
showed to every participant all three approaches, and we
asked them to select the approach that they think will
help them most to identify interdependencies between
components.

The results are shown in Figure 7. Whereby,
35% of all participants used the multi-line approach
in the experiment. The majority of these participants
preferred to keep using the multi-line approach (73%).
However, only a small number of participants preferred
to switch to heatmap (11.5%) or stacked-area approach
(15.4%). Moreover, 35% of all participants used the
heatmap approach. Even though several participants
preferred to keep using the heatmap approach (45.5%)

for analyzing interdependencies, still, a reasonable
number of participants preferred to switch to multi-line
(27.3%), respectively, stacked-area approach (27.2%).
Interestingly, the majority of participants who analyzed
the stacked-area approach in detail preferred to switch
to the multi-line approach (56.4%). A small number
of participants preferred to keep using the stacked-area
approach (29.1%), or to switch to the heatmap approach
(14.5%). As a result, 52.2% of participants preferred
the multi-line approach. Whereby, 24.2% of participants
preferred the heatmap approach and only 23.6% the
stacked-area approach. These results show clear
domination of the multi-line approach in contrast to the
heatmap and stacked-area approach. This is an indicator
that the multi-line approach could be appropriate for
the recognition of interdependencies within an MCS.
Although, clear causation of flowing tendencies toward
the multi-line approach is not obvious from this study.
This is a valid research question for future work
as participants switch to all approaches. Relevant
works [45, 46] show that users’ characteristics such as
cognitive abilities have an impact on the performance
or subjective preferences with a given visualization
approaches and thus also our three approaches might
depend on user characteristics.

Figure 7: Preference transition after showing all three
approaches to the participants.

6. Conclusions

In this paper, we investigated which visualization
approaches are suitable for identifying the
interdependencies of an MCS. The results showed
that users are able to identify interdependencies
and to use them to design a maintenance strategy
for an MCS. Thus, visualization approaches seem
suitable to overcome the challenge of identifying
interdependencies. Specifically, the multi-line approach
showed the best performance with respect to task
performance (strategy validation and cost optimization).
Moreover, the multi-line approach also clearly showed
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superiority based on subjective feedback (preference
transitions). The multi-line and heatmap approach
received better feedback regarding usability compared
to stacked-area approach being more intuitive to use
and easy to understand.

In this work, we evaluated the visualization
approaches using a simple MCS (2-components). In
the future, we plan to design a more complex MCS,
which consists of a higher number of components,
and evaluate the visualization approaches within this
context. The complexity that can be introduced
with the increase of the number of components is
one crucial aspect that needs careful consideration,
as it can easily affect the users’ decisions while
performing maintenance. Moreover, an evaluation of
these approaches in terms of productivity (identifying
perfect timing for maintenance) is required. So far we
were able to evaluate approaches from the functional
perspective. Next, we plan to analyze approaches based
on the optimal solution. In this case, the recognition
of the interdependencies at perfect timing (change point
detection) is crucial for optimal maintenance. Moreover,
in the future, we plan to integrate the approaches in a real
DSS in the context of MCSs.
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